snowflake-ml-python 1.7.2__py3-none-any.whl → 1.7.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (69) hide show
  1. snowflake/cortex/__init__.py +16 -8
  2. snowflake/cortex/_classify_text.py +12 -1
  3. snowflake/cortex/_complete.py +82 -13
  4. snowflake/cortex/_embed_text_1024.py +9 -2
  5. snowflake/cortex/_embed_text_768.py +9 -2
  6. snowflake/cortex/_extract_answer.py +9 -2
  7. snowflake/cortex/_sentiment.py +9 -2
  8. snowflake/cortex/_summarize.py +9 -2
  9. snowflake/cortex/_translate.py +9 -2
  10. snowflake/ml/_internal/env_utils.py +7 -52
  11. snowflake/ml/_internal/utils/identifier.py +4 -2
  12. snowflake/ml/data/__init__.py +3 -0
  13. snowflake/ml/data/_internal/arrow_ingestor.py +4 -4
  14. snowflake/ml/data/data_connector.py +53 -11
  15. snowflake/ml/data/data_ingestor.py +2 -1
  16. snowflake/ml/data/torch_utils.py +18 -5
  17. snowflake/ml/feature_store/examples/example_helper.py +2 -1
  18. snowflake/ml/fileset/fileset.py +18 -18
  19. snowflake/ml/model/_client/model/model_version_impl.py +5 -3
  20. snowflake/ml/model/_client/ops/model_ops.py +2 -6
  21. snowflake/ml/model/_client/sql/model_version.py +11 -0
  22. snowflake/ml/model/_model_composer/model_composer.py +8 -3
  23. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +20 -1
  24. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +1 -0
  25. snowflake/ml/model/_model_composer/model_method/constants.py +1 -0
  26. snowflake/ml/model/_model_composer/model_method/function_generator.py +2 -0
  27. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +1 -1
  28. snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template +1 -1
  29. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  30. snowflake/ml/model/_model_composer/model_method/model_method.py +9 -1
  31. snowflake/ml/model/_model_composer/model_user_file/model_user_file.py +27 -0
  32. snowflake/ml/model/_packager/model_handlers/_utils.py +27 -2
  33. snowflake/ml/model/_packager/model_handlers/catboost.py +3 -3
  34. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +5 -1
  35. snowflake/ml/model/_packager/model_handlers/lightgbm.py +5 -3
  36. snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +55 -20
  37. snowflake/ml/model/_packager/model_handlers/sklearn.py +9 -10
  38. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +66 -28
  39. snowflake/ml/model/_packager/model_handlers/tensorflow.py +70 -17
  40. snowflake/ml/model/_packager/model_handlers/xgboost.py +3 -3
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +3 -0
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +6 -1
  43. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +2 -2
  44. snowflake/ml/model/_packager/model_task/model_task_utils.py +3 -2
  45. snowflake/ml/model/_signatures/pandas_handler.py +1 -1
  46. snowflake/ml/model/_signatures/snowpark_handler.py +8 -2
  47. snowflake/ml/model/type_hints.py +1 -0
  48. snowflake/ml/modeling/_internal/model_trainer_builder.py +0 -8
  49. snowflake/ml/modeling/_internal/model_transformer_builder.py +0 -13
  50. snowflake/ml/modeling/pipeline/pipeline.py +6 -176
  51. snowflake/ml/modeling/xgboost/xgb_classifier.py +161 -88
  52. snowflake/ml/modeling/xgboost/xgb_regressor.py +160 -85
  53. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +160 -85
  54. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +160 -85
  55. snowflake/ml/monitoring/_client/model_monitor_sql_client.py +4 -4
  56. snowflake/ml/registry/_manager/model_manager.py +70 -33
  57. snowflake/ml/registry/registry.py +41 -22
  58. snowflake/ml/version.py +1 -1
  59. {snowflake_ml_python-1.7.2.dist-info → snowflake_ml_python-1.7.3.dist-info}/METADATA +38 -9
  60. {snowflake_ml_python-1.7.2.dist-info → snowflake_ml_python-1.7.3.dist-info}/RECORD +63 -67
  61. {snowflake_ml_python-1.7.2.dist-info → snowflake_ml_python-1.7.3.dist-info}/WHEEL +1 -1
  62. snowflake/ml/_internal/utils/retryable_http.py +0 -39
  63. snowflake/ml/fileset/parquet_parser.py +0 -170
  64. snowflake/ml/fileset/tf_dataset.py +0 -88
  65. snowflake/ml/fileset/torch_datapipe.py +0 -57
  66. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +0 -151
  67. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py +0 -66
  68. {snowflake_ml_python-1.7.2.dist-info → snowflake_ml_python-1.7.3.dist-info}/LICENSE.txt +0 -0
  69. {snowflake_ml_python-1.7.2.dist-info → snowflake_ml_python-1.7.3.dist-info}/top_level.txt +0 -0
@@ -117,41 +117,49 @@ class Registry:
117
117
  options: Optional[model_types.ModelSaveOption] = None,
118
118
  ) -> ModelVersion:
119
119
  """
120
- Log a model with various parameters and metadata.
120
+ Log a model with various parameters and metadata, or a ModelVersion object.
121
121
 
122
122
  Args:
123
- model: Model object of supported types such as Scikit-learn, XGBoost, LightGBM, Snowpark ML,
124
- PyTorch, TorchScript, Tensorflow, Tensorflow Keras, MLFlow, HuggingFace Pipeline,
125
- Sentence Transformers, or Custom Model.
126
- model_name: Name to identify the model.
123
+ model: Supported model or ModelVersion object.
124
+ - Supported model: Model object of supported types such as Scikit-learn, XGBoost, LightGBM, Snowpark ML,
125
+ PyTorch, TorchScript, Tensorflow, Tensorflow Keras, MLFlow, HuggingFace Pipeline, Sentence Transformers,
126
+ or Custom Model.
127
+ - ModelVersion: Source ModelVersion object used to create the new ModelVersion object.
128
+ model_name: Name to identify the model. This must be a valid Snowflake SQL Identifier. Alphanumeric
129
+ characters and underscores are permitted.
130
+ See https://docs.snowflake.com/en/sql-reference/identifiers-syntax for more.
127
131
  version_name: Version identifier for the model. Combination of model_name and version_name must be unique.
128
132
  If not specified, a random name will be generated.
129
133
  comment: Comment associated with the model version. Defaults to None.
130
134
  metrics: A JSON serializable dictionary containing metrics linked to the model version. Defaults to None.
131
- signatures: Model data signatures for inputs and outputs for various target methods. If it is None,
132
- sample_input_data would be used to infer the signatures for those models that cannot automatically
133
- infer the signature. Defaults to None.
134
- sample_input_data: Sample input data to infer model signatures from.
135
- It would also be used as background data in explanation and to capture data lineage. Defaults to None.
136
135
  conda_dependencies: List of Conda package specifications. Use "[channel::]package [operator version]" syntax
137
136
  to specify a dependency. It is a recommended way to specify your dependencies using conda. When channel
138
137
  is not specified, Snowflake Anaconda Channel will be used. Defaults to None.
139
138
  pip_requirements: List of Pip package specifications. Defaults to None.
140
- Currently it is not supported since Model can only executed in Snowflake Warehouse where all
141
- dependencies are required to be retrieved from Snowflake Anaconda Channel.
