snowflake-ml-python 1.8.1__py3-none-any.whl → 1.8.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (170) hide show
  1. snowflake/cortex/_classify_text.py +3 -3
  2. snowflake/cortex/_complete.py +64 -31
  3. snowflake/cortex/_embed_text_1024.py +4 -4
  4. snowflake/cortex/_embed_text_768.py +4 -4
  5. snowflake/cortex/_finetune.py +8 -8
  6. snowflake/cortex/_util.py +8 -12
  7. snowflake/ml/_internal/env.py +4 -3
  8. snowflake/ml/_internal/env_utils.py +63 -34
  9. snowflake/ml/_internal/file_utils.py +10 -21
  10. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +5 -7
  11. snowflake/ml/_internal/init_utils.py +2 -3
  12. snowflake/ml/_internal/lineage/lineage_utils.py +6 -6
  13. snowflake/ml/_internal/platform_capabilities.py +41 -5
  14. snowflake/ml/_internal/telemetry.py +39 -52
  15. snowflake/ml/_internal/type_utils.py +3 -3
  16. snowflake/ml/_internal/utils/db_utils.py +2 -2
  17. snowflake/ml/_internal/utils/identifier.py +8 -8
  18. snowflake/ml/_internal/utils/import_utils.py +2 -2
  19. snowflake/ml/_internal/utils/parallelize.py +7 -7
  20. snowflake/ml/_internal/utils/pkg_version_utils.py +11 -11
  21. snowflake/ml/_internal/utils/query_result_checker.py +4 -4
  22. snowflake/ml/_internal/utils/snowflake_env.py +28 -6
  23. snowflake/ml/_internal/utils/snowpark_dataframe_utils.py +2 -2
  24. snowflake/ml/_internal/utils/sql_identifier.py +3 -3
  25. snowflake/ml/_internal/utils/table_manager.py +9 -9
  26. snowflake/ml/data/_internal/arrow_ingestor.py +7 -7
  27. snowflake/ml/data/data_connector.py +40 -36
  28. snowflake/ml/data/data_ingestor.py +4 -15
  29. snowflake/ml/data/data_source.py +2 -2
  30. snowflake/ml/data/ingestor_utils.py +3 -3
  31. snowflake/ml/data/torch_utils.py +5 -5
  32. snowflake/ml/dataset/dataset.py +11 -11
  33. snowflake/ml/dataset/dataset_metadata.py +8 -8
  34. snowflake/ml/dataset/dataset_reader.py +12 -8
  35. snowflake/ml/feature_store/__init__.py +1 -1
  36. snowflake/ml/feature_store/access_manager.py +7 -7
  37. snowflake/ml/feature_store/entity.py +6 -6
  38. snowflake/ml/feature_store/examples/airline_features/entities.py +1 -3
  39. snowflake/ml/feature_store/examples/airline_features/features/plane_features.py +1 -3
  40. snowflake/ml/feature_store/examples/airline_features/features/weather_features.py +1 -3
  41. snowflake/ml/feature_store/examples/citibike_trip_features/entities.py +1 -3
  42. snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py +1 -3
  43. snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py +1 -3
  44. snowflake/ml/feature_store/examples/example_helper.py +16 -16
  45. snowflake/ml/feature_store/examples/new_york_taxi_features/entities.py +1 -3
  46. snowflake/ml/feature_store/examples/new_york_taxi_features/features/location_features.py +1 -3
  47. snowflake/ml/feature_store/examples/new_york_taxi_features/features/trip_features.py +1 -3
  48. snowflake/ml/feature_store/examples/wine_quality_features/entities.py +1 -3
  49. snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py +1 -3
  50. snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py +1 -3
  51. snowflake/ml/feature_store/feature_store.py +52 -64
  52. snowflake/ml/feature_store/feature_view.py +24 -24
  53. snowflake/ml/fileset/embedded_stage_fs.py +5 -5
  54. snowflake/ml/fileset/fileset.py +5 -5
  55. snowflake/ml/fileset/sfcfs.py +13 -13
  56. snowflake/ml/fileset/stage_fs.py +15 -15
  57. snowflake/ml/jobs/_utils/constants.py +2 -4
  58. snowflake/ml/jobs/_utils/interop_utils.py +442 -0
  59. snowflake/ml/jobs/_utils/payload_utils.py +86 -62
  60. snowflake/ml/jobs/_utils/scripts/constants.py +4 -0
  61. snowflake/ml/jobs/_utils/scripts/get_instance_ip.py +136 -0
  62. snowflake/ml/jobs/_utils/scripts/mljob_launcher.py +181 -0
  63. snowflake/ml/jobs/_utils/scripts/signal_workers.py +203 -0
  64. snowflake/ml/jobs/_utils/scripts/worker_shutdown_listener.py +242 -0
  65. snowflake/ml/jobs/_utils/spec_utils.py +22 -36
  66. snowflake/ml/jobs/_utils/types.py +8 -2
  67. snowflake/ml/jobs/decorators.py +7 -8
  68. snowflake/ml/jobs/job.py +158 -26
  69. snowflake/ml/jobs/manager.py +78 -30
  70. snowflake/ml/lineage/lineage_node.py +5 -5
  71. snowflake/ml/model/_client/model/model_impl.py +3 -3
  72. snowflake/ml/model/_client/model/model_version_impl.py +103 -35
  73. snowflake/ml/model/_client/ops/metadata_ops.py +7 -7
  74. snowflake/ml/model/_client/ops/model_ops.py +41 -41
  75. snowflake/ml/model/_client/ops/service_ops.py +230 -50
  76. snowflake/ml/model/_client/service/model_deployment_spec.py +175 -48
  77. snowflake/ml/model/_client/service/model_deployment_spec_schema.py +44 -24
  78. snowflake/ml/model/_client/sql/model.py +8 -8
  79. snowflake/ml/model/_client/sql/model_version.py +26 -26
  80. snowflake/ml/model/_client/sql/service.py +22 -18
  81. snowflake/ml/model/_client/sql/stage.py +2 -2
  82. snowflake/ml/model/_client/sql/tag.py +6 -6
  83. snowflake/ml/model/_model_composer/model_composer.py +46 -25
  84. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +20 -16
  85. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +14 -13
  86. snowflake/ml/model/_model_composer/model_method/model_method.py +3 -3
  87. snowflake/ml/model/_packager/model_env/model_env.py +35 -26
  88. snowflake/ml/model/_packager/model_handler.py +4 -4
  89. snowflake/ml/model/_packager/model_handlers/_base.py +2 -2
  90. snowflake/ml/model/_packager/model_handlers/_utils.py +15 -3
  91. snowflake/ml/model/_packager/model_handlers/catboost.py +5 -5
  92. snowflake/ml/model/_packager/model_handlers/custom.py +8 -4
  93. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +7 -21
  94. snowflake/ml/model/_packager/model_handlers/keras.py +4 -4
  95. snowflake/ml/model/_packager/model_handlers/lightgbm.py +4 -14
  96. snowflake/ml/model/_packager/model_handlers/mlflow.py +3 -3
  97. snowflake/ml/model/_packager/model_handlers/pytorch.py +4 -4
  98. snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +5 -5
  99. snowflake/ml/model/_packager/model_handlers/sklearn.py +5 -6
  100. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +3 -3
  101. snowflake/ml/model/_packager/model_handlers/tensorflow.py +4 -4
  102. snowflake/ml/model/_packager/model_handlers/torchscript.py +4 -4
  103. snowflake/ml/model/_packager/model_handlers/xgboost.py +5 -15
  104. snowflake/ml/model/_packager/model_meta/model_blob_meta.py +2 -2
  105. snowflake/ml/model/_packager/model_meta/model_meta.py +42 -37
  106. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +13 -11
  107. snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py +3 -3
  108. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -3
  109. snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py +4 -4
  110. snowflake/ml/model/_packager/model_packager.py +12 -8
  111. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +32 -1
  112. snowflake/ml/model/_packager/model_runtime/model_runtime.py +4 -2
  113. snowflake/ml/model/_signatures/core.py +16 -24
  114. snowflake/ml/model/_signatures/dmatrix_handler.py +2 -2
  115. snowflake/ml/model/_signatures/utils.py +6 -6
  116. snowflake/ml/model/custom_model.py +8 -8
  117. snowflake/ml/model/model_signature.py +9 -20
  118. snowflake/ml/model/models/huggingface_pipeline.py +7 -4
  119. snowflake/ml/model/type_hints.py +5 -3
  120. snowflake/ml/modeling/_internal/estimator_utils.py +7 -7
  121. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +6 -6
  122. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +7 -7
  123. snowflake/ml/modeling/_internal/model_specifications.py +8 -10
  124. snowflake/ml/modeling/_internal/model_trainer.py +5 -5
  125. snowflake/ml/modeling/_internal/model_trainer_builder.py +6 -6
  126. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +30 -30
  127. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +13 -13
  128. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +31 -31
  129. snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +19 -19
  130. snowflake/ml/modeling/_internal/transformer_protocols.py +17 -17
  131. snowflake/ml/modeling/framework/_utils.py +10 -10
  132. snowflake/ml/modeling/framework/base.py +32 -32
  133. snowflake/ml/modeling/impute/__init__.py +1 -1
  134. snowflake/ml/modeling/impute/simple_imputer.py +5 -5
  135. snowflake/ml/modeling/metrics/__init__.py +1 -1
  136. snowflake/ml/modeling/metrics/classification.py +39 -39
  137. snowflake/ml/modeling/metrics/metrics_utils.py +12 -12
  138. snowflake/ml/modeling/metrics/ranking.py +7 -7
  139. snowflake/ml/modeling/metrics/regression.py +13 -13
  140. snowflake/ml/modeling/model_selection/__init__.py +1 -1
  141. snowflake/ml/modeling/model_selection/grid_search_cv.py +7 -7
  142. snowflake/ml/modeling/model_selection/randomized_search_cv.py +7 -7
  143. snowflake/ml/modeling/pipeline/__init__.py +1 -1
  144. snowflake/ml/modeling/pipeline/pipeline.py +18 -18
  145. snowflake/ml/modeling/preprocessing/__init__.py +1 -1
  146. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +13 -13
  147. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +4 -4
  148. snowflake/ml/modeling/preprocessing/min_max_scaler.py +8 -8
  149. snowflake/ml/modeling/preprocessing/normalizer.py +0 -1
  150. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +28 -28
  151. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +9 -9
  152. snowflake/ml/modeling/preprocessing/robust_scaler.py +7 -7
  153. snowflake/ml/modeling/preprocessing/standard_scaler.py +5 -5
  154. snowflake/ml/monitoring/_client/model_monitor_sql_client.py +26 -26
  155. snowflake/ml/monitoring/_manager/model_monitor_manager.py +5 -5
  156. snowflake/ml/monitoring/entities/model_monitor_config.py +6 -6
  157. snowflake/ml/registry/_manager/model_manager.py +50 -29
  158. snowflake/ml/registry/registry.py +34 -23
  159. snowflake/ml/utils/authentication.py +2 -2
  160. snowflake/ml/utils/connection_params.py +5 -5
  161. snowflake/ml/utils/sparse.py +5 -4
  162. snowflake/ml/utils/sql_client.py +1 -2
  163. snowflake/ml/version.py +2 -1
  164. {snowflake_ml_python-1.8.1.dist-info → snowflake_ml_python-1.8.3.dist-info}/METADATA +46 -6
  165. {snowflake_ml_python-1.8.1.dist-info → snowflake_ml_python-1.8.3.dist-info}/RECORD +168 -164
  166. {snowflake_ml_python-1.8.1.dist-info → snowflake_ml_python-1.8.3.dist-info}/WHEEL +1 -1
  167. snowflake/ml/model/_packager/model_meta/_packaging_requirements.py +0 -1
  168. snowflake/ml/modeling/_internal/constants.py +0 -2
  169. {snowflake_ml_python-1.8.1.dist-info → snowflake_ml_python-1.8.3.dist-info}/licenses/LICENSE.txt +0 -0
  170. {snowflake_ml_python-1.8.1.dist-info → snowflake_ml_python-1.8.3.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: snowflake-ml-python
3
- Version: 1.8.1
3
+ Version: 1.8.3
4
4
  Summary: The machine learning client library that is used for interacting with Snowflake to build machine learning solutions.
