snowflake-ml-python 1.7.0__py3-none-any.whl → 1.7.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (53) hide show
  1. snowflake/cortex/__init__.py +4 -0
  2. snowflake/cortex/_complete.py +107 -64
  3. snowflake/cortex/_finetune.py +273 -0
  4. snowflake/cortex/_sse_client.py +91 -28
  5. snowflake/cortex/_util.py +30 -1
  6. snowflake/ml/_internal/type_utils.py +3 -3
  7. snowflake/ml/_internal/utils/jwt_generator.py +141 -0
  8. snowflake/ml/data/__init__.py +5 -0
  9. snowflake/ml/model/_client/model/model_version_impl.py +26 -12
  10. snowflake/ml/model/_client/ops/model_ops.py +51 -30
  11. snowflake/ml/model/_client/ops/service_ops.py +25 -9
  12. snowflake/ml/model/_client/sql/model.py +0 -14
  13. snowflake/ml/model/_client/sql/service.py +25 -1
  14. snowflake/ml/model/_client/sql/stage.py +1 -1
  15. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  16. snowflake/ml/model/_packager/model_env/model_env.py +12 -0
  17. snowflake/ml/model/_packager/model_handlers/_utils.py +1 -1
  18. snowflake/ml/model/_packager/model_handlers/catboost.py +1 -1
  19. snowflake/ml/model/_packager/model_handlers/custom.py +3 -1
  20. snowflake/ml/model/_packager/model_handlers/lightgbm.py +2 -1
  21. snowflake/ml/model/_packager/model_handlers/sklearn.py +50 -1
  22. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +1 -1
  23. snowflake/ml/model/_packager/model_handlers/tensorflow.py +23 -6
  24. snowflake/ml/model/_packager/model_handlers/torchscript.py +14 -14
  25. snowflake/ml/model/_packager/model_meta/_packaging_requirements.py +2 -3
  26. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +5 -0
  27. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +2 -10
  28. snowflake/ml/model/_packager/model_runtime/model_runtime.py +4 -9
  29. snowflake/ml/model/_packager/model_task/model_task_utils.py +1 -1
  30. snowflake/ml/model/_signatures/core.py +63 -16
  31. snowflake/ml/model/_signatures/pandas_handler.py +71 -27
  32. snowflake/ml/model/_signatures/pytorch_handler.py +2 -2
  33. snowflake/ml/model/_signatures/snowpark_handler.py +2 -1
  34. snowflake/ml/model/_signatures/tensorflow_handler.py +2 -2
  35. snowflake/ml/model/_signatures/utils.py +4 -1
  36. snowflake/ml/model/model_signature.py +38 -9
  37. snowflake/ml/model/type_hints.py +1 -1
  38. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +2 -4
  39. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +2 -4
  40. snowflake/ml/monitoring/_client/model_monitor_sql_client.py +148 -1200
  41. snowflake/ml/monitoring/_manager/model_monitor_manager.py +114 -238
  42. snowflake/ml/monitoring/entities/model_monitor_config.py +38 -12
  43. snowflake/ml/monitoring/model_monitor.py +12 -86
  44. snowflake/ml/registry/registry.py +28 -40
  45. snowflake/ml/utils/authentication.py +75 -0
  46. snowflake/ml/version.py +1 -1
  47. {snowflake_ml_python-1.7.0.dist-info → snowflake_ml_python-1.7.2.dist-info}/METADATA +116 -52
  48. {snowflake_ml_python-1.7.0.dist-info → snowflake_ml_python-1.7.2.dist-info}/RECORD +51 -49
  49. {snowflake_ml_python-1.7.0.dist-info → snowflake_ml_python-1.7.2.dist-info}/WHEEL +1 -1
  50. snowflake/ml/monitoring/entities/model_monitor_interval.py +0 -46
  51. snowflake/ml/monitoring/entities/output_score_type.py +0 -90
  52. {snowflake_ml_python-1.7.0.dist-info → snowflake_ml_python-1.7.2.dist-info}/LICENSE.txt +0 -0