139
+ Models with pip requirements are currently only runnable in Snowpark Container Services.
140
+ See https://docs.snowflake.com/en/developer-guide/snowflake-ml/model-registry/container for more.
141
+ Models with pip requirements specified will not be executable in Snowflake Warehouse where all
142
+ dependencies must be retrieved from Snowflake Anaconda Channel.
142
143
  target_platforms: List of target platforms to run the model. The only acceptable inputs are a combination of
143
144
  {"WAREHOUSE", "SNOWPARK_CONTAINER_SERVICES"}. Defaults to None.
144
145
  python_version: Python version in which the model is run. Defaults to None.
146
+ signatures: Model data signatures for inputs and outputs for various target methods. If it is None,
147
+ sample_input_data would be used to infer the signatures for those models that cannot automatically
148
+ infer the signature. If not None, sample_input_data should not be specified. Defaults to None.
149
+ sample_input_data: Sample input data to infer model signatures from.
150
+ It would also be used as background data in explanation and to capture data lineage. Defaults to None.
145
151
  code_paths: List of directories containing code to import. Defaults to None.
146
152
  ext_modules: List of external modules to pickle with the model object.
147
153
  Only supported when logging the following types of model:
148
154
  Scikit-learn, Snowpark ML, PyTorch, TorchScript and Custom Model. Defaults to None.
149
155
  options (Dict[str, Any], optional): Additional model saving options.
156
+
150
157
  Model Saving Options include:
158
+
151
159
  - embed_local_ml_library: Embed local Snowpark ML into the code directory or folder.
152
160
  Override to True if the local Snowpark ML version is not available in the Snowflake Anaconda
153
161
  Channel. Otherwise, defaults to False
154
- - relax_version: Whether or not relax the version constraints of the dependencies when running in the
162
+ - relax_version: Whether to relax the version constraints of the dependencies when running in the
155
163
  Warehouse. It detects any ==x.y.z in specifiers and replaced with >=x.y, <(x+1). Defaults to True.
156
164
  - function_type: Set the method function type globally. To set method function types individually see
157
165
  function_type in model_options.
@@ -163,7 +171,10 @@ class Registry:
163
171
  - max_batch_size: Maximum batch size that the method could accept in the Snowflake Warehouse.
164
172
  Defaults to None, determined automatically by Snowflake.
165
173
  - function_type: One of supported model method function types (FUNCTION or TABLE_FUNCTION).
174
+ Returns:
175
+ ModelVersion: ModelVersion object corresponding to the model just logged.
166
176
  """
177
+
167
178
  ...
168
179
 
169
180
  @overload
@@ -214,6 +225,7 @@ class Registry:
214
225
  python_version: Optional[str] = None,
215
226
  signatures: Optional[Dict[str, model_signature.ModelSignature]] = None,
216
227
  sample_input_data: Optional[model_types.SupportedDataType] = None,
228
+ user_files: Optional[Dict[str, List[str]]] = None,
217
229
  code_paths: Optional[List[str]] = None,
218
230
  ext_modules: Optional[List[ModuleType]] = None,
219
231
  task: model_types.Task = model_types.Task.UNKNOWN,
@@ -228,25 +240,31 @@ class Registry:
228
240
  PyTorch, TorchScript, Tensorflow, Tensorflow Keras, MLFlow, HuggingFace Pipeline, Sentence Transformers,
229
241
  or Custom Model.
230
242
  - ModelVersion: Source ModelVersion object used to create the new ModelVersion object.
231
- model_name: Name to identify the model.
243
+ model_name: Name to identify the model. This must be a valid Snowflake SQL Identifier. Alphanumeric
244
+ characters and underscores are permitted.
245
+ See https://docs.snowflake.com/en/sql-reference/identifiers-syntax for more.
232
246
  version_name: Version identifier for the model. Combination of model_name and version_name must be unique.
233
247
  If not specified, a random name will be generated.
234
248
  comment: Comment associated with the model version. Defaults to None.
235
249
  metrics: A JSON serializable dictionary containing metrics linked to the model version. Defaults to None.
236
- signatures: Model data signatures for inputs and outputs for various target methods. If it is None,
237
- sample_input_data would be used to infer the signatures for those models that cannot automatically
238
- infer the signature. If not None, sample_input_data should not be specified. Defaults to None.
239
- sample_input_data: Sample input data to infer model signatures from.
240
- It would also be used as background data in explanation and to capture data lineage. Defaults to None.
241
250
  conda_dependencies: List of Conda package specifications. Use "[channel::]package [operator version]" syntax
242
251
  to specify a dependency. It is a recommended way to specify your dependencies using conda. When channel
243
252
  is not specified, Snowflake Anaconda Channel will be used. Defaults to None.
244
253
  pip_requirements: List of Pip package specifications. Defaults to None.
245
- Currently it is not supported since Model can only executed in Snowflake Warehouse where all
246
- dependencies are required to be retrieved from Snowflake Anaconda Channel.
254
+ Models with pip requirements are currently only runnable in Snowpark Container Services.
255
+ See https://docs.snowflake.com/en/developer-guide/snowflake-ml/model-registry/container for more.
256
+ Models with pip requirements specified will not be executable in Snowflake Warehouse where all
257
+ dependencies must be retrieved from Snowflake Anaconda Channel.
247
258
  target_platforms: List of target platforms to run the model. The only acceptable inputs are a combination of
248
259
  {"WAREHOUSE", "SNOWPARK_CONTAINER_SERVICES"}. Defaults to None.
249
260
  python_version: Python version in which the model is run. Defaults to None.
261
+ signatures: Model data signatures for inputs and outputs for various target methods. If it is None,
262
+ sample_input_data would be used to infer the signatures for those models that cannot automatically
263
+ infer the signature. If not None, sample_input_data should not be specified. Defaults to None.
264
+ sample_input_data: Sample input data to infer model signatures from.
265
+ It would also be used as background data in explanation and to capture data lineage. Defaults to None.
266
+ user_files: Dictionary where the keys are subdirectories, and values are lists of local file name
267
+ strings. The local file name strings can include wildcards (? or *) for matching multiple files.
250
268
  code_paths: List of directories containing code to import. Defaults to None.
251
269
  ext_modules: List of external modules to pickle with the model object.
252
270
  Only supported when logging the following types of model:
@@ -261,7 +279,7 @@ class Registry:
261
279
  - embed_local_ml_library: Embed local Snowpark ML into the code directory or folder.
262
280
  Override to True if the local Snowpark ML version is not available in the Snowflake Anaconda
263
281
  Channel. Otherwise, defaults to False
264
- - relax_version: Whether or not relax the version constraints of the dependencies when running in the
282
+ - relax_version: Whether to relax the version constraints of the dependencies when running in the
265
283
  Warehouse. It detects any ==x.y.z in specifiers and replaced with >=x.y, <(x+1). Defaults to True.
266
284
  - function_type: Set the method function type globally. To set method function types individually see
267
285
  function_type in model_options.
