snowflake-ml-python 1.8.0__py3-none-any.whl → 1.8.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. snowflake/cortex/_complete.py +44 -10
  2. snowflake/ml/_internal/platform_capabilities.py +39 -3
  3. snowflake/ml/data/data_connector.py +25 -0
  4. snowflake/ml/dataset/dataset_reader.py +5 -1
  5. snowflake/ml/jobs/_utils/constants.py +3 -5
  6. snowflake/ml/jobs/_utils/interop_utils.py +442 -0
  7. snowflake/ml/jobs/_utils/payload_utils.py +81 -47
  8. snowflake/ml/jobs/_utils/scripts/constants.py +4 -0
  9. snowflake/ml/jobs/_utils/scripts/get_instance_ip.py +136 -0
  10. snowflake/ml/jobs/_utils/scripts/mljob_launcher.py +178 -0
  11. snowflake/ml/jobs/_utils/scripts/signal_workers.py +203 -0
  12. snowflake/ml/jobs/_utils/scripts/worker_shutdown_listener.py +242 -0
  13. snowflake/ml/jobs/_utils/spec_utils.py +27 -8
  14. snowflake/ml/jobs/_utils/types.py +6 -0
  15. snowflake/ml/jobs/decorators.py +10 -6
  16. snowflake/ml/jobs/job.py +145 -23
  17. snowflake/ml/jobs/manager.py +79 -12
  18. snowflake/ml/model/_client/ops/model_ops.py +6 -3
  19. snowflake/ml/model/_client/ops/service_ops.py +57 -39
  20. snowflake/ml/model/_client/service/model_deployment_spec.py +7 -4
  21. snowflake/ml/model/_client/sql/service.py +11 -5
  22. snowflake/ml/model/_model_composer/model_composer.py +29 -11
  23. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +1 -2
  24. snowflake/ml/model/_packager/model_env/model_env.py +8 -2
  25. snowflake/ml/model/_packager/model_handlers/sklearn.py +1 -4
  26. snowflake/ml/model/_packager/model_meta/_packaging_requirements.py +1 -1
  27. snowflake/ml/model/_packager/model_meta/model_meta.py +6 -1
  28. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +1 -0
  29. snowflake/ml/model/_packager/model_packager.py +2 -0
  30. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -1
  31. snowflake/ml/model/type_hints.py +2 -0
  32. snowflake/ml/modeling/_internal/estimator_utils.py +5 -1
  33. snowflake/ml/registry/_manager/model_manager.py +20 -1
  34. snowflake/ml/registry/registry.py +46 -2
  35. snowflake/ml/version.py +1 -1
  36. {snowflake_ml_python-1.8.0.dist-info → snowflake_ml_python-1.8.2.dist-info}/METADATA +55 -4
  37. {snowflake_ml_python-1.8.0.dist-info → snowflake_ml_python-1.8.2.dist-info}/RECORD +40 -34
  38. {snowflake_ml_python-1.8.0.dist-info → snowflake_ml_python-1.8.2.dist-info}/WHEEL +1 -1
  39. {snowflake_ml_python-1.8.0.dist-info → snowflake_ml_python-1.8.2.dist-info}/licenses/LICENSE.txt +0 -0
  40. {snowflake_ml_python-1.8.0.dist-info → snowflake_ml_python-1.8.2.dist-info}/top_level.txt +0 -0
@@ -44,6 +44,7 @@ class ModelPackager:
44
44
  conda_dependencies: Optional[List[str]] = None,
45
45
  pip_requirements: Optional[List[str]] = None,
46
46
  artifact_repository_map: Optional[Dict[str, str]] = None,
47
+ target_platforms: Optional[List[model_types.TargetPlatform]] = None,
47
48
  python_version: Optional[str] = None,
48
49
  ext_modules: Optional[List[ModuleType]] = None,
49
50
  code_paths: Optional[List[str]] = None,
@@ -77,6 +78,7 @@ class ModelPackager:
77
78
  artifact_repository_map=artifact_repository_map,
78
79
  python_version=python_version,
79
80
  task=task,
81
+ target_platforms=target_platforms,
80
82
  **options,
81
83
  ) as meta:
82
84
  model_blobs_path = os.path.join(self.local_dir_path, ModelPackager.MODEL_BLOBS_DIR)
@@ -1 +1 @@
1
- REQUIREMENTS = ['absl-py>=0.15,<2', 'aiohttp!=4.0.0a0, !=4.0.0a1', 'anyio>=3.5.0,<5', 'cachetools>=3.1.1,<6', 'cloudpickle>=2.0.0', 'cryptography', 'fsspec>=2024.6.1,<2026', 'importlib_resources>=6.1.1, <7', 'numpy>=1.23,<2', 'packaging>=20.9,<25', 'pandas>=1.0.0,<3', 'pyarrow', 'pyjwt>=2.0.0, <3', 'pytimeparse>=1.1.8,<2', 'pyyaml>=6.0,<7', 'requests', 'retrying>=1.3.3,<2', 's3fs>=2024.6.1,<2026', 'scikit-learn>=1.4,<1.6', 'scipy>=1.9,<2', 'snowflake-connector-python>=3.12.0,<4', 'snowflake-snowpark-python>=1.17.0,<2,!=1.26.0', 'sqlparse>=0.4,<1', 'typing-extensions>=4.1.0,<5', 'xgboost>=1.7.3,<3']
1
+ REQUIREMENTS = ['absl-py>=0.15,<2', 'aiohttp!=4.0.0a0, !=4.0.0a1', 'anyio>=3.5.0,<5', 'cachetools>=3.1.1,<6', 'cloudpickle>=2.0.0,<3', 'cryptography', 'fsspec>=2024.6.1,<2026', 'importlib_resources>=6.1.1, <7', 'numpy>=1.23,<2', 'packaging>=20.9,<25', 'pandas>=1.0.0,<3', 'pyarrow', 'pyjwt>=2.0.0, <3', 'pytimeparse>=1.1.8,<2', 'pyyaml>=6.0,<7', 'requests', 'retrying>=1.3.3,<2', 's3fs>=2024.6.1,<2026', 'scikit-learn>=1.4,<1.6', 'scipy>=1.9,<2', 'snowflake-connector-python>=3.12.0,<4', 'snowflake-snowpark-python>=1.17.0,<2,!=1.26.0', 'snowflake.core>=1.0.2,<2', 'sqlparse>=0.4,<1', 'typing-extensions>=4.1.0,<5', 'xgboost>=1.7.3,<3']
@@ -147,6 +147,7 @@ class BaseModelSaveOption(TypedDict):
147
147
  embed_local_ml_library: Embedding local SnowML into the code directory of the folder.
148
148
  relax_version: Whether or not relax the version constraints of the dependencies if unresolvable in Warehouse.
149
149
  It detects any ==x.y.z in specifiers and replaced with >=x.y, <(x+1). Defaults to True.
150
+ save_location: Local directory path to save the model and metadata.
150
151
  """
151
152
 