  53. {snowflake_ml_python-1.7.0.dist-info → snowflake_ml_python-1.7.2.dist-info}/top_level.txt +0 -0
@@ -1,22 +1,23 @@
1
- snowflake/cortex/__init__.py,sha256=LjSOnx-dbbLaPREJnEDYMPSTeitdn2CNpUUrR9ro-DY,636
1
+ snowflake/cortex/__init__.py,sha256=IZra16r_FeqcwdtCUE8Lj0gIsTDq7VGlux8xDnnq42U,770
2
2
  snowflake/cortex/_classify_text.py,sha256=1SnEdAnQ1IbCKp1bUvQSW7zhGtcS_8qk34X1sVQL37U,1338
3
- snowflake/cortex/_complete.py,sha256=UD9WB9w7VIpEfXu0iylYfcnmBxNScTZdLBbdA4Y3O64,11309
3
+ snowflake/cortex/_complete.py,sha256=AvE5pNQ8hmWAHUHh8K8NCZLSh_UutrTOD7iQi85-m20,13053
4
4
  snowflake/cortex/_embed_text_1024.py,sha256=zQp2F3MTAxacnIJo7zu8OHkXmX-xi8YzoUcs_FM48uo,1381
5
5
  snowflake/cortex/_embed_text_768.py,sha256=lTus5A1zehbzX4FV6IYZ8bl66QoxUiC_ZilYeBLdLOE,1377
6
6
  snowflake/cortex/_extract_answer.py,sha256=hmJG0iVEe_ww-ll9XEtIL_xPOiNitycUkXBI6WwgfzA,1342
7
+ snowflake/cortex/_finetune.py,sha256=V-cb1M-TDurjO-F25E1CwviXp2r-QCcu6NjsVE6icOg,10952
7
8
  snowflake/cortex/_sentiment.py,sha256=6_RfOKpwoH0k1puvMaj2TP-0RHQvbkLqrorFvmhdx3E,1206
8
- snowflake/cortex/_sse_client.py,sha256=_GGmxskEQPVJ2bE3LHySnPFl29CP4YGM4_xmR_Kk-WA,2485
9
+ snowflake/cortex/_sse_client.py,sha256=sLYgqAfTOPADCnaWH2RWAJi8KbU_7gSRsTUDcDD5Tl8,5239
9
10
  snowflake/cortex/_summarize.py,sha256=bwpFBzBGmNQSoJqKs3IB5wASjAREnC5ZnViSuZK5IrU,1059
10
11
  snowflake/cortex/_translate.py,sha256=69YUps6mnhzVdubdU_H0IfUAlbBwF9OPemFEQ34P-ts,1404
11
- snowflake/cortex/_util.py,sha256=uZQNsG8uTrlsao0a3A_BtNJQw6xCGgWjXscgZf9beUs,2209
12
- snowflake/ml/version.py,sha256=3BlKlH_13PScPdkvTQUJcDra8sVjrXpEv9289UFsNNI,16
12
+ snowflake/cortex/_util.py,sha256=cwRGgrcUo3E05ZaIDT9436vXLQ7GfuBVAjR0QeQ2bDE,3320
13
+ snowflake/ml/version.py,sha256=wJaJaqPpO6Ic3Pl_5e81zlGKYqi1rf5q8V10jTUEDjA,16
13
14
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
14
15
  snowflake/ml/_internal/env_utils.py,sha256=J_jitp8jvDoC3a79EbMSDatFRYw-HiXaI9vR81bhtU8,28075
15
16
  snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
16
17
  snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
17
18
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
18
19
  snowflake/ml/_internal/telemetry.py,sha256=xgpJtUgKNZXrhf9u4G-0IBoSX7QXB5goLC5sHETiJHc,29850
19
- snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
20
+ snowflake/ml/_internal/type_utils.py,sha256=x0sm7lhpDyjdA1G7KvJb06z4PEGsogWiMwFrskPTWkA,2197
20
21
  snowflake/ml/_internal/exceptions/dataset_error_messages.py,sha256=h7uGJbxBM6se-TW_64LKGGGdBCbwflzbBnmijWKX3Gc,285
21
22
  snowflake/ml/_internal/exceptions/dataset_errors.py,sha256=TqESe8cDfWurJdv5X0DOwgzBfHCEqga_F3WQipYbdqg,741
22
23
  snowflake/ml/_internal/exceptions/error_codes.py,sha256=S1N9TvjKlAl3GppkcS8y8xnsOzD2b9kOHeLqWhJV0uk,5519
@@ -35,6 +36,7 @@ snowflake/ml/_internal/utils/db_utils.py,sha256=HBAY0-XHzCP4ai5q3Yqd8O19Ar_Q9J3x
35
36
  snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
36
37
  snowflake/ml/_internal/utils/identifier.py,sha256=fUYXjXKXAkjLUZpomneMHo2wR4_ZNP4ak-5OJxeUS-g,12467
37
38
  snowflake/ml/_internal/utils/import_utils.py,sha256=iUIROZdiTGy73UCGpG0N-dKtK54H0ymNVge_QNQYY3A,3220
39
+ snowflake/ml/_internal/utils/jwt_generator.py,sha256=bj7Ltnw68WjRcxtV9t5xrTRvV5ETnvovB-o3Y8QWNBg,5357
38
40
  snowflake/ml/_internal/utils/parallelize.py,sha256=Q6_-P2t4DoYNO8DyC1kOl7H3qNL-bUK6EgtlQ_b5ThY,4534
39
41
  snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=FwdLHFhxi3CAQQduGjFavEBmkD9Ra6ZTkt6Eub-WoSA,5168
40
42
  snowflake/ml/_internal/utils/query_result_checker.py,sha256=h1nbUImdB9lSNCON3uIA0xCm8_JrS-TE-jQXJJs9WfU,10668
@@ -46,6 +48,7 @@ snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=pV8m0d4xfG2_Cl25
46
48
  snowflake/ml/_internal/utils/sql_identifier.py,sha256=A5mfeDuz4z6VuUYG3EBpDyQQQCNiRtjVS1WNWAoiqq8,4682
47
49
  snowflake/ml/_internal/utils/table_manager.py,sha256=pU7v8Cx-jGObf6RtTmfCmALfhbpJD-lL45T1gWX1nSY,4982
48
50
  snowflake/ml/_internal/utils/temp_file_utils.py,sha256=0-HTjXdxVt0kE6XcgyvRvY0btflWlmotP2bMXVpFJPA,1553
51
+ snowflake/ml/data/__init__.py,sha256=vTUXLV3r8CoPkepoEzj5HSpKiaHH4MrthXb9RyclVto,275
49
52
  snowflake/ml/data/data_connector.py,sha256=iOOEkRsy11acWZZnLJj6EDgLM63Q8GY-1htO0l7m9Wo,8711
50
53
  snowflake/ml/data/data_ingestor.py,sha256=Nrj5l0cVnoXWI6Ilig-r_pGS902xkZATbqh3OsV53NI,1017
51
54
  snowflake/ml/data/data_source.py,sha256=dRemXGi_HHQdn6gaNkxxGJixnQPuUYFDP8NBjmB_ZMk,518
@@ -96,66 +99,66 @@ snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCr
96
99
  snowflake/ml/lineage/lineage_node.py,sha256=e6L4bdYDSVgTv0BEfqgPQWNoDiTiuI7HmfJ6n-WmNLE,5812
97
100
  snowflake/ml/model/__init__.py,sha256=EvPtblqPN6_T6dyVfaYUxCfo_M7D2CQ1OR5giIH4TsQ,314
98
101
  snowflake/ml/model/custom_model.py,sha256=O60mjz2Vy8A0Rt3obq43zBT3BxkU7CIcN0AkHsOgHZI,11221
99
- snowflake/ml/model/model_signature.py,sha256=c_e8NycPslxxOaQPIUDxJ2HPyLk_64IZe_YkrDkmjpg,29588
100
- snowflake/ml/model/type_hints.py,sha256=ahAZQvpt9tip69zwcPSzvnjy5pJv_LWruN6ZAautu9k,8912
102
+ snowflake/ml/model/model_signature.py,sha256=gZnZPs9zTCYkeFoiQzoGUQYZMydYjzH-4xPTzfqt4hU,30496
103
+ snowflake/ml/model/type_hints.py,sha256=9GPwEuG6B6GSWOXdOy8B1Swz6yDngL865yEtJMd0v1U,8883
101
104
  snowflake/ml/model/_client/model/model_impl.py,sha256=pqjK8mSZIQJ_30tRWWFPIo8X35InSVoAunXlQNtSJEM,15369
102
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=cZNsiQmV3vd0jka9VRLSCGI5eNzW5GGF71YVCyyWxVQ,39038
105
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=tGfSR4dF8okdBPeAu7yWVSLtwvnvhnJr9xalKbQZw5M,40144
103
106
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=7cGx8zYzye2_cvZnyGxoukPtT6Q-Kexd-s4yeZmpmj8,4890
104
- snowflake/ml/model/_client/ops/model_ops.py,sha256=-PfOpjaOBh7UmAvgg3c3fLGNX_zwDpi9QFu0FJhJHLk,42705
105
- snowflake/ml/model/_client/ops/service_ops.py,sha256=KPaceF1kesP0Fq2Nf0MxnYiZFEQMDG9bovHOD8dvHTE,18458
107
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=didFBsjb7KJYV_586TUK4c9DudVQvjzlphEXJW0AnmY,43935
108
+ snowflake/ml/model/_client/ops/service_ops.py,sha256=t_yLtHlAzHc28XDZ543yAALY5iVsRwVw4i9mtiPaXpQ,19237
106
109
  snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=uyh5k_u8mVP5T4lf0jq8s2cFuiTsbV_nJL6z1Zum2rM,4456
107
110
  snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=eaulF6OFNuDfQz3oPYlDjP26Ww2jWWatm81dCbg602E,825
108
111
  snowflake/ml/model/_client/sql/_base.py,sha256=Qrm8M92g3MHb-QnSLUlbd8iVKCRxLhG_zr5M2qmXwJ8,1473
109
- snowflake/ml/model/_client/sql/model.py,sha256=ETWd3OVv1f8CJ-6xFYGJ7fSG9Uw4Edn9fWqW8YAPtPA,6264
112
+ snowflake/ml/model/_client/sql/model.py,sha256=o36oPq4aU9TwahqY2uODYvICxmj1orLztijJ0yMbWnM,5852
110
113
  snowflake/ml/model/_client/sql/model_version.py,sha256=hNMlmwN5JQngKuaeUYV2Bli73RMnHmVH01ABX9NBHFk,20686
111