@@ -301,6 +319,7 @@ class Registry:
301
319
  python_version=python_version,
302
320
  signatures=signatures,
303
321
  sample_input_data=sample_input_data,
322
+ user_files=user_files,
304
323
  code_paths=code_paths,
305
324
  ext_modules=ext_modules,
306
325
  task=task,
snowflake/ml/version.py CHANGED
@@ -1 +1 @@
1
- VERSION="1.7.2"
1
+ VERSION="1.7.3"
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: snowflake-ml-python
3
- Version: 1.7.2
3
+ Version: 1.7.3
4
4
  Summary: The machine learning client library that is used for interacting with Snowflake to build machine learning solutions.
5
5
  Author-email: "Snowflake, Inc" <support@snowflake.com>
6
6
  License:
@@ -237,7 +237,7 @@ Requires-Dist: anyio<4,>=3.5.0
237
237
  Requires-Dist: cachetools<6,>=3.1.1
238
238
  Requires-Dist: cloudpickle>=2.0.0
239
239
  Requires-Dist: cryptography
240
- Requires-Dist: fsspec[http]<2024,>=2022.11
240
+ Requires-Dist: fsspec[http]<2026,>=2024.6.1
241
241
  Requires-Dist: importlib_resources<7,>=6.1.1
242
242
  Requires-Dist: numpy<2,>=1.23
243
243
  Requires-Dist: packaging<25,>=20.9
@@ -247,7 +247,7 @@ Requires-Dist: pyjwt<3,>=2.0.0
247
247
  Requires-Dist: pytimeparse<2,>=1.1.8
248
248
  Requires-Dist: pyyaml<7,>=6.0
249
249
  Requires-Dist: retrying<2,>=1.3.3
250
- Requires-Dist: s3fs<2024,>=2022.11
250
+ Requires-Dist: s3fs<2026,>=2024.6.1
251
251
  Requires-Dist: scikit-learn<1.6,>=1.4
252
252
  Requires-Dist: scipy<2,>=1.9
253
253
  Requires-Dist: snowflake-connector-python[pandas]<4,>=3.5.0
@@ -257,13 +257,14 @@ Requires-Dist: typing-extensions<5,>=4.1.0
257
257
  Requires-Dist: xgboost<3,>=1.7.3
258
258
  Provides-Extra: all
259
259
  Requires-Dist: catboost<2,>=1.2.0; extra == "all"
260
+ Requires-Dist: huggingface_hub<0.26; extra == "all"
260
261
  Requires-Dist: lightgbm<5,>=4.1.0; extra == "all"
261
- Requires-Dist: mlflow<2.4,>=2.1.0; extra == "all"
262
+ Requires-Dist: mlflow<3,>=2.16.0; extra == "all"
262
263
  Requires-Dist: peft<1,>=0.5.0; extra == "all"
263
264
  Requires-Dist: sentence-transformers<3,>=2.2.2; extra == "all"
264
265
  Requires-Dist: sentencepiece<1,>=0.1.95; extra == "all"
265
266
  Requires-Dist: shap<1,>=0.46.0; extra == "all"
266
- Requires-Dist: tensorflow<3,>=2.10; extra == "all"
267
+ Requires-Dist: tensorflow<3,>=2.12.0; extra == "all"
267
268
  Requires-Dist: tokenizers<1,>=0.10; extra == "all"
268
269
  Requires-Dist: torch<2.3.0,>=2.0.1; extra == "all"
269
270
  Requires-Dist: torchdata<1,>=0.4; extra == "all"
@@ -275,15 +276,16 @@ Requires-Dist: lightgbm<5,>=4.1.0; extra == "lightgbm"
275
276
  Provides-Extra: llm
276
277
  Requires-Dist: peft<1,>=0.5.0; extra == "llm"
277
278
  Provides-Extra: mlflow
278
- Requires-Dist: mlflow<2.4,>=2.1.0; extra == "mlflow"
279
+ Requires-Dist: mlflow<3,>=2.16.0; extra == "mlflow"
279
280
  Provides-Extra: shap
280
281
  Requires-Dist: shap<1,>=0.46.0; extra == "shap"
281
282
  Provides-Extra: tensorflow
282
- Requires-Dist: tensorflow<3,>=2.10; extra == "tensorflow"
283
+ Requires-Dist: tensorflow<3,>=2.12.0; extra == "tensorflow"
283
284
  Provides-Extra: torch
284
285
  Requires-Dist: torch<2.3.0,>=2.0.1; extra == "torch"
285
286
  Requires-Dist: torchdata<1,>=0.4; extra == "torch"
286
287
  Provides-Extra: transformers
288
+ Requires-Dist: huggingface_hub<0.26; extra == "transformers"
287
289
  Requires-Dist: sentence-transformers<3,>=2.2.2; extra == "transformers"
288
290
  Requires-Dist: sentencepiece<1,>=0.1.95; extra == "transformers"
289
291
  Requires-Dist: tokenizers<1,>=0.10; extra == "transformers"
@@ -397,7 +399,33 @@ NOTE: Version 1.7.0 is used as example here. Please choose the the latest versio
397
399
 
398
400
  # Release History
399
401
 
400
- ## 1.7.2
402
+ ## 1.7.3
403
+
404
+ - Added lowercase versions of Cortex functions, added deprecation warning to Capitalized versions.
405
+ - Bumped the requirements of `fsspec` and `s3fs` to `>=2024.6.1,<2026`
406
+ - Bumped the requirement of `mlflow` to `>=2.16.0, <3`
407
+ - Registry: Support 500+ features for model registry
408
+
409
+ ### Bug Fixes
410
+
411
+ - Registry: Fixed a bug when providing non-range index pandas DataFrame as the input to a `ModelVersion.run`.
412
+ - Registry: Improved random model version name generation to prevent collisions.
413
+ - Registry: Fix an issue when inferring signature or running inference with Snowpark data that has a column whose type
414
+ is `ARRAY` and contains `NULL` value.
415
+ - Registry: `ModelVersion.run` now accepts fully qualified service name.
416
+ - Monitoring: Fix issue in SDK with creating monitors using fully qualified names.
417
+ - Registry: Fix error in log_model for any sklearn models with only data pre-processing including pre-processing only
418
+ pipeline models due to default explainability enablement.
419
+
420
+ ### Behavior Changes
421
+
422
+ ### New Features
423
+
424
+ - Added `user_files` argument to `Registry.log_model` for including images or any extra file with the model.
425
+ - Registry: Added support for handling Hugging Face model configurations with auto-mapping functionality
426
+ - DataConnector: Add new `DataConnector.from_sql()` constructor
427
+
428
+ ## 1.7.2 (2024-11-21)
401
429
 
402
430
  ### Bug Fixes
403
431
 
@@ -410,6 +438,7 @@ whose task is UNKNOWN and fails later when invoked.
410
438
 
411
439
  - Registry: Support asynchronous model inference service creation with the `block` option
412
440
  in `ModelVersion.create_service()` set to True by default.
441
+ - Registry: Allow specify `batch_size` when inferencing using sentence-transformers model.