152
153
  embed_local_ml_library: NotRequired[bool]
@@ -154,6 +155,7 @@ class BaseModelSaveOption(TypedDict):
154
155
  function_type: NotRequired[Literal["FUNCTION", "TABLE_FUNCTION"]]
155
156
  method_options: NotRequired[Dict[str, ModelMethodSaveOptions]]
156
157
  enable_explainability: NotRequired[bool]
158
+ save_location: NotRequired[str]
157
159
 
158
160
 
159
161
  class CatBoostModelSaveOptions(BaseModelSaveOption):
@@ -130,7 +130,11 @@ def is_single_node(session: Session) -> bool:
130
130
  warehouse_name = session.get_current_warehouse()
131
131
  if warehouse_name:
132
132
  warehouse_name = warehouse_name.replace('"', "")
133
- df = session.sql(f"SHOW WAREHOUSES like '{warehouse_name}';")['"type"', '"size"'].collect()[0]
133
+ df_list = session.sql(f"SHOW WAREHOUSES like '{warehouse_name}';")['"type"', '"size"'].collect()
134
+ # If no warehouse data is found, default to True (single node)
135
+ if not df_list:
136
+ return True
137
+ df = df_list[0]
134
138
  # filter out the conditions when it is single node
135
139
  single_node: bool = (df[0] == "SNOWPARK-OPTIMIZED" and df[1] == "Medium") or (
136
140
  df[0] == "STANDARD" and df[1] == "X-Small"
@@ -1,3 +1,4 @@
1
+ import os
1
2
  from types import ModuleType
2
3
  from typing import Any, Dict, List, Optional, Tuple, Union
3
4
 
@@ -13,6 +14,7 @@ from snowflake.ml.model._client.model import model_impl, model_version_impl
13
14
  from snowflake.ml.model._client.ops import metadata_ops, model_ops, service_ops
14
15
  from snowflake.ml.model._model_composer import model_composer
15
16
  from snowflake.ml.model._packager.model_meta import model_meta
17
+ from snowflake.ml.modeling._internal import constants
16
18
  from snowflake.snowpark import exceptions as snowpark_exceptions, session
17
19
 
18
20
  logger = logging.getLogger(__name__)
@@ -208,6 +210,14 @@ class ModelManager:
208
210
  if target_platforms:
209
211
  # Convert any string target platforms to TargetPlatform objects
210
212
  platforms = [model_types.TargetPlatform(platform) for platform in target_platforms]
213
+ else:
214
+ # Default the target platform to SPCS if not specified when running in ML runtime
215
+ if os.getenv(constants.IN_ML_RUNTIME_ENV_VAR):
216
+ logger.info(
217
+ "Logging the model on Container Runtime for ML without specifying `target_platforms`. "
218
+ 'Default to `target_platforms=["SNOWPARK_CONTAINER_SERVICES"]`.'
219
+ )
220
+ platforms = [model_types.TargetPlatform.SNOWPARK_CONTAINER_SERVICES]
211
221
 
212
222
  if artifact_repository_map:
213
223
  for channel, artifact_repository_name in artifact_repository_map.items():
@@ -223,8 +233,17 @@ class ModelManager:
223
233
 
224
234
  logger.info("Start packaging and uploading your model. It might take some time based on the size of the model.")
225
235
 
236
+ # Extract save_location from options if present
237
+ save_location = None
238
+ if options and "save_location" in options:
239
+ save_location = options.get("save_location")
240
+ logger.info(f"Model will be saved to local directory: {save_location}")
241
+
226
242
  mc = model_composer.ModelComposer(
227
- self._model_ops._session, stage_path=stage_path, statement_params=statement_params
243
+ self._model_ops._session,
244
+ stage_path=stage_path,
245
+ statement_params=statement_params,
246
+ save_location=save_location,
228
247
  )
229
248
  model_metadata: model_meta.ModelMetadata = mc.save(
230
249
  name=model_name_id.resolved(),
@@ -75,7 +75,9 @@ class Registry:
75
75
  )
76
76
 
77
77
  self._model_manager = model_manager.ModelManager(
78
- session, database_name=self._database_name, schema_name=self._schema_name
78
+ session,
79
+ database_name=self._database_name,
80
+ schema_name=self._schema_name,
79
81
  )
80
82
 