5
5
  Author-email: "Snowflake, Inc" <support@snowflake.com>
6
6
  License:
@@ -244,6 +244,7 @@ Requires-Dist: numpy<2,>=1.23
244
244
  Requires-Dist: packaging<25,>=20.9
245
245
  Requires-Dist: pandas<3,>=1.0.0
246
246
  Requires-Dist: pyarrow
247
+ Requires-Dist: pydantic<3,>=2.8.2
247
248
  Requires-Dist: pyjwt<3,>=2.0.0
248
249
  Requires-Dist: pytimeparse<2,>=1.1.8
249
250
  Requires-Dist: pyyaml<7,>=6.0
@@ -253,6 +254,7 @@ Requires-Dist: scikit-learn<1.6,>=1.4
253
254
  Requires-Dist: scipy<2,>=1.9
254
255
  Requires-Dist: snowflake-connector-python[pandas]<4,>=3.12.0
255
256
  Requires-Dist: snowflake-snowpark-python!=1.26.0,<2,>=1.17.0
257
+ Requires-Dist: snowflake.core<2,>=1.0.2
256
258
  Requires-Dist: sqlparse<1,>=0.4
257
259
  Requires-Dist: typing-extensions<5,>=4.1.0
258
260
  Requires-Dist: xgboost<3,>=1.7.3
@@ -402,7 +404,48 @@ NOTE: Version 1.7.0 is used as example here. Please choose the the latest versio
402
404
 
403
405
  # Release History
404
406
 
405
- ## 1.8.1
407
+ ## 1.8.3
408
+
409
+ ### Bug Fixes
410
+
411
+ ### Behavior Change
412
+
413
+ ### New Features
414
+
415
+ - Registry: Default to the runtime cuda version if available when logging a GPU model in Container Runtime.
416
+ - ML Job: Added `as_list` argument to `MLJob.get_logs()` to enable retrieving logs
417
+ as a list of strings
418
+ - Registry: Support `ModelVersion.run_job` to run inference with a single-node Snowpark Container Services job.
419
+ - DataConnector: Removed PrPr decorators
420
+
421
+ ## 1.8.2
422
+
423
+ ### New Features
424
+
425
+ - ML Job now available as a PuPr feature
426
+ - ML Job: Add ability to retrieve results for `@remote` decorated functions using
427
+ new `MLJobWithResult.result()` API, which will return the unpickled result
428
+ or raise an exception if the job execution failed.
429
+ - ML Job: Pre-created Snowpark Session is now available inside job payloads using
430
+ `snowflake.snowpark.context.get_active_session()`
431
+ - Registry: Introducing `save_location` to `log_model` using the `options` argument.
432
+ User's can provide the path to write the model version's files that get stored in Snowflake's stage.
433
+
434
+ ```python
435
+ reg.log_model(
436
+ model=...,
437
+ model_name=...,
438
+ version_name=...,
439
+ ...,
440
+ options={"save_location": "./model_directory"},
441
+ )
442
+ ```
443
+
444
+ - Registry: Include model dependencies in pip requirements by default when logging in Container Runtime.
445
+ - Multi-node ML Job (PrPr): Add `instance_id` argument to `get_logs` and `show_logs` method to support multi node log retrieval
446
+ - Multi-node ML Job (PrPr): Add `job.get_instance_status(instance_id=...)` API to support multi node status retrieval
447
+
448
+ ## 1.8.1 (03-26-2025)
406
449
 
407
450
  ### Bug Fixes
408
451
 
@@ -410,8 +453,6 @@ NOTE: Version 1.7.0 is used as example here. Please choose the the latest versio
410
453
  inference method.
411
454
  - Registry: Fix a bug that model inference service creation fails on an existing and suspended service.
412
455
 
413
- ### Behavior Change
414
-
415
456
  ### New Features
416
457
 
417
458
  - ML Job (PrPr): Update Container Runtime image version to `1.0.1`
@@ -422,7 +463,7 @@ NOTE: Version 1.7.0 is used as example here. Please choose the the latest versio
422
463
  for cost implications.
423
464
  - Registry: When creating a copy of a `ModelVersion` with `log_model`, raise an exception if unsupported arguments are provided.
424
465
 
425
- ## 1.8.0
466
+ ## 1.8.0 (03-20-2025)
426
467
 
427
468
  ### Bug Fixes
428
469
 
@@ -723,7 +764,6 @@ NOTE: Version 1.7.0 is used as example here. Please choose the the latest versio
723
764
 
724
765
  - Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality.
725
766
  - Registry: Added support for `keras` 3.x model with `tensorflow` and `pytorch` backend
726
- - ML Job (PrPr): Support any serializable (pickleable) argument for `@remote` decorated functions
727
767
 
728
768
  ## 1.7.4 (01-28-2025)
729
769
 
@@ -1,25 +1,25 @@
1
1
  snowflake/cortex/__init__.py,sha256=gboUvJBYzJIq11AK_Qa0ipOUbKctHahNXe1p1Z7j8xY,1032
2
- snowflake/cortex/_classify_text.py,sha256=zlAUJXPgcEwmh9KtkqafAD0NRP3UBboCJGVzMylW4Lk,1640
3
- snowflake/cortex/_complete.py,sha256=H_g1WWxTX9HlG-97UHip9Yg1Na4WITHJ_DoVEXlVKgc,18546
4
- snowflake/cortex/_embed_text_1024.py,sha256=P3oMsrMol_rTK0lZxDmEBx7XSA9HB2y3AMjaD66LrgY,1651
5
- snowflake/cortex/_embed_text_768.py,sha256=_WMt_FHu3n-CKXj8yiposDSi763Sd-NHV9UeGQ7YHaE,1643
2
+ snowflake/cortex/_classify_text.py,sha256=2AYJBABEn8pngFJ2eL7Vt6Ed0t1xEOVWfwb6SHLQKRY,1634
3
+ snowflake/cortex/_complete.py,sha256=1JRD9Ye1FX9cM6g4QfZn80EiY1X_9mQtM3zHU2tnHjU,19733
4
+ snowflake/cortex/_embed_text_1024.py,sha256=18DhgNj1zWbmGfEvZyIV8vIBGjF3DbwvlhCxMAxXFAw,1645
5
+ snowflake/cortex/_embed_text_768.py,sha256=UdsVuPsGeMRZAuk3aFa98xQrj-RsOgolNJKC9lQNhn8,1637
6
6
  snowflake/cortex/_extract_answer.py,sha256=7C-23JytRKdZN9ZYY9w10RfAe_GzmvzKAqqUDl3T4aQ,1605
7
- snowflake/cortex/_finetune.py,sha256=V-cb1M-TDurjO-F25E1CwviXp2r-QCcu6NjsVE6icOg,10952
7
+ snowflake/cortex/_finetune.py,sha256=QMqFPwp1i96WaR4rerL7CTPkG7nM5oKYcUdfrXxkaGg,10940
8
8
  snowflake/cortex/_sentiment.py,sha256=Zv2USbn-1SoHwYYuutI6uzgm1-indv54q4q5A6jegME,1454
9
9
  snowflake/cortex/_sse_client.py,sha256=sLYgqAfTOPADCnaWH2RWAJi8KbU_7gSRsTUDcDD5Tl8,5239
10
10
  snowflake/cortex/_summarize.py,sha256=7GH8zqfIdOiHA5w4b6EvJEKEWhaTrL4YA6iDGbn7BNM,1307
11
11
  snowflake/cortex/_translate.py,sha256=9ZGjvAnJFisbzJ_bXnt4pyug5UzhHJRXW8AhGQEersM,1652
12
- snowflake/cortex/_util.py,sha256=cwRGgrcUo3E05ZaIDT9436vXLQ7GfuBVAjR0QeQ2bDE,3320
13
- snowflake/ml/version.py,sha256=C2u-bHpRGJyrAk-5y4pGUw5ooUq1x-CZOlRM4RSzGbQ,16
14
- snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
15
- snowflake/ml/_internal/env_utils.py,sha256=5ps0v7c655lXsFVfnASxIyEwiVSGxZXke-VjeAWDs0A,27866
16
- snowflake/ml/_internal/file_utils.py,sha256=R3GRaKzJPLOa1yq9E55rhxUr59DztZlIqAnaqcZ1HfE,14275
17
- snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
12
+ snowflake/cortex/_util.py,sha256=krNTpbkFLXwdFqy1bd0xi7ZmOzOHRnIfHdQCPiLZJxk,3288
13
+ snowflake/ml/version.py,sha256=zl4QsYlqLtC2-mozdfzfQiozJjEqvjIXlpsFKx_YUk4,98
14
+ snowflake/ml/_internal/env.py,sha256=EY_2KVe8oR3LgKWdaeRb5rRU-NDNXJppPDsFJmMZUUY,265
15
+ snowflake/ml/_internal/env_utils.py,sha256=tzz8BziiwJEnZwkzDEYCMO20Sb-mnXwDtSakGfgG--M,29364
16
+ snowflake/ml/_internal/file_utils.py,sha256=7sA6loOeSfmGP4yx16P4usT9ZtRqG3ycnXu7_Tk7dOs,14206
17
+ snowflake/ml/_internal/init_utils.py,sha256=WhrlvS-xcmKErSpwg6cUk6XDQ5lQcwDqPJnU7cooMIg,2672
18
18
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
19
- snowflake/ml/_internal/platform_capabilities.py,sha256=GTifopHZmJ0TiYaWXX2gGYk7CGAqsIdtpbntSNPUgfA,3717
19
+ snowflake/ml/_internal/platform_capabilities.py,sha256=TNZBmUii1Pz71a4othzaMlzhClcISiB4YYSwDEd5CeM,5218
20
20
  snowflake/ml/_internal/relax_version_strategy.py,sha256=MYEIZrx1HfKNhl9Na3GN50ipX8c0MKIj9nwxjB0IC0Y,484
21
- snowflake/ml/_internal/telemetry.py,sha256=D2ZgVdibSYKvPg0CZhf4lW3QQot7cgOPhex7a0CXsao,30996
22
- snowflake/ml/_internal/type_utils.py,sha256=x0sm7lhpDyjdA1G7KvJb06z4PEGsogWiMwFrskPTWkA,2197
21