413
442
 
414
443
  ## 1.7.1 (2024-11-05)
415
444
 
@@ -1,18 +1,18 @@
1
- snowflake/cortex/__init__.py,sha256=IZra16r_FeqcwdtCUE8Lj0gIsTDq7VGlux8xDnnq42U,770
2
- snowflake/cortex/_classify_text.py,sha256=1SnEdAnQ1IbCKp1bUvQSW7zhGtcS_8qk34X1sVQL37U,1338
3
- snowflake/cortex/_complete.py,sha256=AvE5pNQ8hmWAHUHh8K8NCZLSh_UutrTOD7iQi85-m20,13053
4
- snowflake/cortex/_embed_text_1024.py,sha256=zQp2F3MTAxacnIJo7zu8OHkXmX-xi8YzoUcs_FM48uo,1381
5
- snowflake/cortex/_embed_text_768.py,sha256=lTus5A1zehbzX4FV6IYZ8bl66QoxUiC_ZilYeBLdLOE,1377
6
- snowflake/cortex/_extract_answer.py,sha256=hmJG0iVEe_ww-ll9XEtIL_xPOiNitycUkXBI6WwgfzA,1342
1
+ snowflake/cortex/__init__.py,sha256=gboUvJBYzJIq11AK_Qa0ipOUbKctHahNXe1p1Z7j8xY,1032
2
+ snowflake/cortex/_classify_text.py,sha256=zlAUJXPgcEwmh9KtkqafAD0NRP3UBboCJGVzMylW4Lk,1640
3
+ snowflake/cortex/_complete.py,sha256=nzNCsgGQriqz_j7Di6hghMDIiAr3HIjqbDXXx7h6Fa0,15349
4
+ snowflake/cortex/_embed_text_1024.py,sha256=P3oMsrMol_rTK0lZxDmEBx7XSA9HB2y3AMjaD66LrgY,1651
5
+ snowflake/cortex/_embed_text_768.py,sha256=_WMt_FHu3n-CKXj8yiposDSi763Sd-NHV9UeGQ7YHaE,1643
6
+ snowflake/cortex/_extract_answer.py,sha256=7C-23JytRKdZN9ZYY9w10RfAe_GzmvzKAqqUDl3T4aQ,1605
7
7
  snowflake/cortex/_finetune.py,sha256=V-cb1M-TDurjO-F25E1CwviXp2r-QCcu6NjsVE6icOg,10952
8
- snowflake/cortex/_sentiment.py,sha256=6_RfOKpwoH0k1puvMaj2TP-0RHQvbkLqrorFvmhdx3E,1206
8
+ snowflake/cortex/_sentiment.py,sha256=Zv2USbn-1SoHwYYuutI6uzgm1-indv54q4q5A6jegME,1454
9
9
  snowflake/cortex/_sse_client.py,sha256=sLYgqAfTOPADCnaWH2RWAJi8KbU_7gSRsTUDcDD5Tl8,5239
10
- snowflake/cortex/_summarize.py,sha256=bwpFBzBGmNQSoJqKs3IB5wASjAREnC5ZnViSuZK5IrU,1059
11
- snowflake/cortex/_translate.py,sha256=69YUps6mnhzVdubdU_H0IfUAlbBwF9OPemFEQ34P-ts,1404
10
+ snowflake/cortex/_summarize.py,sha256=7GH8zqfIdOiHA5w4b6EvJEKEWhaTrL4YA6iDGbn7BNM,1307
11
+ snowflake/cortex/_translate.py,sha256=9ZGjvAnJFisbzJ_bXnt4pyug5UzhHJRXW8AhGQEersM,1652
12
12
  snowflake/cortex/_util.py,sha256=cwRGgrcUo3E05ZaIDT9436vXLQ7GfuBVAjR0QeQ2bDE,3320
13
- snowflake/ml/version.py,sha256=wJaJaqPpO6Ic3Pl_5e81zlGKYqi1rf5q8V10jTUEDjA,16
13
+ snowflake/ml/version.py,sha256=EjGGPpU_9NRxpioQOvkyljo3VC0_73xnNfY88al3bzQ,16
14
14
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
15
- snowflake/ml/_internal/env_utils.py,sha256=J_jitp8jvDoC3a79EbMSDatFRYw-HiXaI9vR81bhtU8,28075
15
+ snowflake/ml/_internal/env_utils.py,sha256=6CohPgQoDyWX0cnGT_9jfQCXOsR6qLoRxtyNq0f3_nU,25856
16
16
  snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
17
17
  snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
18
18
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
@@ -34,27 +34,26 @@ snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=D1yoVG1vm
34
34
  snowflake/ml/_internal/lineage/lineage_utils.py,sha256=kxWW7fkSf1HiUQSks3VlzWyntpt4o_pbptXcpQHtnk8,3432
35
35
  snowflake/ml/_internal/utils/db_utils.py,sha256=HBAY0-XHzCP4ai5q3Yqd8O19Ar_Q9J3xD4jO6Fe7Zek,1668
36
36
  snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
37
- snowflake/ml/_internal/utils/identifier.py,sha256=fUYXjXKXAkjLUZpomneMHo2wR4_ZNP4ak-5OJxeUS-g,12467
37
+ snowflake/ml/_internal/utils/identifier.py,sha256=A7TCY2o-VzZr_pV_mwG7e_DS1zHZdlVlRIQOg9bgOt8,12585
38
38
  snowflake/ml/_internal/utils/import_utils.py,sha256=iUIROZdiTGy73UCGpG0N-dKtK54H0ymNVge_QNQYY3A,3220
39
39
  snowflake/ml/_internal/utils/jwt_generator.py,sha256=bj7Ltnw68WjRcxtV9t5xrTRvV5ETnvovB-o3Y8QWNBg,5357
40
40
  snowflake/ml/_internal/utils/parallelize.py,sha256=Q6_-P2t4DoYNO8DyC1kOl7H3qNL-bUK6EgtlQ_b5ThY,4534
41
41
  snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=FwdLHFhxi3CAQQduGjFavEBmkD9Ra6ZTkt6Eub-WoSA,5168
42
42
  snowflake/ml/_internal/utils/query_result_checker.py,sha256=h1nbUImdB9lSNCON3uIA0xCm8_JrS-TE-jQXJJs9WfU,10668
43
43
  snowflake/ml/_internal/utils/result.py,sha256=59Sz6MvhjakUNiONwg9oi2544AmORCJR3XyWTxY2vP0,2405
44
- snowflake/ml/_internal/utils/retryable_http.py,sha256=1GCuQkTGO4sX-VRbjy31e4_VgUjqsp5Lh2v5tSJjVK8,1321
45
44
  snowflake/ml/_internal/utils/service_logger.py,sha256=tSKz7SzC33Btu2QgerXJ__4jRhOvRepOSEvHXSy_FTs,1974
46
45
  snowflake/ml/_internal/utils/snowflake_env.py,sha256=WY9KgMcXEydpWObHQCQhvxcSZXMwC-2OHc894njmXEg,3346
47
46
  snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=pV8m0d4xfG2_Cl25T5nZb1HCXH375EKSOCgwYWfQVac,6359
48
47
  snowflake/ml/_internal/utils/sql_identifier.py,sha256=A5mfeDuz4z6VuUYG3EBpDyQQQCNiRtjVS1WNWAoiqq8,4682
49
48
  snowflake/ml/_internal/utils/table_manager.py,sha256=pU7v8Cx-jGObf6RtTmfCmALfhbpJD-lL45T1gWX1nSY,4982
50
49
  snowflake/ml/_internal/utils/temp_file_utils.py,sha256=0-HTjXdxVt0kE6XcgyvRvY0btflWlmotP2bMXVpFJPA,1553
51
- snowflake/ml/data/__init__.py,sha256=vTUXLV3r8CoPkepoEzj5HSpKiaHH4MrthXb9RyclVto,275
52
- snowflake/ml/data/data_connector.py,sha256=iOOEkRsy11acWZZnLJj6EDgLM63Q8GY-1htO0l7m9Wo,8711
53
- snowflake/ml/data/data_ingestor.py,sha256=Nrj5l0cVnoXWI6Ilig-r_pGS902xkZATbqh3OsV53NI,1017
50
+ snowflake/ml/data/__init__.py,sha256=nm5VhN98Lzxr4kb679kglQfqbDbHhd9zYsnFJiQiThg,351
51
+ snowflake/ml/data/data_connector.py,sha256=havoMBDiWTtc65mvDEAHk2Omy4BOVaMV38_acErjkbw,9696
52
+ snowflake/ml/data/data_ingestor.py,sha256=mH1_DBDS_XwxYsOoWI3EGQpBzr8j8jBgH2t2S1V1eGM,1035
54
53
  snowflake/ml/data/data_source.py,sha256=dRemXGi_HHQdn6gaNkxxGJixnQPuUYFDP8NBjmB_ZMk,518