81
83
  self.enable_monitoring = options.get("enable_monitoring", True) if options else True
@@ -113,8 +115,10 @@ class Registry:
113
115
  python_version: Optional[str] = None,
114
116
  signatures: Optional[Dict[str, model_signature.ModelSignature]] = None,
115
117
  sample_input_data: Optional[model_types.SupportedDataType] = None,
118
+ user_files: Optional[Dict[str, List[str]]] = None,
116
119
  code_paths: Optional[List[str]] = None,
117
120
  ext_modules: Optional[List[ModuleType]] = None,
121
+ task: model_types.Task = model_types.Task.UNKNOWN,
118
122
  options: Optional[model_types.ModelSaveOption] = None,
119
123
  ) -> ModelVersion:
120
124
  """
@@ -156,10 +160,15 @@ class Registry:
156
160
  infer the signature. If not None, sample_input_data should not be specified. Defaults to None.
157
161
  sample_input_data: Sample input data to infer model signatures from.
158
162
  It would also be used as background data in explanation and to capture data lineage. Defaults to None.
163
+ user_files: Dictionary where the keys are subdirectories, and values are lists of local file name
164
+ strings. The local file name strings can include wildcards (? or *) for matching multiple files.
159
165
  code_paths: List of directories containing code to import. Defaults to None.
160
166
  ext_modules: List of external modules to pickle with the model object.
161
167
  Only supported when logging the following types of model:
162
168
  Scikit-learn, Snowpark ML, PyTorch, TorchScript and Custom Model. Defaults to None.
169
+ task: The task of the Model Version. It is an enum class Task with values TABULAR_REGRESSION,
170
+ TABULAR_BINARY_CLASSIFICATION, TABULAR_MULTI_CLASSIFICATION, TABULAR_RANKING, or UNKNOWN. By default,
171
+ it is set to Task.UNKNOWN and may be overridden by inferring from the Model Object.
163
172
  options (Dict[str, Any], optional): Additional model saving options.
164
173
 
165
174
  Model Saving Options include:
@@ -171,6 +180,10 @@ class Registry:
171
180
  Warehouse. It detects any ==x.y.z in specifiers and replaced with >=x.y, <(x+1). Defaults to True.
172
181
  - function_type: Set the method function type globally. To set method function types individually see
173
182
  function_type in model_options.
183
+ - target_methods: List of target methods to register when logging the model.
184
+ This option is not used in MLFlow models. Defaults to None, in which case the model handler's
185
+ default target methods will be used.
186
+ - save_location: Location to save the model and metadata.
174
187
  - method_options: Per-method saving options. This dictionary has method names as keys and dictionary
175
188
  values with the desired options.
176
189
 
@@ -304,6 +317,10 @@ class Registry:
304
317
  Warehouse. It detects any ==x.y.z in specifiers and replaced with >=x.y, <(x+1). Defaults to True.
305
318
  - function_type: Set the method function type globally. To set method function types individually see
306
319
  function_type in model_options.
320
+ - target_methods: List of target methods to register when logging the model.
321
+ This option is not used in MLFlow models. Defaults to None, in which case the model handler's
322
+ default target methods will be used.
323
+ - save_location: Location to save the model and metadata.
307
324
  - method_options: Per-method saving options. This dictionary has method names as keys and dictionary
308
325
  values with the desired options. See the example below.
309
326
 
@@ -317,6 +334,9 @@ class Registry:
317
334
  Defaults to None, determined automatically by Snowflake.
318
335
  - function_type: One of supported model method function types (FUNCTION or TABLE_FUNCTION).
319
336
 
337
+ Raises:
338
+ ValueError: If extra arguments are specified ModelVersion is provided.
339
+
320
340
  Returns:
321
341
  ModelVersion: ModelVersion object corresponding to the model just logged.
322
342
 
@@ -339,13 +359,37 @@ class Registry:
339
359
  registry.log_model(
340
360
  model=model,
341
361
  model_name="my_model",
342
- method_options=method_options,
362
+ options={"method_options": method_options},
343
363
  )
344
364
  """
345
365
  statement_params = telemetry.get_statement_params(
346
366
  project=_TELEMETRY_PROJECT,
347
367
  subproject=_MODEL_TELEMETRY_SUBPROJECT,
348
368
  )
369
+ if isinstance(model, ModelVersion):
370
+ # check that no arguments are provided other than the ones for copy model.
371
+ invalid_args = [
372
+ comment,
373
+ conda_dependencies,
374
+ pip_requirements,
375
+ artifact_repository_map,
376
+ target_platforms,
377
+ python_version,
378
+ signatures,
379
+ sample_input_data,
380
+ user_files,
381
+ code_paths,
382
+ ext_modules,
383
+ options,
384
+ ]
385
+ for arg in invalid_args:
386
+ if arg is not None:
387
+ raise ValueError(
388
+ "When calling log_model with a ModelVersion, only model_name and version_name may be specified."
389
+ )
390
+ if task is not model_types.Task.UNKNOWN:
391
+ raise ValueError("`task` cannot be specified when calling log_model with a ModelVersion.")
392
+
349
393
  if pip_requirements:
350
394
  warnings.warn(
351
395
  "Models logged specifying `pip_requirements` can not be executed "
snowflake/ml/version.py CHANGED
@@ -1 +1 @@
1
- VERSION="1.8.0"
1
+ VERSION="1.8.2"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: snowflake-ml-python
3
- Version: 1.8.0
3
+ Version: 1.8.2
4
4
  Summary: The machine learning client library that is used for interacting with Snowflake to build machine learning solutions.
5
5
  Author-email: "Snowflake, Inc" <support@snowflake.com>
6
6
  License:
@@ -236,7 +236,7 @@ License-File: LICENSE.txt
236
236
  Requires-Dist: absl-py<2,>=0.15
237
237
  Requires-Dist: anyio<5,>=3.5.0
238
238
  Requires-Dist: cachetools<6,>=3.1.1
239
- Requires-Dist: cloudpickle>=2.0.0
239
+ Requires-Dist: cloudpickle<3,>=2.0.0
240
240
  Requires-Dist: cryptography
241
241
  Requires-Dist: fsspec[http]<2026,>=2024.6.1
242
242
  Requires-Dist: importlib_resources<7,>=6.1.1
@@ -253,6 +253,7 @@ Requires-Dist: scikit-learn<1.6,>=1.4
253
253
  Requires-Dist: scipy<2,>=1.9
254
254
  Requires-Dist: snowflake-connector-python[pandas]<4,>=3.12.0
255
255
  Requires-Dist: snowflake-snowpark-python!=1.26.0,<2,>=1.17.0
256
+ Requires-Dist: snowflake.core<2,>=1.0.2
256
257
  Requires-Dist: sqlparse<1,>=0.4
257
258
  Requires-Dist: typing-extensions<5,>=4.1.0
258
259
  Requires-Dist: xgboost<3,>=1.7.3
@@ -402,7 +403,58 @@ NOTE: Version 1.7.0 is used as example here. Please choose the the latest versio
402
403
 