+ snowflake/ml/_internal/telemetry.py,sha256=IXHyD5XsCu9uaioO1gflyejAG4FgPCsjD2CCZ2NeRWs,30971
22
+ snowflake/ml/_internal/type_utils.py,sha256=fGnxGx9Tb9G1Fh9EaD23CxChx0Jfc4KnRZv-M-Dcblk,2197
23
23
  snowflake/ml/_internal/exceptions/dataset_error_messages.py,sha256=h7uGJbxBM6se-TW_64LKGGGdBCbwflzbBnmijWKX3Gc,285
24
24
  snowflake/ml/_internal/exceptions/dataset_errors.py,sha256=TqESe8cDfWurJdv5X0DOwgzBfHCEqga_F3WQipYbdqg,741
25
25
  snowflake/ml/_internal/exceptions/error_codes.py,sha256=S1N9TvjKlAl3GppkcS8y8xnsOzD2b9kOHeLqWhJV0uk,5519
@@ -32,162 +32,166 @@ snowflake/ml/_internal/exceptions/sql_error_codes.py,sha256=aEI3-gW7FeNahoPncdOa
32
32
  snowflake/ml/_internal/human_readable_id/adjectives.txt,sha256=5o4MbVeHoELAqyLpyuKleOKR47jPjC_nKoziOIZMwT0,804
33
33
  snowflake/ml/_internal/human_readable_id/animals.txt,sha256=GDLzMwzxiL07PhIMxw4t89bhYqqg0bQfPiuQT8VNeME,837
34
34
  snowflake/ml/_internal/human_readable_id/hrid_generator.py,sha256=LYWB86qZgsVBvnc6Q5VjfDOmnGSQU3cTRKfId_nJSPY,1341
35
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=D1yoVG1vmAFUhWQ5xCRRU6HCCBPbXHpOXagFd0jK0O8,4519
36
- snowflake/ml/_internal/lineage/lineage_utils.py,sha256=kxWW7fkSf1HiUQSks3VlzWyntpt4o_pbptXcpQHtnk8,3432
37
- snowflake/ml/_internal/utils/db_utils.py,sha256=HBAY0-XHzCP4ai5q3Yqd8O19Ar_Q9J3xD4jO6Fe7Zek,1668
35
+ snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=_Egc-L0DKWgug1WaJebLCayKcljr2WdPuqH5uIoR1Kg,4469
36
+ snowflake/ml/_internal/lineage/lineage_utils.py,sha256=-_PKuznsL_w38rVj3wXgbPdm6XkcbnABrU4v4GwZQcg,3426
37
+ snowflake/ml/_internal/utils/db_utils.py,sha256=HlxdMrgV8UpnxvfKDM-ZR5N566eWZLC-mE291ByrPEQ,1662
38
38
  snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
39
- snowflake/ml/_internal/utils/identifier.py,sha256=A7TCY2o-VzZr_pV_mwG7e_DS1zHZdlVlRIQOg9bgOt8,12585
40
- snowflake/ml/_internal/utils/import_utils.py,sha256=iUIROZdiTGy73UCGpG0N-dKtK54H0ymNVge_QNQYY3A,3220
39
+ snowflake/ml/_internal/utils/identifier.py,sha256=KZjlcVt8X_SAE6GAfshhIKdWI-LlQJjcz1zo2d8G5fY,12572
40
+ snowflake/ml/_internal/utils/import_utils.py,sha256=msvUDaCcJpAcNCS-5Ynz4F1CvUhXjRsuZyOv1rN6Yhk,3213
41
41
  snowflake/ml/_internal/utils/jwt_generator.py,sha256=bj7Ltnw68WjRcxtV9t5xrTRvV5ETnvovB-o3Y8QWNBg,5357
42
- snowflake/ml/_internal/utils/parallelize.py,sha256=Q6_-P2t4DoYNO8DyC1kOl7H3qNL-bUK6EgtlQ_b5ThY,4534
43
- snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=FwdLHFhxi3CAQQduGjFavEBmkD9Ra6ZTkt6Eub-WoSA,5168
44
- snowflake/ml/_internal/utils/query_result_checker.py,sha256=h1nbUImdB9lSNCON3uIA0xCm8_JrS-TE-jQXJJs9WfU,10668
42
+ snowflake/ml/_internal/utils/parallelize.py,sha256=l8Zjo-hp8zqoLgHxBlpz9Zmn2Z-MRQ0fS_NnrR4jWR8,4522
43
+ snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=EaY_3IsVOZ9BCH28F5VLjp-0AiEqDlL7L715vkPsgrY,5149
44
+ snowflake/ml/_internal/utils/query_result_checker.py,sha256=1PR41Xn9BUIXvp-UmJ9FgEbj8WfgU7RUhz3PqvvVQ5E,10656
45
45
  snowflake/ml/_internal/utils/result.py,sha256=59Sz6MvhjakUNiONwg9oi2544AmORCJR3XyWTxY2vP0,2405
46
46
  snowflake/ml/_internal/utils/service_logger.py,sha256=tSKz7SzC33Btu2QgerXJ__4jRhOvRepOSEvHXSy_FTs,1974
47
- snowflake/ml/_internal/utils/snowflake_env.py,sha256=WY9KgMcXEydpWObHQCQhvxcSZXMwC-2OHc894njmXEg,3346
48
- snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=pV8m0d4xfG2_Cl25T5nZb1HCXH375EKSOCgwYWfQVac,6359
49
- snowflake/ml/_internal/utils/sql_identifier.py,sha256=A5mfeDuz4z6VuUYG3EBpDyQQQCNiRtjVS1WNWAoiqq8,4682
50
- snowflake/ml/_internal/utils/table_manager.py,sha256=pU7v8Cx-jGObf6RtTmfCmALfhbpJD-lL45T1gWX1nSY,4982
47
+ snowflake/ml/_internal/utils/snowflake_env.py,sha256=k4ddzs8iJpRpVvgbbOtU8j4fUvqa77Awk65EJ5j2uxk,4253
48
+ snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=tm2leAu_oDTNUQZJ98UpKtS79k-A-c72pKxd-8AE-tg,6353
49
+ snowflake/ml/_internal/utils/sql_identifier.py,sha256=YHIwXpb8E1U6LVUVpT8q7s9ZygONAXKPVMD4IucwXx8,4669
50
+ snowflake/ml/_internal/utils/table_manager.py,sha256=Wf3JXLUzdCiffKF9PJj7edHY7usCXNNZf1P0jRWff-E,4963
51
51
  snowflake/ml/_internal/utils/temp_file_utils.py,sha256=0-HTjXdxVt0kE6XcgyvRvY0btflWlmotP2bMXVpFJPA,1553
52
52
  snowflake/ml/data/__init__.py,sha256=nm5VhN98Lzxr4kb679kglQfqbDbHhd9zYsnFJiQiThg,351
53
- snowflake/ml/data/data_connector.py,sha256=havoMBDiWTtc65mvDEAHk2Omy4BOVaMV38_acErjkbw,9696
54
- snowflake/ml/data/data_ingestor.py,sha256=mH1_DBDS_XwxYsOoWI3EGQpBzr8j8jBgH2t2S1V1eGM,1035
55
- snowflake/ml/data/data_source.py,sha256=dRemXGi_HHQdn6gaNkxxGJixnQPuUYFDP8NBjmB_ZMk,518
56
- snowflake/ml/data/ingestor_utils.py,sha256=--nEwJHbYqYHpAzR1APgoeVF9CMgq_fDX81X29HAB4w,2727
57
- snowflake/ml/data/torch_utils.py,sha256=6ywrp1BKrkuhmDQLatgT5pRb6bJNKLKbAQNRV6HDEhY,3603
58
- snowflake/ml/data/_internal/arrow_ingestor.py,sha256=fTfrcspjitDnTzsHeVIJGKYOTrJU5QH61vqXue7dy2Y,12147
53
+ snowflake/ml/data/data_connector.py,sha256=2M4xZPkD1pfZiFCWsiYCT1zUUGiW5pXAVGmBvP9sIUs,10104
54
+ snowflake/ml/data/data_ingestor.py,sha256=w9PbcAKtAjP6TTzILOwwpFgF1qVYFhTDEryXBOsQq_o,972
55
+ snowflake/ml/data/data_source.py,sha256=HjBO1xqTyJfAvEAGESUIdke0KvSj5S5-FcI2D2zgejI,512
56
+ snowflake/ml/data/ingestor_utils.py,sha256=JOv7Kvs0DNhsXUjl940ZULDkeTjIcePCfQ9aL_NteV0,2721
57
+ snowflake/ml/data/torch_utils.py,sha256=70Gh9uoWCk6kj0bSW2cbepU3WefKfulpU1aXC45867I,3591
58
+ snowflake/ml/data/_internal/arrow_ingestor.py,sha256=F71VBseunpuDTYTKkNPiLTr-0ABUtkStJpll5Rq8Nto,12135
59
59
  snowflake/ml/dataset/__init__.py,sha256=nESj7YEI2u90Oxyit_hKCQMWb7N1BlEM3Ho2Fm0MfHo,274
60
- snowflake/ml/dataset/dataset.py,sha256=eN9hStlwLlWXU3bp7RSruzIgSPEXNunpagCUDRbtz54,21041
60
+ snowflake/ml/dataset/dataset.py,sha256=5QrW4RseV8XhtfByAcVah0-D2xCP4JLCsyfHWqL4tso,21022
61
61
  snowflake/ml/dataset/dataset_factory.py,sha256=Fym4ICK-B1j6Om4ENwWxEvryq3ZKoCslBSZDBenmjOo,1615
62
- snowflake/ml/dataset/dataset_metadata.py,sha256=tWR3fa2WG3Kj2btKMbg51l5jX68qm1rfXRswU0IDYTg,4157
63
- snowflake/ml/dataset/dataset_reader.py,sha256=e-IRbxbxFfNbsglmqtzhV_wYFsEflBW6-U_krbfXPpw,4371
64
- snowflake/ml/feature_store/__init__.py,sha256=VKBVkS050WNF8rcqNqwFfNXa_B9GZjcUpuibOGsUSls,423
65
- snowflake/ml/feature_store/access_manager.py,sha256=LcsfBKsZzfERQQ_pqZG0W-XbpVGx9jkZOI-7nbfryhg,10666
66
- snowflake/ml/feature_store/entity.py,sha256=A65FOGlljREUG8IRMSN84v1x2uTeVGCM4NqKXO2Ui8w,4059
67
- snowflake/ml/feature_store/feature_store.py,sha256=ejfeXcpO4uaKi-7Yur8sy-8tCGyA0oXO8q__q_K-dDw,114281
68
- snowflake/ml/feature_store/feature_view.py,sha256=JenAd-62y77m7UPo27BL9vthh6GdbFByqMiMro3BB9A,38991
69
- snowflake/ml/feature_store/examples/example_helper.py,sha256=qW6Pu_hQyeSQ3K4OKmiE5AkdvFqDU9OGHNP9RnN6xVE,12482
70
- snowflake/ml/feature_store/examples/airline_features/entities.py,sha256=V2xVZpHFgGA92Kyd9hCWa2YoiRhH5m6HAgvnh126Nqo,463
62
+ snowflake/ml/dataset/dataset_metadata.py,sha256=lcNvugBkP8YEkGMQqaV8SlHs5mwUKsUS8GgaPGNm6wM,4145
63
+ snowflake/ml/dataset/dataset_reader.py,sha256=buPacuPsFspUvKtVQt1PaWEl-tGCu9GKXME18Xacbzs,4643
64
+ snowflake/ml/feature_store/__init__.py,sha256=MJr2Gp_EimDgDxD6DtenOEdLTzg6NYPfdNiPM-5rEtw,406
65
+ snowflake/ml/feature_store/access_manager.py,sha256=Q5ImMXRY8WA5X5dpBMzHnIJmeyKVShjNAlbn3cQb4N8,10654
66
+ snowflake/ml/feature_store/entity.py,sha256=ViOSlqCV17ouiO4iH-_KvkvJZqSzpf-nfsjijG6G1Uk,4047
