snowflake-ml-python 1.6.4__py3-none-any.whl → 1.7.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (176) hide show
  1. snowflake/cortex/__init__.py +4 -0
  2. snowflake/cortex/_complete.py +107 -64
  3. snowflake/cortex/_finetune.py +273 -0
  4. snowflake/cortex/_sse_client.py +91 -28
  5. snowflake/cortex/_util.py +30 -1
  6. snowflake/ml/_internal/telemetry.py +4 -2
  7. snowflake/ml/_internal/type_utils.py +3 -3
  8. snowflake/ml/_internal/utils/import_utils.py +31 -0
  9. snowflake/ml/_internal/utils/snowpark_dataframe_utils.py +13 -0
  10. snowflake/ml/data/__init__.py +5 -0
  11. snowflake/ml/data/_internal/arrow_ingestor.py +8 -0
  12. snowflake/ml/data/data_connector.py +1 -1
  13. snowflake/ml/data/torch_utils.py +33 -14
  14. snowflake/ml/feature_store/examples/airline_features/features/plane_features.py +5 -3
  15. snowflake/ml/feature_store/examples/airline_features/features/weather_features.py +7 -5
  16. snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py +4 -2
  17. snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py +3 -1
  18. snowflake/ml/feature_store/examples/example_helper.py +6 -3
  19. snowflake/ml/feature_store/examples/new_york_taxi_features/features/location_features.py +4 -2
  20. snowflake/ml/feature_store/examples/new_york_taxi_features/features/trip_features.py +4 -2
  21. snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py +3 -1
  22. snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py +3 -1
  23. snowflake/ml/feature_store/feature_store.py +1 -2
  24. snowflake/ml/feature_store/feature_view.py +5 -1
  25. snowflake/ml/model/_client/model/model_version_impl.py +145 -11
  26. snowflake/ml/model/_client/ops/model_ops.py +56 -16
  27. snowflake/ml/model/_client/ops/service_ops.py +46 -30
  28. snowflake/ml/model/_client/service/model_deployment_spec.py +19 -8
  29. snowflake/ml/model/_client/service/model_deployment_spec_schema.py +3 -1
  30. snowflake/ml/model/_client/sql/service.py +25 -1
  31. snowflake/ml/model/_model_composer/model_composer.py +2 -0
  32. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +4 -0
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +1 -0
  34. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +1 -1
  36. snowflake/ml/model/_packager/model_env/model_env.py +12 -0
  37. snowflake/ml/model/_packager/model_handlers/_utils.py +6 -2
  38. snowflake/ml/model/_packager/model_handlers/catboost.py +4 -7
  39. snowflake/ml/model/_packager/model_handlers/custom.py +5 -1
  40. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +10 -1
  41. snowflake/ml/model/_packager/model_handlers/lightgbm.py +5 -7
  42. snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +8 -1
  43. snowflake/ml/model/_packager/model_handlers/sklearn.py +51 -7
  44. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +8 -66
  45. snowflake/ml/model/_packager/model_handlers/tensorflow.py +23 -6
  46. snowflake/ml/model/_packager/model_handlers/torchscript.py +14 -14
  47. snowflake/ml/model/_packager/model_handlers/xgboost.py +10 -40
  48. snowflake/ml/model/_packager/model_meta/_packaging_requirements.py +2 -3
  49. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +5 -0
  50. snowflake/ml/model/_packager/model_packager.py +0 -11
  51. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +2 -10
  52. snowflake/ml/model/_packager/model_runtime/model_runtime.py +4 -9
  53. snowflake/ml/model/_packager/{model_handlers/model_objective_utils.py → model_task/model_task_utils.py} +14 -26
  54. snowflake/ml/model/_signatures/core.py +63 -16
  55. snowflake/ml/model/_signatures/pandas_handler.py +87 -27
  56. snowflake/ml/model/_signatures/pytorch_handler.py +2 -2
  57. snowflake/ml/model/_signatures/snowpark_handler.py +2 -1
  58. snowflake/ml/model/_signatures/tensorflow_handler.py +2 -2
  59. snowflake/ml/model/_signatures/utils.py +4 -0
  60. snowflake/ml/model/custom_model.py +47 -7
  61. snowflake/ml/model/model_signature.py +40 -9
  62. snowflake/ml/model/type_hints.py +9 -1
  63. snowflake/ml/modeling/_internal/estimator_utils.py +13 -0
  64. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +7 -2
  65. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +16 -5
  66. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -2
  67. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +9 -3
  68. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -8
  69. snowflake/ml/modeling/cluster/agglomerative_clustering.py +17 -19
  70. snowflake/ml/modeling/cluster/dbscan.py +5 -2
  71. snowflake/ml/modeling/cluster/feature_agglomeration.py +7 -19
  72. snowflake/ml/modeling/cluster/k_means.py +14 -19
  73. snowflake/ml/modeling/cluster/mini_batch_k_means.py +3 -3
  74. snowflake/ml/modeling/cluster/optics.py +6 -6
  75. snowflake/ml/modeling/cluster/spectral_clustering.py +4 -3
  76. snowflake/ml/modeling/compose/column_transformer.py +15 -5
  77. snowflake/ml/modeling/compose/transformed_target_regressor.py +7 -6
  78. snowflake/ml/modeling/covariance/elliptic_envelope.py +1 -1
  79. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +1 -1
  80. snowflake/ml/modeling/covariance/min_cov_det.py +2 -2
  81. snowflake/ml/modeling/covariance/oas.py +1 -1
  82. snowflake/ml/modeling/decomposition/kernel_pca.py +2 -2
  83. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +5 -12
  84. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +5 -12
  85. snowflake/ml/modeling/decomposition/pca.py +28 -15
  86. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +6 -0
  87. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -12
  88. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -11
  89. snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -8
  90. snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -8
  91. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +21 -2
  92. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +18 -2
  93. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +2 -0
  94. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +2 -0
  95. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +21 -8
  96. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +21 -11
  97. snowflake/ml/modeling/ensemble/random_forest_classifier.py +21 -2
  98. snowflake/ml/modeling/ensemble/random_forest_regressor.py +18 -2
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +2 -1
  100. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +5 -3
  101. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +2 -2
  102. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +2 -4
  103. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +2 -4
  104. snowflake/ml/modeling/linear_model/ard_regression.py +5 -10
  105. snowflake/ml/modeling/linear_model/bayesian_ridge.py +5 -11
  106. snowflake/ml/modeling/linear_model/elastic_net.py +3 -0
  107. snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -1
  108. snowflake/ml/modeling/linear_model/lars.py +0 -10
  109. snowflake/ml/modeling/linear_model/lars_cv.py +1 -11
  110. snowflake/ml/modeling/linear_model/lasso_cv.py +1 -1
  111. snowflake/ml/modeling/linear_model/lasso_lars.py +0 -10
  112. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -11
  113. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +0 -10
  114. snowflake/ml/modeling/linear_model/logistic_regression.py +28 -22
  115. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +30 -24
  116. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -1
  117. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -1
  118. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +4 -13
  119. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +4 -4
  120. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -1
  121. snowflake/ml/modeling/linear_model/perceptron.py +3 -3
  122. snowflake/ml/modeling/linear_model/ransac_regressor.py +3 -2
  123. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +14 -6
  124. snowflake/ml/modeling/linear_model/ridge_cv.py +17 -11
  125. snowflake/ml/modeling/linear_model/sgd_classifier.py +2 -2
  126. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +5 -1
  127. snowflake/ml/modeling/linear_model/sgd_regressor.py +12 -3
  128. snowflake/ml/modeling/manifold/isomap.py +1 -1
  129. snowflake/ml/modeling/manifold/mds.py +3 -3
  130. snowflake/ml/modeling/manifold/tsne.py +10 -4
  131. snowflake/ml/modeling/metrics/classification.py +12 -16
  132. snowflake/ml/modeling/metrics/ranking.py +3 -3
  133. snowflake/ml/modeling/metrics/regression.py +3 -3
  134. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +3 -3