55
54
  snowflake/ml/data/ingestor_utils.py,sha256=--nEwJHbYqYHpAzR1APgoeVF9CMgq_fDX81X29HAB4w,2727
56
- snowflake/ml/data/torch_utils.py,sha256=Wn9_AY3DiFHJEPdZkKqaFtBMaS1RJ9hSF1ArBeNKqJ4,3292
57
- snowflake/ml/data/_internal/arrow_ingestor.py,sha256=C72MGC7QEUAXwIy43qXkxxO9zZDyd3fU4fyZmQ75VHg,12086
55
+ snowflake/ml/data/torch_utils.py,sha256=6ywrp1BKrkuhmDQLatgT5pRb6bJNKLKbAQNRV6HDEhY,3603
56
+ snowflake/ml/data/_internal/arrow_ingestor.py,sha256=P7Q975IKkbLWQ7KUMKxkm_Z8yfxnp3ZJN5spsaaTUgo,12110
58
57
  snowflake/ml/dataset/__init__.py,sha256=nESj7YEI2u90Oxyit_hKCQMWb7N1BlEM3Ho2Fm0MfHo,274
59
58
  snowflake/ml/dataset/dataset.py,sha256=GqdcABGcIlAzPmfTcOC8H_Kw6LNQZ6F_7Ch45hxHOHU,21094
60
59
  snowflake/ml/dataset/dataset_factory.py,sha256=Fym4ICK-B1j6Om4ENwWxEvryq3ZKoCslBSZDBenmjOo,1615
@@ -65,7 +64,7 @@ snowflake/ml/feature_store/access_manager.py,sha256=LcsfBKsZzfERQQ_pqZG0W-XbpVGx
65
64
  snowflake/ml/feature_store/entity.py,sha256=A65FOGlljREUG8IRMSN84v1x2uTeVGCM4NqKXO2Ui8w,4059
66
65
  snowflake/ml/feature_store/feature_store.py,sha256=cb_5xc3QWkiqnUiQ4Y0T58f2sKuifmumV9jG13qreAk,113425
67
66
  snowflake/ml/feature_store/feature_view.py,sha256=7xfrq7abM9-FiA7mJ1yDq5z9Uk7jbHNuyGyySVlNqbo,37040
68
- snowflake/ml/feature_store/examples/example_helper.py,sha256=DcQZA5rDyRj9lzMp8ZmoATjAzNfC4DL-draz8du9-Ms,12414
67
+ snowflake/ml/feature_store/examples/example_helper.py,sha256=qW6Pu_hQyeSQ3K4OKmiE5AkdvFqDU9OGHNP9RnN6xVE,12482
69
68
  snowflake/ml/feature_store/examples/airline_features/entities.py,sha256=V2xVZpHFgGA92Kyd9hCWa2YoiRhH5m6HAgvnh126Nqo,463
70
69
  snowflake/ml/feature_store/examples/airline_features/source.yaml,sha256=kzl8ukOK8OuSPsxChEgJ9SPyPnzC-fPHqZC4O6aqd5o,247
71
70
  snowflake/ml/feature_store/examples/airline_features/features/plane_features.py,sha256=dLZlKOUsI-NvBdaBeoole0mIUrHfbqTexFSbCDGjlGw,1070
@@ -88,75 +87,74 @@ snowflake/ml/feature_store/examples/wine_quality_features/source.yaml,sha256=dPs
88
87
  snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py,sha256=W58pGmIKV1iehou4Knw_yWJRWKKt_80ZiiMi3C_vwOw,1466
89
88
  snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py,sha256=ej1_DxD_W4TyqwOJ9T5C6s0S8rE5UPaP-KFzKi5MDWM,1024
90
89
  snowflake/ml/fileset/embedded_stage_fs.py,sha256=fmt8IoYbHtBMjyIC3K87ng-i5uYwE_2XKFQogNkP-nM,6000
91
- snowflake/ml/fileset/fileset.py,sha256=u-Hkqr7p97ajRYyd93fr62grbiBaA0AqTYkAAOppZj8,26186
92
- snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
90
+ snowflake/ml/fileset/fileset.py,sha256=GoCw2VYtKrlE0EKorL4CtKzgE2sLPrKdndsUjQjZymc,26206
93
91
  snowflake/ml/fileset/sfcfs.py,sha256=uPn8v5jlC3h_FrNqb4UMRAZjRZLn0I3tzu0sfi5RHik,15542
94
92
  snowflake/ml/fileset/snowfs.py,sha256=uF5QluYtiJ-HezGIhF55dONi3t0E6N7ByaVAIAlM3nk,5133
95
93
  snowflake/ml/fileset/stage_fs.py,sha256=IEVZ6imH77JiSOIRlRHNWalwafoACRgHFr8RAaICSP8,20170
96
- snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx52jX8I,3849
97
- snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPbt9WKYiBp0,2386
98
94
  snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCrzI4,65
99
95
  snowflake/ml/lineage/lineage_node.py,sha256=e6L4bdYDSVgTv0BEfqgPQWNoDiTiuI7HmfJ6n-WmNLE,5812
100
96
  snowflake/ml/model/__init__.py,sha256=EvPtblqPN6_T6dyVfaYUxCfo_M7D2CQ1OR5giIH4TsQ,314
101
97
  snowflake/ml/model/custom_model.py,sha256=O60mjz2Vy8A0Rt3obq43zBT3BxkU7CIcN0AkHsOgHZI,11221
102
98
  snowflake/ml/model/model_signature.py,sha256=gZnZPs9zTCYkeFoiQzoGUQYZMydYjzH-4xPTzfqt4hU,30496
103
- snowflake/ml/model/type_hints.py,sha256=9GPwEuG6B6GSWOXdOy8B1Swz6yDngL865yEtJMd0v1U,8883
99
+ snowflake/ml/model/type_hints.py,sha256=DzavATx7v9iH8gbvYiVMLogB3-sWPtfcE4i6gAJg55s,8916
104
100
  snowflake/ml/model/_client/model/model_impl.py,sha256=pqjK8mSZIQJ_30tRWWFPIo8X35InSVoAunXlQNtSJEM,15369
105
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=tGfSR4dF8okdBPeAu7yWVSLtwvnvhnJr9xalKbQZw5M,40144
101
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=I_gi90GEQVLMlOO6Y2S0IIreBTn-bHb8rC9o-2-QzBw,40260
106
102
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=7cGx8zYzye2_cvZnyGxoukPtT6Q-Kexd-s4yeZmpmj8,4890
107
- snowflake/ml/model/_client/ops/model_ops.py,sha256=didFBsjb7KJYV_586TUK4c9DudVQvjzlphEXJW0AnmY,43935
103
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=gdgnT0gUMAUh2aF2XXDSdzVnCL_LTf7zLSJWmlK42bE,43781
108
104
  snowflake/ml/model/_client/ops/service_ops.py,sha256=t_yLtHlAzHc28XDZ543yAALY5iVsRwVw4i9mtiPaXpQ,19237
109
105
  snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=uyh5k_u8mVP5T4lf0jq8s2cFuiTsbV_nJL6z1Zum2rM,4456
110
106
  snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=eaulF6OFNuDfQz3oPYlDjP26Ww2jWWatm81dCbg602E,825
111
107
  snowflake/ml/model/_client/sql/_base.py,sha256=Qrm8M92g3MHb-QnSLUlbd8iVKCRxLhG_zr5M2qmXwJ8,1473
112
108
  snowflake/ml/model/_client/sql/model.py,sha256=o36oPq4aU9TwahqY2uODYvICxmj1orLztijJ0yMbWnM,5852
113
- snowflake/ml/model/_client/sql/model_version.py,sha256=hNMlmwN5JQngKuaeUYV2Bli73RMnHmVH01ABX9NBHFk,20686
109
+ snowflake/ml/model/_client/sql/model_version.py,sha256=EyMyn0GriurJ-rRd9Fm-Rh8MQlmsQij4qojQJdR6oEY,21288
114
110
  snowflake/ml/model/_client/sql/service.py,sha256=fvQRhRGU4FBeOBouIoQByTvfQg-qbEQKplCG99BPmL0,10408
115
111
  snowflake/ml/model/_client/sql/stage.py,sha256=165vyAtrScSQWJB8wLXKRUO1QvHTWDmPykeWOyxrDRg,826
