snowflake-ml-python 1.6.3__py3-none-any.whl → 1.7.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (150) hide show
  1. snowflake/ml/_internal/telemetry.py +4 -2
  2. snowflake/ml/_internal/utils/import_utils.py +31 -0
  3. snowflake/ml/_internal/utils/snowpark_dataframe_utils.py +13 -0
  4. snowflake/ml/data/_internal/arrow_ingestor.py +8 -0
  5. snowflake/ml/data/data_connector.py +1 -1
  6. snowflake/ml/data/torch_utils.py +33 -14
  7. snowflake/ml/feature_store/examples/airline_features/features/plane_features.py +5 -3
  8. snowflake/ml/feature_store/examples/airline_features/features/weather_features.py +7 -5
  9. snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py +4 -2
  10. snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py +3 -1
  11. snowflake/ml/feature_store/examples/example_helper.py +6 -3
  12. snowflake/ml/feature_store/examples/new_york_taxi_features/features/location_features.py +4 -2
  13. snowflake/ml/feature_store/examples/new_york_taxi_features/features/trip_features.py +4 -2
  14. snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py +3 -1
  15. snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py +3 -1
  16. snowflake/ml/feature_store/feature_store.py +1 -2
  17. snowflake/ml/feature_store/feature_view.py +5 -1
  18. snowflake/ml/model/_client/model/model_version_impl.py +144 -10
  19. snowflake/ml/model/_client/ops/model_ops.py +25 -6
  20. snowflake/ml/model/_client/ops/service_ops.py +33 -28
  21. snowflake/ml/model/_client/service/model_deployment_spec.py +19 -8
  22. snowflake/ml/model/_client/service/model_deployment_spec_schema.py +3 -1
  23. snowflake/ml/model/_client/sql/model.py +14 -0
  24. snowflake/ml/model/_client/sql/service.py +6 -18
  25. snowflake/ml/model/_model_composer/model_composer.py +2 -0
  26. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +4 -0
  27. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +1 -0
  28. snowflake/ml/model/_model_composer/model_method/model_method.py +1 -1
  29. snowflake/ml/model/_packager/model_handlers/_utils.py +5 -1
  30. snowflake/ml/model/_packager/model_handlers/catboost.py +3 -6
  31. snowflake/ml/model/_packager/model_handlers/custom.py +2 -0
  32. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +10 -1
  33. snowflake/ml/model/_packager/model_handlers/lightgbm.py +3 -6
  34. snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +8 -1
  35. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -6
  36. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +7 -65
  37. snowflake/ml/model/_packager/model_handlers/xgboost.py +10 -40
  38. snowflake/ml/model/_packager/model_packager.py +0 -11
  39. snowflake/ml/model/_packager/{model_handlers/model_objective_utils.py → model_task/model_task_utils.py} +13 -25
  40. snowflake/ml/model/_signatures/pandas_handler.py +16 -0
  41. snowflake/ml/model/custom_model.py +47 -7
  42. snowflake/ml/model/model_signature.py +2 -0
  43. snowflake/ml/model/type_hints.py +8 -0
  44. snowflake/ml/modeling/_internal/estimator_utils.py +13 -0
  45. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +7 -2
  46. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +16 -5
  47. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -2
  48. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +9 -3
  49. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -8