403
404
  # Release History
404
405
 
405
- ## 1.8.0
406
+ ## 1.8.2
407
+
408
+ ### Bug Fixes
409
+
410
+ ### Behavior Change
411
+
412
+ ### New Features
413
+
414
+ - ML Job now available as a PuPr feature
415
+ - ML Job: Add ability to retrieve results for `@remote` decorated functions using
416
+ new `MLJobWithResult.result()` API, which will return the unpickled result
417
+ or raise an exception if the job execution failed.
418
+ - ML Job: Pre-created Snowpark Session is now available inside job payloads using
419
+ `snowflake.snowpark.context.get_active_session()`
420
+ - Registry: Introducing `save_location` to `log_model` using the `options` argument.
421
+ User's can provide the path to write the model version's files that get stored in Snowflake's stage.
422
+ - Registry: Include model dependencies in pip requirements by default when logging in Container Runtime.
423
+
424
+ ```python
425
+ reg.log_model(
426
+ model=...,
427
+ model_name=...,
428
+ version_name=...,
429
+ ...,
430
+ options={"save_location": "./model_directory"},
431
+ )
432
+ ```
433
+
434
+ - ML Job (PrPr): Add `instance_id` argument to `get_logs` and `show_logs` method to support multi node log retrieval
435
+ - ML Job (PrPr): Add `job.get_instance_status(instance_id=...)` API to support multi node status retrieval
436
+
437
+ ## 1.8.1 (03-26-2025)
438
+
439
+ ### Bug Fixes
440
+
441
+ - Registry: Fix a bug that caused `unsupported model type` error while logging a sklearn model with `score_samples`
442
+ inference method.
443
+ - Registry: Fix a bug that model inference service creation fails on an existing and suspended service.
444
+
445
+ ### Behavior Change
446
+
447
+ ### New Features
448
+
449
+ - ML Job (PrPr): Update Container Runtime image version to `1.0.1`
450
+ - ML Job (PrPr): Add `enable_metrics` argument to job submission APIs to enable publishing service metrics to Event Table.
451
+ See [Accessing Event Table service metrics](https://docs.snowflake.com/en/developer-guide/snowpark-container-services/monitoring-services#accessing-event-table-service-metrics)
452
+ for retrieving published metrics
453
+ and [Costs of telemetry data collection](https://docs.snowflake.com/en/developer-guide/logging-tracing/logging-tracing-billing)
454
+ for cost implications.
455
+ - Registry: When creating a copy of a `ModelVersion` with `log_model`, raise an exception if unsupported arguments are provided.
456
+
457
+ ## 1.8.0 (03-20-2025)
406
458
 
407
459
  ### Bug Fixes
408
460
 
@@ -703,7 +755,6 @@ NOTE: Version 1.7.0 is used as example here. Please choose the the latest versio
703
755
 
704
756
  - Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality.
705
757
  - Registry: Added support for `keras` 3.x model with `tensorflow` and `pytorch` backend
706
- - ML Job (PrPr): Support any serializable (pickleable) argument for `@remote` decorated functions
707
758
 
