snowflake-ml-python 1.7.2__py3-none-any.whl → 1.7.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/__init__.py +16 -8
- snowflake/cortex/_classify_text.py +12 -1
- snowflake/cortex/_complete.py +101 -13
- snowflake/cortex/_embed_text_1024.py +9 -2
- snowflake/cortex/_embed_text_768.py +9 -2
- snowflake/cortex/_extract_answer.py +9 -2
- snowflake/cortex/_sentiment.py +9 -2
- snowflake/cortex/_summarize.py +9 -2
- snowflake/cortex/_translate.py +9 -2
- snowflake/ml/_internal/env_utils.py +7 -52
- snowflake/ml/_internal/platform_capabilities.py +87 -0
- snowflake/ml/_internal/utils/identifier.py +4 -2
- snowflake/ml/data/__init__.py +3 -0
- snowflake/ml/data/_internal/arrow_ingestor.py +4 -4
- snowflake/ml/data/data_connector.py +53 -11
- snowflake/ml/data/data_ingestor.py +2 -1
- snowflake/ml/data/torch_utils.py +18 -5
- snowflake/ml/dataset/dataset.py +0 -1
- snowflake/ml/feature_store/examples/example_helper.py +2 -1
- snowflake/ml/fileset/fileset.py +24 -18
- snowflake/ml/jobs/__init__.py +21 -0
- snowflake/ml/jobs/_utils/constants.py +51 -0
- snowflake/ml/jobs/_utils/payload_utils.py +352 -0
- snowflake/ml/jobs/_utils/spec_utils.py +298 -0
- snowflake/ml/jobs/_utils/types.py +39 -0
- snowflake/ml/jobs/decorators.py +91 -0
- snowflake/ml/jobs/job.py +113 -0
- snowflake/ml/jobs/manager.py +298 -0
- snowflake/ml/model/_client/model/model_version_impl.py +5 -3
- snowflake/ml/model/_client/ops/model_ops.py +13 -8
- snowflake/ml/model/_client/ops/service_ops.py +1 -11
- snowflake/ml/model/_client/sql/model_version.py +11 -0
- snowflake/ml/model/_client/sql/service.py +13 -6
- snowflake/ml/model/_model_composer/model_composer.py +8 -3
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +20 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +1 -0
- snowflake/ml/model/_model_composer/model_method/constants.py +1 -0
- snowflake/ml/model/_model_composer/model_method/function_generator.py +2 -0
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +9 -1
- snowflake/ml/model/_model_composer/model_user_file/model_user_file.py +27 -0
- snowflake/ml/model/_packager/model_handlers/_utils.py +39 -5
- snowflake/ml/model/_packager/model_handlers/catboost.py +3 -3
- snowflake/ml/model/_packager/model_handlers/custom.py +1 -2
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +6 -1
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +5 -3
- snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +55 -20
- snowflake/ml/model/_packager/model_handlers/sklearn.py +9 -10
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +66 -28
- snowflake/ml/model/_packager/model_handlers/tensorflow.py +70 -17
- snowflake/ml/model/_packager/model_handlers/xgboost.py +3 -3
- snowflake/ml/model/_packager/model_meta/model_meta.py +3 -0
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +6 -1
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +2 -2
- snowflake/ml/model/_packager/model_task/model_task_utils.py +3 -2
- snowflake/ml/model/_signatures/base_handler.py +1 -2
- snowflake/ml/model/_signatures/builtins_handler.py +2 -2
- snowflake/ml/model/_signatures/numpy_handler.py +6 -7
- snowflake/ml/model/_signatures/pandas_handler.py +3 -3
- snowflake/ml/model/_signatures/pytorch_handler.py +2 -5
- snowflake/ml/model/_signatures/snowpark_handler.py +11 -5
- snowflake/ml/model/_signatures/tensorflow_handler.py +2 -7
- snowflake/ml/model/model_signature.py +17 -4
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +0 -8
- snowflake/ml/modeling/_internal/model_transformer_builder.py +0 -13
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +6 -3
- snowflake/ml/modeling/cluster/affinity_propagation.py +6 -3
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +6 -3
- snowflake/ml/modeling/cluster/birch.py +6 -3
- snowflake/ml/modeling/cluster/bisecting_k_means.py +6 -3
- snowflake/ml/modeling/cluster/dbscan.py +6 -3
- snowflake/ml/modeling/cluster/feature_agglomeration.py +6 -3
- snowflake/ml/modeling/cluster/k_means.py +6 -3
- snowflake/ml/modeling/cluster/mean_shift.py +6 -3
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +6 -3
- snowflake/ml/modeling/cluster/optics.py +6 -3
- snowflake/ml/modeling/cluster/spectral_biclustering.py +6 -3
- snowflake/ml/modeling/cluster/spectral_clustering.py +6 -3
- snowflake/ml/modeling/cluster/spectral_coclustering.py +6 -3
- snowflake/ml/modeling/compose/column_transformer.py +6 -3
- snowflake/ml/modeling/compose/transformed_target_regressor.py +6 -3
- snowflake/ml/modeling/covariance/elliptic_envelope.py +6 -3
- snowflake/ml/modeling/covariance/empirical_covariance.py +6 -3
- snowflake/ml/modeling/covariance/graphical_lasso.py +6 -3
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +6 -3
- snowflake/ml/modeling/covariance/ledoit_wolf.py +6 -3
- snowflake/ml/modeling/covariance/min_cov_det.py +6 -3
- snowflake/ml/modeling/covariance/oas.py +6 -3
- snowflake/ml/modeling/covariance/shrunk_covariance.py +6 -3
- snowflake/ml/modeling/decomposition/dictionary_learning.py +6 -3
- snowflake/ml/modeling/decomposition/factor_analysis.py +6 -3