- snowflake/ml/model/_client/sql/service.py,sha256=puIGRkEtDTQ4J1ccUslMmWvfkbHv2omKho4OHKYVIjU,9339
112
- snowflake/ml/model/_client/sql/stage.py,sha256=hrCh9P9F4l5R0hLr2r-wLDIEc4XYHMFdX1wNRveMVt0,819
114
+ snowflake/ml/model/_client/sql/service.py,sha256=fvQRhRGU4FBeOBouIoQByTvfQg-qbEQKplCG99BPmL0,10408
115
+ snowflake/ml/model/_client/sql/stage.py,sha256=165vyAtrScSQWJB8wLXKRUO1QvHTWDmPykeWOyxrDRg,826
113
116
  snowflake/ml/model/_client/sql/tag.py,sha256=pwwrcyPtSnkUfDzL3M8kqM0KSx7CaTtgty3HDhVC9vg,4345
114
117
  snowflake/ml/model/_model_composer/model_composer.py,sha256=535ElL3Kw8eoUjL7fHd-K20eDCBqvJFwowUx2_UOCl8,6712
115
118
  snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=X6-cKLBZ1X2liIjWnyrd9efQaQhwIoxRSE90Zs0kAZo,7822
116
119
  snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=akDY_lM3srumPHjmL7AUl782eARg1rWTIdLu-U0Jjwc,2720
117
120
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2cE463GKWAJCrqEYD1s8IPzd3iPu0X0eQ12NnXQhGBM,2556
118
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=eQ-FLUGt5r0P9UtDwWFoqSJzGeLBvwEMoHAbe8aCNsE,1418
121
+ snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=JbCgx__GqkHi6n_ceYdZi_ywNKK38u-d5c5Afg9QUi0,1476
119
122
  snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template,sha256=L5R04QeoW6dH1PdEy3qo1LS478rTmvvRmrwlgqVwimg,1504
120
123
  snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=NUDSyFFAdEZEWtSkvYxkU9vB-NTjcTg6sjkrNpcmF6A,1418
121
124
  snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=LBZsXzkGj-OiL9Tw4S0yBJlWLIzwzefCL6iO964gdCw,7019
122
125
  snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
123
126
  snowflake/ml/model/_packager/model_packager.py,sha256=EhpEmfd2oDYuIrOYFOadI0OOFJa9bleMvI1WTHQqjE8,5806
124
- snowflake/ml/model/_packager/model_env/model_env.py,sha256=uUTbCHFTJJ6iMbhu7LkU3PFNB4VohbEFlBMLd1ZDyS8,17008
127
+ snowflake/ml/model/_packager/model_env/model_env.py,sha256=968vlQJrI2_2rQ88cl3uXe1FP5kG-zG4UkUySRDgFt4,17517
125
128
  snowflake/ml/model/_packager/model_handlers/_base.py,sha256=qQS1ZSz1Ikdj0TvyLU9n8K6KAj-PknL4s801qpnWodo,7164
126
- snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=CE6nUMrxxP7IE7gLDsKY9SPEqg0KEvSWgRFgb069P4A,9236
127
- snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=Cid5hTsGJDaEQfIlSPqNKPB0HbJByOe85ZkUwn3M56M,10651
128
- snowflake/ml/model/_packager/model_handlers/custom.py,sha256=I2seoMoVLOjnf7_tbqTe54BbbjUJ9lHSKuAaSst4z-Q,8193
129
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=KwBZVSlp6HcCXd7T_zJJE8s5W9YGeXAD_kTpKhrLVzE,9209
130
+ snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=psBv5txOfAjKMqQnxg3sLPd1I7JYtruslbGUkhULtTs,10704
131
+ snowflake/ml/model/_packager/model_handlers/custom.py,sha256=i9jhMzNrgxEdiJLw9ojeiMaCWYk5nVj48JyS_e87RpM,8333
129
132
  snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=BzeZgY4Z8GTtgc2sv65wjLlONgfEH1_yWBd2N4RDCMg,21397
130
- snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=kviHpVlBVon1dRjAD7jDhE331-QiQYSxxWo3ukzTSgo,10999
133
+ snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=E0667G5FFfMssaXjkM77vtf_cyQJg53OKgUJOBmWhaQ,11092
131
134
  snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=A3HnCa065jtHsRM40ZxfLv5alk0RYhVmsU4Jt2klRwQ,9189
132
135
  snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=DDcf85xisPLT1PyXdmPrjJpIIepkdmWNXCOpT_dCncw,8294
133
136
  snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=f21fJw2wPsXzzhv71Gi1eHctSlyJ6NAR1EQX5iUL5M8,9842