  135. snowflake/ml/modeling/naive_bayes/categorical_nb.py +3 -3
  136. snowflake/ml/modeling/naive_bayes/complement_nb.py +3 -3
  137. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +3 -3
  138. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +10 -4
  139. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +5 -2
  140. snowflake/ml/modeling/neighbors/local_outlier_factor.py +2 -2
  141. snowflake/ml/modeling/neighbors/nearest_centroid.py +7 -14
  142. snowflake/ml/modeling/neighbors/nearest_neighbors.py +1 -1
  143. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +6 -1
  144. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -1
  145. snowflake/ml/modeling/neural_network/mlp_classifier.py +7 -1
  146. snowflake/ml/modeling/neural_network/mlp_regressor.py +3 -0
  147. snowflake/ml/modeling/pipeline/pipeline.py +16 -14
  148. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +8 -4
  149. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +9 -7
  150. snowflake/ml/modeling/svm/linear_svc.py +25 -16
  151. snowflake/ml/modeling/svm/linear_svr.py +23 -17
  152. snowflake/ml/modeling/svm/nu_svc.py +5 -3
  153. snowflake/ml/modeling/svm/nu_svr.py +3 -1
  154. snowflake/ml/modeling/svm/svc.py +9 -5
  155. snowflake/ml/modeling/svm/svr.py +3 -1
  156. snowflake/ml/modeling/tree/decision_tree_classifier.py +21 -2
  157. snowflake/ml/modeling/tree/decision_tree_regressor.py +18 -2
  158. snowflake/ml/modeling/tree/extra_tree_classifier.py +28 -9
  159. snowflake/ml/modeling/tree/extra_tree_regressor.py +18 -2
  160. snowflake/ml/monitoring/_client/model_monitor_sql_client.py +448 -0
  161. snowflake/ml/monitoring/_manager/model_monitor_manager.py +238 -0
  162. snowflake/ml/monitoring/entities/model_monitor_config.py +10 -10
  163. snowflake/ml/monitoring/model_monitor.py +37 -0
  164. snowflake/ml/registry/_manager/model_manager.py +15 -1
  165. snowflake/ml/registry/registry.py +32 -37
  166. snowflake/ml/version.py +1 -1
  167. {snowflake_ml_python-1.6.4.dist-info → snowflake_ml_python-1.7.1.dist-info}/METADATA +104 -12
  168. {snowflake_ml_python-1.6.4.dist-info → snowflake_ml_python-1.7.1.dist-info}/RECORD +172 -171
  169. {snowflake_ml_python-1.6.4.dist-info → snowflake_ml_python-1.7.1.dist-info}/WHEEL +1 -1
  170. snowflake/ml/monitoring/_client/model_monitor.py +0 -126
  171. snowflake/ml/monitoring/_client/model_monitor_manager.py +0 -361
  172. snowflake/ml/monitoring/_client/monitor_sql_client.py +0 -1335
  173. snowflake/ml/monitoring/entities/model_monitor_interval.py +0 -46
  174. /snowflake/ml/monitoring/{_client/model_monitor_version.py → model_monitor_version.py} +0 -0
  175. {snowflake_ml_python-1.6.4.dist-info → snowflake_ml_python-1.7.1.dist-info}/LICENSE.txt +0 -0
  176. {snowflake_ml_python-1.6.4.dist-info → snowflake_ml_python-1.7.1.dist-info}/top_level.txt +0 -0
@@ -1,22 +1,23 @@
1
- snowflake/cortex/__init__.py,sha256=LjSOnx-dbbLaPREJnEDYMPSTeitdn2CNpUUrR9ro-DY,636
1
+ snowflake/cortex/__init__.py,sha256=IZra16r_FeqcwdtCUE8Lj0gIsTDq7VGlux8xDnnq42U,770
2
2
  snowflake/cortex/_classify_text.py,sha256=1SnEdAnQ1IbCKp1bUvQSW7zhGtcS_8qk34X1sVQL37U,1338
3
- snowflake/cortex/_complete.py,sha256=UD9WB9w7VIpEfXu0iylYfcnmBxNScTZdLBbdA4Y3O64,11309
3
+ snowflake/cortex/_complete.py,sha256=AvE5pNQ8hmWAHUHh8K8NCZLSh_UutrTOD7iQi85-m20,13053
4
4
  snowflake/cortex/_embed_text_1024.py,sha256=zQp2F3MTAxacnIJo7zu8OHkXmX-xi8YzoUcs_FM48uo,1381
5
5
  snowflake/cortex/_embed_text_768.py,sha256=lTus5A1zehbzX4FV6IYZ8bl66QoxUiC_ZilYeBLdLOE,1377
6
6
  snowflake/cortex/_extract_answer.py,sha256=hmJG0iVEe_ww-ll9XEtIL_xPOiNitycUkXBI6WwgfzA,1342
7
+ snowflake/cortex/_finetune.py,sha256=V-cb1M-TDurjO-F25E1CwviXp2r-QCcu6NjsVE6icOg,10952
7
8
  snowflake/cortex/_sentiment.py,sha256=6_RfOKpwoH0k1puvMaj2TP-0RHQvbkLqrorFvmhdx3E,1206
8
- snowflake/cortex/_sse_client.py,sha256=_GGmxskEQPVJ2bE3LHySnPFl29CP4YGM4_xmR_Kk-WA,2485
9
+ snowflake/cortex/_sse_client.py,sha256=sLYgqAfTOPADCnaWH2RWAJi8KbU_7gSRsTUDcDD5Tl8,5239
9
10
  snowflake/cortex/_summarize.py,sha256=bwpFBzBGmNQSoJqKs3IB5wASjAREnC5ZnViSuZK5IrU,1059
10
11
  snowflake/cortex/_translate.py,sha256=69YUps6mnhzVdubdU_H0IfUAlbBwF9OPemFEQ34P-ts,1404
11
- snowflake/cortex/_util.py,sha256=uZQNsG8uTrlsao0a3A_BtNJQw6xCGgWjXscgZf9beUs,2209
12
- snowflake/ml/version.py,sha256=obH6Xd50oAoU4kk_69wcDJMG2t6jhxuGwhdQDL7x_nM,16
12
+ snowflake/cortex/_util.py,sha256=cwRGgrcUo3E05ZaIDT9436vXLQ7GfuBVAjR0QeQ2bDE,3320
13
+ snowflake/ml/version.py,sha256=QyWKL6Zvq-VDoZgBZ32iGHIzxeVh0z4fIKkiZHSX7t4,16
13
14
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
14
15
  snowflake/ml/_internal/env_utils.py,sha256=J_jitp8jvDoC3a79EbMSDatFRYw-HiXaI9vR81bhtU8,28075
15
16
  snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
16
17
  snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
17
18
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
18
- snowflake/ml/_internal/telemetry.py,sha256=XwzuyTVSDW7RyYLlC0ZsEij19ElFrm-OItLPQW5HeG4,29719
19
- snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
19
+ snowflake/ml/_internal/telemetry.py,sha256=xgpJtUgKNZXrhf9u4G-0IBoSX7QXB5goLC5sHETiJHc,29850
20
+ snowflake/ml/_internal/type_utils.py,sha256=x0sm7lhpDyjdA1G7KvJb06z4PEGsogWiMwFrskPTWkA,2197
20
21
  snowflake/ml/_internal/exceptions/dataset_error_messages.py,sha256=h7uGJbxBM6se-TW_64LKGGGdBCbwflzbBnmijWKX3Gc,285
21
22
  snowflake/ml/_internal/exceptions/dataset_errors.py,sha256=TqESe8cDfWurJdv5X0DOwgzBfHCEqga_F3WQipYbdqg,741
22
23
  snowflake/ml/_internal/exceptions/error_codes.py,sha256=S1N9TvjKlAl3GppkcS8y8xnsOzD2b9kOHeLqWhJV0uk,5519
@@ -34,7 +35,7 @@ snowflake/ml/_internal/lineage/lineage_utils.py,sha256=kxWW7fkSf1HiUQSks3VlzWynt
34
35
  snowflake/ml/_internal/utils/db_utils.py,sha256=HBAY0-XHzCP4ai5q3Yqd8O19Ar_Q9J3xD4jO6Fe7Zek,1668
35
36
  snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
36
37
  snowflake/ml/_internal/utils/identifier.py,sha256=fUYXjXKXAkjLUZpomneMHo2wR4_ZNP4ak-5OJxeUS-g,12467
37
- snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
38
+ snowflake/ml/_internal/utils/import_utils.py,sha256=iUIROZdiTGy73UCGpG0N-dKtK54H0ymNVge_QNQYY3A,3220
38
39
  snowflake/ml/_internal/utils/parallelize.py,sha256=Q6_-P2t4DoYNO8DyC1kOl7H3qNL-bUK6EgtlQ_b5ThY,4534
39
40
  snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=FwdLHFhxi3CAQQduGjFavEBmkD9Ra6ZTkt6Eub-WoSA,5168
40
41
  snowflake/ml/_internal/utils/query_result_checker.py,sha256=h1nbUImdB9lSNCON3uIA0xCm8_JrS-TE-jQXJJs9WfU,10668
@@ -42,16 +43,17 @@ snowflake/ml/_internal/utils/result.py,sha256=59Sz6MvhjakUNiONwg9oi2544AmORCJR3X
42
43
  snowflake/ml/_internal/utils/retryable_http.py,sha256=1GCuQkTGO4sX-VRbjy31e4_VgUjqsp5Lh2v5tSJjVK8,1321
43
44
  snowflake/ml/_internal/utils/service_logger.py,sha256=tSKz7SzC33Btu2QgerXJ__4jRhOvRepOSEvHXSy_FTs,1974
44
45
  snowflake/ml/_internal/utils/snowflake_env.py,sha256=WY9KgMcXEydpWObHQCQhvxcSZXMwC-2OHc894njmXEg,3346
45
- snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=ksWdVV2EUX4SOOcoeC00xZDEoOyukQOGqxO20_XxaMs,5981
46
+ snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=pV8m0d4xfG2_Cl25T5nZb1HCXH375EKSOCgwYWfQVac,6359
46
47
  snowflake/ml/_internal/utils/sql_identifier.py,sha256=A5mfeDuz4z6VuUYG3EBpDyQQQCNiRtjVS1WNWAoiqq8,4682
47
48
  snowflake/ml/_internal/utils/table_manager.py,sha256=pU7v8Cx-jGObf6RtTmfCmALfhbpJD-lL45T1gWX1nSY,4982
48
49
  snowflake/ml/_internal/utils/temp_file_utils.py,sha256=0-HTjXdxVt0kE6XcgyvRvY0btflWlmotP2bMXVpFJPA,1553
49
- snowflake/ml/data/data_connector.py,sha256=vYCD7iY-9n1xFQBrDTzb-ZxlFQ90P6B4VSYapUjWflE,8698
50
+ snowflake/ml/data/__init__.py,sha256=vTUXLV3r8CoPkepoEzj5HSpKiaHH4MrthXb9RyclVto,275
51
+ snowflake/ml/data/data_connector.py,sha256=iOOEkRsy11acWZZnLJj6EDgLM63Q8GY-1htO0l7m9Wo,8711
50
52
  snowflake/ml/data/data_ingestor.py,sha256=Nrj5l0cVnoXWI6Ilig-r_pGS902xkZATbqh3OsV53NI,1017
51
53
  snowflake/ml/data/data_source.py,sha256=dRemXGi_HHQdn6gaNkxxGJixnQPuUYFDP8NBjmB_ZMk,518
52
54
  snowflake/ml/data/ingestor_utils.py,sha256=--nEwJHbYqYHpAzR1APgoeVF9CMgq_fDX81X29HAB4w,2727
53
- snowflake/ml/data/torch_utils.py,sha256=nsADN444UOqWOomJQJm4GQu2bHUVvImahVlPQldu_vY,2649
54
- snowflake/ml/data/_internal/arrow_ingestor.py,sha256=T6i87NH4djZwqmc5m-yh2FFrihvFoQfn9LhDRZi7sPc,11667
55
+ snowflake/ml/data/torch_utils.py,sha256=Wn9_AY3DiFHJEPdZkKqaFtBMaS1RJ9hSF1ArBeNKqJ4,3292
56
+ snowflake/ml/data/_internal/arrow_ingestor.py,sha256=C72MGC7QEUAXwIy43qXkxxO9zZDyd3fU4fyZmQ75VHg,12086
55
57
  snowflake/ml/dataset/__init__.py,sha256=nESj7YEI2u90Oxyit_hKCQMWb7N1BlEM3Ho2Fm0MfHo,274
56
58
  snowflake/ml/dataset/dataset.py,sha256=GqdcABGcIlAzPmfTcOC8H_Kw6LNQZ6F_7Ch45hxHOHU,21094