- snowflake/ml/modeling/decomposition/fast_ica.py +6 -3
- snowflake/ml/modeling/decomposition/incremental_pca.py +6 -3
- snowflake/ml/modeling/decomposition/kernel_pca.py +6 -3
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +6 -3
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +6 -3
- snowflake/ml/modeling/decomposition/pca.py +6 -3
- snowflake/ml/modeling/decomposition/sparse_pca.py +6 -3
- snowflake/ml/modeling/decomposition/truncated_svd.py +6 -3
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +6 -3
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +6 -3
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/bagging_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/bagging_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/isolation_forest.py +6 -3
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/stacking_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/voting_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/voting_regressor.py +6 -3
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +6 -3
- snowflake/ml/modeling/feature_selection/select_fdr.py +6 -3
- snowflake/ml/modeling/feature_selection/select_fpr.py +6 -3
- snowflake/ml/modeling/feature_selection/select_fwe.py +6 -3
- snowflake/ml/modeling/feature_selection/select_k_best.py +6 -3
- snowflake/ml/modeling/feature_selection/select_percentile.py +6 -3
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +6 -3
- snowflake/ml/modeling/feature_selection/variance_threshold.py +6 -3
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +6 -3
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +6 -3
- snowflake/ml/modeling/impute/iterative_imputer.py +6 -3
- snowflake/ml/modeling/impute/knn_imputer.py +6 -3
- snowflake/ml/modeling/impute/missing_indicator.py +6 -3
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +6 -3
- snowflake/ml/modeling/kernel_approximation/nystroem.py +6 -3
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +6 -3
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +6 -3
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +6 -3
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +6 -3
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +6 -3
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/ard_regression.py +6 -3
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +6 -3
- snowflake/ml/modeling/linear_model/elastic_net.py +6 -3
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +6 -3
- snowflake/ml/modeling/linear_model/gamma_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/huber_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/lars.py +6 -3
- snowflake/ml/modeling/linear_model/lars_cv.py +6 -3
- snowflake/ml/modeling/linear_model/lasso.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_cv.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_lars.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +6 -3
- snowflake/ml/modeling/linear_model/linear_regression.py +6 -3
- snowflake/ml/modeling/linear_model/logistic_regression.py +6 -3
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +6 -3
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +6 -3
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +6 -3
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/perceptron.py +6 -3
- snowflake/ml/modeling/linear_model/poisson_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/ransac_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/ridge.py +6 -3
- snowflake/ml/modeling/linear_model/ridge_classifier.py +6 -3
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +6 -3
- snowflake/ml/modeling/linear_model/ridge_cv.py +6 -3
- snowflake/ml/modeling/linear_model/sgd_classifier.py +6 -3
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +6 -3
- snowflake/ml/modeling/linear_model/sgd_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +6 -3
- snowflake/ml/modeling/manifold/isomap.py +6 -3
- snowflake/ml/modeling/manifold/mds.py +6 -3
- snowflake/ml/modeling/manifold/spectral_embedding.py +6 -3
- snowflake/ml/modeling/manifold/tsne.py +6 -3
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +6 -3
- snowflake/ml/modeling/mixture/gaussian_mixture.py +6 -3
- snowflake/ml/modeling/model_selection/grid_search_cv.py +17 -2
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +17 -2
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +6 -3
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +6 -3
- snowflake/ml/modeling/multiclass/output_code_classifier.py +6 -3
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/complement_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +6 -3
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +6 -3
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +6 -3
- snowflake/ml/modeling/neighbors/kernel_density.py +6 -3
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +6 -3
- snowflake/ml/modeling/neighbors/nearest_centroid.py +6 -3
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +6 -3
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +6 -3
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +6 -3