67
+ snowflake/ml/feature_store/feature_store.py,sha256=kZOQ-ldcpN9C8oYQLmYJgI5YCDVKOb5ZySDn2r1HMfs,114217
68
+ snowflake/ml/feature_store/feature_view.py,sha256=VDvK5R-C5crxwACV9QsCeakX9oSzlRBgH6lqA2bzGb4,38979
69
+ snowflake/ml/feature_store/examples/example_helper.py,sha256=eaD2vLe7y4C5hMZQTeMXylbTtLacbq9gJcAluGHrkug,12470
70
+ snowflake/ml/feature_store/examples/airline_features/entities.py,sha256=mzHRS-InHpXON0eHds-QLmi7nK9ciOnCruhPZI4niLs,438
71
71
  snowflake/ml/feature_store/examples/airline_features/source.yaml,sha256=kzl8ukOK8OuSPsxChEgJ9SPyPnzC-fPHqZC4O6aqd5o,247
72
- snowflake/ml/feature_store/examples/airline_features/features/plane_features.py,sha256=dLZlKOUsI-NvBdaBeoole0mIUrHfbqTexFSbCDGjlGw,1070
73
- snowflake/ml/feature_store/examples/airline_features/features/weather_features.py,sha256=RG_Nrjyx8mn9ACzW7nKHUTn36ZnuEueNF5QeGsWe9rk,1695
74
- snowflake/ml/feature_store/examples/citibike_trip_features/entities.py,sha256=SE8Zx3xqFJk65Tqori4nh0KOPwEY3baMoFsVAYM1e7c,449
72
+ snowflake/ml/feature_store/examples/airline_features/features/plane_features.py,sha256=wFQcbnOqsnfez60psllfTtSLSa3r1_9AnbQ17CVWILc,1045
73
+ snowflake/ml/feature_store/examples/airline_features/features/weather_features.py,sha256=OqTiwUtPDJR_dd9CsKWvM9bOD3YJOkzdf23_R0lVo9U,1670
74
+ snowflake/ml/feature_store/examples/citibike_trip_features/entities.py,sha256=Wfl_YFT6LRALCt1DidzZ2OqwFrcGaR-NpNLFZlx6j3k,424
75
75
  snowflake/ml/feature_store/examples/citibike_trip_features/source.yaml,sha256=gutDfijhGkBu1w4r1286JnuO4EhbuRPKwoHisYlt8Yw,229
76
- snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py,sha256=nfmgp6KD2ACaqxSClGGjY-Eqk83bTAa0M8yokT98e6E,1423
77
- snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py,sha256=bJe3J-fgdVbPdjAgtPpreh6ZPJKmSqkvSxO9Rpe0Eu4,1228
78
- snowflake/ml/feature_store/examples/new_york_taxi_features/entities.py,sha256=J5oragmf6UvwruMjHhtrlzcBP-rA3Fyqv9VOJAT4goU,396
76
+ snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py,sha256=eqj-lGWYUY9m9r1lenxHKvSUzxJUro_6W9koh8Xo9bw,1398
77
+ snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py,sha256=63j6wqRANsvoRgYDuuDDUKeriiGO7PTvgIsuR4uBHxg,1203
78
+ snowflake/ml/feature_store/examples/new_york_taxi_features/entities.py,sha256=sqh-7Z3SyzIFpMGzMLf7po6f64GC0lhsJ4hH608pAog,371
79
79
  snowflake/ml/feature_store/examples/new_york_taxi_features/source.yaml,sha256=0DShPCG972klJjHod0qkXrT7zkw45B3YCZs5U-x4Pv4,338
80
- snowflake/ml/feature_store/examples/new_york_taxi_features/features/location_features.py,sha256=n08DTAKWoSwu3jMa1Bl5Iae4-NBlBV7IIyCrUc6qpGM,1782
81
- snowflake/ml/feature_store/examples/new_york_taxi_features/features/trip_features.py,sha256=CsZ4Qe4nrsY39L5E1CX2k3lHD_afdiPDOiJ8VpVq5wk,1327
80
+ snowflake/ml/feature_store/examples/new_york_taxi_features/features/location_features.py,sha256=baejUk-YNBw4yZaVawhQMEjOd0jwUZTw1bj-jDFTk84,1757
81
+ snowflake/ml/feature_store/examples/new_york_taxi_features/features/trip_features.py,sha256=Vta6zpZcTRm2fNL0Csw3s-nGtsyKWYdjq3LGHS6OQLE,1302
82
82
  snowflake/ml/feature_store/examples/source_data/airline.yaml,sha256=CZV416oTTM6hWCK2GPdb38Q8AR3CGIxAZwXrbP9KT_E,152
83
83
  snowflake/ml/feature_store/examples/source_data/citibike_trips.yaml,sha256=OaQwNzUHasgGgy8oIOHVRJ5tg7nnKs11hqDSZYs5-U0,923
84
84
  snowflake/ml/feature_store/examples/source_data/fraud_transactions.yaml,sha256=ENAIRcrRmdIplKJP8A5nhXdWSQRNTeQH4ghIT9boE8o,711
85
85
  snowflake/ml/feature_store/examples/source_data/nyc_yellow_trips.yaml,sha256=1PkEybh_ieP-HZme9YPuAf6-pL4D6-6dzNlqdZpH8fk,142
86
86
  snowflake/ml/feature_store/examples/source_data/winequality_red.yaml,sha256=03qIwx_7KA-56HwKqshSOFCGOvLnQibR_Iv2zprz_Vs,741
87
- snowflake/ml/feature_store/examples/wine_quality_features/entities.py,sha256=Hk593l6dqruvgcPRcSGKf2UGVQ9CPxmD547UuZ7QCnU,294
87
+ snowflake/ml/feature_store/examples/wine_quality_features/entities.py,sha256=urwCgiRr-lTJ-q4CPzsfRx5YYmezbekOCKeq7xxxZ4g,269
88
88
  snowflake/ml/feature_store/examples/wine_quality_features/source.yaml,sha256=dPs0nzf4poLhxDVEydb2Ff3mpRCWQ_L4jCoPO7HV4QA,241
89
- snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py,sha256=W58pGmIKV1iehou4Knw_yWJRWKKt_80ZiiMi3C_vwOw,1466
90
- snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py,sha256=ej1_DxD_W4TyqwOJ9T5C6s0S8rE5UPaP-KFzKi5MDWM,1024
91
- snowflake/ml/fileset/embedded_stage_fs.py,sha256=fmt8IoYbHtBMjyIC3K87ng-i5uYwE_2XKFQogNkP-nM,6000
92
- snowflake/ml/fileset/fileset.py,sha256=B-mIStgFHtQn1TbQO3ZSURAFyxYn4m54NuBUdThM-Bc,26339
93
- snowflake/ml/fileset/sfcfs.py,sha256=uPn8v5jlC3h_FrNqb4UMRAZjRZLn0I3tzu0sfi5RHik,15542
89
+ snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py,sha256=NBPBgAbunbHLKOrsbT8raM2WeEDwi1IfaToKitIATKI,1441
90
+ snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py,sha256=unOrhGYhVCoEBOOj_giGwH4WKN3Rcsqw0G6eQ-llk0E,999
91
+ snowflake/ml/fileset/embedded_stage_fs.py,sha256=Cw1L3Ktd1g0nWeADH6xjIxR0VweBbVtXPiQV8OncWgc,5987
92
+ snowflake/ml/fileset/fileset.py,sha256=ApMpHiiyzGRkyxQfJPdXPuKtw_wOXbOfQCXSH6pDwWE,26333
93
+ snowflake/ml/fileset/sfcfs.py,sha256=FJFc9-gc0KXaNyc10ZovN_87aUCShb0WztVwa02t0io,15517
94
94
  snowflake/ml/fileset/snowfs.py,sha256=uF5QluYtiJ-HezGIhF55dONi3t0E6N7ByaVAIAlM3nk,5133
95
- snowflake/ml/fileset/stage_fs.py,sha256=IEVZ6imH77JiSOIRlRHNWalwafoACRgHFr8RAaICSP8,20170
95
+ snowflake/ml/fileset/stage_fs.py,sha256=V4pysouSKKDPLzuW3u_extxfvjkQa5OlwIRES9Srpzo,20151
96
96
  snowflake/ml/jobs/__init__.py,sha256=ORX_0blPSpl9u5442R-i4e8cqWYfO_vVjFFtX3as184,420
97
- snowflake/ml/jobs/decorators.py,sha256=mSlzA6n9Xb1uMJrXNtOz9SiZStWp0_TQLVLNbGisdrs,3134
98
- snowflake/ml/jobs/job.py,sha256=dWILWTNaumgdqs6P58xl4PdyoARU9Sk89OMfRU39SQE,4239
99
- snowflake/ml/jobs/manager.py,sha256=4E0LoFdWSWktNr6K63sfBCDvM0M_U9M2Kkk22i0gO7w,12136
100
- snowflake/ml/jobs/_utils/constants.py,sha256=2GK7EMTYQgXMvD7KAxLKRibfsRVgOVmZclkFnRBai80,3242
101
- snowflake/ml/jobs/_utils/payload_utils.py,sha256=RC9vJt2CKmrkxzdWD7vEw0D7xWhXAC6RnuvS-0Ly_yY,20421
102
- snowflake/ml/jobs/_utils/spec_utils.py,sha256=6hiwM5sve1f1xg2gDZdOEnXlHgGU_FQXqMsTZLzpAIY,12893
103
- snowflake/ml/jobs/_utils/types.py,sha256=sEV-jCA-0Bb8KdKMBZGrIdqJhSWGb6QI8pYRL56dIDA,874
97
+ snowflake/ml/jobs/decorators.py,sha256=brpX8irMblvwSi7fUGGFTHd9eYIPyNliTr40deg03co,3105
98
+ snowflake/ml/jobs/job.py,sha256=ApySCjZDzUolh11gP41yimpj5uvkxCWhJ9PyzrbnSDw,9799
99
+ snowflake/ml/jobs/manager.py,sha256=8sfPnuy_pF9ntgJ1LyipCg5mD8an3CAx32rCEmR2h0E,13399
100
+ snowflake/ml/jobs/_utils/constants.py,sha256=5P_hKBg2JpV_yh1SH97DHjTLa2nZftKd05EJiXELriU,3169
101
+ snowflake/ml/jobs/_utils/interop_utils.py,sha256=g1-sStVpGwK5wMbswuC8ejGVQjnIBCiw96ElfWK3jg0,18831
102
+ snowflake/ml/jobs/_utils/payload_utils.py,sha256=pd_rGBYxloP8DHTKA7k4h1H3Jl6iljeKQaSPOSuR7BU,21578
103
+ snowflake/ml/jobs/_utils/spec_utils.py,sha256=Fj7Ki7zcG71RbEImuiarfDT659iTMXGNWDpqcZc33Bk,12217
104
+ snowflake/ml/jobs/_utils/types.py,sha256=IRDZZAShUA_trwoSUFqbSRexvLefi2CFcBmQTYN11Yc,972
105
+ snowflake/ml/jobs/_utils/scripts/constants.py,sha256=YyIWZqQPYOTtgCY6SfyJjk2A98I5RQVmrOuLtET5Pqg,173
106
+ snowflake/ml/jobs/_utils/scripts/get_instance_ip.py,sha256=bh23hn1mVebiU7CytzlMVTgfYBlpXHrwjyHLSlfEJB8,5259