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +17 -19
  51. snowflake/ml/modeling/cluster/dbscan.py +5 -2
  52. snowflake/ml/modeling/cluster/feature_agglomeration.py +7 -19
  53. snowflake/ml/modeling/cluster/k_means.py +14 -19
  54. snowflake/ml/modeling/cluster/mini_batch_k_means.py +3 -3
  55. snowflake/ml/modeling/cluster/optics.py +6 -6
  56. snowflake/ml/modeling/cluster/spectral_clustering.py +4 -3
  57. snowflake/ml/modeling/compose/column_transformer.py +15 -5
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +7 -6
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +1 -1
  60. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +1 -1
  61. snowflake/ml/modeling/covariance/min_cov_det.py +2 -2
  62. snowflake/ml/modeling/covariance/oas.py +1 -1
  63. snowflake/ml/modeling/decomposition/kernel_pca.py +2 -2
  64. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +5 -12
  65. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +5 -12
  66. snowflake/ml/modeling/decomposition/pca.py +28 -15
  67. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +6 -0
  68. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -12
  69. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -11
  70. snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -8
  71. snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -8
  72. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +21 -2
  73. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +18 -2
  74. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +2 -0
  75. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +2 -0
  76. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +21 -8
  77. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +21 -11
  78. snowflake/ml/modeling/ensemble/random_forest_classifier.py +21 -2
  79. snowflake/ml/modeling/ensemble/random_forest_regressor.py +18 -2
  80. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +2 -1
  81. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +5 -3
  82. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +2 -2
  83. snowflake/ml/modeling/linear_model/ard_regression.py +5 -10
  84. snowflake/ml/modeling/linear_model/bayesian_ridge.py +5 -11
  85. snowflake/ml/modeling/linear_model/elastic_net.py +3 -0
  86. snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -1
  87. snowflake/ml/modeling/linear_model/lars.py +0 -10
  88. snowflake/ml/modeling/linear_model/lars_cv.py +1 -11
  89. snowflake/ml/modeling/linear_model/lasso_cv.py +1 -1
  90. snowflake/ml/modeling/linear_model/lasso_lars.py +0 -10
  91. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -11
  92. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +0 -10
  93. snowflake/ml/modeling/linear_model/logistic_regression.py +28 -22
  94. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +30 -24
  95. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -1
  96. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -1
  97. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +4 -13
  98. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +4 -4
  99. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -1
  100. snowflake/ml/modeling/linear_model/perceptron.py +3 -3
  101. snowflake/ml/modeling/linear_model/ransac_regressor.py +3 -2
  102. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +14 -6
  103. snowflake/ml/modeling/linear_model/ridge_cv.py +17 -11