116
112
  snowflake/ml/model/_client/sql/tag.py,sha256=pwwrcyPtSnkUfDzL3M8kqM0KSx7CaTtgty3HDhVC9vg,4345
117
- snowflake/ml/model/_model_composer/model_composer.py,sha256=535ElL3Kw8eoUjL7fHd-K20eDCBqvJFwowUx2_UOCl8,6712
118
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=X6-cKLBZ1X2liIjWnyrd9efQaQhwIoxRSE90Zs0kAZo,7822
119
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=akDY_lM3srumPHjmL7AUl782eARg1rWTIdLu-U0Jjwc,2720
120
- snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2cE463GKWAJCrqEYD1s8IPzd3iPu0X0eQ12NnXQhGBM,2556
121
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=JbCgx__GqkHi6n_ceYdZi_ywNKK38u-d5c5Afg9QUi0,1476
122
- snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template,sha256=L5R04QeoW6dH1PdEy3qo1LS478rTmvvRmrwlgqVwimg,1504
123
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=NUDSyFFAdEZEWtSkvYxkU9vB-NTjcTg6sjkrNpcmF6A,1418
124
- snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=LBZsXzkGj-OiL9Tw4S0yBJlWLIzwzefCL6iO964gdCw,7019
113
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=iV51I7SK2tPRh0Up3CdCTlhkPTNpEZFthciOGsZhhOg,7021
114
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=b7eczcLSatqlkQtrKvzkbNacnXRKeSP_qB9sJyJKTe0,8755
115
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=Hql_9XIEqwlcqdf_Bupg7IpxKtLpKfGpZDFEuUDLX3U,2759
116
+ snowflake/ml/model/_model_composer/model_method/constants.py,sha256=hoJwIopSdZiYn0fGq15_NiirC0l02d5LEs2D-4J_tPk,35
117
+ snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=nnUJki3bJVCTF3gZ-usZW3xQ6wwlJ08EfNsPAgsnI3s,2625
118
+ snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=olysEb_bE2C8CjIRAhm7qdr2mtgk77Tx45gnLRVQGFw,1511
119
+ snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template,sha256=8p8jkTOJA-mBt5cuGhcWSH4z7ySQ9xevC35UioCLkC8,1539
120
+ snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=QT32N6akQDutLh00cXp2OD4WI6Gb7IGG1snsnrXNih8,1453
121
+ snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=SeN1aPSOhIJExC8OB3BmZo91m3zsQJXQ8-lwWrd2kgY,7275
122
+ snowflake/ml/model/_model_composer/model_user_file/model_user_file.py,sha256=dYNgg8P9p6nRH47-OLxZIbt_Ja3t1VPGNQ0qJtpGuAw,1018
125
123
  snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
126
124
  snowflake/ml/model/_packager/model_packager.py,sha256=EhpEmfd2oDYuIrOYFOadI0OOFJa9bleMvI1WTHQqjE8,5806
127
125
  snowflake/ml/model/_packager/model_env/model_env.py,sha256=968vlQJrI2_2rQ88cl3uXe1FP5kG-zG4UkUySRDgFt4,17517
128
126
  snowflake/ml/model/_packager/model_handlers/_base.py,sha256=qQS1ZSz1Ikdj0TvyLU9n8K6KAj-PknL4s801qpnWodo,7164
129
- snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=KwBZVSlp6HcCXd7T_zJJE8s5W9YGeXAD_kTpKhrLVzE,9209
130
- snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=psBv5txOfAjKMqQnxg3sLPd1I7JYtruslbGUkhULtTs,10704
127
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=XoZtHAVQiTD5PtARI-hw46mFebPLWK0jTwnbYvaIX5E,10251
128
+ snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=vwlKuXwJGYrna7wkXDgEu8-nUNegNhHMCaNQdhL5p44,10677
131
129
  snowflake/ml/model/_packager/model_handlers/custom.py,sha256=i9jhMzNrgxEdiJLw9ojeiMaCWYk5nVj48JyS_e87RpM,8333
132
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=BzeZgY4Z8GTtgc2sv65wjLlONgfEH1_yWBd2N4RDCMg,21397
133
- snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=E0667G5FFfMssaXjkM77vtf_cyQJg53OKgUJOBmWhaQ,11092
130
+ snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=csqpaLFvuxuqURv8Cso9rAJCxn8hISMklViKRmvkBGw,21539
131
+ snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=qm_Q7FxD19r1fFnSt25pZJw9sU-jE0Yu2h2qUvOl_qs,11127
134
132
  snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=A3HnCa065jtHsRM40ZxfLv5alk0RYhVmsU4Jt2klRwQ,9189
135
133
  snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=DDcf85xisPLT1PyXdmPrjJpIIepkdmWNXCOpT_dCncw,8294
136
- snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=f21fJw2wPsXzzhv71Gi1eHctSlyJ6NAR1EQX5iUL5M8,9842
137
- snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=dwwETBdJJM3AVfl3R6VvvVOZQHgnwIuk9dUUCDOs-w0,14111
138
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=uhsJ3zK24aavBRO5gNyxv8BHqU9n1TPUBYm1qHTuaxE,12176
139
- snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=SkbnvkElK4UIMgygv9EK9f5hBxWZ2YDroymUC9uBsBk,9169
134
+ snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=EKgpN6e4c8bi0znnV-pWzAR3cwDvORcsL72x6o-JPqA,11381
135
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=pMAeHaBUp9SqEOB8AD_zGbhF_S5BTS3SRPjGOqk40Xo,14111
136
+ snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=dlOnIREhdnq4ufphjM-M6DifUGiftACQKntUzbrzTmc,13954
137
+ snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=WQNEwsC5VvzJJ65sRw6wfX3ivf3nKkc2-j6fwe-ytmE,11367
140
138
  snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=BIdRINO1xZ5uHrR9uA0vExWQymOryTaSpyAMpCCtz8U,8036
141
- snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=iQkwJ_Ksly3ZSNNjnW2pRetjpyLLneDT5QaeHrpidnw,11542
139
+ snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=p8J4En5exWRpN3KHDIRtkvSRGpfyW-VaYWEBWjAmivE,11515
142
140
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
143
141
  snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=yOrF0WBkFh5NvyzZMSZHpsv_W1iR5hRpPH1bwzpSH_Q,78
144
142