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +6 -3
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +6 -3
- snowflake/ml/modeling/neural_network/mlp_classifier.py +6 -3
- snowflake/ml/modeling/neural_network/mlp_regressor.py +6 -3
- snowflake/ml/modeling/pipeline/pipeline.py +16 -178
- snowflake/ml/modeling/preprocessing/polynomial_features.py +6 -3
- snowflake/ml/modeling/semi_supervised/label_propagation.py +6 -3
- snowflake/ml/modeling/semi_supervised/label_spreading.py +6 -3
- snowflake/ml/modeling/svm/linear_svc.py +6 -3
- snowflake/ml/modeling/svm/linear_svr.py +6 -3
- snowflake/ml/modeling/svm/nu_svc.py +6 -3
- snowflake/ml/modeling/svm/nu_svr.py +6 -3
- snowflake/ml/modeling/svm/svc.py +6 -3
- snowflake/ml/modeling/svm/svr.py +6 -3
- snowflake/ml/modeling/tree/decision_tree_classifier.py +6 -3
- snowflake/ml/modeling/tree/decision_tree_regressor.py +6 -3
- snowflake/ml/modeling/tree/extra_tree_classifier.py +6 -3
- snowflake/ml/modeling/tree/extra_tree_regressor.py +6 -3
- snowflake/ml/modeling/xgboost/xgb_classifier.py +167 -91
- snowflake/ml/modeling/xgboost/xgb_regressor.py +166 -88
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +166 -88
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +166 -88
- snowflake/ml/monitoring/_client/model_monitor_sql_client.py +4 -4
- snowflake/ml/registry/_manager/model_manager.py +70 -33
- snowflake/ml/registry/registry.py +41 -22
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.7.2.dist-info → snowflake_ml_python-1.7.4.dist-info}/METADATA +63 -19
- {snowflake_ml_python-1.7.2.dist-info → snowflake_ml_python-1.7.4.dist-info}/RECORD +231 -226
- {snowflake_ml_python-1.7.2.dist-info → snowflake_ml_python-1.7.4.dist-info}/WHEEL +1 -1
- snowflake/ml/_internal/utils/retryable_http.py +0 -39
- snowflake/ml/fileset/parquet_parser.py +0 -170
- snowflake/ml/fileset/tf_dataset.py +0 -88
- snowflake/ml/fileset/torch_datapipe.py +0 -57
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +0 -151
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py +0 -66
- {snowflake_ml_python-1.7.2.dist-info → snowflake_ml_python-1.7.4.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.7.2.dist-info → snowflake_ml_python-1.7.4.dist-info}/top_level.txt +0 -0
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class SpectralCoclustering(BaseTransformer):
|
61
64
|
r"""Spectral Co-Clustering algorithm (Dhillon, 2001)
|
62
65
|
For more details on this class, see [sklearn.cluster.SpectralCoclustering]
|
@@ -445,7 +448,7 @@ class SpectralCoclustering(BaseTransformer):
|
|
445
448
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
446
449
|
expected_dtype = "array"
|
447
450
|
else:
|
448
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
451
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
449
452
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
450
453
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
451
454
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1100,7 +1103,7 @@ class SpectralCoclustering(BaseTransformer):
|
|
1100
1103
|
|
1101
1104
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1102
1105
|
|
1103
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1106
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1104
1107
|
outputs: List[BaseFeatureSpec] = []
|
1105
1108
|
if hasattr(self, "predict"):
|
1106
1109
|
# keep mypy happy
|
@@ -1108,7 +1111,7 @@ class SpectralCoclustering(BaseTransformer):
|
|
1108
1111
|
# For classifier, the type of predict is the same as the type of label
|
1109
1112
|
if self._sklearn_object._estimator_type == "classifier":
|
1110
1113
|
# label columns is the desired type for output
|
1111
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1114
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1112
1115
|
# rename the output columns
|
1113
1116
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1114
1117
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.compose".replace("sklear
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class ColumnTransformer(BaseTransformer):
|
61
64
|
r"""Applies transformers to columns of an array or pandas DataFrame
|
62
65
|
For more details on this class, see [sklearn.compose.ColumnTransformer]
|
@@ -487,7 +490,7 @@ class ColumnTransformer(BaseTransformer):
|
|
487
490
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
488
491
|
expected_dtype = "array"
|
489
492
|
else:
|
490
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
493
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
491
494
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
492
495
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
493
496
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1144,7 +1147,7 @@ class ColumnTransformer(BaseTransformer):
|
|
1144
1147
|
|
1145
1148
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1146
1149
|
|
1147
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1150
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1148
1151
|
outputs: List[BaseFeatureSpec] = []
|
1149