708
759
  ## 1.7.4 (01-28-2025)
709
760
 
@@ -1,6 +1,6 @@
1
1
  snowflake/cortex/__init__.py,sha256=gboUvJBYzJIq11AK_Qa0ipOUbKctHahNXe1p1Z7j8xY,1032
2
2
  snowflake/cortex/_classify_text.py,sha256=zlAUJXPgcEwmh9KtkqafAD0NRP3UBboCJGVzMylW4Lk,1640
3
- snowflake/cortex/_complete.py,sha256=H_g1WWxTX9HlG-97UHip9Yg1Na4WITHJ_DoVEXlVKgc,18546
3
+ snowflake/cortex/_complete.py,sha256=FBdO3ylXcp3TBvUj2dRnL339za4qFBWuFwCkFVZ38FM,19750
4
4
  snowflake/cortex/_embed_text_1024.py,sha256=P3oMsrMol_rTK0lZxDmEBx7XSA9HB2y3AMjaD66LrgY,1651
5
5
  snowflake/cortex/_embed_text_768.py,sha256=_WMt_FHu3n-CKXj8yiposDSi763Sd-NHV9UeGQ7YHaE,1643
6
6
  snowflake/cortex/_extract_answer.py,sha256=7C-23JytRKdZN9ZYY9w10RfAe_GzmvzKAqqUDl3T4aQ,1605
@@ -10,13 +10,13 @@ snowflake/cortex/_sse_client.py,sha256=sLYgqAfTOPADCnaWH2RWAJi8KbU_7gSRsTUDcDD5T
10
10
  snowflake/cortex/_summarize.py,sha256=7GH8zqfIdOiHA5w4b6EvJEKEWhaTrL4YA6iDGbn7BNM,1307
11
11
  snowflake/cortex/_translate.py,sha256=9ZGjvAnJFisbzJ_bXnt4pyug5UzhHJRXW8AhGQEersM,1652
12
12
  snowflake/cortex/_util.py,sha256=cwRGgrcUo3E05ZaIDT9436vXLQ7GfuBVAjR0QeQ2bDE,3320
13
- snowflake/ml/version.py,sha256=9LJrO29muGIhXmJeaLCfizOkgrtiucnrXh8-DuB37oY,16
13
+ snowflake/ml/version.py,sha256=2JIOu22NGQEnRBBjazfkoim0b-FI0TFKadK5Q0ff7EQ,16
14
14
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
15
15
  snowflake/ml/_internal/env_utils.py,sha256=5ps0v7c655lXsFVfnASxIyEwiVSGxZXke-VjeAWDs0A,27866
16
16
  snowflake/ml/_internal/file_utils.py,sha256=R3GRaKzJPLOa1yq9E55rhxUr59DztZlIqAnaqcZ1HfE,14275
17
17
  snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
18
18
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
19
- snowflake/ml/_internal/platform_capabilities.py,sha256=GTifopHZmJ0TiYaWXX2gGYk7CGAqsIdtpbntSNPUgfA,3717
19
+ snowflake/ml/_internal/platform_capabilities.py,sha256=X6c27VCIhZxxiSVBMb2bqR_zUtF8sper718x5muXWcY,5224
20
20
  snowflake/ml/_internal/relax_version_strategy.py,sha256=MYEIZrx1HfKNhl9Na3GN50ipX8c0MKIj9nwxjB0IC0Y,484
21
21
  snowflake/ml/_internal/telemetry.py,sha256=D2ZgVdibSYKvPg0CZhf4lW3QQot7cgOPhex7a0CXsao,30996
22
22
  snowflake/ml/_internal/type_utils.py,sha256=x0sm7lhpDyjdA1G7KvJb06z4PEGsogWiMwFrskPTWkA,2197
@@ -50,7 +50,7 @@ snowflake/ml/_internal/utils/sql_identifier.py,sha256=A5mfeDuz4z6VuUYG3EBpDyQQQC
50
50
  snowflake/ml/_internal/utils/table_manager.py,sha256=pU7v8Cx-jGObf6RtTmfCmALfhbpJD-lL45T1gWX1nSY,4982
51
51
  snowflake/ml/_internal/utils/temp_file_utils.py,sha256=0-HTjXdxVt0kE6XcgyvRvY0btflWlmotP2bMXVpFJPA,1553
52
52
  snowflake/ml/data/__init__.py,sha256=nm5VhN98Lzxr4kb679kglQfqbDbHhd9zYsnFJiQiThg,351
53
- snowflake/ml/data/data_connector.py,sha256=havoMBDiWTtc65mvDEAHk2Omy4BOVaMV38_acErjkbw,9696
53
+ snowflake/ml/data/data_connector.py,sha256=wTD6qBMd9aBJKP1tV_wVa-vubzgbQBKkia0BAjRpwic,10496
54
54
  snowflake/ml/data/data_ingestor.py,sha256=mH1_DBDS_XwxYsOoWI3EGQpBzr8j8jBgH2t2S1V1eGM,1035
55
55
  snowflake/ml/data/data_source.py,sha256=dRemXGi_HHQdn6gaNkxxGJixnQPuUYFDP8NBjmB_ZMk,518
56
56
  snowflake/ml/data/ingestor_utils.py,sha256=--nEwJHbYqYHpAzR1APgoeVF9CMgq_fDX81X29HAB4w,2727
@@ -60,7 +60,7 @@ snowflake/ml/dataset/__init__.py,sha256=nESj7YEI2u90Oxyit_hKCQMWb7N1BlEM3Ho2Fm0M
60
60
  snowflake/ml/dataset/dataset.py,sha256=eN9hStlwLlWXU3bp7RSruzIgSPEXNunpagCUDRbtz54,21041
61
61
  snowflake/ml/dataset/dataset_factory.py,sha256=Fym4ICK-B1j6Om4ENwWxEvryq3ZKoCslBSZDBenmjOo,1615
62
62
  snowflake/ml/dataset/dataset_metadata.py,sha256=tWR3fa2WG3Kj2btKMbg51l5jX68qm1rfXRswU0IDYTg,4157
63
- snowflake/ml/dataset/dataset_reader.py,sha256=e-IRbxbxFfNbsglmqtzhV_wYFsEflBW6-U_krbfXPpw,4371
63
+ snowflake/ml/dataset/dataset_reader.py,sha256=uYOK8e0f_cDctPLCATkWR8dWC5zoco2GpWVEYvVxU1s,4655
64
64
  snowflake/ml/feature_store/__init__.py,sha256=VKBVkS050WNF8rcqNqwFfNXa_B9GZjcUpuibOGsUSls,423
65
65
  snowflake/ml/feature_store/access_manager.py,sha256=LcsfBKsZzfERQQ_pqZG0W-XbpVGx9jkZOI-7nbfryhg,10666
66
66
  snowflake/ml/feature_store/entity.py,sha256=A65FOGlljREUG8IRMSN84v1x2uTeVGCM4NqKXO2Ui8w,4059
@@ -94,34 +94,40 @@ snowflake/ml/fileset/sfcfs.py,sha256=uPn8v5jlC3h_FrNqb4UMRAZjRZLn0I3tzu0sfi5RHik
94
94
  snowflake/ml/fileset/snowfs.py,sha256=uF5QluYtiJ-HezGIhF55dONi3t0E6N7ByaVAIAlM3nk,5133
95
95
  snowflake/ml/fileset/stage_fs.py,sha256=IEVZ6imH77JiSOIRlRHNWalwafoACRgHFr8RAaICSP8,20170