57
59
  snowflake/ml/dataset/dataset_factory.py,sha256=Fym4ICK-B1j6Om4ENwWxEvryq3ZKoCslBSZDBenmjOo,1615
@@ -60,21 +62,21 @@ snowflake/ml/dataset/dataset_reader.py,sha256=e-IRbxbxFfNbsglmqtzhV_wYFsEflBW6-U
60
62
  snowflake/ml/feature_store/__init__.py,sha256=VKBVkS050WNF8rcqNqwFfNXa_B9GZjcUpuibOGsUSls,423
61
63
  snowflake/ml/feature_store/access_manager.py,sha256=LcsfBKsZzfERQQ_pqZG0W-XbpVGx9jkZOI-7nbfryhg,10666
62
64
  snowflake/ml/feature_store/entity.py,sha256=A65FOGlljREUG8IRMSN84v1x2uTeVGCM4NqKXO2Ui8w,4059
63
- snowflake/ml/feature_store/feature_store.py,sha256=oZWUHrlhYVUfTK0tOhDwt0NgEqKkDcOSF2YU6drS-FQ,113481
64
- snowflake/ml/feature_store/feature_view.py,sha256=a7BdD6HLU0ycPsdpYuzutG1UFnsFnG1gVHhzvrSqO-k,36687
65
- snowflake/ml/feature_store/examples/example_helper.py,sha256=hVaPrjtMsMxJ804vTzjrI5cvyyPLx2ExZi2P9Qfg4z0,12248
65
+ snowflake/ml/feature_store/feature_store.py,sha256=cb_5xc3QWkiqnUiQ4Y0T58f2sKuifmumV9jG13qreAk,113425
66
+ snowflake/ml/feature_store/feature_view.py,sha256=7xfrq7abM9-FiA7mJ1yDq5z9Uk7jbHNuyGyySVlNqbo,37040
67
+ snowflake/ml/feature_store/examples/example_helper.py,sha256=DcQZA5rDyRj9lzMp8ZmoATjAzNfC4DL-draz8du9-Ms,12414
66
68
  snowflake/ml/feature_store/examples/airline_features/entities.py,sha256=V2xVZpHFgGA92Kyd9hCWa2YoiRhH5m6HAgvnh126Nqo,463
67
69
  snowflake/ml/feature_store/examples/airline_features/source.yaml,sha256=kzl8ukOK8OuSPsxChEgJ9SPyPnzC-fPHqZC4O6aqd5o,247
68
- snowflake/ml/feature_store/examples/airline_features/features/plane_features.py,sha256=qVYEGKt7DMioZvf20b3-RNtJOQVYUyWANCdk-CdOyuU,1015
69
- snowflake/ml/feature_store/examples/airline_features/features/weather_features.py,sha256=A5hkWOQ3CTQfaJaUQ1VsB2Ne8LmIrM9DPyrMX0EOHvI,1634
70
+ snowflake/ml/feature_store/examples/airline_features/features/plane_features.py,sha256=dLZlKOUsI-NvBdaBeoole0mIUrHfbqTexFSbCDGjlGw,1070
71
+ snowflake/ml/feature_store/examples/airline_features/features/weather_features.py,sha256=RG_Nrjyx8mn9ACzW7nKHUTn36ZnuEueNF5QeGsWe9rk,1695
70
72
  snowflake/ml/feature_store/examples/citibike_trip_features/entities.py,sha256=SE8Zx3xqFJk65Tqori4nh0KOPwEY3baMoFsVAYM1e7c,449
71
73
  snowflake/ml/feature_store/examples/citibike_trip_features/source.yaml,sha256=gutDfijhGkBu1w4r1286JnuO4EhbuRPKwoHisYlt8Yw,229
72
- snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py,sha256=3I95LMBEo5lXlaztPhjF_MVUmYXUZ9Xaz8ZmQpT0Cxk,1369
73
- snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py,sha256=LChqltsCBwD8diJN-Qno7a_gOBTwz6qCPm6qTmYSICc,1194
74
+ snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py,sha256=nfmgp6KD2ACaqxSClGGjY-Eqk83bTAa0M8yokT98e6E,1423
75
+ snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py,sha256=bJe3J-fgdVbPdjAgtPpreh6ZPJKmSqkvSxO9Rpe0Eu4,1228
74
76
  snowflake/ml/feature_store/examples/new_york_taxi_features/entities.py,sha256=J5oragmf6UvwruMjHhtrlzcBP-rA3Fyqv9VOJAT4goU,396
75
77
  snowflake/ml/feature_store/examples/new_york_taxi_features/source.yaml,sha256=0DShPCG972klJjHod0qkXrT7zkw45B3YCZs5U-x4Pv4,338
76
- snowflake/ml/feature_store/examples/new_york_taxi_features/features/location_features.py,sha256=ycjBkYxOnvpmToGsoTwohBEPgzzlZnm2wkDeYMUKJKY,1728
77
- snowflake/ml/feature_store/examples/new_york_taxi_features/features/trip_features.py,sha256=RgDl2KX0y8f3B_yKNg6Tf64CsG6_ItcWoCFWScXhjz4,1273
78
+ snowflake/ml/feature_store/examples/new_york_taxi_features/features/location_features.py,sha256=n08DTAKWoSwu3jMa1Bl5Iae4-NBlBV7IIyCrUc6qpGM,1782
79
+ snowflake/ml/feature_store/examples/new_york_taxi_features/features/trip_features.py,sha256=CsZ4Qe4nrsY39L5E1CX2k3lHD_afdiPDOiJ8VpVq5wk,1327
78
80
  snowflake/ml/feature_store/examples/source_data/airline.yaml,sha256=CZV416oTTM6hWCK2GPdb38Q8AR3CGIxAZwXrbP9KT_E,152
79
81
  snowflake/ml/feature_store/examples/source_data/citibike_trips.yaml,sha256=OaQwNzUHasgGgy8oIOHVRJ5tg7nnKs11hqDSZYs5-U0,923
80
82
  snowflake/ml/feature_store/examples/source_data/fraud_transactions.yaml,sha256=ENAIRcrRmdIplKJP8A5nhXdWSQRNTeQH4ghIT9boE8o,711
@@ -82,8 +84,8 @@ snowflake/ml/feature_store/examples/source_data/nyc_yellow_trips.yaml,sha256=1Pk
82
84
  snowflake/ml/feature_store/examples/source_data/winequality_red.yaml,sha256=03qIwx_7KA-56HwKqshSOFCGOvLnQibR_Iv2zprz_Vs,741
83
85
  snowflake/ml/feature_store/examples/wine_quality_features/entities.py,sha256=Hk593l6dqruvgcPRcSGKf2UGVQ9CPxmD547UuZ7QCnU,294
84
86
  snowflake/ml/feature_store/examples/wine_quality_features/source.yaml,sha256=dPs0nzf4poLhxDVEydb2Ff3mpRCWQ_L4jCoPO7HV4QA,241
85
- snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py,sha256=fqZWuCjVQ_AX0gIO-HCjzDMVwj749e23Lx2Mg25gX88,1432
86
- snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py,sha256=xtq3BdvVqTkP17aw0aCizF2EHmmBVeZOD7UMul2z4hs,990
87
+ snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py,sha256=W58pGmIKV1iehou4Knw_yWJRWKKt_80ZiiMi3C_vwOw,1466
88
+ snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py,sha256=ej1_DxD_W4TyqwOJ9T5C6s0S8rE5UPaP-KFzKi5MDWM,1024
87
89
  snowflake/ml/fileset/embedded_stage_fs.py,sha256=fmt8IoYbHtBMjyIC3K87ng-i5uYwE_2XKFQogNkP-nM,6000
88
90
  snowflake/ml/fileset/fileset.py,sha256=u-Hkqr7p97ajRYyd93fr62grbiBaA0AqTYkAAOppZj8,26186
89
91
  snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
@@ -95,151 +97,151 @@ snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPb
95
97
  snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCrzI4,65
96
98
  snowflake/ml/lineage/lineage_node.py,sha256=e6L4bdYDSVgTv0BEfqgPQWNoDiTiuI7HmfJ6n-WmNLE,5812
97
99
  snowflake/ml/model/__init__.py,sha256=EvPtblqPN6_T6dyVfaYUxCfo_M7D2CQ1OR5giIH4TsQ,314
98
- snowflake/ml/model/custom_model.py,sha256=Nu9kNa9pDFXmLN1Ipv4bc_htG0lPeWKD0AQ2Ma2-wK0,9172
99
- snowflake/ml/model/model_signature.py,sha256=Iwll4_VbcDtDX0otGS_NVd0gKSdcHQ_OJbZxNNGMRFg,29473
100
- snowflake/ml/model/type_hints.py,sha256=mpe-7ueJ7pb47GNAsUhmKxuQ5DVz82qsxTAOJQBdNeA,8731
100
+ snowflake/ml/model/custom_model.py,sha256=O60mjz2Vy8A0Rt3obq43zBT3BxkU7CIcN0AkHsOgHZI,11221
101
+ snowflake/ml/model/model_signature.py,sha256=gZnZPs9zTCYkeFoiQzoGUQYZMydYjzH-4xPTzfqt4hU,30496
102
+ snowflake/ml/model/type_hints.py,sha256=9GPwEuG6B6GSWOXdOy8B1Swz6yDngL865yEtJMd0v1U,8883
101
103
  snowflake/ml/model/_client/model/model_impl.py,sha256=pqjK8mSZIQJ_30tRWWFPIo8X35InSVoAunXlQNtSJEM,15369
102
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=cEdLIwxL77DEhWvEg9plmI5Vp1o-hgRZuxvZRwY7xhs,31071
104
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=PTVqTkNm1adHUjTTWsUlnTSPiMQV-PZLEaj9UstICqk,39076
103
105
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=7cGx8zYzye2_cvZnyGxoukPtT6Q-Kexd-s4yeZmpmj8,4890
104
- snowflake/ml/model/_client/ops/model_ops.py,sha256=-caU72yLdXuaBPGQKNWeuu7x0WdDWukBh3qV8IQy1kU,41867
105
- snowflake/ml/model/_client/ops/service_ops.py,sha256=vVhSFBr7EDT3QdZGou2uAJC8WTiGRenXj19vlpcVs8A,18289
106
- snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=tfTZl6ukBtrfu558Xu_aB5a9oMo-rDCll3NIGuUM8uA,4124
107
- snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=bAIdH_RWJuVW_oy94shDYXLxgG_WWerFocinI5OI8PM,767
106
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=didFBsjb7KJYV_586TUK4c9DudVQvjzlphEXJW0AnmY,43935
107
+ snowflake/ml/model/_client/ops/service_ops.py,sha256=LLvRqBBwyJsjNfphN_VdH8O1aQEPNf97Wmco5dfLUN0,19093
108
+ snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=uyh5k_u8mVP5T4lf0jq8s2cFuiTsbV_nJL6z1Zum2rM,4456
109
+ snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=eaulF6OFNuDfQz3oPYlDjP26Ww2jWWatm81dCbg602E,825
108
110
  snowflake/ml/model/_client/sql/_base.py,sha256=Qrm8M92g3MHb-QnSLUlbd8iVKCRxLhG_zr5M2qmXwJ8,1473
109
111
  snowflake/ml/model/_client/sql/model.py,sha256=o36oPq4aU9TwahqY2uODYvICxmj1orLztijJ0yMbWnM,5852
110
112
  snowflake/ml/model/_client/sql/model_version.py,sha256=hNMlmwN5JQngKuaeUYV2Bli73RMnHmVH01ABX9NBHFk,20686
111
- snowflake/ml/model/_client/sql/service.py,sha256=puIGRkEtDTQ4J1ccUslMmWvfkbHv2omKho4OHKYVIjU,9339
113
+ snowflake/ml/model/_client/sql/service.py,sha256=fvQRhRGU4FBeOBouIoQByTvfQg-qbEQKplCG99BPmL0,10408
112
114
  snowflake/ml/model/_client/sql/stage.py,sha256=hrCh9P9F4l5R0hLr2r-wLDIEc4XYHMFdX1wNRveMVt0,819
113
115
  snowflake/ml/model/_client/sql/tag.py,sha256=pwwrcyPtSnkUfDzL3M8kqM0KSx7CaTtgty3HDhVC9vg,4345
114
- snowflake/ml/model/_model_composer/model_composer.py,sha256=H-Bla85tdITjEaLtIFTeMgWAYs7LLZZiQTDSwlAFn-U,6588
115
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=qVsMjNbhE-mZSb7ExPPt4_xyys03_FvbAhofDSuDli0,7618
116
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=JF9IPpSrXoyCdFnqidCN67HUqo6MV0CchXzi3klURII,2675