1152
|
if hasattr(self, "predict"):
|
1150
1153
|
# keep mypy happy
|
@@ -1152,7 +1155,7 @@ class ColumnTransformer(BaseTransformer):
|
|
1152
1155
|
# For classifier, the type of predict is the same as the type of label
|
1153
1156
|
if self._sklearn_object._estimator_type == "classifier":
|
1154
1157
|
# label columns is the desired type for output
|
1155
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1158
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1156
1159
|
# rename the output columns
|
1157
1160
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1158
1161
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.compose".replace("sklear
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class TransformedTargetRegressor(BaseTransformer):
|
61
64
|
r"""Meta-estimator to regress on a transformed target
|
62
65
|
For more details on this class, see [sklearn.compose.TransformedTargetRegressor]
|
@@ -437,7 +440,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
437
440
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
438
441
|
expected_dtype = "array"
|
439
442
|
else:
|
440
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
443
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
441
444
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
442
445
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
443
446
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1094,7 +1097,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
1094
1097
|
|
1095
1098
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1096
1099
|
|
1097
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1100
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1098
1101
|
outputs: List[BaseFeatureSpec] = []
|
1099
1102
|
if hasattr(self, "predict"):
|
1100
1103
|
# keep mypy happy
|
@@ -1102,7 +1105,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
1102
1105
|
# For classifier, the type of predict is the same as the type of label
|
1103
1106
|
if self._sklearn_object._estimator_type == "classifier":
|
1104
1107
|
# label columns is the desired type for output
|
1105
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1108
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1106
1109
|
# rename the output columns
|
1107
1110
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1108
1111
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class EllipticEnvelope(BaseTransformer):
|
61
64
|
r"""An object for detecting outliers in a Gaussian distributed dataset
|
62
65
|
For more details on this class, see [sklearn.covariance.EllipticEnvelope]
|
@@ -433,7 +436,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
433
436
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
434
437
|
expected_dtype = "array"
|
435
438
|
else:
|
436
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
439
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
437
440
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
438
441
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
439
442
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1096,7 +1099,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
1096
1099
|
|
1097
1100
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1098
1101
|
|
1099
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1102
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1100
1103
|
outputs: List[BaseFeatureSpec] = []
|
1101
1104
|
if hasattr(self, "predict"):
|
1102
1105
|
# keep mypy happy
|
@@ -1104,7 +1107,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
1104
1107
|
# For classifier, the type of predict is the same as the type of label
|
1105
1108
|
if self._sklearn_object._estimator_type == "classifier":
|
1106
1109
|
# label columns is the desired type for output
|
1107
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1110
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1108
1111
|
# rename the output columns
|
1109
1112
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1110
1113
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class EmpiricalCovariance(BaseTransformer):
|
61
64
|
r"""Maximum likelihood covariance estimator
|
62
65
|
For more details on this class, see [sklearn.covariance.EmpiricalCovariance]
|
@@ -407,7 +410,7 @@ class EmpiricalCovariance(BaseTransformer):
|
|
407
410
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
408
411
|
expected_dtype = "array"
|
409
412
|
else:
|
410
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
413
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
411
414
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
412
415
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
413
416
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1064,7 +1067,7 @@ class EmpiricalCovariance(BaseTransformer):
|
|
1064
1067
|
|
1065
1068
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1066
1069
|
|
1067
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1070
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1068
1071
|
outputs: List[BaseFeatureSpec] = []
|
1069