134
- snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=Iq8r6EcP7001PF4Vf-frmUBNtOSs-Lrzana7QsxIafY,11654
135
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=dd2rEcaFbGfMatCnfP0DGwgRbERgO5gHm_jy_FXuIQc,12123
136
- snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=OhqC4GcmDDz4IOgDITLnG7KFY3zVtzOJX3wAtLv0bI0,8448
137
- snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=IvNL1Fqksfp7nAcXIgOMkzPy8kEylrS-xHWu0dkRLDY,8412
137
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=dwwETBdJJM3AVfl3R6VvvVOZQHgnwIuk9dUUCDOs-w0,14111
138
+ snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=uhsJ3zK24aavBRO5gNyxv8BHqU9n1TPUBYm1qHTuaxE,12176
139
+ snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=SkbnvkElK4UIMgygv9EK9f5hBxWZ2YDroymUC9uBsBk,9169
140
+ snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=BIdRINO1xZ5uHrR9uA0vExWQymOryTaSpyAMpCCtz8U,8036
138
141
  snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=iQkwJ_Ksly3ZSNNjnW2pRetjpyLLneDT5QaeHrpidnw,11542
139
142
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
140
- snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
143
+ snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=yOrF0WBkFh5NvyzZMSZHpsv_W1iR5hRpPH1bwzpSH_Q,78
141
144
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=GmiqqI-XVjrOX7cSa5GKerKhfHptlsg74MKqTGwJ5Jk,1949
142
145
  snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=Fn0yrMiTRmp2lgy15DJvIeT_PMOu_ACNO37b9o4_q2Q,18787
143
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=5tl1W9rDDYkDIkVx4DuiIkGn5K9-zzcJqO9rRjC0Vio,2714
146
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=5Sdh1_NCKycLvhMO1IbLyXdl4RO_vnw9Z9-AHf5ojpE,2839
144
147
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
145
148
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
146
149
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
147
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=fRPGbrnq67PRo3e_uVk01TKZ7AZKYM-_lryePkNk5AY,239
148
- snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=9wOtBB1A2Spnsgfs5CjCoLR3oL5JAUnSG-qP0C5DR1Q,5147
149
- snowflake/ml/model/_packager/model_task/model_task_utils.py,sha256=KSqD71XbwDXAkLpbekhbRjgZKP8ycZ_hp14mJFAO1pY,6282
150
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=eR_qxEwsmzaeaRYH9K4wUAG7bhpqZvn07en2vfRV4c4,1459
151
+ snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=G52nrjzcZiWBJaed6Z1qKq-HjqtnG2MnywDdU9lPusg,5051
152
+ snowflake/ml/model/_packager/model_task/model_task_utils.py,sha256=0aEUfg71bP5-RkwmzOJBe51yHxLRrtM17tUBoCiuMMk,6310
150
153
  snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
151
154
  snowflake/ml/model/_signatures/builtins_handler.py,sha256=nF-2ptQjeu7ikO72_d14jk1N6BVbmy-mjtZ9I1c7-Qg,2741
152
- snowflake/ml/model/_signatures/core.py,sha256=xj4QwfVixzpUjVMfN1-d2l8LMi7b6qH7QvnvD3oMxSw,18480
155
+ snowflake/ml/model/_signatures/core.py,sha256=C9iTtdaXJVMDkOqCH5Tie7ucib4d0pBJ0oXJWAqur3s,20233
153
156
  snowflake/ml/model/_signatures/numpy_handler.py,sha256=wE9GNuNNmC-0jLmz8lI_UhyETNkKUvftIABAuNsSe94,5858
154
- snowflake/ml/model/_signatures/pandas_handler.py,sha256=yRemJX7cZjKJ3pBDgiaHht3WN4Hs-C4OLOxW16gP9P0,9266
155
- snowflake/ml/model/_signatures/pytorch_handler.py,sha256=rF5StgnAo9qtFs9Rvb5SQVhneJf7ZDgfDD5vJsL0Ivk,4599
156
- snowflake/ml/model/_signatures/snowpark_handler.py,sha256=EwJyBsLrLKrBL0ctDK_yuoPm49nTavbh3EXOniWwCVE,5977