116
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=535ElL3Kw8eoUjL7fHd-K20eDCBqvJFwowUx2_UOCl8,6712
117
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=X6-cKLBZ1X2liIjWnyrd9efQaQhwIoxRSE90Zs0kAZo,7822
118
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=akDY_lM3srumPHjmL7AUl782eARg1rWTIdLu-U0Jjwc,2720
117
119
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2cE463GKWAJCrqEYD1s8IPzd3iPu0X0eQ12NnXQhGBM,2556
118
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=eQ-FLUGt5r0P9UtDwWFoqSJzGeLBvwEMoHAbe8aCNsE,1418
120
+ snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=JbCgx__GqkHi6n_ceYdZi_ywNKK38u-d5c5Afg9QUi0,1476
119
121
  snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template,sha256=L5R04QeoW6dH1PdEy3qo1LS478rTmvvRmrwlgqVwimg,1504
120
122
  snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=NUDSyFFAdEZEWtSkvYxkU9vB-NTjcTg6sjkrNpcmF6A,1418
121
- snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=4RfjJ_0Y8NUmI9YpmBqxBT2xk_yQ0RIzznaKGHlS6jU,7076
123
+ snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=LBZsXzkGj-OiL9Tw4S0yBJlWLIzwzefCL6iO964gdCw,7019
122
124
  snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
123
- snowflake/ml/model/_packager/model_packager.py,sha256=dBkNAk0GkSiBdJW7qWG1CAZdEsItsNNwv3tCcwVFJo4,6424
124
- snowflake/ml/model/_packager/model_env/model_env.py,sha256=uUTbCHFTJJ6iMbhu7LkU3PFNB4VohbEFlBMLd1ZDyS8,17008
125
+ snowflake/ml/model/_packager/model_packager.py,sha256=EhpEmfd2oDYuIrOYFOadI0OOFJa9bleMvI1WTHQqjE8,5806
126
+ snowflake/ml/model/_packager/model_env/model_env.py,sha256=968vlQJrI2_2rQ88cl3uXe1FP5kG-zG4UkUySRDgFt4,17517
125
127
  snowflake/ml/model/_packager/model_handlers/_base.py,sha256=qQS1ZSz1Ikdj0TvyLU9n8K6KAj-PknL4s801qpnWodo,7164
126
- snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=D5YVRcsB6mEcD1xO5qr5P2reKmY7d8duxbPAATJBG3o,9031
127
- snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=CrSbRSd8eER-iYuhXzl3e24GBFnBr1o0Dsnb5E59ayk,10627
128
- snowflake/ml/model/_packager/model_handlers/custom.py,sha256=59IxqxXvaG3g6NlVEPv8Irw2tBK4k5yLNosXNZJGS4o,8059
129
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=VdpIgf-pn8HiAg9ZNF0-qkB4xFBj9mjIrCowTrRKvug,20967
130
- snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=kAbTBJQlLq59KkZQTlRDhxH5oEI04n4dq4IG7wB1HBw,10975
128
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=KwBZVSlp6HcCXd7T_zJJE8s5W9YGeXAD_kTpKhrLVzE,9209
129
+ snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=psBv5txOfAjKMqQnxg3sLPd1I7JYtruslbGUkhULtTs,10704
130
+ snowflake/ml/model/_packager/model_handlers/custom.py,sha256=i9jhMzNrgxEdiJLw9ojeiMaCWYk5nVj48JyS_e87RpM,8333
131
+ snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=BzeZgY4Z8GTtgc2sv65wjLlONgfEH1_yWBd2N4RDCMg,21397
132
+ snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=E0667G5FFfMssaXjkM77vtf_cyQJg53OKgUJOBmWhaQ,11092
131
133
  snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=A3HnCa065jtHsRM40ZxfLv5alk0RYhVmsU4Jt2klRwQ,9189
132
- snowflake/ml/model/_packager/model_handlers/model_objective_utils.py,sha256=Xbl2XZfsPHVCCE6JoFOFrario1zibrhUhhCUywtNZ3o,7048
133
134
  snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=DDcf85xisPLT1PyXdmPrjJpIIepkdmWNXCOpT_dCncw,8294
134
- snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=CKG0q43pL4wbB-5akj-8l-xgcCJ46iXZpnCUsgrO4vs,9584
135
- snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=4w0E1s2_CnfXgk4FdDvkYTGrX3JMOfcubel3XysAzuw,11630
136
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=_4-eAhSxTFwjQXIhZ8dLJR8wuX_J4nLfLjFu-0HfFeA,14245
137
- snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=OhqC4GcmDDz4IOgDITLnG7KFY3zVtzOJX3wAtLv0bI0,8448
138
- snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=IvNL1Fqksfp7nAcXIgOMkzPy8kEylrS-xHWu0dkRLDY,8412
139
- snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=14dlId6jkF0UO4nAqw2OLL8q9v_vtw6kGtuNM9Rxew4,12668
135
+ snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=f21fJw2wPsXzzhv71Gi1eHctSlyJ6NAR1EQX5iUL5M8,9842
136
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=UbtqgOztM9racr_N-SPRymEpUwhZGKov5iv6dcbINy8,13995
137
+ snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=uhsJ3zK24aavBRO5gNyxv8BHqU9n1TPUBYm1qHTuaxE,12176
138
+ snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=SkbnvkElK4UIMgygv9EK9f5hBxWZ2YDroymUC9uBsBk,9169
139
+ snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=BIdRINO1xZ5uHrR9uA0vExWQymOryTaSpyAMpCCtz8U,8036
140
+ snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=iQkwJ_Ksly3ZSNNjnW2pRetjpyLLneDT5QaeHrpidnw,11542
140
141
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
141
- snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
142
+ snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=yOrF0WBkFh5NvyzZMSZHpsv_W1iR5hRpPH1bwzpSH_Q,78
142
143
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=GmiqqI-XVjrOX7cSa5GKerKhfHptlsg74MKqTGwJ5Jk,1949
143
144
  snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=Fn0yrMiTRmp2lgy15DJvIeT_PMOu_ACNO37b9o4_q2Q,18787
144
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=5tl1W9rDDYkDIkVx4DuiIkGn5K9-zzcJqO9rRjC0Vio,2714
145
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=5Sdh1_NCKycLvhMO1IbLyXdl4RO_vnw9Z9-AHf5ojpE,2839
145
146
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
146
147
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
147
148
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
148
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=fRPGbrnq67PRo3e_uVk01TKZ7AZKYM-_lryePkNk5AY,239
149
- snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=9wOtBB1A2Spnsgfs5CjCoLR3oL5JAUnSG-qP0C5DR1Q,5147
149
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=5YHbTmgPdURGQDZwzmC7mlYSl8q_e7hzHJ-JyMXgDFY,1419
150
+ snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=G52nrjzcZiWBJaed6Z1qKq-HjqtnG2MnywDdU9lPusg,5051
151
+ snowflake/ml/model/_packager/model_task/model_task_utils.py,sha256=0aEUfg71bP5-RkwmzOJBe51yHxLRrtM17tUBoCiuMMk,6310
150
152
  snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
151
153
  snowflake/ml/model/_signatures/builtins_handler.py,sha256=nF-2ptQjeu7ikO72_d14jk1N6BVbmy-mjtZ9I1c7-Qg,2741
152
- snowflake/ml/model/_signatures/core.py,sha256=xj4QwfVixzpUjVMfN1-d2l8LMi7b6qH7QvnvD3oMxSw,18480
154
+ snowflake/ml/model/_signatures/core.py,sha256=C9iTtdaXJVMDkOqCH5Tie7ucib4d0pBJ0oXJWAqur3s,20233
153
155
  snowflake/ml/model/_signatures/numpy_handler.py,sha256=wE9GNuNNmC-0jLmz8lI_UhyETNkKUvftIABAuNsSe94,5858
154
- snowflake/ml/model/_signatures/pandas_handler.py,sha256=E1Z7nkFX2toMxUOLx595Vv_7bMLK70IFdU9HZp7Z2-g,8219
155
- snowflake/ml/model/_signatures/pytorch_handler.py,sha256=rF5StgnAo9qtFs9Rvb5SQVhneJf7ZDgfDD5vJsL0Ivk,4599
156
- snowflake/ml/model/_signatures/snowpark_handler.py,sha256=EwJyBsLrLKrBL0ctDK_yuoPm49nTavbh3EXOniWwCVE,5977
157
- snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=VZcws6svwupulhDodRYTn6GmlWZRqY9fW_gLkT8slxA,6082
158
- snowflake/ml/model/_signatures/utils.py,sha256=lBEAqgiTzFitL5EKSmVhKtHtLSYbwo8yGyTACaXWACQ,12976
156
+ snowflake/ml/model/_signatures/pandas_handler.py,sha256=ACv8egyiK2Sug8uhkQqMDGTTc9HPkI3-UZYMUxzSjLg,11145
157
+ snowflake/ml/model/_signatures/pytorch_handler.py,sha256=yEU-V_WRjE8Q7NdHyghl0iYpMiIDzGaIR5Pd_ixB1Hk,4631
158
+ snowflake/ml/model/_signatures/snowpark_handler.py,sha256=2_AY1ssucMICKSPeDjf3mV4WT5farKYdnYkHsvhHZ20,6066
159
+ snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=9bUbxtHpl4kEoFzeDJF87bQPb8RdLLm9OV23-aUyW3s,6114
160
+ snowflake/ml/model/_signatures/utils.py,sha256=-RuAFPJn8JHh8QUMLAgMbgpuDvNLI6gVDeLf-lvUBxQ,13109
159
161
  snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
160
162
  snowflake/ml/modeling/_internal/constants.py,sha256=aJGngY599w3KqN8cDZCYrjbWe6UwYIbgv0gx0Ukdtc0,105
161
- snowflake/ml/modeling/_internal/estimator_utils.py,sha256=XYwOcmhSc053mtItkymKiXk3a_Znxo9AjTep3tSTVzw,11323
163
+ snowflake/ml/modeling/_internal/estimator_utils.py,sha256=mbMm8_5tQde_sQDwI8pS3ljHZ8maCHl2Shb5nQwLYac,11872
162
164
  snowflake/ml/modeling/_internal/model_specifications.py,sha256=P9duVMP9-X7us_RZFPyXvWxOrm5K30sWDVYwSMEzG1M,4876
163
165
  snowflake/ml/modeling/_internal/model_trainer.py,sha256=RxpZ5ARy_3sfRMCvArkdK-KmsdbNXxEZTbXoaJ4c1ag,984
164
166
  snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=11cpEaxU1D7R7m79nVLcCA9dryUPsElS7YdlKZh850U,8422
165
167
  snowflake/ml/modeling/_internal/model_transformer_builder.py,sha256=Y6Y8XSr7X7xAy1FvjPuHTb9Opy7tnGoCuOUBc5WEBJ4,3364
166
168