1072
|
if hasattr(self, "predict"):
|
1070
1073
|
# keep mypy happy
|
@@ -1072,7 +1075,7 @@ class EmpiricalCovariance(BaseTransformer):
|
|
1072
1075
|
# For classifier, the type of predict is the same as the type of label
|
1073
1076
|
if self._sklearn_object._estimator_type == "classifier":
|
1074
1077
|
# label columns is the desired type for output
|
1075
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1078
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1076
1079
|
# rename the output columns
|
1077
1080
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1078
1081
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class GraphicalLasso(BaseTransformer):
|
61
64
|
r"""Sparse inverse covariance estimation with an l1-penalized estimator
|
62
65
|
For more details on this class, see [sklearn.covariance.GraphicalLasso]
|
@@ -455,7 +458,7 @@ class GraphicalLasso(BaseTransformer):
|
|
455
458
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
456
459
|
expected_dtype = "array"
|
457
460
|
else:
|
458
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
461
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
459
462
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
460
463
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
461
464
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1112,7 +1115,7 @@ class GraphicalLasso(BaseTransformer):
|
|
1112
1115
|
|
1113
1116
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1114
1117
|
|
1115
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1118
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1116
1119
|
outputs: List[BaseFeatureSpec] = []
|
1117
1120
|
if hasattr(self, "predict"):
|
1118
1121
|
# keep mypy happy
|
@@ -1120,7 +1123,7 @@ class GraphicalLasso(BaseTransformer):
|
|
1120
1123
|
# For classifier, the type of predict is the same as the type of label
|
1121
1124
|
if self._sklearn_object._estimator_type == "classifier":
|
1122
1125
|
# label columns is the desired type for output
|
1123
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1126
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1124
1127
|
# rename the output columns
|
1125
1128
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1126
1129
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class GraphicalLassoCV(BaseTransformer):
|
61
64
|
r"""Sparse inverse covariance w/ cross-validated choice of the l1 penalty
|
62
65
|
For more details on this class, see [sklearn.covariance.GraphicalLassoCV]
|
@@ -481,7 +484,7 @@ class GraphicalLassoCV(BaseTransformer):
|
|
481
484
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
482
485
|
expected_dtype = "array"
|
483
486
|
else:
|
484
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
487
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
485
488
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
486
489
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
487
490
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1138,7 +1141,7 @@ class GraphicalLassoCV(BaseTransformer):
|
|
1138
1141
|
|
1139
1142
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1140
1143
|
|
1141
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1144
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1142
1145
|
outputs: List[BaseFeatureSpec] = []
|
1143
1146
|
if hasattr(self, "predict"):
|
1144
1147
|
# keep mypy happy
|
@@ -1146,7 +1149,7 @@ class GraphicalLassoCV(BaseTransformer):
|
|
1146
1149
|
# For classifier, the type of predict is the same as the type of label
|
1147
1150
|
if self._sklearn_object._estimator_type == "classifier":
|
1148
1151
|
# label columns is the desired type for output
|
1149
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1152
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1150
1153
|
# rename the output columns
|
1151
1154
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1152
1155
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class LedoitWolf(BaseTransformer):
|
61
64
|
r"""LedoitWolf Estimator
|
62
65
|
For more details on this class, see [sklearn.covariance.LedoitWolf]
|
@@ -414,7 +417,7 @@ class LedoitWolf(BaseTransformer):
|
|
414
417
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
415
418
|
expected_dtype = "array"
|
416
419
|
else:
|
417
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
420
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
418
421
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
419
422
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
420
423
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1071,7 +1074,7 @@ class LedoitWolf(BaseTransformer):
|
|
1071
1074
|
|
1072
1075
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1073
1076
|
|
1074
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1077
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1075
1078
|
outputs: List[BaseFeatureSpec] = []
|
1076
1079
|
if hasattr(self, "predict"):
|
1077
1080
|
# keep mypy happy
|
@@ -1079,7 +1082,7 @@ class LedoitWolf(BaseTransformer):
|
|
1079
1082
|