  104. snowflake/ml/modeling/linear_model/sgd_classifier.py +2 -2
  105. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +5 -1
  106. snowflake/ml/modeling/linear_model/sgd_regressor.py +12 -3
  107. snowflake/ml/modeling/manifold/isomap.py +1 -1
  108. snowflake/ml/modeling/manifold/mds.py +3 -3
  109. snowflake/ml/modeling/manifold/tsne.py +10 -4
  110. snowflake/ml/modeling/metrics/classification.py +12 -16
  111. snowflake/ml/modeling/metrics/ranking.py +3 -3
  112. snowflake/ml/modeling/metrics/regression.py +3 -3
  113. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +3 -3
  114. snowflake/ml/modeling/naive_bayes/categorical_nb.py +3 -3
  115. snowflake/ml/modeling/naive_bayes/complement_nb.py +3 -3
  116. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +3 -3
  117. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +10 -4
  118. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +5 -2
  119. snowflake/ml/modeling/neighbors/local_outlier_factor.py +2 -2
  120. snowflake/ml/modeling/neighbors/nearest_centroid.py +7 -14
  121. snowflake/ml/modeling/neighbors/nearest_neighbors.py +1 -1
  122. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +6 -1
  123. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -1
  124. snowflake/ml/modeling/neural_network/mlp_classifier.py +7 -1
  125. snowflake/ml/modeling/neural_network/mlp_regressor.py +3 -0
  126. snowflake/ml/modeling/pipeline/pipeline.py +16 -14
  127. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +8 -4
  128. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +9 -7
  129. snowflake/ml/modeling/svm/linear_svc.py +25 -16
  130. snowflake/ml/modeling/svm/linear_svr.py +23 -17
  131. snowflake/ml/modeling/svm/nu_svc.py +5 -3
  132. snowflake/ml/modeling/svm/nu_svr.py +3 -1
  133. snowflake/ml/modeling/svm/svc.py +9 -5
  134. snowflake/ml/modeling/svm/svr.py +3 -1
  135. snowflake/ml/modeling/tree/decision_tree_classifier.py +21 -2
  136. snowflake/ml/modeling/tree/decision_tree_regressor.py +18 -2
  137. snowflake/ml/modeling/tree/extra_tree_classifier.py +28 -9
  138. snowflake/ml/modeling/tree/extra_tree_regressor.py +18 -2
  139. snowflake/ml/monitoring/_client/{monitor_sql_client.py → model_monitor_sql_client.py} +1 -1
  140. snowflake/ml/monitoring/{_client → _manager}/model_monitor_manager.py +9 -8
  141. snowflake/ml/monitoring/{_client/model_monitor.py → model_monitor.py} +3 -3
  142. snowflake/ml/registry/_manager/model_manager.py +15 -1
  143. snowflake/ml/registry/registry.py +15 -8
  144. snowflake/ml/version.py +1 -1
  145. {snowflake_ml_python-1.6.3.dist-info → snowflake_ml_python-1.7.0.dist-info}/METADATA +81 -9
  146. {snowflake_ml_python-1.6.3.dist-info → snowflake_ml_python-1.7.0.dist-info}/RECORD +150 -150
  147. {snowflake_ml_python-1.6.3.dist-info → snowflake_ml_python-1.7.0.dist-info}/WHEEL +1 -1
  148. /snowflake/ml/monitoring/{_client/model_monitor_version.py → model_monitor_version.py} +0 -0
  149. {snowflake_ml_python-1.6.3.dist-info → snowflake_ml_python-1.7.0.dist-info}/LICENSE.txt +0 -0
  150. {snowflake_ml_python-1.6.3.dist-info → snowflake_ml_python-1.7.0.dist-info}/top_level.txt +0 -0
@@ -9,13 +9,13 @@ snowflake/cortex/_sse_client.py,sha256=_GGmxskEQPVJ2bE3LHySnPFl29CP4YGM4_xmR_Kk-
9
9
  snowflake/cortex/_summarize.py,sha256=bwpFBzBGmNQSoJqKs3IB5wASjAREnC5ZnViSuZK5IrU,1059
10
10