157
- snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=VZcws6svwupulhDodRYTn6GmlWZRqY9fW_gLkT8slxA,6082
158
- snowflake/ml/model/_signatures/utils.py,sha256=lBEAqgiTzFitL5EKSmVhKtHtLSYbwo8yGyTACaXWACQ,12976
157
+ snowflake/ml/model/_signatures/pandas_handler.py,sha256=ACv8egyiK2Sug8uhkQqMDGTTc9HPkI3-UZYMUxzSjLg,11145
158
+ snowflake/ml/model/_signatures/pytorch_handler.py,sha256=yEU-V_WRjE8Q7NdHyghl0iYpMiIDzGaIR5Pd_ixB1Hk,4631
159
+ snowflake/ml/model/_signatures/snowpark_handler.py,sha256=2_AY1ssucMICKSPeDjf3mV4WT5farKYdnYkHsvhHZ20,6066
160
+ snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=9bUbxtHpl4kEoFzeDJF87bQPb8RdLLm9OV23-aUyW3s,6114
161
+ snowflake/ml/model/_signatures/utils.py,sha256=1E_mV1qdUuob8tjB8WaOEfuo2rmQ2FtOgTNyXZGzoJg,13108
159
162
  snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
160
163
  snowflake/ml/modeling/_internal/constants.py,sha256=aJGngY599w3KqN8cDZCYrjbWe6UwYIbgv0gx0Ukdtc0,105
161
164
  snowflake/ml/modeling/_internal/estimator_utils.py,sha256=mbMm8_5tQde_sQDwI8pS3ljHZ8maCHl2Shb5nQwLYac,11872
@@ -260,8 +263,8 @@ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=uFOYWOH
260
263
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
261
264
  snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=OHjaB-MgZvuYFtQawAC1e5rWw98n2n4jpubjdDxoa6w,52067
262
265
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
263
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=u6VzvMlONA__b6hXqHEd0wekl355SbXxr1z0J6CtXHA,51635
264
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=NoRt4FFkTF4E5eKFYOYhGFkATlB3XnxPwIBRwjo-3wU,51137
266
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=7Sv6ovpKWEVX9tgo9YgPIRPqHmZ9752PacHzpw8YJpo,51570
267
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=V0EBtok8jgxDlkCR4M8lg2CW_UOVXmMS7AqOH8LNLEY,51072
265
268
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
266
269
  snowflake/ml/modeling/linear_model/ard_regression.py,sha256=DEX9-MxB9zuw2kdNZM8fjoUHBwRtmoIxeV6zzDvHIm0,51827
267
270
  snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=gc8wvc6ewNnA4L0pSRMgI_we8AN-tNl6FxGgb37xArk,52197
@@ -377,24 +380,23 @@ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=2QEK6-NihXjKXO8Ue-fOZDyuc
377
380
  snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=ZorEmRohT2-AUdS8fK0xH8BdB8ENxvVMMDYy34Jzm1o,61703
378
381
  snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=67jh9RosrTeYCWsJbnJ6_MQICHeG22z-DMy8CegP8Vg,62383
379
382
  snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=7_ZwF_QvVqBrkFx_zgGgLXyxtbX26XrWWLozAF-EBB0,61908
380
- snowflake/ml/monitoring/model_monitor.py,sha256=C43rXGzbJb5gwkLsFg8hfICgLaufKJDFcRs35ipQRns,5387
383
+ snowflake/ml/monitoring/model_monitor.py,sha256=8vJf1YROmJgBLUtpaH-lGKSSJv9R7PxPaQnOdr_j5YE,2200
381
384
  snowflake/ml/monitoring/model_monitor_version.py,sha256=TlmDJZDE0lCVatRaBRgXIjzDF538nrMIc-zWj9MM_nk,46
382
385
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
383
- snowflake/ml/monitoring/_client/model_monitor_sql_client.py,sha256=6tx7qoH6yMLiccDk00Ln4KHIiuvGTQsLYfxemGqN_WY,57962
386
+ snowflake/ml/monitoring/_client/model_monitor_sql_client.py,sha256=Qr3L6bs84ID5_1TvY6wf5YK2kn3ZVZ-Havo242i3MiY,12710
384
387
  snowflake/ml/monitoring/_client/queries/record_count.ssql,sha256=Bd1uNMwhPKqPyrDd5ug8iY493t9KamJjrlo82OAfmjY,335