96
96
  snowflake/ml/jobs/__init__.py,sha256=ORX_0blPSpl9u5442R-i4e8cqWYfO_vVjFFtX3as184,420
97
- snowflake/ml/jobs/decorators.py,sha256=wMLO2hZem_6vPav0ZJPSNbKPZdSDspkKviCTx8zSaV0,2972
98
- snowflake/ml/jobs/job.py,sha256=dWILWTNaumgdqs6P58xl4PdyoARU9Sk89OMfRU39SQE,4239
99
- snowflake/ml/jobs/manager.py,sha256=DwxuLRf-PxQOG2w3hg1ewTEZTq3RrTngbIYJhtgURpQ,11311
100
- snowflake/ml/jobs/_utils/constants.py,sha256=aSnZKjV3TCi79G8ylaAucXxjW7Ca4vVY_HsnkwAZJm0,3242
101
- snowflake/ml/jobs/_utils/payload_utils.py,sha256=RC9vJt2CKmrkxzdWD7vEw0D7xWhXAC6RnuvS-0Ly_yY,20421
102
- snowflake/ml/jobs/_utils/spec_utils.py,sha256=D0mxCHdV0laU7HZgNGX2ue8A2Z1gn3qsMd4lf8GDtMo,12256
103
- snowflake/ml/jobs/_utils/types.py,sha256=sEV-jCA-0Bb8KdKMBZGrIdqJhSWGb6QI8pYRL56dIDA,874
97
+ snowflake/ml/jobs/decorators.py,sha256=MCdVLyz_hv_GOqT89c3NxKORS1xmSCmo5VknMcffzM0,3176
98
+ snowflake/ml/jobs/job.py,sha256=-zgtg_hC8PjFz2KL3c8l9VejvmcZsJQMZtVpcfRDk4k,9448
99
+ snowflake/ml/jobs/manager.py,sha256=kkJDD9EaBNppnF0-QGTUiOnkPmCtChRJ53-wZMpTAtc,13411
100
+ snowflake/ml/jobs/_utils/constants.py,sha256=5P_hKBg2JpV_yh1SH97DHjTLa2nZftKd05EJiXELriU,3169
101
+ snowflake/ml/jobs/_utils/interop_utils.py,sha256=cmZWpvhiqk8nnS63LseO2ZLV7U0HktGtJiFxcSquBmE,18861
102
+ snowflake/ml/jobs/_utils/payload_utils.py,sha256=ZvvuRcsQSdmqd8_WOuWwKEBhfCqchTazbbD9yttV9rI,21631
103
+ snowflake/ml/jobs/_utils/spec_utils.py,sha256=fH_XAs2tLny4abWoghBETxVGdQd06cDe7AQi_eWurQ8,12643
104
+ snowflake/ml/jobs/_utils/types.py,sha256=yW9A7su6gHDRsOSgpdgdjjdElYaz6aHhN2uMtYsM5oU,978
105
+ snowflake/ml/jobs/_utils/scripts/constants.py,sha256=YyIWZqQPYOTtgCY6SfyJjk2A98I5RQVmrOuLtET5Pqg,173
106
+ snowflake/ml/jobs/_utils/scripts/get_instance_ip.py,sha256=bh23hn1mVebiU7CytzlMVTgfYBlpXHrwjyHLSlfEJB8,5259
107
+ snowflake/ml/jobs/_utils/scripts/mljob_launcher.py,sha256=gKps2uicKksFSeKWz_elrzLUMNunjgjtNZ9VxargR2Y,6747
108
+ snowflake/ml/jobs/_utils/scripts/signal_workers.py,sha256=6dr2GWGSJOLxKHCDkcbJn7unWGN4xm7cgB2kmrmSpRs,7450
109
+ snowflake/ml/jobs/_utils/scripts/worker_shutdown_listener.py,sha256=SeJ8v5XDriwHAjIGpcQkwVP-f-lO9QIdVjVD7Fkgafs,7893
104
110
  snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCrzI4,65
105
111
  snowflake/ml/lineage/lineage_node.py,sha256=e6L4bdYDSVgTv0BEfqgPQWNoDiTiuI7HmfJ6n-WmNLE,5812
106
112
  snowflake/ml/model/__init__.py,sha256=EvPtblqPN6_T6dyVfaYUxCfo_M7D2CQ1OR5giIH4TsQ,314
107
113
  snowflake/ml/model/custom_model.py,sha256=Dmf9oLf71BQtakSagaGG_8xfr3oXoEuW_Jzpt2RqIis,11780
108
114
  snowflake/ml/model/model_signature.py,sha256=FJnLn6XtlaYWOgwMPRFb__QY3BQCeYGHWGHEFcySbT0,32302
109
- snowflake/ml/model/type_hints.py,sha256=fvHjtvnt_CAsXAn3q4DDQlxCn6wqIEHypHh93Ce337w,9472
115
+ snowflake/ml/model/type_hints.py,sha256=DbCC6JXJuiGob8hohxUxP8LikE-IppHYp2mW-CXbfmQ,9580
110
116
  snowflake/ml/model/_client/model/model_impl.py,sha256=pqjK8mSZIQJ_30tRWWFPIo8X35InSVoAunXlQNtSJEM,15369
111
117
  snowflake/ml/model/_client/model/model_version_impl.py,sha256=kslv-oOyh5OvoG8BjNBl_t4mqRjMn-kLpla6CdJRBaA,40272
112
118
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=7cGx8zYzye2_cvZnyGxoukPtT6Q-Kexd-s4yeZmpmj8,4890
113
- snowflake/ml/model/_client/ops/model_ops.py,sha256=hJ1D7ZR6G6T8bbL2KqL6ee27JC9S9u8Q_5D7rq0g_BE,47863
114
- snowflake/ml/model/_client/ops/service_ops.py,sha256=bT713pRVqS5t5YMaGxDOp3eupKTT7tW0_jo6c6FK8Ck,18800
115
- snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=K1MkVFgATk_OHCV68QR0jNF1lkY7brDxv7yVhQhK7eY,4599
119
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=N6xuikPmuK7jpag3CluKyz4bu00oJbMC3_266T2nBLQ,47990
120
+ snowflake/ml/model/_client/ops/service_ops.py,sha256=7i4nzXjLlwyYXvT75UNbsmNMpFmQHE4Vppw_9K77p_A,19804
121
+ snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=3CZmXXePQHpWNUdiNtdBzxJCqOEHwop8izK6O0yGKRk,4749
116
122
  snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=eaulF6OFNuDfQz3oPYlDjP26Ww2jWWatm81dCbg602E,825
117
123
  snowflake/ml/model/_client/sql/_base.py,sha256=Qrm8M92g3MHb-QnSLUlbd8iVKCRxLhG_zr5M2qmXwJ8,1473
118
124
  snowflake/ml/model/_client/sql/model.py,sha256=o36oPq4aU9TwahqY2uODYvICxmj1orLztijJ0yMbWnM,5852
119
125
  snowflake/ml/model/_client/sql/model_version.py,sha256=R0TnsRta7tSmd7RBphERzBKXpYBxOhec1CefW6VWrVE,23543
120