  snowflake/ml/modeling/_internal/transformer_protocols.py,sha256=adbJH9BcD52Z1VbqoCE_9IexjIxERTXE8932Hz-gw3E,6482
167
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=l9enL00j00-GZ_qIanWUqCuRm-4U9fsCZH-L6DneVco,7812
169
+ snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=UN-23TJ4Usf6N9ZTXcU4IfJmI-uJXOsfdslOAax7d2I,7989
168
170
  snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=h3Zsw9tpBB7WEUyIGy35VYNNR8y_XwiRHyR3mULyxIE,5960
169
171
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py,sha256=fgm1DpBBO0qUo2fXFwuN2uFAyTFhcIhT5_bC326VTVw,5544
170
172
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py,sha256=lM1vYwpJ1jgTh8vnuyMp4tnFibM6UFf50W1IpPWwUWE,2535
171
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=pfreqdjP-s-aGI4KieRoe998nt6mKuHxCHG0Mg-M0Lk,54512
173
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=Jypb-EH4iCOTtFRfF_wUNlm3yMR2WTUrV0YZnuYz_QA,54996
172
174
  snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=HnsSmsXAeJrH9zVeq3CSziIaCUDxeWWx6kRyAK4qajM,6601
173
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=RfMEPXNco4beAz-Ot1-GyRzeWy9AA7B6uy0izfGw_RU,15497
174
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=pxzaU8viTMLb7uZtM3XKCip--5Maqdj28yTam47lxWU,31983
175
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=O6QHRPVS-HzVesw_tMXL6NALAphkqXIEsrEKMva6-Z0,15750
176
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=D4tZY-Fg9U6yY4mkznzzFuf6GmmemS5ZQCUu2yZgDTQ,32259
175
177
  snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=4WP1QVqfSVvziVlQ7k9nWQNCM0GN5kTk4Xnd-9jWTXc,17300
176
178
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
177
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=Zbt3Rp11LOfEV-s4z1dvD0QiuUzI3DS2c9zfW3ZF-Go,53945
179
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=TFIK8t0Q2iWmc7m_Z4RS5NtaFbZ1tXDWoq36lqv0cGs,53602
178
180
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
179
181
  snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=k1ZND2S4qlc45KxBIUkg5T-ajKJ3VWk-4yayLdv44Zk,51855
180
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=WibgQaiDDOVOqBRnXZTAJNMJfP8iUJteBL495_BRLt0,53896
182
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=IsWA50g9Fxi3ddMluCO1eqbJ3zcXTmM13s4NPDfvzeo,53768
181
183
  snowflake/ml/modeling/cluster/birch.py,sha256=M1-7YgDw71fCRt_qtzH_OLKmZhuceq8CLqGw5VjF51M,51768
182
184
  snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=MUoutkGVeTcX1MbXZXqyJh5nR0BWqMvJDoorLoXcYUg,54537
183
- snowflake/ml/modeling/cluster/dbscan.py,sha256=MUhEJ-MPE9EcPwfOs9t8mWqnxFG5oIMjGTnyw-4ymJI,51929
184
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=6oSZW-M_2edDRtx4KWfbSTMQXpGt6dz_6qbLkDrpaLE,54658
185
- snowflake/ml/modeling/cluster/k_means.py,sha256=DyBa7rlObhQjr36XuGFBHUwQm624kLrgxc8nsFN3pgY,54057
185
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=rjplq4RyBsIImQbOO19IbV2zobTPKgUmTRe1grROqiI,52109
186
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=89zIYUVfvbJPZJrsjVnzQhRKDY36neIY2pfy4fOaeQE,54062
187
+ snowflake/ml/modeling/cluster/k_means.py,sha256=eji_ySSPIrxQAYz8VQ41suLUwP7SdKF33Bt9ySLOdlg,54263
186
188
  snowflake/ml/modeling/cluster/mean_shift.py,sha256=7F-VD9ElANRiinzpapgvxxs_u1Tg1ennRUVdLQLcQhU,52142
187
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=4GGwBd68Vzb-vjfTHdeWeMhOy85ntVTviPp52IHGvdI,55455
188
- snowflake/ml/modeling/cluster/optics.py,sha256=wHFgMIDZdgxO9jE90LHXN1FQEccJ882RQP4XjROuSgc,55243
189
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=jFxEH4PXcSVuni4xKGbP4OOJNBu-j4P0QLx8u8CRpYQ,55460
190
+ snowflake/ml/modeling/cluster/optics.py,sha256=-R9TNtmLPrQF_2d2wCSElnsZOrg2EGvCCTdLqMu3sv0,55319
189
191
  snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=o8_SbNh3dYEG8BKz0r-0BZkJZOwXv6gx0nNfAEceiks,52152
190
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=vT55mj3PrT5CU4SSnRjo9pdDfDfn8oe2LAH-8WmPbuM,55342
192
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=zL00K8UQSehQMZ-0Aeqw-vzFKqNXrbVwBYdoam0mXOQ,55436
191
193
  snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=yzrNfxs48JPQPkLdO6So11lJDZKsy8gDD1wlMJ7oxcc,51285
192
194
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
193
- snowflake/ml/modeling/compose/column_transformer.py,sha256=WyLrETqOF6bLK_yVMCW_Cnds3PFzKRjTqUpufThJXXM,54120
194
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=f5i8hfWuK_u-TlejtxgNEOVLQmkW0ta8F7TmxrfN4Gs,51761
195
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=LTaCu3U9lqbGbzGlSggzEfmjih_YEDsKAVYEMPWqBD0,54610
196
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=hk-g-yJFL4CNlmDhTg6vw-N8N-bg9hZvzh2nWe4Z8rM,51897
195
197
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
196
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=OfTEy2rrtuFfHbJPF8bOu2kJHttJVQzseTb5_T9yW3k,52173
198
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=c-BG_eiC01n2ZN76ZEj80TtQRM9z-GPMWfIVgNnqBLA,52186
197
199
  snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=hYRitTNwhsY60qpTbUdhNMQkCG2aX2oxFP0trsYyJeA,49984
198
200
  snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=fsotiESbzirsjULlzda8X0OrJbdCYJjwRUHFsMX5n-4,51843
199
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=NkeudrV8Och5C9UbjovohDmaqYjjIQDppE202z01sxw,53010
201
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=WeiQ8WXeDsy3ly6sx6246jq5hFKkAchXLtK4o2RfbYI,53035
200
202
  snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=GJhlSCGT-nanFY0fAvSCDlfaiiZpOFxeNJ8o54uEFEM,50113
201
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=LnT9d7xoWqw9XDkPm7vMIJNGAfqVq0YHIn_3APxsGdE,50867
202
- snowflake/ml/modeling/covariance/oas.py,sha256=4qheG3BmiG9Uzd42g4EK3ccig2jefWPV_cAiZ4hulT0,49747
203
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=wmRlc8MiDOUOVLVKYcdKHs2aHGp45A-7zlWCJ9CDCw8,50880
204
+ snowflake/ml/modeling/covariance/oas.py,sha256=RL1L8D-Ed9s1rFVnSn4wPvwQao6jYFhDz5tDq1W_KHg,49727
203
205
  snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=ULvwAUtaQUSeqQELKhSaa1kfjeXuqgGSdD71X81YjZo,50136
204
206
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
205
207
  snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=AJBcaae1t9R7XAbjLrmYd9U0AHzVoG_5E8ZAbunYWfU,55135
206
208
  snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=yple9ZHcINCl95OpB0GivWbi-gWC9Q4TW-_YoYg3cNQ,52794
207
209
  snowflake/ml/modeling/decomposition/fast_ica.py,sha256=lUb88ndGnryU1-jU8ASpG86keTSCZ4zELccg-tfC0Ak,52721
208
210
  snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=G_buEnTXWdPX-KVR0YRZrm82118_cYWQV8TFl_eBN-A,51088
209
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=pRKviMd-FIiAv0sz9n_yN7NknUJoe0f2RGgiL0kjxnY,55081
210
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=r0IiwPs8-ErHktnpX8YIQJFiX4bpWbsCznnh4wgoIAA,56185
211
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=rcriInZiuFV4Q5KC52aSi75DdhFbrG8t84dczmysZd0,53441
212
- snowflake/ml/modeling/decomposition/pca.py,sha256=6wiPPOK-gfJeA_N8ggIOaqdPSLQrLzqDyKZjUVEo2o0,54344
211
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=oiV8XnvFPrYLIpfeh7hzKXaQAZtOZ7fZWA2rh0nOuiA,55078
212
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=QorZjT46Fs3Dm5fkALMWhiY-YA5Aq8GAl6WPrckrR4E,55867
213
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=tWHa8KqsBDnwjWes-hs-qiB-JHPLObbm18UxVUu8w_Q,53130
214
+ snowflake/ml/modeling/decomposition/pca.py,sha256=PEUS9WHGS3kFRbyJxgDphJE6gWi5Lpul5pBQ85YfgF8,55298
213
215
  snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=vMWi3cKMuFrJOlggWPs_vQaC9WF_q4M0XHXPpuR34Vs,52237
214
216
  snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=oy1k6zTMb5R9_AaYYJeVAS_U3m0zfVwvKGLbVAUeW8A,51863
215
217
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
216
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=ObpdJ1ljo6xH8BsG80VTccE_nhpsXxIH8CAhQ8-uM9A,54548
218
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=9JKFvGdCZZEqQvHiJxdHQXMBdqaDfAgKOQEQcZBGzfE,54754
217
219
  snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=x536xqmYYQa9n6dJG5uW-kr0Ah-0wIFf5cWq_hlGUCQ,52333
218
220
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
219
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=1DP-y3P8BqIsxnJeaimt7kQloEGCejgFHeBngsMtbTk,53140
220
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=aeRnIVyYJthNCj42OGHvrKvgfGkbbiRdSf687X0fakE,52030
221
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=wLqScjLAPcBs24pm-D7ObalsDClcvSm5jijHQirqmI4,54050
222
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=y5quFztWK6714ts6zHHEcUyQOcqHBXBOH4SBWbyR_OU,53285
223
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=hEhdInzRn5qyiU7RPH2hjSXI4ZnkTYUHl3-Adjn_sXo,58973
224