385
388
  snowflake/ml/monitoring/_client/queries/rmse.ssql,sha256=OEJiSStRz9-qKoZaFvmubtY_n0xMUjyVU2uiQHCp7KU,822
386
- snowflake/ml/monitoring/_manager/model_monitor_manager.py,sha256=dunte0Tyo17Dxt6hvTI3l6O9PXgryxAfGBgy8AIIoAw,17417
387
- snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=rOKG9JirzptIaVFG9rCjjNdc1_eCzGTdjiAcrNSmxjU,867
388
- snowflake/ml/monitoring/entities/model_monitor_interval.py,sha256=yDUaAXmYRQEFGW9rXihrEs5p0Ur94LCnoqKBjqi0Cyk,1681
389
- snowflake/ml/monitoring/entities/output_score_type.py,sha256=UJyS4z5hncRZ0agVNa6_X041RY9q3Us-6Bh3dPVAmEw,2982
389
+ snowflake/ml/monitoring/_manager/model_monitor_manager.py,sha256=_-vxqnHqohTHTrwfURjPXijyAeh1mTRdHCG436GaBik,10314
390
+ snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=IxEiee1HfBXCQGzJOZbrDrvoV8J1tDNk43ygNuN00Io,1793
390
391
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
391
- snowflake/ml/registry/registry.py,sha256=ppEnhweTvBzA68NO3IE95kJy9RMGuBJHfz6rvgswqR8,24428
392
+ snowflake/ml/registry/registry.py,sha256=5aBedBH8NiFkJJe1Pnggsrjnn0ixdg1oqtUHWyz3wsE,23824
392
393
  snowflake/ml/registry/_manager/model_manager.py,sha256=gFr1EqaMR2Eb4erwVz7fi7xK1G1YsFXz1PF5GvOR0pg,12131
394
+ snowflake/ml/utils/authentication.py,sha256=Wx1kVBZ9XBDuKkRHpPEB2pBxpiJepVLFAirDMx4m5Gk,2612
393
395
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
394
396
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
395
397
  snowflake/ml/utils/sql_client.py,sha256=z4Rhi7pQz3s9cyu_Uzfr3deCnrkCdFh9IYIvicsuwdc,692
396
- snowflake_ml_python-1.7.0.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
397
- snowflake_ml_python-1.7.0.dist-info/METADATA,sha256=e7xopfWC3OKJpcZ57-PYr02ie8Eop4eLmKDhbGfQJ_s,64150
398
- snowflake_ml_python-1.7.0.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
399
- snowflake_ml_python-1.7.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
400
- snowflake_ml_python-1.7.0.dist-info/RECORD,,
398
+ snowflake_ml_python-1.7.2.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
399
+ snowflake_ml_python-1.7.2.dist-info/METADATA,sha256=GwZOHmNQAKaMDP3VeWIDWC-OMhPqldoJaYPrR-_iWGw,67429
400
+ snowflake_ml_python-1.7.2.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
401
+ snowflake_ml_python-1.7.2.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
402
+ snowflake_ml_python-1.7.2.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.2.0)
2
+ Generator: setuptools (75.6.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,46 +0,0 @@
1
- from enum import Enum
2
-
3
-
4
- class ModelMonitorAggregationWindow(Enum):
5
- WINDOW_1_HOUR = 60
6
- WINDOW_1_DAY = 24 * 60
7
-
8
- def __init__(self, minutes: int) -> None:
9
- super().__init__()
10
- self.minutes = minutes
11
-
12
-
13
- class ModelMonitorRefreshInterval:
14
- EVERY_30_MINUTES = "30 minutes"
15
- HOURLY = "1 hours"
16
- EVERY_6_HOURS = "6 hours"
17
- EVERY_12_HOURS = "12 hours"
18
- DAILY = "1 days"
19
- WEEKLY = "7 days"
20
- BIWEEKLY = "14 days"
21
- MONTHLY = "30 days"
22
-
23
- _ALLOWED_TIME_UNITS = {"minutes": 1, "hours": 60, "days": 24 * 60}
24
-
25
- def __init__(self, raw_time_str: str) -> None:
26
- try:
27
- num_units_raw, time_units = raw_time_str.strip().split(" ")
28
- num_units = int(num_units_raw) # try to cast
29
- except Exception as e:
30
- raise ValueError(
31
- f"""Failed to parse refresh interval with exception {e}.