  snowflake/cortex/_translate.py,sha256=69YUps6mnhzVdubdU_H0IfUAlbBwF9OPemFEQ34P-ts,1404
11
11
  snowflake/cortex/_util.py,sha256=uZQNsG8uTrlsao0a3A_BtNJQw6xCGgWjXscgZf9beUs,2209
12
- snowflake/ml/version.py,sha256=WsVT69ZLsnasRlAmBGPzK1f5KkKKlu7FJpIne8-oxe8,16
12
+ snowflake/ml/version.py,sha256=3BlKlH_13PScPdkvTQUJcDra8sVjrXpEv9289UFsNNI,16
13
13
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
14
14
  snowflake/ml/_internal/env_utils.py,sha256=J_jitp8jvDoC3a79EbMSDatFRYw-HiXaI9vR81bhtU8,28075
15
15
  snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
16
16
  snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
17
17
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
18
- snowflake/ml/_internal/telemetry.py,sha256=XwzuyTVSDW7RyYLlC0ZsEij19ElFrm-OItLPQW5HeG4,29719
18
+ snowflake/ml/_internal/telemetry.py,sha256=xgpJtUgKNZXrhf9u4G-0IBoSX7QXB5goLC5sHETiJHc,29850
19
19
  snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
20
20
  snowflake/ml/_internal/exceptions/dataset_error_messages.py,sha256=h7uGJbxBM6se-TW_64LKGGGdBCbwflzbBnmijWKX3Gc,285
21
21
  snowflake/ml/_internal/exceptions/dataset_errors.py,sha256=TqESe8cDfWurJdv5X0DOwgzBfHCEqga_F3WQipYbdqg,741
@@ -34,7 +34,7 @@ snowflake/ml/_internal/lineage/lineage_utils.py,sha256=kxWW7fkSf1HiUQSks3VlzWynt
34
34
  snowflake/ml/_internal/utils/db_utils.py,sha256=HBAY0-XHzCP4ai5q3Yqd8O19Ar_Q9J3xD4jO6Fe7Zek,1668
35
35
  snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
36
36
  snowflake/ml/_internal/utils/identifier.py,sha256=fUYXjXKXAkjLUZpomneMHo2wR4_ZNP4ak-5OJxeUS-g,12467
37
- snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
37
+ snowflake/ml/_internal/utils/import_utils.py,sha256=iUIROZdiTGy73UCGpG0N-dKtK54H0ymNVge_QNQYY3A,3220
38
38
  snowflake/ml/_internal/utils/parallelize.py,sha256=Q6_-P2t4DoYNO8DyC1kOl7H3qNL-bUK6EgtlQ_b5ThY,4534
39
39
  snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=FwdLHFhxi3CAQQduGjFavEBmkD9Ra6ZTkt6Eub-WoSA,5168
40
40
  snowflake/ml/_internal/utils/query_result_checker.py,sha256=h1nbUImdB9lSNCON3uIA0xCm8_JrS-TE-jQXJJs9WfU,10668
@@ -42,16 +42,16 @@ snowflake/ml/_internal/utils/result.py,sha256=59Sz6MvhjakUNiONwg9oi2544AmORCJR3X
42
42
  snowflake/ml/_internal/utils/retryable_http.py,sha256=1GCuQkTGO4sX-VRbjy31e4_VgUjqsp5Lh2v5tSJjVK8,1321
43
43
  snowflake/ml/_internal/utils/service_logger.py,sha256=tSKz7SzC33Btu2QgerXJ__4jRhOvRepOSEvHXSy_FTs,1974
44
44
  snowflake/ml/_internal/utils/snowflake_env.py,sha256=WY9KgMcXEydpWObHQCQhvxcSZXMwC-2OHc894njmXEg,3346
45
- snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=ksWdVV2EUX4SOOcoeC00xZDEoOyukQOGqxO20_XxaMs,5981
45
+ snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=pV8m0d4xfG2_Cl25T5nZb1HCXH375EKSOCgwYWfQVac,6359
46
46
  snowflake/ml/_internal/utils/sql_identifier.py,sha256=A5mfeDuz4z6VuUYG3EBpDyQQQCNiRtjVS1WNWAoiqq8,4682
47
47
  snowflake/ml/_internal/utils/table_manager.py,sha256=pU7v8Cx-jGObf6RtTmfCmALfhbpJD-lL45T1gWX1nSY,4982
48
48
  snowflake/ml/_internal/utils/temp_file_utils.py,sha256=0-HTjXdxVt0kE6XcgyvRvY0btflWlmotP2bMXVpFJPA,1553
49
- snowflake/ml/data/data_connector.py,sha256=vYCD7iY-9n1xFQBrDTzb-ZxlFQ90P6B4VSYapUjWflE,8698
49
+ snowflake/ml/data/data_connector.py,sha256=iOOEkRsy11acWZZnLJj6EDgLM63Q8GY-1htO0l7m9Wo,8711
50
50
  snowflake/ml/data/data_ingestor.py,sha256=Nrj5l0cVnoXWI6Ilig-r_pGS902xkZATbqh3OsV53NI,1017
51
51
  snowflake/ml/data/data_source.py,sha256=dRemXGi_HHQdn6gaNkxxGJixnQPuUYFDP8NBjmB_ZMk,518