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=aNhn3uo0daXJ33JlmBLGOwHb3z9ZpDZql8Gy5AmahO8,57576
225
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=IfqyXht5l3K0nH6fhPdL_3RA0G0gl5qIKZXL1naG7DE,60434
226
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=ru3tm4BEYcqy1_hdh08s_5Mm3syNb39HZ069BKQ43QI,60026
227
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=czoc7wR00ErUfE5Ag54lAJabqSUOVw2vvT9QVU8BaDg,60272
228
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=VyvdLc0fOxNdempMk6nJDNAhCz2yx67K0qRWJWoNRVI,58756
221
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=UdGn1aSInpqsmOCycMaotppJ7oIa7KYzYFKSdcKlra0,52535
222
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=1batkzCn0PHyLk8jdN0n3AY0-PKU7bPdHpAlSV1ew2A,51538
223
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=RLOvLvHm-snlgDO8bOywN8K0xsOS7Ay4LEdGg8dooqE,53727
224
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=gE1IIkVpPBdnVz2pQp8m6_HuYglRVWSRpR35Gs8oHB0,52962
225
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=0OPcDnZQfYZGxruEkSC5PfJ1bXt8eEqV5qcPxrCiOqQ,59776
226
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=ktX5IdGEZkLg6OsF_XX0CeuBjc_3VzQyyJZihoHGyLU,58229
227
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=MK8hfnMxLONqj4JAmsparVB_lvMre5EswBGDnfxmR5g,60535
228
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=x0_pDhqifw9waPkib-BsNnSwq0_hqjjCtElrLNn-q_g,60127
229
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=GvXqM5VOGw2PdjK7eoO4cFyX09XK60LhSklAP8j8uPA,61021
230
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=6a3LDEOTnDv8VHy5szdauBxXrWjOC8gCJf9q9zvFjqE,59356
229
231
  snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=bKDKA7N0Cnadd-ed6gcWZLZ-HcA47Z9imUEIURkVOac,53320
230
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=f9a7GyBI8_sGo6w5wAM9meBYKXwnxSfYtYUt8CBSad8,58958
231
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=t3b5368FmDSMsY9ew_od8kFoRJoNG7NbPMbQgYYSAMM,57549
232
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=P60cup1BdqN3CzNvTxPuJN4fzv5WNZeKB3flh87zlNg,59749
233
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=iNJNzWw6Gmp21UmLdNqOVCHfd0rMj7Uor-LYPIls7qw,58202
232
234
  snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=_7UAkQFzVg86CEVt71flU5vKHPkOwk4OLvnBeqVWy9E,53264
233
235
  snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=Tp3Bp2t1eiPaZHMSwzVa-F7jwR21EHwxOjwwelQf6Rw,52816
234
236
  snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=SwoThI21kjcR1SIWGBFfaTBkElC7bT3rYBQPvZjSpxM,51341
235
237
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
236
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=7HhWC_Z-5WOqjT--aC32lSgbmwie38rZnazYjTJ9ers,50686
238
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=VhZLbQDQSlMmVLKUW14T7bS6miRlxbjNLAICDLuSQAw,50811
237
239
  snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=CU5gCe24cP8GqL2XsVX6eiO3-q2AWnL1uN3kyd9fUDU,50273
238
240
  snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=-Dw7VTLNUifbSdlYxReKx20oWljAQSJYD62xa1k2XtA,50267
239
241
  snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=Je3rfzC5lYaFEm5UPVFZL5dHZO4PkNac7jhEzReOFVU,50275
240
242
  snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=HL44ELYoURu3AAEUVAq4jOLb0PqyPR1xzlupclK1zgU,50368
241
243
  snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=g7wL2FyLmeBDUy6-3ArkLlbKWkzb49wHCcEgU7cR1o4,50428
242
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=mQbfAO4auMtPxKojF2zzHbpwEC1ZfUSH-29GfD195m0,53141
244
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=bn_42MIkNfBcRmS_o7csgSq1k8vEmlmjUi-Rrmr8-Y8,53207
243
245
  snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=Uligo8j5-5A6b9WRmZtiFFgokBl9AlpHhQArCwc67S4,50069
244
246
  snowflake/ml/modeling/framework/_utils.py,sha256=7k9iU5zAWa4ZpMZlg8KfSMi4vH3o69w5aAh5RTRNdZ4,10203
245
247
  snowflake/ml/modeling/framework/base.py,sha256=Q1Yq8SesnpVWdtRGc6rbuz9T3hcT0eRjl2ZiWGyWAeQ,31954
@@ -258,58 +260,58 @@ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=_Fy
258
260
  snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=meXIcWyEVtHtIjHwqPA-lfE3xgBPRUGrKwYHXeNJyPY,50563
259
261
  snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=uFOYWOHEazfgLgWBv7r6cfHOskC81I2z_bkoDWYtK7I,50618
260
262
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
261
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=WT8MKwRjx5rdMzWqsybvp5N2I9LcQ4jTL38RLL8tIkY,52064
263
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=OHjaB-MgZvuYFtQawAC1e5rWw98n2n4jpubjdDxoa6w,52067
262
264
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
263
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=u6VzvMlONA__b6hXqHEd0wekl355SbXxr1z0J6CtXHA,51635
264
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=NoRt4FFkTF4E5eKFYOYhGFkATlB3XnxPwIBRwjo-3wU,51137
265
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=7Sv6ovpKWEVX9tgo9YgPIRPqHmZ9752PacHzpw8YJpo,51570
266
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=V0EBtok8jgxDlkCR4M8lg2CW_UOVXmMS7AqOH8LNLEY,51072
265
267
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
266
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=LPmunp4KwYOpNIcjzkdIYqQLqynSNvNSz3xy3SsguL8,52011
267
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=Lv-b3KkyJ4Av8BQLSi2IpkYq_FGCjv5drLfw7nt8nZg,52427
268
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=M637UZ8vBdTo9s56_Lgi2zHBCyNfBHMxI3mcq2Rd1Ks,52996
269
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=ygf5fxou8N_Hk8vNYYPDOQlxcPRbfCwLlnOAzSdZ28Q,54266
268
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=DEX9-MxB9zuw2kdNZM8fjoUHBwRtmoIxeV6zzDvHIm0,51827
269
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=gc8wvc6ewNnA4L0pSRMgI_we8AN-tNl6FxGgb37xArk,52197
270
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=nGHJOJ5hw_ZLEaMnC8kFFo4emDiTZ6bLKaDmT2hpyMM,53215
271
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=thUXXE4ZXvIOCGHwEzgOHfNCQHuoA46OMjEzgS-lr44,54291
270
272
  snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=uB9Ru3gE1Cex-XyT-yc3qt6uD1XImIjEHkM4gTpFu-E,52080
271
273
  snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=R9ColYTOXUBiOMj0-onT1Lhb3iSDU9rcXMyyA0spy3k,51277
272
- snowflake/ml/modeling/linear_model/lars.py,sha256=EurH_C6n61_RqaoaymWbdIgPGkk6gZAkS6TduzpUveA,52490
273
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=2bSYiuuPq_V0wI0mfdUM6zAgWUTemJEsLQtOrXRc92k,52713
274
+ snowflake/ml/modeling/linear_model/lars.py,sha256=sC5zjOgBSL7QXrHftXla8wiCugE6_Au3Ub2awz9ix7k,51983
275
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=J-pHwX1MQk7FRWf5xsuoijO-jCBJpIrnFyhNR75sMKA,52231
274
276
  snowflake/ml/modeling/linear_model/lasso.py,sha256=oCvyY7P6Dqgyyy6IVMjaWPXR9uJXTCSvepjy1o3ylBU,52597
275
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=80m6u-5dWbinuarAGOHPGh9vj5tgJeaNQM7o3Sx1qkU,53384
276
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=kX0LE94hiqZa6G8zksBXEpyBk5ckLHVJEzcfSSZnqg8,53631
277
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=5kpglEIj8pZGzZf0dWEnn_Ob9Na_sZ5vQ_mUPoNsQYA,53594
278
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=HZPCHTqepAbIrZkZ18ktOHrCwDZ8R6DKB27AfkxxW_8,52940
277
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=rE1GJOuj0HECA9nJ1SwuOBKqH_Zm4hiDhAQYxN-n_84,53409
278
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=Yf1pOMq3SsD-wY_hNmX3f0LEAnUP8Zt5uyS_hoRKM4g,53124
279
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=kKO-V3KYVYqQ3hMy2goGkEdNJFkvwLtaoIMh_d7MWHs,53112
280
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=CC094Ky-JhTsOlTza9ta9UVt4AcspAo3KM84vzeL2_w,52433
279
281
  snowflake/ml/modeling/linear_model/linear_regression.py,sha256=RgsPYYgUVbU7rDbjIU_SkKQ2b_rLKjhaaibaqPXCowM,50821
280
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=ouYRWSOHoBH-KZjV9PjnSLqPFetFXm_5KW_xSekXVDY,57078
281
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=oEHhpvHIDWV1FQXDOZfo1fdAGP0Owlh8QrfUuFHLmRY,58120
282
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=yhfiwaya483nUTGTJmpWFkffzTk8-HQwSbgQ7qk8BL8,57586
283
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=sO7Dyt31IxNShhhe9_a-0_LOuqT5aWLre5SBbBIm4sM,58650
282
284
  snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=oAQ3x8w1uZNCDqIr-onPSUz2guRihpzKqL9XuILSdhA,52296
283
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=arBMkviksZKSW5PSig_g5-oNlK1ve_kWUOJ-j3nlEcQ,53936
285
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=LThFnQRTrOejjRf3pa7ztF3CylliSGa8yfcU6ib5_Wo,53961
284
286
  snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=BfNZNeNC61muK_z6EUJ_5SvDiiUZdoBCO8Jxl-cSxNs,51839
285