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=GmiqqI-XVjrOX7cSa5GKerKhfHptlsg74MKqTGwJ5Jk,1949
145
- snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=Fn0yrMiTRmp2lgy15DJvIeT_PMOu_ACNO37b9o4_q2Q,18787
146
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=5Sdh1_NCKycLvhMO1IbLyXdl4RO_vnw9Z9-AHf5ojpE,2839
143
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=oQszUWYKJRPJ6TPvQMQa_2IgOdlJOL2af7liHBqcTyA,18995
144
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=nMtx4iDksayA4oR2p5tEf_ikU-RbbgijFy9zkZjRyHk,2975
147
145
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
148
146
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
149
147
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
150
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=eR_qxEwsmzaeaRYH9K4wUAG7bhpqZvn07en2vfRV4c4,1459
148
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=Md0SSF4y5eG5Kw6S_Hc2GRcHpc85EYcQN1OeIXgeKns,1489
151
149
  snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=G52nrjzcZiWBJaed6Z1qKq-HjqtnG2MnywDdU9lPusg,5051
152
- snowflake/ml/model/_packager/model_task/model_task_utils.py,sha256=0aEUfg71bP5-RkwmzOJBe51yHxLRrtM17tUBoCiuMMk,6310
150
+ snowflake/ml/model/_packager/model_task/model_task_utils.py,sha256=Lxlw_H2lJQoy-3kpmD9QL4bwYLl1jZj9N8a1SR2gee4,6439
153
151
  snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
154
152
  snowflake/ml/model/_signatures/builtins_handler.py,sha256=nF-2ptQjeu7ikO72_d14jk1N6BVbmy-mjtZ9I1c7-Qg,2741
155
153
  snowflake/ml/model/_signatures/core.py,sha256=C9iTtdaXJVMDkOqCH5Tie7ucib4d0pBJ0oXJWAqur3s,20233
156
154
  snowflake/ml/model/_signatures/numpy_handler.py,sha256=wE9GNuNNmC-0jLmz8lI_UhyETNkKUvftIABAuNsSe94,5858
157
- snowflake/ml/model/_signatures/pandas_handler.py,sha256=ACv8egyiK2Sug8uhkQqMDGTTc9HPkI3-UZYMUxzSjLg,11145
155
+ snowflake/ml/model/_signatures/pandas_handler.py,sha256=6u80FV1mWNqRjADef25B1k1A2xZ7lNweC_4tvnxiQmM,11150
158
156
  snowflake/ml/model/_signatures/pytorch_handler.py,sha256=yEU-V_WRjE8Q7NdHyghl0iYpMiIDzGaIR5Pd_ixB1Hk,4631
159
- snowflake/ml/model/_signatures/snowpark_handler.py,sha256=2_AY1ssucMICKSPeDjf3mV4WT5farKYdnYkHsvhHZ20,6066
157
+ snowflake/ml/model/_signatures/snowpark_handler.py,sha256=n4oX8MpHq57UULxei6PRHX8S-y9FbDLW9MKU4BVmf_M,6221
160
158
  snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=9bUbxtHpl4kEoFzeDJF87bQPb8RdLLm9OV23-aUyW3s,6114
161
159
  snowflake/ml/model/_signatures/utils.py,sha256=1E_mV1qdUuob8tjB8WaOEfuo2rmQ2FtOgTNyXZGzoJg,13108
162
160
  snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
@@ -164,13 +162,11 @@ snowflake/ml/modeling/_internal/constants.py,sha256=aJGngY599w3KqN8cDZCYrjbWe6Uw
164
162
  snowflake/ml/modeling/_internal/estimator_utils.py,sha256=mbMm8_5tQde_sQDwI8pS3ljHZ8maCHl2Shb5nQwLYac,11872
165
163
  snowflake/ml/modeling/_internal/model_specifications.py,sha256=P9duVMP9-X7us_RZFPyXvWxOrm5K30sWDVYwSMEzG1M,4876
166
164
  snowflake/ml/modeling/_internal/model_trainer.py,sha256=RxpZ5ARy_3sfRMCvArkdK-KmsdbNXxEZTbXoaJ4c1ag,984
167
- snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=11cpEaxU1D7R7m79nVLcCA9dryUPsElS7YdlKZh850U,8422
168
- snowflake/ml/modeling/_internal/model_transformer_builder.py,sha256=Y6Y8XSr7X7xAy1FvjPuHTb9Opy7tnGoCuOUBc5WEBJ4,3364
165
+ snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=n1l9i9LFLcdbMFRvxkWNIs7kYnNNlUJnaToRvFBEjls,8062
166
+ snowflake/ml/modeling/_internal/model_transformer_builder.py,sha256=E7Psa14Z-Us5MD9yOdRbGTlR6r4Fq7BQSCcHwFlh1Ig,2815
169
167
  snowflake/ml/modeling/_internal/transformer_protocols.py,sha256=adbJH9BcD52Z1VbqoCE_9IexjIxERTXE8932Hz-gw3E,6482
170
168
  snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=UN-23TJ4Usf6N9ZTXcU4IfJmI-uJXOsfdslOAax7d2I,7989
171
169
  snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=h3Zsw9tpBB7WEUyIGy35VYNNR8y_XwiRHyR3mULyxIE,5960
172
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py,sha256=fgm1DpBBO0qUo2fXFwuN2uFAyTFhcIhT5_bC326VTVw,5544
173
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py,sha256=lM1vYwpJ1jgTh8vnuyMp4tnFibM6UFf50W1IpPWwUWE,2535
174
170
  snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=Jypb-EH4iCOTtFRfF_wUNlm3yMR2WTUrV0YZnuYz_QA,54996
175
171
  snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=HnsSmsXAeJrH9zVeq3CSziIaCUDxeWWx6kRyAK4qajM,6601
176
172
  snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=O6QHRPVS-HzVesw_tMXL6NALAphkqXIEsrEKMva6-Z0,15750
@@ -347,7 +343,7 @@ snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQx
347
343
  snowflake/ml/modeling/parameters/disable_model_tracer.py,sha256=uj6SZz7HQpThGLs90zfUDcNMChxf0C6DKRN2xOfjmvI,203
348
344
  snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
349
345
  snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
350
- snowflake/ml/modeling/pipeline/pipeline.py,sha256=X5V_YQ881QZyowJh8-Tnt-oWgk0gMXPqV_C6psAkDAo,46320
346
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=V3rXkbz27aLv87haBPQ3BqqlVZTMNvPZuH8XhXWqRy4,39556
351
347
  snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
352
348
  snowflake/ml/modeling/preprocessing/binarizer.py,sha256=MrgSVTw9RpajyYe0dzai-qnpdOb3Zq0SfJRpHJjpnoY,7383
353
349
  snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=FdIy8mpjsiMqWsUL07S27T-JNDVgE2bvNUJf4HcBik4,21533
@@ -376,27 +372,27 @@ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=5eE6INs96PvqqAGgk-g