52
52
  snowflake/ml/data/ingestor_utils.py,sha256=--nEwJHbYqYHpAzR1APgoeVF9CMgq_fDX81X29HAB4w,2727
53
- snowflake/ml/data/torch_utils.py,sha256=nsADN444UOqWOomJQJm4GQu2bHUVvImahVlPQldu_vY,2649
54
- snowflake/ml/data/_internal/arrow_ingestor.py,sha256=T6i87NH4djZwqmc5m-yh2FFrihvFoQfn9LhDRZi7sPc,11667
53
+ snowflake/ml/data/torch_utils.py,sha256=Wn9_AY3DiFHJEPdZkKqaFtBMaS1RJ9hSF1ArBeNKqJ4,3292
54
+ snowflake/ml/data/_internal/arrow_ingestor.py,sha256=C72MGC7QEUAXwIy43qXkxxO9zZDyd3fU4fyZmQ75VHg,12086
55
55
  snowflake/ml/dataset/__init__.py,sha256=nESj7YEI2u90Oxyit_hKCQMWb7N1BlEM3Ho2Fm0MfHo,274
56
56
  snowflake/ml/dataset/dataset.py,sha256=GqdcABGcIlAzPmfTcOC8H_Kw6LNQZ6F_7Ch45hxHOHU,21094
57
57
  snowflake/ml/dataset/dataset_factory.py,sha256=Fym4ICK-B1j6Om4ENwWxEvryq3ZKoCslBSZDBenmjOo,1615
@@ -60,21 +60,21 @@ snowflake/ml/dataset/dataset_reader.py,sha256=e-IRbxbxFfNbsglmqtzhV_wYFsEflBW6-U
60
60
  snowflake/ml/feature_store/__init__.py,sha256=VKBVkS050WNF8rcqNqwFfNXa_B9GZjcUpuibOGsUSls,423
61
61
  snowflake/ml/feature_store/access_manager.py,sha256=LcsfBKsZzfERQQ_pqZG0W-XbpVGx9jkZOI-7nbfryhg,10666
62
62
  snowflake/ml/feature_store/entity.py,sha256=A65FOGlljREUG8IRMSN84v1x2uTeVGCM4NqKXO2Ui8w,4059
63
- snowflake/ml/feature_store/feature_store.py,sha256=oZWUHrlhYVUfTK0tOhDwt0NgEqKkDcOSF2YU6drS-FQ,113481
64
- snowflake/ml/feature_store/feature_view.py,sha256=a7BdD6HLU0ycPsdpYuzutG1UFnsFnG1gVHhzvrSqO-k,36687
65
- snowflake/ml/feature_store/examples/example_helper.py,sha256=hVaPrjtMsMxJ804vTzjrI5cvyyPLx2ExZi2P9Qfg4z0,12248
63
+ snowflake/ml/feature_store/feature_store.py,sha256=cb_5xc3QWkiqnUiQ4Y0T58f2sKuifmumV9jG13qreAk,113425
64
+ snowflake/ml/feature_store/feature_view.py,sha256=7xfrq7abM9-FiA7mJ1yDq5z9Uk7jbHNuyGyySVlNqbo,37040
65
+ snowflake/ml/feature_store/examples/example_helper.py,sha256=DcQZA5rDyRj9lzMp8ZmoATjAzNfC4DL-draz8du9-Ms,12414
66
66
  snowflake/ml/feature_store/examples/airline_features/entities.py,sha256=V2xVZpHFgGA92Kyd9hCWa2YoiRhH5m6HAgvnh126Nqo,463
67
67
  snowflake/ml/feature_store/examples/airline_features/source.yaml,sha256=kzl8ukOK8OuSPsxChEgJ9SPyPnzC-fPHqZC4O6aqd5o,247
68
- snowflake/ml/feature_store/examples/airline_features/features/plane_features.py,sha256=qVYEGKt7DMioZvf20b3-RNtJOQVYUyWANCdk-CdOyuU,1015
69
- snowflake/ml/feature_store/examples/airline_features/features/weather_features.py,sha256=A5hkWOQ3CTQfaJaUQ1VsB2Ne8LmIrM9DPyrMX0EOHvI,1634
68
+ snowflake/ml/feature_store/examples/airline_features/features/plane_features.py,sha256=dLZlKOUsI-NvBdaBeoole0mIUrHfbqTexFSbCDGjlGw,1070
69
+ snowflake/ml/feature_store/examples/airline_features/features/weather_features.py,sha256=RG_Nrjyx8mn9ACzW7nKHUTn36ZnuEueNF5QeGsWe9rk,1695
70
70
  snowflake/ml/feature_store/examples/citibike_trip_features/entities.py,sha256=SE8Zx3xqFJk65Tqori4nh0KOPwEY3baMoFsVAYM1e7c,449
71
71
  snowflake/ml/feature_store/examples/citibike_trip_features/source.yaml,sha256=gutDfijhGkBu1w4r1286JnuO4EhbuRPKwoHisYlt8Yw,229
72
- snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py,sha256=3I95LMBEo5lXlaztPhjF_MVUmYXUZ9Xaz8ZmQpT0Cxk,1369
73
- snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py,sha256=LChqltsCBwD8diJN-Qno7a_gOBTwz6qCPm6qTmYSICc,1194
72
+ snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py,sha256=nfmgp6KD2ACaqxSClGGjY-Eqk83bTAa0M8yokT98e6E,1423
73
+ snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py,sha256=bJe3J-fgdVbPdjAgtPpreh6ZPJKmSqkvSxO9Rpe0Eu4,1228
74
74
  snowflake/ml/feature_store/examples/new_york_taxi_features/entities.py,sha256=J5oragmf6UvwruMjHhtrlzcBP-rA3Fyqv9VOJAT4goU,396
75
75
  snowflake/ml/feature_store/examples/new_york_taxi_features/source.yaml,sha256=0DShPCG972klJjHod0qkXrT7zkw45B3YCZs5U-x4Pv4,338
76
- snowflake/ml/feature_store/examples/new_york_taxi_features/features/location_features.py,sha256=ycjBkYxOnvpmToGsoTwohBEPgzzlZnm2wkDeYMUKJKY,1728
77
- snowflake/ml/feature_store/examples/new_york_taxi_features/features/trip_features.py,sha256=RgDl2KX0y8f3B_yKNg6Tf64CsG6_ItcWoCFWScXhjz4,1273
76
+ snowflake/ml/feature_store/examples/new_york_taxi_features/features/location_features.py,sha256=n08DTAKWoSwu3jMa1Bl5Iae4-NBlBV7IIyCrUc6qpGM,1782
77
+ snowflake/ml/feature_store/examples/new_york_taxi_features/features/trip_features.py,sha256=CsZ4Qe4nrsY39L5E1CX2k3lHD_afdiPDOiJ8VpVq5wk,1327
78
78
  snowflake/ml/feature_store/examples/source_data/airline.yaml,sha256=CZV416oTTM6hWCK2GPdb38Q8AR3CGIxAZwXrbP9KT_E,152
79
79
  snowflake/ml/feature_store/examples/source_data/citibike_trips.yaml,sha256=OaQwNzUHasgGgy8oIOHVRJ5tg7nnKs11hqDSZYs5-U0,923
80
80
  snowflake/ml/feature_store/examples/source_data/fraud_transactions.yaml,sha256=ENAIRcrRmdIplKJP8A5nhXdWSQRNTeQH4ghIT9boE8o,711
@@ -82,8 +82,8 @@ snowflake/ml/feature_store/examples/source_data/nyc_yellow_trips.yaml,sha256=1Pk
82
82
  snowflake/ml/feature_store/examples/source_data/winequality_red.yaml,sha256=03qIwx_7KA-56HwKqshSOFCGOvLnQibR_Iv2zprz_Vs,741
83
83
  snowflake/ml/feature_store/examples/wine_quality_features/entities.py,sha256=Hk593l6dqruvgcPRcSGKf2UGVQ9CPxmD547UuZ7QCnU,294
84
84
  snowflake/ml/feature_store/examples/wine_quality_features/source.yaml,sha256=dPs0nzf4poLhxDVEydb2Ff3mpRCWQ_L4jCoPO7HV4QA,241
85
- snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py,sha256=fqZWuCjVQ_AX0gIO-HCjzDMVwj749e23Lx2Mg25gX88,1432
86
- snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py,sha256=xtq3BdvVqTkP17aw0aCizF2EHmmBVeZOD7UMul2z4hs,990
85
+ snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py,sha256=W58pGmIKV1iehou4Knw_yWJRWKKt_80ZiiMi3C_vwOw,1466
86
+ snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py,sha256=ej1_DxD_W4TyqwOJ9T5C6s0S8rE5UPaP-KFzKi5MDWM,1024
87
87
  snowflake/ml/fileset/embedded_stage_fs.py,sha256=fmt8IoYbHtBMjyIC3K87ng-i5uYwE_2XKFQogNkP-nM,6000
88
88
  snowflake/ml/fileset/fileset.py,sha256=u-Hkqr7p97ajRYyd93fr62grbiBaA0AqTYkAAOppZj8,26186
89
89
  snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
@@ -95,48 +95,47 @@ snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPb
95
95
  snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCrzI4,65
96
96
  snowflake/ml/lineage/lineage_node.py,sha256=e6L4bdYDSVgTv0BEfqgPQWNoDiTiuI7HmfJ6n-WmNLE,5812
97
97
  snowflake/ml/model/__init__.py,sha256=EvPtblqPN6_T6dyVfaYUxCfo_M7D2CQ1OR5giIH4TsQ,314
98
- snowflake/ml/model/custom_model.py,sha256=Nu9kNa9pDFXmLN1Ipv4bc_htG0lPeWKD0AQ2Ma2-wK0,9172
99
- snowflake/ml/model/model_signature.py,sha256=Iwll4_VbcDtDX0otGS_NVd0gKSdcHQ_OJbZxNNGMRFg,29473
100
- snowflake/ml/model/type_hints.py,sha256=mpe-7ueJ7pb47GNAsUhmKxuQ5DVz82qsxTAOJQBdNeA,8731
98
+ snowflake/ml/model/custom_model.py,sha256=O60mjz2Vy8A0Rt3obq43zBT3BxkU7CIcN0AkHsOgHZI,11221
99