# For classifier, the type of predict is the same as the type of label
|
1080
1083
|
if self._sklearn_object._estimator_type == "classifier":
|
1081
1084
|
# label columns is the desired type for output
|
1082
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1085
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1083
1086
|
# rename the output columns
|
1084
1087
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1085
1088
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class MinCovDet(BaseTransformer):
|
61
64
|
r"""Minimum Covariance Determinant (MCD): robust estimator of covariance
|
62
65
|
For more details on this class, see [sklearn.covariance.MinCovDet]
|
@@ -426,7 +429,7 @@ class MinCovDet(BaseTransformer):
|
|
426
429
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
427
430
|
expected_dtype = "array"
|
428
431
|
else:
|
429
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
432
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
430
433
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
431
434
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
432
435
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1083,7 +1086,7 @@ class MinCovDet(BaseTransformer):
|
|
1083
1086
|
|
1084
1087
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1085
1088
|
|
1086
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1089
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1087
1090
|
outputs: List[BaseFeatureSpec] = []
|
1088
1091
|
if hasattr(self, "predict"):
|
1089
1092
|
# keep mypy happy
|
@@ -1091,7 +1094,7 @@ class MinCovDet(BaseTransformer):
|
|
1091
1094
|
# For classifier, the type of predict is the same as the type of label
|
1092
1095
|
if self._sklearn_object._estimator_type == "classifier":
|
1093
1096
|
# label columns is the desired type for output
|
1094
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1097
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1095
1098
|
# rename the output columns
|
1096
1099
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1097
1100
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class OAS(BaseTransformer):
|
61
64
|
r"""Oracle Approximating Shrinkage Estimator
|
62
65
|
For more details on this class, see [sklearn.covariance.OAS]
|
@@ -407,7 +410,7 @@ class OAS(BaseTransformer):
|
|
407
410
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
408
411
|
expected_dtype = "array"
|
409
412
|
else:
|
410
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
413
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
411
414
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
412
415
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
413
416
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1064,7 +1067,7 @@ class OAS(BaseTransformer):
|
|
1064
1067
|
|
1065
1068
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1066
1069
|
|
1067
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1070
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1068
1071
|
outputs: List[BaseFeatureSpec] = []
|
1069
1072
|
if hasattr(self, "predict"):
|
1070
1073
|
# keep mypy happy
|
@@ -1072,7 +1075,7 @@ class OAS(BaseTransformer):
|
|
1072
1075
|
# For classifier, the type of predict is the same as the type of label
|
1073
1076
|
if self._sklearn_object._estimator_type == "classifier":
|
1074
1077
|
# label columns is the desired type for output
|
1075
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1078
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1076
1079
|
# rename the output columns
|
1077
1080
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1078
1081
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class ShrunkCovariance(BaseTransformer):
|
61
64
|
r"""Covariance estimator with shrinkage
|
62
65
|
For more details on this class, see [sklearn.covariance.ShrunkCovariance]
|
@@ -413,7 +416,7 @@ class ShrunkCovariance(BaseTransformer):
|
|
413
416
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
414
417
|
expected_dtype = "array"
|
415
418
|
else:
|
416
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
419
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
417
420
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
418
421
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
419
422
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1070,7 +1073,7 @@ class ShrunkCovariance(BaseTransformer):
|
|
1070
1073
|
|
1071
1074
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1072
1075
|
|
1073
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1076
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1074
1077
|
outputs: List[BaseFeatureSpec] = []
|
1075
1078
|
if hasattr(self, "predict"):
|
1076
1079
|
# keep mypy happy
|
@@ -1078,7 +1081,7 @@ class ShrunkCovariance(BaseTransformer):
|
|
1078
1081
|
# For classifier, the type of predict is the same as the type of label
|
1079
1082
|
if self._sklearn_object._estimator_type == "classifier":
|
1080
1083
|
# label columns is the desired type for output
|
1081
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1084