107
+ snowflake/ml/jobs/_utils/scripts/mljob_launcher.py,sha256=Vlw49RLvNDPzC8TX_q5ZzW1z6fQaomJaV75-PHlGJ2Y,6921
108
+ snowflake/ml/jobs/_utils/scripts/signal_workers.py,sha256=AR1Pylkm4-FGh10WXfrCtcxaV0rI7IQ2ZiO0Li7zZ3U,7433
109
+ snowflake/ml/jobs/_utils/scripts/worker_shutdown_listener.py,sha256=SeJ8v5XDriwHAjIGpcQkwVP-f-lO9QIdVjVD7Fkgafs,7893
104
110
  snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCrzI4,65
105
- snowflake/ml/lineage/lineage_node.py,sha256=e6L4bdYDSVgTv0BEfqgPQWNoDiTiuI7HmfJ6n-WmNLE,5812
111
+ snowflake/ml/lineage/lineage_node.py,sha256=jCxCwQRvUkH-5nyF1PvdKAyRombOjWDYs5ZJmw5RMT0,5789
106
112
  snowflake/ml/model/__init__.py,sha256=EvPtblqPN6_T6dyVfaYUxCfo_M7D2CQ1OR5giIH4TsQ,314
107
- snowflake/ml/model/custom_model.py,sha256=Dmf9oLf71BQtakSagaGG_8xfr3oXoEuW_Jzpt2RqIis,11780
108
- snowflake/ml/model/model_signature.py,sha256=FJnLn6XtlaYWOgwMPRFb__QY3BQCeYGHWGHEFcySbT0,32302
109
- snowflake/ml/model/type_hints.py,sha256=fvHjtvnt_CAsXAn3q4DDQlxCn6wqIEHypHh93Ce337w,9472
110
- snowflake/ml/model/_client/model/model_impl.py,sha256=pqjK8mSZIQJ_30tRWWFPIo8X35InSVoAunXlQNtSJEM,15369
111
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=kslv-oOyh5OvoG8BjNBl_t4mqRjMn-kLpla6CdJRBaA,40272
112
- snowflake/ml/model/_client/ops/metadata_ops.py,sha256=7cGx8zYzye2_cvZnyGxoukPtT6Q-Kexd-s4yeZmpmj8,4890
113
- snowflake/ml/model/_client/ops/model_ops.py,sha256=N6xuikPmuK7jpag3CluKyz4bu00oJbMC3_266T2nBLQ,47990
114
- snowflake/ml/model/_client/ops/service_ops.py,sha256=d3wxFLe4qqPpzIpO-3bYIOZi88wjFxjhvWWw-_u5vv0,19194
115
- snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=K1MkVFgATk_OHCV68QR0jNF1lkY7brDxv7yVhQhK7eY,4599
116
- snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=eaulF6OFNuDfQz3oPYlDjP26Ww2jWWatm81dCbg602E,825
113
+ snowflake/ml/model/custom_model.py,sha256=lRpIr_7c4L_VCqiV08tiHkW5V1o8Y6ux8tcavlMtHvo,11768
114
+ snowflake/ml/model/model_signature.py,sha256=PaniWLT9hl4mB2PwotB5I0qRAiNUh3dwN3lmDo8WJeY,32212
115
+ snowflake/ml/model/type_hints.py,sha256=oCyzLllloC_GZVddHSBQMg_fvWQfhLLXwJPxPKpwvtE,9574
116
+ snowflake/ml/model/_client/model/model_impl.py,sha256=I_bwFX1N7EVS1GdCTjHeyDJ7Ox4dyeqbZtQfl3v2Xzk,15357
117
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=z9Sx8FMwWSiKLi0-uxgfNLBBfuWbweSFLm0GQfSXu7w,43272
118
+ snowflake/ml/model/_client/ops/metadata_ops.py,sha256=qpK6PL3OyfuhyOmpvLCpHLy6vCxbZbp1HlEvakFGwv4,4884
119
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=Olj5ccsAviHw3Kbhv-_c5JaPvXpAHj1qckOf2IpThu0,47978
120
+ snowflake/ml/model/_client/ops/service_ops.py,sha256=dwy_xPwBAp_O-hXMXeUd3TldGKASG-5viFy_T9BkTRI,27876
121
+ snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=ZjGrES1iBJtYwKz1PxYu-X1zoHwcP9cFOeI4O9sCgZ0,11153
122
+ snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=1AA8Q9x-jfuKdz951zbVp7yAt85v-tEOK_5SAjNb1GM,1115
117
123
  snowflake/ml/model/_client/sql/_base.py,sha256=Qrm8M92g3MHb-QnSLUlbd8iVKCRxLhG_zr5M2qmXwJ8,1473
118
- snowflake/ml/model/_client/sql/model.py,sha256=o36oPq4aU9TwahqY2uODYvICxmj1orLztijJ0yMbWnM,5852
119
- snowflake/ml/model/_client/sql/model_version.py,sha256=R0TnsRta7tSmd7RBphERzBKXpYBxOhec1CefW6VWrVE,23543
120
- snowflake/ml/model/_client/sql/service.py,sha256=RIMo8SFyhm3XLNJ3-gGKQo67nP8KZV_dQnPt--aLdqU,11425
121
- snowflake/ml/model/_client/sql/stage.py,sha256=165vyAtrScSQWJB8wLXKRUO1QvHTWDmPykeWOyxrDRg,826
122
- snowflake/ml/model/_client/sql/tag.py,sha256=pwwrcyPtSnkUfDzL3M8kqM0KSx7CaTtgty3HDhVC9vg,4345
123
- snowflake/ml/model/_model_composer/model_composer.py,sha256=g96CQx3sh75VlPdhKQfA6Hzr6CzyZ-s0T3XaiFfr3A4,9325
124
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=d3Ej_OzQkfSugx15m5zrheBktKVod5ZDtjrd3O5bTU8,8984
125
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=s71r-JGI-9aPpA7dDiic5bF2y-7m18UgHipqNhn9aS4,2836
124
+ snowflake/ml/model/_client/sql/model.py,sha256=nstZ8zR7MkXVEfhqLt7PWMik6dZr06nzq7VsF5NVNow,5840
125
+ snowflake/ml/model/_client/sql/model_version.py,sha256=_XRgG1-oAzRfwxEH7h_84azmP-_d32yb4nhew241xOQ,23524
126
+ snowflake/ml/model/_client/sql/service.py,sha256=U4nFN3Gq0agDx_1H9Sm36vZRnyruUFgNGp8QgNQqgKQ,11738
127
+ snowflake/ml/model/_client/sql/stage.py,sha256=DIFP1m7Itt_FJR4GCt5CNngEHn9OcK-fshoQAYnkNOY,820
128
+ snowflake/ml/model/_client/sql/tag.py,sha256=9sI0VoldKmsfToWSjMQddozPPGCxYUI6n0gPBiqd6x8,4333
129
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=tuy4TR1b9RR_QxeqLLRzwB2zRv02a0Jheev_kkDRDjs,10388
130
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=0z0TKJ-qI1cGJ9gQOfmxAoWzo0-tBmMkl80bO-P0TKg,9157
131
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=eqv-4-tvA9Lgrp7kQAQGS_CJVR9D6uOd8-SxADNOkeM,2887
126
132
  snowflake/ml/model/_model_composer/model_method/constants.py,sha256=hoJwIopSdZiYn0fGq15_NiirC0l02d5LEs2D-4J_tPk,35
127
133
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=nnUJki3bJVCTF3gZ-usZW3xQ6wwlJ08EfNsPAgsnI3s,2625
128
134
  snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=olysEb_bE2C8CjIRAhm7qdr2mtgk77Tx45gnLRVQGFw,1511
129
135
  snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template,sha256=8p8jkTOJA-mBt5cuGhcWSH4z7ySQ9xevC35UioCLkC8,1539
130
136
  snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=QT32N6akQDutLh00cXp2OD4WI6Gb7IGG1snsnrXNih8,1453
131
- snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=Yxmr3uLpxFFuYdJ5f9MQLIXP3yfbL-ym2rxl1hUIRRM,7173
137
+ snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=NhTAkjRlfHqOEfDtm2U6LdkiVDUufwP9cC7sjsJiUwA,7167
132
138
  snowflake/ml/model/_model_composer/model_user_file/model_user_file.py,sha256=dYNgg8P9p6nRH47-OLxZIbt_Ja3t1VPGNQ0qJtpGuAw,1018
133
- snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
134
- snowflake/ml/model/_packager/model_packager.py,sha256=6z8t_fwDMQjIq92L7kyPNtMcXKAUaVSvJVyhH3_jCWU,5834
135
- snowflake/ml/model/_packager/model_env/model_env.py,sha256=tdlvBqHXQvDCxMFY-p0GnryJtLHcF7qwHLMEwcQqUz8,18601
136
- snowflake/ml/model/_packager/model_handlers/_base.py,sha256=qQS1ZSz1Ikdj0TvyLU9n8K6KAj-PknL4s801qpnWodo,7164
137
- snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=6c7xsQqDIlI07NgQRnhAGIZqyeuwoR1T4wFYFvpEKpE,10770
138
- snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=vwlKuXwJGYrna7wkXDgEu8-nUNegNhHMCaNQdhL5p44,10677
139
- snowflake/ml/model/_packager/model_handlers/custom.py,sha256=Atp6QP_ksRBNXYUEHGe4FykPjEDBR6Fb6E3hWvpsjQI,8302
140
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=GaB_zJe8bhqKS5BsMoGtb74I4Sy3eLUsEnkjlRkhbWg,22693
141
- snowflake/ml/model/_packager/model_handlers/keras.py,sha256=h7iXxEUFvcuOnFvstZxLmsy4CGYqosV2BIeoenBGbUQ,8697
142
- snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=qm_Q7FxD19r1fFnSt25pZJw9sU-jE0Yu2h2qUvOl_qs,11127
143
- snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=A3HnCa065jtHsRM40ZxfLv5alk0RYhVmsU4Jt2klRwQ,9189
144
- snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=FamqiwFhtIwlPeb6CoQD2Xkout7f5wKVugvWFX98DV0,9790
145
- snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=EKgpN6e4c8bi0znnV-pWzAR3cwDvORcsL72x6o-JPqA,11381
146
- snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=v2ZSQ_MWrORiKvUpdjY_SwzhpY4vxOyARJQJuQnxKdw,15443
147
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=Jx6MnlfNGdPcBUcLcSs-E1yaWCB4hM3OroeGZb2kE2I,17185