+ snowflake/ml/model/model_signature.py,sha256=c_e8NycPslxxOaQPIUDxJ2HPyLk_64IZe_YkrDkmjpg,29588
100
+ snowflake/ml/model/type_hints.py,sha256=ahAZQvpt9tip69zwcPSzvnjy5pJv_LWruN6ZAautu9k,8912
101
101
  snowflake/ml/model/_client/model/model_impl.py,sha256=pqjK8mSZIQJ_30tRWWFPIo8X35InSVoAunXlQNtSJEM,15369
102
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=cEdLIwxL77DEhWvEg9plmI5Vp1o-hgRZuxvZRwY7xhs,31071
102
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=cZNsiQmV3vd0jka9VRLSCGI5eNzW5GGF71YVCyyWxVQ,39038
103
103
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=7cGx8zYzye2_cvZnyGxoukPtT6Q-Kexd-s4yeZmpmj8,4890
104
- snowflake/ml/model/_client/ops/model_ops.py,sha256=-caU72yLdXuaBPGQKNWeuu7x0WdDWukBh3qV8IQy1kU,41867
105
- snowflake/ml/model/_client/ops/service_ops.py,sha256=vVhSFBr7EDT3QdZGou2uAJC8WTiGRenXj19vlpcVs8A,18289
106
- snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=tfTZl6ukBtrfu558Xu_aB5a9oMo-rDCll3NIGuUM8uA,4124
107
- snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=bAIdH_RWJuVW_oy94shDYXLxgG_WWerFocinI5OI8PM,767
104
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=-PfOpjaOBh7UmAvgg3c3fLGNX_zwDpi9QFu0FJhJHLk,42705
105
+ snowflake/ml/model/_client/ops/service_ops.py,sha256=KPaceF1kesP0Fq2Nf0MxnYiZFEQMDG9bovHOD8dvHTE,18458
106
+ snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=uyh5k_u8mVP5T4lf0jq8s2cFuiTsbV_nJL6z1Zum2rM,4456
107
+ snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=eaulF6OFNuDfQz3oPYlDjP26Ww2jWWatm81dCbg602E,825
108
108
  snowflake/ml/model/_client/sql/_base.py,sha256=Qrm8M92g3MHb-QnSLUlbd8iVKCRxLhG_zr5M2qmXwJ8,1473
109
- snowflake/ml/model/_client/sql/model.py,sha256=o36oPq4aU9TwahqY2uODYvICxmj1orLztijJ0yMbWnM,5852
109
+ snowflake/ml/model/_client/sql/model.py,sha256=ETWd3OVv1f8CJ-6xFYGJ7fSG9Uw4Edn9fWqW8YAPtPA,6264
110
110
  snowflake/ml/model/_client/sql/model_version.py,sha256=hNMlmwN5JQngKuaeUYV2Bli73RMnHmVH01ABX9NBHFk,20686
111
- snowflake/ml/model/_client/sql/service.py,sha256=O3EaSX-BT-RGzwr9EFpYzriD8h6xHjiEMy3lKxE2Jic,9850
111
+ snowflake/ml/model/_client/sql/service.py,sha256=puIGRkEtDTQ4J1ccUslMmWvfkbHv2omKho4OHKYVIjU,9339
112
112
  snowflake/ml/model/_client/sql/stage.py,sha256=hrCh9P9F4l5R0hLr2r-wLDIEc4XYHMFdX1wNRveMVt0,819
113
113
  snowflake/ml/model/_client/sql/tag.py,sha256=pwwrcyPtSnkUfDzL3M8kqM0KSx7CaTtgty3HDhVC9vg,4345
114
- snowflake/ml/model/_model_composer/model_composer.py,sha256=H-Bla85tdITjEaLtIFTeMgWAYs7LLZZiQTDSwlAFn-U,6588
115
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=qVsMjNbhE-mZSb7ExPPt4_xyys03_FvbAhofDSuDli0,7618
116
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=JF9IPpSrXoyCdFnqidCN67HUqo6MV0CchXzi3klURII,2675
114
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=535ElL3Kw8eoUjL7fHd-K20eDCBqvJFwowUx2_UOCl8,6712
115
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=X6-cKLBZ1X2liIjWnyrd9efQaQhwIoxRSE90Zs0kAZo,7822
116
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=akDY_lM3srumPHjmL7AUl782eARg1rWTIdLu-U0Jjwc,2720
117
117
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2cE463GKWAJCrqEYD1s8IPzd3iPu0X0eQ12NnXQhGBM,2556
118
118
  snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=eQ-FLUGt5r0P9UtDwWFoqSJzGeLBvwEMoHAbe8aCNsE,1418
119
119
  snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template,sha256=L5R04QeoW6dH1PdEy3qo1LS478rTmvvRmrwlgqVwimg,1504
120
120
  snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=NUDSyFFAdEZEWtSkvYxkU9vB-NTjcTg6sjkrNpcmF6A,1418