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=b5zchLMN9enVwm0uOL20Ox8wUtDkzZiGU4NU3VFtcIk,53103
286
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=eTJmuNWpa_xAQCoYlQ0GNRDhJcuJ8b4PsSwOhYH7npo,51457
287
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=jsMC6JJWT0EBs_iNzCPCen6TIK8d1USF20i-z2TIJJY,54815
288
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=LEDWZ8UMrmM_9H5SMBaqoNPwBaaAGXg813vfTiMKa2M,53881
289
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=m9NsOxW-kPTiutjvM-tPEAF8AXNzeYSxSKzyUtSxpPQ,54182
287
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=Ysr8hVUKS5sBPrL84KgCfqwYY5gDvOOk9CZU8G3BwE8,53128
288
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=jvwmMRDbY8ogcAkfvCDKEz1KBhVw2sv8oo5li78vH7U,51044
289
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=hVFlZCRz4-MiwrHck91H_omQg01EKVlYmNvbPjdQcqc,54868
290
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=sU2S8myRWlqohop7OF9tbltPlDt7PGoSN5gWnzAlwCk,53930
291
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=wclJmFgaaS-8r_QWmrbMeKIyAotU_lA05njfrbM7xLM,54185
290
292
  snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=qZwQ7JeCSP-vQGKwvNXV90UoQQVp8DRLf4P4w8ScAds,52127
291
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=kz2MvslF1KCM3K-dIsrbuX2kkeE2vpbZQbmtPXmJlKE,55245
293
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=PN00XC36LAXoaM8KKRvvL3tbAE-rwi5NfGHo3XYjsVY,55266
292
294
  snowflake/ml/modeling/linear_model/ridge.py,sha256=wEYZos7SjZeeG7pjLIrGVCLU5AszpGZ2s0lmfqlBbTw,54141
293
295
  snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=WkbmCDR-cTO-_ICx-sTPjiUxT5kHIsymk-J5kJSxMnw,54539
294
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=yEUSoui3uCYfgwJoIaYzaOYSfAqD1BJ30jRZ9MHjmNg,52536
295
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=ZNa_Lbmaf42-OFW95izWGzL05NTCUQajbuERXldsKnU,53227
296
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=hGYkK8mUEUzmhokZswTU_m1qr3y1ksublfb-iY4-g_s,59610
297
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=40yqhrgIEJcZH0fJvljQvvDxnxnFu92DDuDHNuApDZ8,54493
298
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=d94hQSEWEJTT8tohPSG-ol1Gr0mxVDGj_8ArkGpS9zk,57080
296
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=_QX8WSk_I9lHQhvd0U5p6YXYnTN3zLUSdpQLNI26FzY,53004
297
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=TbM4YPZeF0LLy_PFSsUqGlvLssS0FLG-kD6PIt36fzA,53611
298
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=Tw9spCSfC5X6q5kCQeZyu_2ZnxFdBUUaj5BwPSbkup8,59596
299
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=47xgTQbKcX_SGb9wXphB8zOgSfdl_SF7webdmuZsT2I,54678
300
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=13qYk0V_Z0T-qfRRhHyRQG1nA8NveRfW2XAYpcoCWS8,57573
299
301
  snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=e9BOBoW54yN1-MN4Qi8gzNgbTc-88kljQdIT81SPQwI,52563
300
302
  snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=9c2cjDRbNGGIhizmC6S-NDZWpeZz8PefjXyq4JLEJtE,53518
301
303
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
302
- snowflake/ml/modeling/manifold/isomap.py,sha256=5zOTV0nWJ0Ak8n0QH0i05KXEYox635ySsqarLKWRxuE,52819
303
- snowflake/ml/modeling/manifold/mds.py,sha256=2HQQp5IDxzC1urNdPESnZ5jNg3-Hdy1I1OBwHU9ATfA,52036
304
+ snowflake/ml/modeling/manifold/isomap.py,sha256=aO4wy-iEjn3meu2ktJO65qDZvSfgblnldzZAjJKgECU,52821
305
+ snowflake/ml/modeling/manifold/mds.py,sha256=Mmgl3nRyd8QTwXCqPh3pUz9rjHAUl0PeHLcmRLC0_30,52037
304
306
  snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=B09ygJjIA49hYV-Y4w1-hnMoWs4z12Xgmun5XBz5pzQ,52901
305
- snowflake/ml/modeling/manifold/tsne.py,sha256=Pi9aDZlpZcN2vbBSdKDoCdqK1adD8piFvclx1NcfCNw,55827
307
+ snowflake/ml/modeling/manifold/tsne.py,sha256=Go_P0kHMAlXBtm9DCubNI3oufPEBnR4eKYVf6sSfGcw,56024
306
308
  snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
307
- snowflake/ml/modeling/metrics/classification.py,sha256=5XbbpxYu9HXB7FUbBJfT7wVNMKBfzxwcaVzlMSyHAWg,66499
309
+ snowflake/ml/modeling/metrics/classification.py,sha256=MrEHOQ6EmfeDl_5t4n1fcE_SQOm8i5jbRSaxcN9s-II,66435
308
310
  snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
309
311
  snowflake/ml/modeling/metrics/covariance.py,sha256=HxJK1mwyt6lMSg8yonHFQ8IxAEa62MHeb1M3eHEtqlk,4672
310
312
  snowflake/ml/modeling/metrics/metrics_utils.py,sha256=9tZQ_Mu6jTWHztwqkPSrFWY_LP551W7FmQrXYwbSlso,13208
311
- snowflake/ml/modeling/metrics/ranking.py,sha256=gA1R1x1jUXA9bRrYn8IfJPM5BDY4DK1JCtoPQVsz5z4,17569
312
- snowflake/ml/modeling/metrics/regression.py,sha256=OEawjdiMZHYlycQFXM_h2czIZmmGe5GKciEQD9MSWx4,25845
313
+ snowflake/ml/modeling/metrics/ranking.py,sha256=5aqY9bi38vSLrfEeInIJMkzL-3Jm8nv1pQNX5onE9EA,17653
314
+ snowflake/ml/modeling/metrics/regression.py,sha256=0vQuk2mLJSWfwnhImT3Uz8e_xjNxYFJlDxb89xaQHJk,25929
313
315
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
314
316
  snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=jx5fKk0dnQYUERg4pACPZlFi-N9soXciNHXoBX-IKb0,57409
315
317
  snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=FTH60ckoW3cyJCfiX5tN73K4S0SKZlfBJHT8hoGxifM,55302
@@ -321,30 +323,30 @@ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=r2gUV5EVWnZiIJe
321
323
  snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=2B0w-gj1nnmCj3ZacJgsaWQA3ArL3Zv_y8fH_hHkZfo,51758
322
324
  snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=RvF9JB11gsk9a7dsuCAvH18lMANj1XgSaxJ1QrJON1U,51095
323
325
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
324
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=Y8V1XM6HVjsPz1G2PoqoWiLP1DEUqRQp6rW3YQ95ZnI,51355
325
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=qzZQhMCRxmpHtTTyZOA_qFS3bF-7lGuwJMV0d-6jxx0,51692
326
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=vVLpjjoJqTw93VlvQrv5mmrb3fOMc_Fy9kZysj2Kdsw,51371
326
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=83IgSrW3GgxiuMF_8XgxaUAkBuKTK8X1w76lWnFx3bA,51350
327
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=0xxdKLFwUfdPdlmlNZ6VisPYgvA671ZDCW5CIQux0k4,51687
328
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=rhzL4TQc874fm9EdU6B1KZtOdtFI_FI9mDW7ZJSCo28,51366
327
329
  snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=fadqQU8Iy3U_ZNyyKZL0JkBLsMT23NLA7YbSyIvq_QA,50498
328
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=xttXBuQPH6Y5GSUYGBIkf7AL4DR3rrA4KsKATh-0G3w,51137
330
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=mpZx0HIIcK5s9DWFL2bc1qb3OETx0acAejcavGC-Ib8,51132
329
331
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
330
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=PUsqF-IJ_PTPOJie9BngSM3f80hHzRJouhf2tCoqz8g,54213
331
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=ITfNPT1xaf3zgaUhYE7S2hwxpPlEn9IR3Tn4z87dpxo,53683
332
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=307GwV6gukR7eG5y768O6D08ek9ao7cOViSU2A-XSZs,54464
333
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=_R9KDDEZ1oe9Ia6Me5pYaifZYXHLszfjn3Mg8IpjZ_8,53830
332
334
  snowflake/ml/modeling/neighbors/kernel_density.py,sha256=-1nhtIF8jiBi0ecJU3yxSMpy_enDBnh_-yMWBeCFg5Q,52119
333
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=iHJHWbBEj70G1KFfgYzdlctIHh2AbVp5SCbqcNQr_04,54702
334
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=o-xi_N8PPxbHqmShmFtZjtFiQTvG9DBxFfuLwvc1j6I,50697
335
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=l3VqkQKCNivnjf52MniTxLZr_gidynpyVProXTkEPhI,52591
335
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=g7OOJYSTQBpYATZhB08lxY-Ird17c35Z0SfxNW3_P8k,54695
336
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=rj0arB6SElA_yynxrBGSzXioC1nBFe96wtNB1nAJ-F0,50283
337
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=xow3kFE1nZX8IeKAacDV7mpWF4cnWb5JbJM4T0EuqWk,52602
336
338
  snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=e5LvLURwNDdFGUqFZZlpCaczWC1wtPzW8IR1llR3cbI,54184
337
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=M6I0v8UhVDypN0SkFrEWz94MwAJKuZSwIRuLt8gHIuM,54631
338
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=N0G_jFDrgks8mM0zm_7hh1BQlEe_0nsxIwg_HJ_GGt8,53511
339
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=6m2TeZhPrqYN88qONR1LgYuclapd3Oqtj4naeSbKtBY,54913
340
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=gSUNGHJOHIv11HZghrSOcN8Sqjr2djUdYiXMSg7ph6o,53513
339
341
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
340
342
  snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=novw3YKaMmdblfTz6MeBjU7xXrL8Gh51dknXyYV2Flo,51326
341
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=pFyopjAv_1G0W4ikuWr_5Pcof9ROvWS5L5Y_xcMSAB8,58579
342
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=t4lh7YUkg4lr5aSYa6bVPpSf8fcdV480l1UyflDE9AA,57847