32
- Provide '<num> <minutes | hours | days>'.
33
- See https://docs.snowflake.com/en/sql-reference/sql/create-dynamic-table#required-parameters for more info."""
34
- )
35
- if time_units.lower() not in self._ALLOWED_TIME_UNITS:
36
- raise ValueError(
37
- """Invalid time unit in refresh interval. Provide '<num> <minutes | hours | days>'.
38
- See https://docs.snowflake.com/en/sql-reference/sql/create-dynamic-table#required-parameters for more info."""
39
- )
40
- minutes_multiplier = self._ALLOWED_TIME_UNITS[time_units.lower()]
41
- self.minutes = num_units * minutes_multiplier
42
-
43
- def __eq__(self, value: object) -> bool:
44
- if not isinstance(value, ModelMonitorRefreshInterval):
45
- return False
46
- return self.minutes == value.minutes
@@ -1,90 +0,0 @@
1
- from __future__ import annotations
2
-
3
- from enum import Enum
4
- from typing import List, Mapping
5
-
6
- from snowflake.ml._internal.utils import sql_identifier
7
- from snowflake.ml.model import type_hints
8
- from snowflake.snowpark import types
9
-
10
- # Accepted data types for each OutputScoreType.
11
- REGRESSION_DATA_TYPES = (
12
- types.ByteType,
13
- types.ShortType,
14
- types.IntegerType,
15
- types.LongType,
16
- types.FloatType,
17
- types.DoubleType,
18
- types.DecimalType,
19
- )
20
- CLASSIFICATION_DATA_TYPES = (
21
- types.ByteType,
22
- types.ShortType,
23
- types.IntegerType,
24
- types.BooleanType,
25
- types.BinaryType,
26
- )
27
- PROBITS_DATA_TYPES = (
28
- types.ByteType,
29
- types.ShortType,
30
- types.IntegerType,
31
- types.LongType,
32
- types.FloatType,
33
- types.DoubleType,
34
- types.DecimalType,
35
- )
36
-
37
-
38
- # OutputScoreType enum
39
- class OutputScoreType(Enum):
40
- UNKNOWN = "UNKNOWN"
41
- REGRESSION = "REGRESSION"
42
- CLASSIFICATION = "CLASSIFICATION"
43
- PROBITS = "PROBITS"
44
-
45
- @classmethod
46
- def deduce_score_type(
47
- cls,
48
- table_schema: Mapping[str, types.DataType],
49
- prediction_columns: List[sql_identifier.SqlIdentifier],
50
- task: type_hints.Task,
51
- ) -> OutputScoreType:
52
- """Find the score type for monitoring given a table schema and the task.
53
-
54
- Args:
55
- table_schema: Dictionary of column names and types in the source table.
56
- prediction_columns: List of prediction columns.
57
- task: Enum value for the task of the model.
58
-
59
- Returns:
60
- Enum value for the score type, informing monitoring table set up.
61
-
62
- Raises:
63
- ValueError: If prediction type fails to align with task.
64
- """
65
- # Already validated we have just one prediction column type
66
- prediction_column_type = {table_schema[column_name] for column_name in prediction_columns}.pop()
67
-
68
- if task == type_hints.Task.TABULAR_REGRESSION:
69
- if isinstance(prediction_column_type, REGRESSION_DATA_TYPES):
70
- return OutputScoreType.REGRESSION
71
- else:
72
- raise ValueError(
73
- f"Expected prediction column type to be one of {REGRESSION_DATA_TYPES} "
74
- f"for REGRESSION task. Found: {prediction_column_type}."
75
- )
76
-
77
- elif task == type_hints.Task.TABULAR_BINARY_CLASSIFICATION:
78
- if isinstance(prediction_column_type, CLASSIFICATION_DATA_TYPES):
79
- return OutputScoreType.CLASSIFICATION
80
- elif isinstance(prediction_column_type, PROBITS_DATA_TYPES):
81
- return OutputScoreType.PROBITS
82
- else:
83
- raise ValueError(
84
- f"Expected prediction column type to be one of {CLASSIFICATION_DATA_TYPES} "
85
- f"or one of {PROBITS_DATA_TYPES} for CLASSIFICATION task. "
86
- f"Found: {prediction_column_type}."
87
- )
88
-
89
- else:
90
- raise ValueError(f"Received unsupported task for model monitoring: {task}.")