148
- snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=Fr_iqjJf69_az7uUSagt9qB0ipkq4f1AkjeEGw7PcI4,11205
149
- snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=Tmkpj_4RAlz3r8YvEQvtTTcB_q30UpeLymPGkHmQ390,9536
150
- snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=Vv6OIDmzX07F1bAznP6JTBqp0EBGSOuHUaYLR5fKXDw,11587
139
+ snowflake/ml/model/_packager/model_handler.py,sha256=qZB5FVRWZD5wDdm6vuuoXnDFar7i2nHarbe8iZRCLPo,2630
140
+ snowflake/ml/model/_packager/model_packager.py,sha256=FBuepy_W8ZTd4gsQHLnCj-EhO0H2wvjL556YRKOKsO8,6061
141
+ snowflake/ml/model/_packager/model_env/model_env.py,sha256=D9NBAPSVxPiDl82Dw07OPSLlwtAJqs4fUxm3VSDbYCs,18924
142
+ snowflake/ml/model/_packager/model_handlers/_base.py,sha256=OZhGv7nyej3PqaoBz021uGa40T06d9rv-kDcKUY3VnM,7152
143
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=Ehkz04P02-RNdu6JxD-DbZEjeqt6gvb3lHrrtDam1iA,11189
144
+ snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=dbI2QizGZS04l6ehgXb3oy5YSXrlwRHz8YENVefEbms,10676
145
+ snowflake/ml/model/_packager/model_handlers/custom.py,sha256=LB-WwVuTFlpS3bD75QVWN-O3vlphQbsJvlHPwCLKhAg,8520
146
+ snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=dBxSqOJrZS9Fkk20TAQwY4OYKwaD66SrqWnrW_ZFq5I,22312
147
+ snowflake/ml/model/_packager/model_handlers/keras.py,sha256=JKBCiJEjc41zaoEhsen7rnlyPo2RBuEqG9Vq6JR_Cq0,8696
148
+ snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=DAFMiqpXEUmKqeq5rgn5j6rtuwScNnuiMUBwS4OyC7Q,11074
149
+ snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=xSpoXO0UOfBUpzx2W1O8P2WF0Xi1vrZ_J-DdgzQG0o8,9177
150
+ snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=MCNkqWIvPeS3ZwNXVDQC0I1p7jCYhFu4a3NpP-eDakU,9789
151
+ snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=sKp-bt-fAnruDMZJ5cN6F_m9dJRY0G2FjJ4-KjNLgcg,11380
152
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=ipxmKQjOhZOhOMqNCwmOFNOkIbM4Y_0rrxU-ut-y9Vc,15345
153
+ snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=4YKX6BktNIjRSSUOStOMx4NVmRBE0o9pes3wyKYZ1Y0,17173
154
+ snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=drXd97lTe0LFMww0dYXWTJgP4HgaKf8zv8NQz01QJFk,11204
155
+ snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=DAmx4ex5CWoKYrwZCTCELoyUtNoWyYunQEUwzQdEuYw,9535
156
+ snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=2PosHHDm33Swqc_XwSV2HHGRXoFUdJhbiffkWbmPFKw,11545
151
157
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
152
158
  snowflake/ml/model/_packager/model_handlers_migrator/pytorch_migrator_2023_12_01.py,sha256=GVpfYllXa3Voxa54PGNsZ3Hea1kOJe3T_AoA9nrs60A,764
153
159
  snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2023_12_01.py,sha256=dXIisQteU55QMw5OvC_1E_sGqFgE88WRhGCWFqUyauM,2239
154
160
  snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2025_01_01.py,sha256=0DxwZtXFgXpxb5LQEAfTUfEFV7zgbG4j3F-oNHLkTgE,769
155
161
  snowflake/ml/model/_packager/model_handlers_migrator/torchscript_migrator_2023_12_01.py,sha256=MDOAGV6kML9sJh_hnYjnrPH4GtECP5DDCjaRT7NmYpU,768
156
- snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=E8LiAHewa-lsm6_SL6d9AcpO0m23fYdsKPXOevmHjB8,41
157
- snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=GmiqqI-XVjrOX7cSa5GKerKhfHptlsg74MKqTGwJ5Jk,1949
158
- snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=kYfCyX8Q7tlpoxrXNsryKJ_XZDrMFHZ8fBbZX3XkMhA,19332
159
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=xWMbdWcDBzC-ZwFgA_hPK60o91AserkR-DpXEEKYK_w,3551
160
- snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
161
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
162
- snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
163
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=O5c8oSNb_2nwjNZ_t9YrY-R-33Gsa_vlOpW4ub6SGsc,609
164
- snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=0l8mgrfmpvTn516Id6xgIG4jIqxSy9nN2PFlnqOljiI,5365
162
+ snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=CzY_MhiSshKi9dWzXc4lrC9PysU0FCdHG2oRlz1vCb8,1943
163
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=VAsEbld4Pu89N5JXaL9GeyQWF25SB6_IljpQtW98FzE,19840
164
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=acsWYUXF0HuVWiReIYJGXdC3jGnbQ1ruKEs8LXKwidQ,3665
165
+ snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=8zTgq3n6TBXv7Vcwmf7b9wjK3m-9HHMsY0Qy1Rs-sZ4,1305
166
+ snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=5butM-lyaDRhCAO2BaCOIQufpAxAfSAinsNuGqbbjMU,1029
167
+ snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=cyZVvBGM3nF1IVqDKfYstLCchNO-ZhSkPvLM4aU7J5c,2066
168
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=0cbUM1YaHmHQ42cLtryTTy9n8KZNI8N97OU-_iSHCNY,879
169
+ snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=CDjbfBvZNrW6AI5xapYPFSEEQInd3RVo7_08mru2xx4,5487
165
170
  snowflake/ml/model/_packager/model_task/model_task_utils.py,sha256=_nm3Irl5W6Oa8_OnJyp3bLeA9QAbV9ygGCsgHI70GX4,6641
166
171
  snowflake/ml/model/_signatures/base_handler.py,sha256=4CTZKKbg4WIz_CmXjyVy8tKZW-5OFcz0J8XVPHm2dfQ,1269
167
172
  snowflake/ml/model/_signatures/builtins_handler.py,sha256=ItWb8xNDDvIhDlmfUFCHOnUllvKZSTsny7_mRwks_Lc,3135
168
- snowflake/ml/model/_signatures/core.py,sha256=Y6IUquohNcUL8LWTpVvU842UFv8oNxQnk3HUwp34xME,21117
169
- snowflake/ml/model/_signatures/dmatrix_handler.py,sha256=HPEj_MF0Qiw-eeX-0JKIMKzhyQVvtn3kQetNsXH0-jo,3665
173
+ snowflake/ml/model/_signatures/core.py,sha256=uWa_o7wZQGKQ84g8_LmfS9nyKyuFKeTcAVQROrTbF2w,21024
174
+ snowflake/ml/model/_signatures/dmatrix_handler.py,sha256=FPbtRdAhBoVgF6mma4K3Uf2g7kMg9e_oKTUyEv5Xn2A,3659
170
175
  snowflake/ml/model/_signatures/numpy_handler.py,sha256=xy7mBEAs9U5eM8F51NLabLbWXRmyQUffhVweO6jmLBA,5461
171
176
  snowflake/ml/model/_signatures/pandas_handler.py,sha256=rYgSaqdh8d-w22e_ZDt4kCFCkPWEhs-KwL9wyoLUacI,10704
172
177
  snowflake/ml/model/_signatures/pytorch_handler.py,sha256=Xy-ITCCX_EgHcyIIqeYSDUIvE2kiqECa8swy1hmohyc,5036
173
178
  snowflake/ml/model/_signatures/snowpark_handler.py,sha256=0SYtWnmJ_Nji52GZG1CDvfIGiLydTkPwpc0YUMs9aPQ,5396
174
179
  snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=_yrvMg-w_jJoYuyrGXKPX4Dv7Vt8z1e6xIKiWGuZcc4,5660
175
- snowflake/ml/model/_signatures/utils.py,sha256=gHEU2u8VCil0wvmd9C61ZNB-KiNz4QazpC7-0XQPHd8,17176
176
- snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
177
- snowflake/ml/modeling/_internal/constants.py,sha256=aJGngY599w3KqN8cDZCYrjbWe6UwYIbgv0gx0Ukdtc0,105
178
- snowflake/ml/modeling/_internal/estimator_utils.py,sha256=jpiq6h6mJfPa1yZbEjrP1tEFdw-1f_XBxDRHgdH3hps,12017
179
- snowflake/ml/modeling/_internal/model_specifications.py,sha256=P9duVMP9-X7us_RZFPyXvWxOrm5K30sWDVYwSMEzG1M,4876
180
- snowflake/ml/modeling/_internal/model_trainer.py,sha256=RxpZ5ARy_3sfRMCvArkdK-KmsdbNXxEZTbXoaJ4c1ag,984
181
- snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=n1l9i9LFLcdbMFRvxkWNIs7kYnNNlUJnaToRvFBEjls,8062
180
+ snowflake/ml/model/_signatures/utils.py,sha256=WLaHpb-4BPB7IBFg2sOkH2N7AojXt2PQR7M8hmtNkXA,17164
181
+ snowflake/ml/model/models/huggingface_pipeline.py,sha256=7tYyhcqLATtzidWBAnip0qSsUstqtLBaiCUO78qgMvY,10311
182
+ snowflake/ml/modeling/_internal/estimator_utils.py,sha256=oGi5qbZeV-1cM1Pl-rZLBvcr3YRoUzN_te_l-18apLI,11993
183