343
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=SVvJ33chdtNsSIYccwM5t_QG4g-ijyKPMONzpFHTHco,58880
344
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=mhCxHQrzqd8kJlF7kOIchwUDv8v7mgTYJsymqsQfzss,57992
343
345
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
344
346
  snowflake/ml/modeling/parameters/disable_model_tracer.py,sha256=uj6SZz7HQpThGLs90zfUDcNMChxf0C6DKRN2xOfjmvI,203
345
347
  snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
346
348
  snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
347
- snowflake/ml/modeling/pipeline/pipeline.py,sha256=MjwZA4moXFEnUQCgbKRCt3GuL6gMk68NFBNkzWQx5IA,46244
349
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=X5V_YQ881QZyowJh8-Tnt-oWgk0gMXPqV_C6psAkDAo,46320
348
350
  snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
349
351
  snowflake/ml/modeling/preprocessing/binarizer.py,sha256=MrgSVTw9RpajyYe0dzai-qnpdOb3Zq0SfJRpHJjpnoY,7383
350
352
  snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=FdIy8mpjsiMqWsUL07S27T-JNDVgE2bvNUJf4HcBik4,21533
@@ -352,8 +354,8 @@ snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=jQV2UgA-qtzxNxHzgyhf
352
354
  snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=P03PP907SbofOFv1cJhTe1R2_-lnFYHfGsvYsVFofWY,9146
353
355
  snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=leLeIrVsXn08agPqL-N50ohrWlC9FVuztMleQ043H5o,12467
354
356
  snowflake/ml/modeling/preprocessing/normalizer.py,sha256=0VmTIwldr3F3KQC--6RsYkybWjWuiqtxn4PuWinH0ME,6997
355
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=DgV6eF4a-d4LtRqoYxC5H9ASx8EBlBVp6nZ2YaqqPQA,75081
356
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=ngdmbJiGXtiePfh_6TUM9LCxu22MJPzRXv3yQJXzSwA,35272
357
+ snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=BW4T4u7EnN62jBOd9pc5UsNVT1_7HzIJJtnUYFLRYtA,75172
358
+ snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=CfY50IV-akM1hhmt9A05IlgXEdMuRQsHE8PLkOxKUsM,35319
357
359
  snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=RFn6ECCYuCK9kMqPv67uXph2zE872_loKw6jLJGN570,51258
358
360
  snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=Dp58jHxBdGdiFQAYmFW39JUdaPHO7dKfMy3KREtKAy0,12653
359
361
  snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=ui5pWnt2dL2VTTzCWikY8siG3fh_R9J1Wk_VZCHU-rA,11773
@@ -361,40 +363,39 @@ snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEh
361
363
  snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=rZ3qjcpXNq1dYweHFAPhrbvOBZw-3wcKegen75I5dXQ,51597
362
364
  snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=8PHYgqhhINa7fEPPzRsbQFSkvG2nlfFlks7Yd0t-fuU,51944
363
365
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
364
- snowflake/ml/modeling/svm/linear_svc.py,sha256=L1SUoJcvCEIkHefmqiOJaiPXrjkaxXQIfFSOyAEeIMQ,54400
365
- snowflake/ml/modeling/svm/linear_svr.py,sha256=IO08pYm2mHFap8w_h0HnGKpFIeTWS4gTDDnUvf-UmuE,52753
366
- snowflake/ml/modeling/svm/nu_svc.py,sha256=9s-VYUkYHOhaYTvMs_8UwmK9IX1RXeXNRAYlfT1F80Q,54708
367
- snowflake/ml/modeling/svm/nu_svr.py,sha256=Ouq38IvVtH-oMj1zWhMava9i_8mUnTTzYzYEnEnkpVI,51787
368
- snowflake/ml/modeling/svm/svc.py,sha256=41xnxNUGoUM9ydgZkxTjZc-GjoZYdh2fFGwqXm8tLIE,54855
369
- snowflake/ml/modeling/svm/svr.py,sha256=EMlXpDWJSgFN55vnYFP2zJkNzGFHTG0IbISvBE-TTT0,51974
366
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=OcXLU66uy-QvYw7-A41L1DeIZ5xkgAkWqLKz0s0dX2E,55169
367
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=xGGCMlP8_XNjTqyXdg3OEOLr8TEd72rO3h3qplKU-tQ,53352
368
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=IM4cxpv2DObfp_dQMU8hTSwQ3fUp4WSGnENo9-vNL9Y,54837
369
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=ZI-XO8aTkG5hr-zCF_98ENEjTeLS7kZPj7WsNQHterg,51951
370
+ snowflake/ml/modeling/svm/svc.py,sha256=XuU-zhPmo0CupeLBgl5gO487r5cE50fK8zcD0Qc9I_A,55151
371
+ snowflake/ml/modeling/svm/svr.py,sha256=pIUkD6kKW8inUKIFb9Nt1n6N0HK05Njz6F9bIzpTCdU,52130
370
372
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
371
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=Z04GMmdO39Q6kt9VAuS2dLL0HWg2JhA51mXbICxUUCs,57150
372
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=hn739D2TuEw0hK6_maDzrGpP-IYxcDLZrDld4S6v9YU,55848
373
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=5vy27lb-Boy-cVeGgnw-rqyClRAFy3IcOgaB5Af0p48,56489
374
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=Ca2Z5p2-ZWNVc0ZV8QEtix6X5lKsPnKh6osML_ES9QY,55196
373
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=MmvRKdYqG5zQ_kB1ADOfn45KynYuFv3Z_R-yVY0qHt4,57937
374
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=5eE6INs96PvqqAGgk-gNtZdbCP6_fJ8BFsvv61f6kJk,56485
375
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=GacBZnYfIFmce00DR4mEBpGRcyOgUDDPWhcGLd47BMc,57248
376
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=dretp3_soBuChs_3u2FTT1a00xOtwh0FqacgeKnt41E,55833
375
377
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
376
378
  snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=2QEK6-NihXjKXO8Ue-fOZDyucIBn5ADSyq-fQS3d6Lg,62205
377
379
  snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=ZorEmRohT2-AUdS8fK0xH8BdB8ENxvVMMDYy34Jzm1o,61703
378
380
  snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=67jh9RosrTeYCWsJbnJ6_MQICHeG22z-DMy8CegP8Vg,62383
379
381
  snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=7_ZwF_QvVqBrkFx_zgGgLXyxtbX26XrWWLozAF-EBB0,61908
382
+ snowflake/ml/monitoring/model_monitor.py,sha256=p8FWMpr9O8ScL_y6wdrMUstlpA43gJ0Qiv2e8w-ADts,1374
383
+ snowflake/ml/monitoring/model_monitor_version.py,sha256=TlmDJZDE0lCVatRaBRgXIjzDF538nrMIc-zWj9MM_nk,46
380
384
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
381
- snowflake/ml/monitoring/_client/model_monitor.py,sha256=hfR1lj_IJUTbc7XbzFALYXks0BwR-PMRuOvD7VmZDms,5371
382
- snowflake/ml/monitoring/_client/model_monitor_manager.py,sha256=RHibb1_m8CvFKKtl7Su_ZTB7faZ7T2zSPnjPBz3eHxU,17337
383
- snowflake/ml/monitoring/_client/model_monitor_version.py,sha256=TlmDJZDE0lCVatRaBRgXIjzDF538nrMIc-zWj9MM_nk,46
384
- snowflake/ml/monitoring/_client/monitor_sql_client.py,sha256=hKU6BMdz01XQLWnJFDJny7sKc2DSIGTFKNixeJTHtWc,57963
385
+ snowflake/ml/monitoring/_client/model_monitor_sql_client.py,sha256=EH2jTz6ctNxfXbOMGVbQTAgikUig5YmvSsX93cd9ZF8,20194
385
386
  snowflake/ml/monitoring/_client/queries/record_count.ssql,sha256=Bd1uNMwhPKqPyrDd5ug8iY493t9KamJjrlo82OAfmjY,335
386
387
  snowflake/ml/monitoring/_client/queries/rmse.ssql,sha256=OEJiSStRz9-qKoZaFvmubtY_n0xMUjyVU2uiQHCp7KU,822
387
- snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=rOKG9JirzptIaVFG9rCjjNdc1_eCzGTdjiAcrNSmxjU,867
388
- snowflake/ml/monitoring/entities/model_monitor_interval.py,sha256=yDUaAXmYRQEFGW9rXihrEs5p0Ur94LCnoqKBjqi0Cyk,1681
388
+ snowflake/ml/monitoring/_manager/model_monitor_manager.py,sha256=gT3aYZsjD5wIRLdbe7fyyb5vICIxw9WWsK7H0hxbz9E,10314
389
+ snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=wvk0v9-VvhFAaNdpYXSqKdWj2Kx-KGjuWVkaCgL4MUc,825
389
390
  snowflake/ml/monitoring/entities/output_score_type.py,sha256=UJyS4z5hncRZ0agVNa6_X041RY9q3Us-6Bh3dPVAmEw,2982
390
391
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
391
- snowflake/ml/registry/registry.py,sha256=3SwDhN-0j1WEyFuUAA9rnCR_QKb6xWrVHqrnZay0lxg,23602
392
- snowflake/ml/registry/_manager/model_manager.py,sha256=hf0KR9qxzg0ZbFJ3BUgDn6NBTz3KEnLkVVoICzY0ejs,11177
392
+ snowflake/ml/registry/registry.py,sha256=_G6Sm4Zi67iJJ3RUwz2XNYszPnrOtYF5bK8KeGtjubM,23793
393
+ snowflake/ml/registry/_manager/model_manager.py,sha256=gFr1EqaMR2Eb4erwVz7fi7xK1G1YsFXz1PF5GvOR0pg,12131
393
394
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
394
395
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
395
396
  snowflake/ml/utils/sql_client.py,sha256=z4Rhi7pQz3s9cyu_Uzfr3deCnrkCdFh9IYIvicsuwdc,692
396
- snowflake_ml_python-1.6.4.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
397
- snowflake_ml_python-1.6.4.dist-info/METADATA,sha256=uGnnJiH_L7vuuFLi2cLQJILhEqxskjBju0NLn45ew-U,61159
398
- snowflake_ml_python-1.6.4.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
399
- snowflake_ml_python-1.6.4.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
400
- snowflake_ml_python-1.6.4.dist-info/RECORD,,
397
+ snowflake_ml_python-1.7.1.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
398
+ snowflake_ml_python-1.7.1.dist-info/METADATA,sha256=s1vUDI47E0APJr53Bs6qTDV-fWFk3gLkW9yImkzM960,65547
399
+ snowflake_ml_python-1.7.1.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
400
+ snowflake_ml_python-1.7.1.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
401
+ snowflake_ml_python-1.7.1.dist-info/RECORD,,