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1082
1085
|
# rename the output columns
|
1083
1086
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1084
1087
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class DictionaryLearning(BaseTransformer):
|
61
64
|
r"""Dictionary learning
|
62
65
|
For more details on this class, see [sklearn.decomposition.DictionaryLearning]
|
@@ -521,7 +524,7 @@ class DictionaryLearning(BaseTransformer):
|
|
521
524
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
522
525
|
expected_dtype = "array"
|
523
526
|
else:
|
524
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
527
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
525
528
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
526
529
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
527
530
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1178,7 +1181,7 @@ class DictionaryLearning(BaseTransformer):
|
|
1178
1181
|
|
1179
1182
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1180
1183
|
|
1181
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1184
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1182
1185
|
outputs: List[BaseFeatureSpec] = []
|
1183
1186
|
if hasattr(self, "predict"):
|
1184
1187
|
# keep mypy happy
|
@@ -1186,7 +1189,7 @@ class DictionaryLearning(BaseTransformer):
|
|
1186
1189
|
# For classifier, the type of predict is the same as the type of label
|
1187
1190
|
if self._sklearn_object._estimator_type == "classifier":
|
1188
1191
|
# label columns is the desired type for output
|
1189
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1192
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1190
1193
|
# rename the output columns
|
1191
1194
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1192
1195
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class FactorAnalysis(BaseTransformer):
|
61
64
|
r"""Factor Analysis (FA)
|
62
65
|
For more details on this class, see [sklearn.decomposition.FactorAnalysis]
|
@@ -458,7 +461,7 @@ class FactorAnalysis(BaseTransformer):
|
|
458
461
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
459
462
|
expected_dtype = "array"
|
460
463
|
else:
|
461
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
464
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
462
465
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
463
466
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
464
467
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1119,7 +1122,7 @@ class FactorAnalysis(BaseTransformer):
|
|
1119
1122
|
|
1120
1123
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1121
1124
|
|
1122
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1125
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1123
1126
|
outputs: List[BaseFeatureSpec] = []
|
1124
1127
|
if hasattr(self, "predict"):
|
1125
1128
|
# keep mypy happy
|
@@ -1127,7 +1130,7 @@ class FactorAnalysis(BaseTransformer):
|
|
1127
1130
|
# For classifier, the type of predict is the same as the type of label
|
1128
1131
|
if self._sklearn_object._estimator_type == "classifier":
|
1129
1132
|
# label columns is the desired type for output
|
1130
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1133
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1131
1134
|
# rename the output columns
|
1132
1135
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1133
1136
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class FastICA(BaseTransformer):
|
61
64
|
r"""FastICA: a fast algorithm for Independent Component Analysis
|
62
65
|
For more details on this class, see [sklearn.decomposition.FastICA]
|
@@ -476,7 +479,7 @@ class FastICA(BaseTransformer):
|
|
476
479
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
477
480
|
expected_dtype = "array"
|
478
481
|
else:
|
479
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
482
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
480
483
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
481
484
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
482
485
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1133,7 +1136,7 @@ class FastICA(BaseTransformer):
|
|
1133
1136
|
|
1134
1137
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1135
1138
|
|
1136
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1139
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1137
1140
|
outputs: List[BaseFeatureSpec] = []
|
1138
1141
|
if hasattr(self, "predict"):
|
1139
1142
|
# keep mypy happy
|
@@ -1141,7 +1144,7 @@ class FastICA(BaseTransformer):
|
|
1141
1144
|
# For classifier, the type of predict is the same as the type of label
|
1142
1145
|
if self._sklearn_object._estimator_type == "classifier":
|
1143
1146
|
# label columns is the desired type for output
|
1144
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1147
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1145
1148
|
# rename the output columns
|
1146
1149
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1147
1150
|
self._model_signature_dict["predict"] = ModelSignature(
|