+ snowflake/ml/modeling/_internal/model_specifications.py,sha256=3wFMcKPCSoiEzU7Mx6RVem89BRlBBENpX__-Rd7GwdU,4851
184
+ snowflake/ml/modeling/_internal/model_trainer.py,sha256=5Ck1lbdyzcd-TpzAxEyovIN9fjaaVIqugyMHXt0wzH0,971
185
+ snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=Kye5l4_Y307Qa4ZcGGthtAO8cB9Mqg406phHByXZcYo,8056
182
186
  snowflake/ml/modeling/_internal/model_transformer_builder.py,sha256=E7Psa14Z-Us5MD9yOdRbGTlR6r4Fq7BQSCcHwFlh1Ig,2815
183
- snowflake/ml/modeling/_internal/transformer_protocols.py,sha256=adbJH9BcD52Z1VbqoCE_9IexjIxERTXE8932Hz-gw3E,6482
184
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=UN-23TJ4Usf6N9ZTXcU4IfJmI-uJXOsfdslOAax7d2I,7989
185
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=h3Zsw9tpBB7WEUyIGy35VYNNR8y_XwiRHyR3mULyxIE,5960
186
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=Jypb-EH4iCOTtFRfF_wUNlm3yMR2WTUrV0YZnuYz_QA,54996
187
+ snowflake/ml/modeling/_internal/transformer_protocols.py,sha256=CEWZXSc7QLZVRJmg3sC5yiNI-tN_wCZmZnySXZhLgto,6476
188
+ snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=PAvVEoyEKTIH3bpRj9ddSd4xj5JC8Ft4orA8uUWAbFA,7983
189
+ snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=40zepXyRA9lkzGTxGQs74fqcuCQAkFAfnzyIBi4-ozU,5947
190
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=XfWSd1H5B6lcIb1eAapyODl6L6x1lbJ6jm0XtwM8-ag,54977
187
191
  snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=HnsSmsXAeJrH9zVeq3CSziIaCUDxeWWx6kRyAK4qajM,6601
188
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=x-7OOtPP-apV3utHTpJU-jAIBRpQzTmJeSQDarrCbgI,16428
189
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=D4tZY-Fg9U6yY4mkznzzFuf6GmmemS5ZQCUu2yZgDTQ,32259
190
- snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=4WP1QVqfSVvziVlQ7k9nWQNCM0GN5kTk4Xnd-9jWTXc,17300
192
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=oXumJxQFMokoxsrXZ03X8NKLWr3yGuUGB3OM8qTTH4E,16416
193
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=ckeh8plxm0sHIDheYwR4etBfZ9mNy0hySd9ApahUG-k,32240
194
+ snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=Cu_ywcFzlkflbUvJ5C8rNk1H3YwRDEhVdsyngNcjE2Q,17282
191
195
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
192
196
  snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=JniApR5y_vYUT4vgugsYiOWsXsknIA6uDa5xZohnEr8,53780
193
197
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
@@ -256,16 +260,16 @@ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=YEYfdIktGtaXEkjo
256
260
  snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=taAIIkUGudZnLDDvyS3Bb59NozewAK60u9etVRRltI4,50606
257
261
  snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=W5-NOY5fkDPCXmQoDUTn7t6Up4ayh3PWtf7-35OjfLw,53385
258
262
  snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=NcQxu3aTqkZD-DAxalJeGeOlUB6M0XwYtWaQd8zwPB8,50247
259
- snowflake/ml/modeling/framework/_utils.py,sha256=7k9iU5zAWa4ZpMZlg8KfSMi4vH3o69w5aAh5RTRNdZ4,10203
260
- snowflake/ml/modeling/framework/base.py,sha256=Q1Yq8SesnpVWdtRGc6rbuz9T3hcT0eRjl2ZiWGyWAeQ,31954
263
+ snowflake/ml/modeling/framework/_utils.py,sha256=UvB9hlvvUl_N6qQM-xIDcbtMr0oJQnlV1aTZCRUveQg,10197
264
+ snowflake/ml/modeling/framework/base.py,sha256=i8DEdGoV9b_Ky8uDO2yzgPN_9YFmGtYOoT6RA11YgWM,31942
261
265
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
262
266
  snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=xkWHEGfuQ4ePw1lhEIOpSa4AHrfPehBrbpE0U6GEbP8,55877
263
267
  snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=K0g7VbDw8WjiECflDVJqsxDemLiH0cmIdm7Rr7A6xEI,54941
264
- snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
268
+ snowflake/ml/modeling/impute/__init__.py,sha256=AUAyMIRsAF9Ocf7zDnGPYSvKgGfkR8LInyFvkC-7MiU,281
265
269
  snowflake/ml/modeling/impute/iterative_imputer.py,sha256=ArB7_BNQ1yS13uiFzMaNUbHAEsnBHyafedIFu4UNPiM,56770
266
270
  snowflake/ml/modeling/impute/knn_imputer.py,sha256=EJAwTGACFByvJgb-EG2jEFEZ5_GOjDCSmltsQ6QsNg4,52480
267
271
  snowflake/ml/modeling/impute/missing_indicator.py,sha256=P-4XgNFt6jnHwIv65joaU-yy2aLysIjOQoQemXh7JOU,51343
268
- snowflake/ml/modeling/impute/simple_imputer.py,sha256=T1niXlhS2vWbhF5IQ2k7qlBXKmvYVC3y1aKq73dCaBs,20946
272
+ snowflake/ml/modeling/impute/simple_imputer.py,sha256=Tznj3hrPZQSy6nnaOAWoWYuMcz1AwtzmtToG2l5t-d4,20934
269
273
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
270
274
  snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=EmJpDmbQTcsde9lEHCtSmPIrsfGL1ywV1jw-hDvMPzU,50377
271
275
  snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=Hw-3MSysDlLLcfh5RaKs2IlvvXgait5dJRdZIy4lQx0,52137
@@ -318,19 +322,19 @@ snowflake/ml/modeling/manifold/isomap.py,sha256=6vV6UxfDtG6XdfuRHP7RuFy5z5JVhmx-
318
322
  snowflake/ml/modeling/manifold/mds.py,sha256=R8Vcoq6Pil8rIMa4rfP7fWQJ4rGO5_VyqA8OAF6ttn4,52215
319
323
  snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=Eq4Qlti2yur3shm-WtmA4X8_NrqXHLUujXDEXPdzyys,53079
320
324
  snowflake/ml/modeling/manifold/tsne.py,sha256=ufxDqlE1lwEAYY6n8n8ESCg8bw5n1DL9bz-RLYXenvY,56202
321
- snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
322
- snowflake/ml/modeling/metrics/classification.py,sha256=MrEHOQ6EmfeDl_5t4n1fcE_SQOm8i5jbRSaxcN9s-II,66435
325
+ snowflake/ml/modeling/metrics/__init__.py,sha256=1lc1DCVNeo7D-gvvCjmpI5tFIIrOsEdEZMrQiXJnQ8E,507
326
+ snowflake/ml/modeling/metrics/classification.py,sha256=E-Dx3xSmZQrF_MXf2BHAjrDstbCXVyU5g6x6CeizosQ,66411
323
327
  snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
324
328
  snowflake/ml/modeling/metrics/covariance.py,sha256=HxJK1mwyt6lMSg8yonHFQ8IxAEa62MHeb1M3eHEtqlk,4672
325
- snowflake/ml/modeling/metrics/metrics_utils.py,sha256=9tZQ_Mu6jTWHztwqkPSrFWY_LP551W7FmQrXYwbSlso,13208
326
- snowflake/ml/modeling/metrics/ranking.py,sha256=DFpD6VusYzUMCqA9U_1gvmslnHuvgWTchinRN6dDHjg,17773
327
- snowflake/ml/modeling/metrics/regression.py,sha256=SP8CQ_jkavOVyqeWm9kKK5eznti64tE1jAd6LzgKW78,26049
329
+ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=MLqTN59F3NLkldhsUrJFAZsHmfo5CArmLeLGnui1RpI,13189
330
+ snowflake/ml/modeling/metrics/ranking.py,sha256=znjIIRkGqnGzid7BAGhBowGHbau7mTV5gc-RY_HVfoQ,17760
331
+ snowflake/ml/modeling/metrics/regression.py,sha256=TcqnADqfL9_1XY47HQeul09t3DMPBkPSVtHP5Z9SyV4,26043
328
332
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
329
333
  snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=qT01m49GVLSA0YgK7uFCWj9ivacr-X50dtZA6uhotKk,57587
330
334
  snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=Qd2WXZIzwhJKxISyMR58uln30TPtKj-VI3IS1eoRKyM,55480
331
- snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
332
- snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=KYbdVlluEErygi2cIrO7NnfVLHBDsd-pj35B-qPBRRI,38375
333
- snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=iQ6vlOWyVs74hPMsiYlvqMC0Gq_2kDxEah2af7jsrIA,39117
335
+ snowflake/ml/modeling/model_selection/__init__.py,sha256=AUAyMIRsAF9Ocf7zDnGPYSvKgGfkR8LInyFvkC-7MiU,281
336
+ snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=MN2ShNWFKDJYU8-ofhNfef3zAsGyPMAzfToC6EuQMs4,38358
337
+ snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=E5i1AsL50HV9A25JkUUTEQZkX4EVJqrFP2T9EOW5B4U,39100
334
338
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
335
339
  snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=d-rMWrJgFc8FQDczE7jhL1EqWzn7cw-P0wvF2Ouke1A,51001