- snowflake/ml/model/_client/sql/service.py,sha256=2orADBhG4m4ltz98uKN-cIJOfT1C7SNUZUuSGol8QVg,11224
126
+ snowflake/ml/model/_client/sql/service.py,sha256=EFCTukL0ng8Fcle0eusBxJYw2DaEYNshBi812LxBf2w,11757
121
127
  snowflake/ml/model/_client/sql/stage.py,sha256=165vyAtrScSQWJB8wLXKRUO1QvHTWDmPykeWOyxrDRg,826
122
128
  snowflake/ml/model/_client/sql/tag.py,sha256=pwwrcyPtSnkUfDzL3M8kqM0KSx7CaTtgty3HDhVC9vg,4345
123
- snowflake/ml/model/_model_composer/model_composer.py,sha256=g96CQx3sh75VlPdhKQfA6Hzr6CzyZ-s0T3XaiFfr3A4,9325
124
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=IaUM1VDySf2cOE0_1lVxCodN8rd14GcugrspKBmBkPA,9023
129
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=rXQDGEjhbXIWJm0RJf9PhGLDTayRiuLn6sehUInG_g8,10226
130
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=d3Ej_OzQkfSugx15m5zrheBktKVod5ZDtjrd3O5bTU8,8984
125
131
  snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=s71r-JGI-9aPpA7dDiic5bF2y-7m18UgHipqNhn9aS4,2836
126
132
  snowflake/ml/model/_model_composer/model_method/constants.py,sha256=hoJwIopSdZiYn0fGq15_NiirC0l02d5LEs2D-4J_tPk,35
127
133
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=nnUJki3bJVCTF3gZ-usZW3xQ6wwlJ08EfNsPAgsnI3s,2625
@@ -131,8 +137,8 @@ snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template
131
137
  snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=Yxmr3uLpxFFuYdJ5f9MQLIXP3yfbL-ym2rxl1hUIRRM,7173
132
138
  snowflake/ml/model/_model_composer/model_user_file/model_user_file.py,sha256=dYNgg8P9p6nRH47-OLxZIbt_Ja3t1VPGNQ0qJtpGuAw,1018
133
139
  snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
134
- snowflake/ml/model/_packager/model_packager.py,sha256=6z8t_fwDMQjIq92L7kyPNtMcXKAUaVSvJVyhH3_jCWU,5834
135
- snowflake/ml/model/_packager/model_env/model_env.py,sha256=tdlvBqHXQvDCxMFY-p0GnryJtLHcF7qwHLMEwcQqUz8,18601
140
+ snowflake/ml/model/_packager/model_packager.py,sha256=Gr2ENRgs9_qQevI-V5vSKDr5Lywx9hyyzuzc3VMinl4,5958
141
+ snowflake/ml/model/_packager/model_env/model_env.py,sha256=9ifFoFyqqRaRlOwhSlnuqAjrY7qsQYNoyiioJgDO1VE,18730
136
142
  snowflake/ml/model/_packager/model_handlers/_base.py,sha256=qQS1ZSz1Ikdj0TvyLU9n8K6KAj-PknL4s801qpnWodo,7164
137
143
  snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=6c7xsQqDIlI07NgQRnhAGIZqyeuwoR1T4wFYFvpEKpE,10770
138
144
  snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=vwlKuXwJGYrna7wkXDgEu8-nUNegNhHMCaNQdhL5p44,10677
@@ -143,7 +149,7 @@ snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=qm_Q7FxD19r1fFnSt
143
149
  snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=A3HnCa065jtHsRM40ZxfLv5alk0RYhVmsU4Jt2klRwQ,9189
144
150
  snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=FamqiwFhtIwlPeb6CoQD2Xkout7f5wKVugvWFX98DV0,9790
145
151
  snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=EKgpN6e4c8bi0znnV-pWzAR3cwDvORcsL72x6o-JPqA,11381
146
- snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=LiWA58qz3Yd79L78dfPKl507CKIfTCPsi8wT2lPdbPI,15594
152
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=v2ZSQ_MWrORiKvUpdjY_SwzhpY4vxOyARJQJuQnxKdw,15443
147
153
  snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=Jx6MnlfNGdPcBUcLcSs-E1yaWCB4hM3OroeGZb2kE2I,17185
148
154
  snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=Fr_iqjJf69_az7uUSagt9qB0ipkq4f1AkjeEGw7PcI4,11205
149
155
  snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=Tmkpj_4RAlz3r8YvEQvtTTcB_q30UpeLymPGkHmQ390,9536
@@ -153,14 +159,14 @@ snowflake/ml/model/_packager/model_handlers_migrator/pytorch_migrator_2023_12_01
153
159
  snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2023_12_01.py,sha256=dXIisQteU55QMw5OvC_1E_sGqFgE88WRhGCWFqUyauM,2239
154
160
  snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2025_01_01.py,sha256=0DxwZtXFgXpxb5LQEAfTUfEFV7zgbG4j3F-oNHLkTgE,769
155
161
  snowflake/ml/model/_packager/model_handlers_migrator/torchscript_migrator_2023_12_01.py,sha256=MDOAGV6kML9sJh_hnYjnrPH4GtECP5DDCjaRT7NmYpU,768
156
- snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=WxLbVm8a5Wu_SJDylEdYA6XWiiPFIXkrgboWCEWEIoc,38
162
+ snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=E8LiAHewa-lsm6_SL6d9AcpO0m23fYdsKPXOevmHjB8,41
157
163
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=GmiqqI-XVjrOX7cSa5GKerKhfHptlsg74MKqTGwJ5Jk,1949
158
- snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=kYfCyX8Q7tlpoxrXNsryKJ_XZDrMFHZ8fBbZX3XkMhA,19332
159
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=uVgzGaEltd4TUoXJCEqyBU_6rzin1TJeR7j6VH35RMg,3521
164
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=TPHi9qxfSUmcVQQ2x0LrtF1IYl2aIuykgSCmh0j-XpI,19650
165
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=xWMbdWcDBzC-ZwFgA_hPK60o91AserkR-DpXEEKYK_w,3551
160
166
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
161
167
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
162
168
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
163
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=MeKrqT-CMve9LDBWbOvesjnKQOAMaClYB1x-xIiuXhw,606
169
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=OiFGM-wDeGxFtmm5MSeehNp2g4fgNXn0eaUAujto6Po,637
164
170
  snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=0l8mgrfmpvTn516Id6xgIG4jIqxSy9nN2PFlnqOljiI,5365
165
171
  snowflake/ml/model/_packager/model_task/model_task_utils.py,sha256=_nm3Irl5W6Oa8_OnJyp3bLeA9QAbV9ygGCsgHI70GX4,6641
166
172
  snowflake/ml/model/_signatures/base_handler.py,sha256=4CTZKKbg4WIz_CmXjyVy8tKZW-5OFcz0J8XVPHm2dfQ,1269
@@ -175,7 +181,7 @@ snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=_yrvMg-w_jJoYuyrGXKP
175
181
  snowflake/ml/model/_signatures/utils.py,sha256=gHEU2u8VCil0wvmd9C61ZNB-KiNz4QazpC7-0XQPHd8,17176
176
182
  snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
177
183
  snowflake/ml/modeling/_internal/constants.py,sha256=aJGngY599w3KqN8cDZCYrjbWe6UwYIbgv0gx0Ukdtc0,105
178
- snowflake/ml/modeling/_internal/estimator_utils.py,sha256=mbMm8_5tQde_sQDwI8pS3ljHZ8maCHl2Shb5nQwLYac,11872
184
+ snowflake/ml/modeling/_internal/estimator_utils.py,sha256=jpiq6h6mJfPa1yZbEjrP1tEFdw-1f_XBxDRHgdH3hps,12017
179
185
  snowflake/ml/modeling/_internal/model_specifications.py,sha256=P9duVMP9-X7us_RZFPyXvWxOrm5K30sWDVYwSMEzG1M,4876
180
186
  snowflake/ml/modeling/_internal/model_trainer.py,sha256=RxpZ5ARy_3sfRMCvArkdK-KmsdbNXxEZTbXoaJ4c1ag,984
181
187
  snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=n1l9i9LFLcdbMFRvxkWNIs7kYnNNlUJnaToRvFBEjls,8062
@@ -401,14 +407,14 @@ snowflake/ml/monitoring/_client/queries/rmse.ssql,sha256=OEJiSStRz9-qKoZaFvmubtY
401
407
  snowflake/ml/monitoring/_manager/model_monitor_manager.py,sha256=_-vxqnHqohTHTrwfURjPXijyAeh1mTRdHCG436GaBik,10314
402
408
  snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=IxEiee1HfBXCQGzJOZbrDrvoV8J1tDNk43ygNuN00Io,1793
403
409
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
404
- snowflake/ml/registry/registry.py,sha256=zZUzE8gMvoegB1asxAVb6PtoB2Ycxg9YuynRwPZ6CEE,27790
405
- snowflake/ml/registry/_manager/model_manager.py,sha256=MjS0AnHQ8g2yn3svvhSPgmPB0j0bpw4gH-p5LjtYKds,16083
410
+ snowflake/ml/registry/registry.py,sha256=QPiv52G6v2SuJsifcnRBotJjr8gB1PteoFXkihVgEco,30225
411
+ snowflake/ml/registry/_manager/model_manager.py,sha256=XTvlxDdXujYsV4REwsVIkzmFFIiWSFY0UKJKwLpRKp8,16983
406
412
  snowflake/ml/utils/authentication.py,sha256=Wx1kVBZ9XBDuKkRHpPEB2pBxpiJepVLFAirDMx4m5Gk,2612
407
413
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
408
414
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
409
415
  snowflake/ml/utils/sql_client.py,sha256=z4Rhi7pQz3s9cyu_Uzfr3deCnrkCdFh9IYIvicsuwdc,692
410
- snowflake_ml_python-1.8.0.dist-info/licenses/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
411
- snowflake_ml_python-1.8.0.dist-info/METADATA,sha256=sflUdLTbz3T-qdOUeKSGo5g7NmS-LXN3CsVca7MJefI,80146
412
- snowflake_ml_python-1.8.0.dist-info/WHEEL,sha256=1tXe9gY0PYatrMPMDd6jXqjfpz_B-Wqm32CPfRC58XU,91
413
- snowflake_ml_python-1.8.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
414
- snowflake_ml_python-1.8.0.dist-info/RECORD,,
416
+ snowflake_ml_python-1.8.2.dist-info/licenses/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
417
+ snowflake_ml_python-1.8.2.dist-info/METADATA,sha256=-nSrqa3EXDuUaByFhQHhOp4BuOGY_XGfzwVX4VFaAgg,82231
418
+ snowflake_ml_python-1.8.2.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
419
+ snowflake_ml_python-1.8.2.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
420
+ snowflake_ml_python-1.8.2.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (77.0.3)
2
+ Generator: setuptools (78.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5