376
372
  snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=GacBZnYfIFmce00DR4mEBpGRcyOgUDDPWhcGLd47BMc,57248
377
373
  snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=dretp3_soBuChs_3u2FTT1a00xOtwh0FqacgeKnt41E,55833
378
374
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
379
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=2QEK6-NihXjKXO8Ue-fOZDyucIBn5ADSyq-fQS3d6Lg,62205
380
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=ZorEmRohT2-AUdS8fK0xH8BdB8ENxvVMMDYy34Jzm1o,61703
381
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=67jh9RosrTeYCWsJbnJ6_MQICHeG22z-DMy8CegP8Vg,62383
382
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=7_ZwF_QvVqBrkFx_zgGgLXyxtbX26XrWWLozAF-EBB0,61908
375
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=E3q6Lkz2XYJT9xf4n9JxkKys4QAk2EP0A_uyp5vBFMs,63402
376
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=x9XLGj3PG0cKjIIUTLXVxJh2u5HS87g43c6uAKAmIAg,63005
377
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=hUfss6zvZnPFeqc1mq9xxKSxYYMA_KtpzXI9iQFwaaY,63678
378
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=ShWVwjFv1gl4rC8v6djyxsPkW5hrVxIgikpUNMMkX0I,63203
383
379
  snowflake/ml/monitoring/model_monitor.py,sha256=8vJf1YROmJgBLUtpaH-lGKSSJv9R7PxPaQnOdr_j5YE,2200
384
380
  snowflake/ml/monitoring/model_monitor_version.py,sha256=TlmDJZDE0lCVatRaBRgXIjzDF538nrMIc-zWj9MM_nk,46
385
381
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
386
- snowflake/ml/monitoring/_client/model_monitor_sql_client.py,sha256=Qr3L6bs84ID5_1TvY6wf5YK2kn3ZVZ-Havo242i3MiY,12710
382
+ snowflake/ml/monitoring/_client/model_monitor_sql_client.py,sha256=XhTcLNehHOwEKGpqJdYnL1-esYm3KWM5E8CvH9pF5Ms,12712
387
383
  snowflake/ml/monitoring/_client/queries/record_count.ssql,sha256=Bd1uNMwhPKqPyrDd5ug8iY493t9KamJjrlo82OAfmjY,335
388
384
  snowflake/ml/monitoring/_client/queries/rmse.ssql,sha256=OEJiSStRz9-qKoZaFvmubtY_n0xMUjyVU2uiQHCp7KU,822
389
385
  snowflake/ml/monitoring/_manager/model_monitor_manager.py,sha256=_-vxqnHqohTHTrwfURjPXijyAeh1mTRdHCG436GaBik,10314
390
386
  snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=IxEiee1HfBXCQGzJOZbrDrvoV8J1tDNk43ygNuN00Io,1793
391
387
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
392
- snowflake/ml/registry/registry.py,sha256=5aBedBH8NiFkJJe1Pnggsrjnn0ixdg1oqtUHWyz3wsE,23824
393
- snowflake/ml/registry/_manager/model_manager.py,sha256=gFr1EqaMR2Eb4erwVz7fi7xK1G1YsFXz1PF5GvOR0pg,12131
388
+ snowflake/ml/registry/registry.py,sha256=RAJdGLS_Er0o1k3AVuaqHc4ositij_FDbNiaMPMWcwM,25341
389
+ snowflake/ml/registry/_manager/model_manager.py,sha256=ZizYAzaBbo6ivEqlCHFM1_YQNNvMaVFt1X3RJ2szDaI,13678
394
390
  snowflake/ml/utils/authentication.py,sha256=Wx1kVBZ9XBDuKkRHpPEB2pBxpiJepVLFAirDMx4m5Gk,2612
395
391
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
396
392
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
397
393
  snowflake/ml/utils/sql_client.py,sha256=z4Rhi7pQz3s9cyu_Uzfr3deCnrkCdFh9IYIvicsuwdc,692
398
- snowflake_ml_python-1.7.2.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
399
- snowflake_ml_python-1.7.2.dist-info/METADATA,sha256=GwZOHmNQAKaMDP3VeWIDWC-OMhPqldoJaYPrR-_iWGw,67429
400
- snowflake_ml_python-1.7.2.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
401
- snowflake_ml_python-1.7.2.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
402
- snowflake_ml_python-1.7.2.dist-info/RECORD,,
394
+ snowflake_ml_python-1.7.3.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
395
+ snowflake_ml_python-1.7.3.dist-info/METADATA,sha256=o8FlhVw_eClA0OTiyUojXojdJZshHNSD4jYKg3hpRr0,68958
396
+ snowflake_ml_python-1.7.3.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
397
+ snowflake_ml_python-1.7.3.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
398
+ snowflake_ml_python-1.7.3.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.6.0)
2
+ Generator: setuptools (75.8.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,39 +0,0 @@
1
- import http
2
-
3
- import requests
4
- from requests import adapters
5
- from urllib3.util import retry
6
-
7
-
8
- def get_http_client(total_retries: int = 5, backoff_factor: float = 0.1) -> requests.Session:
9
- """Construct retryable http client.
10
-
11
- Args:
12
- total_retries: Total number of retries to allow.
13
- backoff_factor: A backoff factor to apply between attempts after the second try. Time to sleep is calculated by
14
- {backoff factor} * (2 ** ({number of previous retries})). For example, with default retries of 5 and backoff
15
- factor set to 0.1, each subsequent retry will sleep [0.2s, 0.4s, 0.8s, 1.6s, 3.2s] respectively.
16
-
17
- Returns:
18
- requests.Session object.
19
-
20
- """
21
-
22
- retry_strategy = retry.Retry(
23
- total=total_retries,
24
- backoff_factor=backoff_factor,
25
- status_forcelist=[
26
- http.HTTPStatus.TOO_MANY_REQUESTS,
27
- http.HTTPStatus.INTERNAL_SERVER_ERROR,
28
- http.HTTPStatus.BAD_GATEWAY,
29
- http.HTTPStatus.SERVICE_UNAVAILABLE,
30
- http.HTTPStatus.GATEWAY_TIMEOUT,
31
- ], # retry on these status codes
32
- )
33
-
34
- adapter = adapters.HTTPAdapter(max_retries=retry_strategy)
35
- req_session = requests.Session()
36
- req_session.mount("https://", adapter)
37
- req_session.mount("http://", adapter)
38
-
39
- return req_session