336
340
  snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=NxHBfHMH4e1u_P0oLb_5SBpSOoP05WX2SsSc9Ke14NY,51936
@@ -358,20 +362,20 @@ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=1qWTOJni734BzrPvbmV
358
362
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
359
363
  snowflake/ml/modeling/parameters/disable_model_tracer.py,sha256=uj6SZz7HQpThGLs90zfUDcNMChxf0C6DKRN2xOfjmvI,203
360
364
  snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
361
- snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
362
- snowflake/ml/modeling/pipeline/pipeline.py,sha256=a5XRXe14eX_H-ej5AruMaBIDp3GATTyizBw0zWFNKbc,40590
363
- snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
365
+ snowflake/ml/modeling/pipeline/__init__.py,sha256=AUAyMIRsAF9Ocf7zDnGPYSvKgGfkR8LInyFvkC-7MiU,281
366
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=chsbUnZwg-4NV1mJdNoH4GkZ0aB_NQkG_wX__d9w9Bc,40566
367
+ snowflake/ml/modeling/preprocessing/__init__.py,sha256=AUAyMIRsAF9Ocf7zDnGPYSvKgGfkR8LInyFvkC-7MiU,281
364
368
  snowflake/ml/modeling/preprocessing/binarizer.py,sha256=MrgSVTw9RpajyYe0dzai-qnpdOb3Zq0SfJRpHJjpnoY,7383
365
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=EfQClqSR3PvhhmEpvwWmvM8XSp__UqD89ugqDlTWxfA,21552
369
+ snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=NwZHD5JCKqR_-psMFGxgf2vmpKLQU2WlJbjs9RinSto,21540
366
370
  snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=jQV2UgA-qtzxNxHzgyhfJtWYIT_8L81miwcQy4dxHIA,7802
367
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=P03PP907SbofOFv1cJhTe1R2_-lnFYHfGsvYsVFofWY,9146
368
- snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=leLeIrVsXn08agPqL-N50ohrWlC9FVuztMleQ043H5o,12467
369
- snowflake/ml/modeling/preprocessing/normalizer.py,sha256=0VmTIwldr3F3KQC--6RsYkybWjWuiqtxn4PuWinH0ME,6997
370
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=BW4T4u7EnN62jBOd9pc5UsNVT1_7HzIJJtnUYFLRYtA,75172
371
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=CfY50IV-akM1hhmt9A05IlgXEdMuRQsHE8PLkOxKUsM,35319
371
+ snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=e-PPPxXd9odXU5vxyuhl7UBJoXTKuJTJCZ0z6zAS4hU,9134
372
+ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=NappHtB3aOPDstBFkc-Kb0yOkhlsQAT5DfBudw3iheg,12448
373
+ snowflake/ml/modeling/preprocessing/normalizer.py,sha256=rVlTClMkFz2N12vlV5pbKBMLJ14FU9XOd1p064Wv1lU,6984
374
+ snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=JWwBI5Ew1pwyMmJRmvEEnfkNn4zR-p4BbpgqGHQpFVQ,75160
375
+ snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=FLPX9ix3dWUe2_8GdEZ9v4MWPzoYfp8Ig6B5w4svPcQ,35307
372
376
  snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=fvALEVPkko_dPaM1BKHOyizz6UNlDg_-OAEmDIr0JoE,51446
373
- snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=Dp58jHxBdGdiFQAYmFW39JUdaPHO7dKfMy3KREtKAy0,12653
374
- snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=ui5pWnt2dL2VTTzCWikY8siG3fh_R9J1Wk_VZCHU-rA,11773
377
+ snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=XW9d7z0JlQlmkcsNxfEgf78uOmb0T2uQd4B-vfyA8zY,12634
378
+ snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=V-9LbiD5G-RXGayLMnsC4wh9EQx0rw3bAou1gARWtIQ,11761
375
379
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
376
380
  snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=1dZ1FdTslUwnXlztJJF8wQsUo5u743OLtinsFDLU7aM,51775
377
381
  snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=s3-pdgqAAH0PKBCF2z_J6_iext2QrQoFsEbdszQ5DK4,52122
@@ -395,20 +399,20 @@ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=8umj4GSb8Txu5RmvWjjYb_qY
395
399
  snowflake/ml/monitoring/model_monitor.py,sha256=8vJf1YROmJgBLUtpaH-lGKSSJv9R7PxPaQnOdr_j5YE,2200
396
400
  snowflake/ml/monitoring/model_monitor_version.py,sha256=TlmDJZDE0lCVatRaBRgXIjzDF538nrMIc-zWj9MM_nk,46
397
401
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
398
- snowflake/ml/monitoring/_client/model_monitor_sql_client.py,sha256=XhTcLNehHOwEKGpqJdYnL1-esYm3KWM5E8CvH9pF5Ms,12712
402
+ snowflake/ml/monitoring/_client/model_monitor_sql_client.py,sha256=Ke1fsN4347APII-EETEBY7hTydY9MRgQubinCE6eI_U,12700
399
403
  snowflake/ml/monitoring/_client/queries/record_count.ssql,sha256=Bd1uNMwhPKqPyrDd5ug8iY493t9KamJjrlo82OAfmjY,335
400
404
  snowflake/ml/monitoring/_client/queries/rmse.ssql,sha256=OEJiSStRz9-qKoZaFvmubtY_n0xMUjyVU2uiQHCp7KU,822
401
- snowflake/ml/monitoring/_manager/model_monitor_manager.py,sha256=_-vxqnHqohTHTrwfURjPXijyAeh1mTRdHCG436GaBik,10314
402
- snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=IxEiee1HfBXCQGzJOZbrDrvoV8J1tDNk43ygNuN00Io,1793
405
+ snowflake/ml/monitoring/_manager/model_monitor_manager.py,sha256=0jpT1-aRU2tsxSM87I-C2kfJeLevCgM-a-OwU_-VUdI,10302
406
+ snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=1W6TFTPicC6YAbjD7A0w8WMhWireyUxyuEy0RQXmqyY,1787
403
407
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
404
- snowflake/ml/registry/registry.py,sha256=eAV9AreGwO4JSyRn3Pftvu-JfeH4KipNG4ViQ16Pe5I,30052
405
- snowflake/ml/registry/_manager/model_manager.py,sha256=MjS0AnHQ8g2yn3svvhSPgmPB0j0bpw4gH-p5LjtYKds,16083
406
- snowflake/ml/utils/authentication.py,sha256=Wx1kVBZ9XBDuKkRHpPEB2pBxpiJepVLFAirDMx4m5Gk,2612
407
- snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
408
- snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
409
- snowflake/ml/utils/sql_client.py,sha256=z4Rhi7pQz3s9cyu_Uzfr3deCnrkCdFh9IYIvicsuwdc,692
410
- snowflake_ml_python-1.8.1.dist-info/licenses/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
411
- snowflake_ml_python-1.8.1.dist-info/METADATA,sha256=f7TRoR2YP8Ub6UAq-QZrPANrUlNRA7AT_5kliunN6Zk,81143
412
- snowflake_ml_python-1.8.1.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
413
- snowflake_ml_python-1.8.1.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
414
- snowflake_ml_python-1.8.1.dist-info/RECORD,,
408
+ snowflake/ml/registry/registry.py,sha256=fFDZ-o2xER0ib7JM9GPVDG7hQuAXXfp8KXL2vak6gaQ,30684
409
+ snowflake/ml/registry/_manager/model_manager.py,sha256=Em9vhFSMkVQHjRKE15aijBUVFrRILCHr94cdpqNIlY8,17110
410
+ snowflake/ml/utils/authentication.py,sha256=E1at4TIAQRDZDsMXSbrKvSJaT6_kSYJBkkr37vU9P2s,2606
411
+ snowflake/ml/utils/connection_params.py,sha256=w3Ws1_rqSjqEzg1oehVCGXcyYdcNRpg-whiw4EyrvYM,7999
412
+ snowflake/ml/utils/sparse.py,sha256=zLBNh-ynhGpKH5TFtopk0YLkHGvv0yq1q-sV59YQKgg,3819
413
+ snowflake/ml/utils/sql_client.py,sha256=pSe2od6Pkh-8NwG3D-xqN76_uNf-ohOtVbT55HeQg1Y,668
414
+ snowflake_ml_python-1.8.3.dist-info/licenses/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
415
+ snowflake_ml_python-1.8.3.dist-info/METADATA,sha256=PXRo4-PJBu7-U_BGD17A4FZvSXxuOyJDMRAudsNvdeI,82662
416
+ snowflake_ml_python-1.8.3.dist-info/WHEEL,sha256=ck4Vq1_RXyvS4Jt6SI0Vz6fyVs4GWg7AINwpsaGEgPE,91
417
+ snowflake_ml_python-1.8.3.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
418
+ snowflake_ml_python-1.8.3.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (78.1.0)
2
+ Generator: setuptools (80.0.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1 +0,0 @@
1
- REQUIREMENTS = ['cloudpickle>=2.0.0,<3']
@@ -1,2 +0,0 @@
1
- IN_ML_RUNTIME_ENV_VAR = "IN_SPCS_ML_RUNTIME"
2
- USE_OPTIMIZED_DATA_INGESTOR = "USE_OPTIMIZED_DATA_INGESTOR"