121
- snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=4RfjJ_0Y8NUmI9YpmBqxBT2xk_yQ0RIzznaKGHlS6jU,7076
121
+ snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=LBZsXzkGj-OiL9Tw4S0yBJlWLIzwzefCL6iO964gdCw,7019
122
122
  snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
123
- snowflake/ml/model/_packager/model_packager.py,sha256=dBkNAk0GkSiBdJW7qWG1CAZdEsItsNNwv3tCcwVFJo4,6424
123
+ snowflake/ml/model/_packager/model_packager.py,sha256=EhpEmfd2oDYuIrOYFOadI0OOFJa9bleMvI1WTHQqjE8,5806
124
124
  snowflake/ml/model/_packager/model_env/model_env.py,sha256=uUTbCHFTJJ6iMbhu7LkU3PFNB4VohbEFlBMLd1ZDyS8,17008
125
125
  snowflake/ml/model/_packager/model_handlers/_base.py,sha256=qQS1ZSz1Ikdj0TvyLU9n8K6KAj-PknL4s801qpnWodo,7164
126
- snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=D5YVRcsB6mEcD1xO5qr5P2reKmY7d8duxbPAATJBG3o,9031
127
- snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=CrSbRSd8eER-iYuhXzl3e24GBFnBr1o0Dsnb5E59ayk,10627
128
- snowflake/ml/model/_packager/model_handlers/custom.py,sha256=59IxqxXvaG3g6NlVEPv8Irw2tBK4k5yLNosXNZJGS4o,8059
129
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=VdpIgf-pn8HiAg9ZNF0-qkB4xFBj9mjIrCowTrRKvug,20967
130
- snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=kAbTBJQlLq59KkZQTlRDhxH5oEI04n4dq4IG7wB1HBw,10975
126
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=CE6nUMrxxP7IE7gLDsKY9SPEqg0KEvSWgRFgb069P4A,9236
127
+ snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=Cid5hTsGJDaEQfIlSPqNKPB0HbJByOe85ZkUwn3M56M,10651
128
+ snowflake/ml/model/_packager/model_handlers/custom.py,sha256=I2seoMoVLOjnf7_tbqTe54BbbjUJ9lHSKuAaSst4z-Q,8193
129
+ snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=BzeZgY4Z8GTtgc2sv65wjLlONgfEH1_yWBd2N4RDCMg,21397
130
+ snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=kviHpVlBVon1dRjAD7jDhE331-QiQYSxxWo3ukzTSgo,10999
131
131
  snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=A3HnCa065jtHsRM40ZxfLv5alk0RYhVmsU4Jt2klRwQ,9189
132
- snowflake/ml/model/_packager/model_handlers/model_objective_utils.py,sha256=Xbl2XZfsPHVCCE6JoFOFrario1zibrhUhhCUywtNZ3o,7048
133
132
  snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=DDcf85xisPLT1PyXdmPrjJpIIepkdmWNXCOpT_dCncw,8294
134
- snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=CKG0q43pL4wbB-5akj-8l-xgcCJ46iXZpnCUsgrO4vs,9584
135
- snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=4w0E1s2_CnfXgk4FdDvkYTGrX3JMOfcubel3XysAzuw,11630
136
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=_4-eAhSxTFwjQXIhZ8dLJR8wuX_J4nLfLjFu-0HfFeA,14245
133
+ snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=f21fJw2wPsXzzhv71Gi1eHctSlyJ6NAR1EQX5iUL5M8,9842
134
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=Iq8r6EcP7001PF4Vf-frmUBNtOSs-Lrzana7QsxIafY,11654
135
+ snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=dd2rEcaFbGfMatCnfP0DGwgRbERgO5gHm_jy_FXuIQc,12123
137
136
  snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=OhqC4GcmDDz4IOgDITLnG7KFY3zVtzOJX3wAtLv0bI0,8448
138
137
  snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=IvNL1Fqksfp7nAcXIgOMkzPy8kEylrS-xHWu0dkRLDY,8412
139
- snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=14dlId6jkF0UO4nAqw2OLL8q9v_vtw6kGtuNM9Rxew4,12668
138
+ snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=iQkwJ_Ksly3ZSNNjnW2pRetjpyLLneDT5QaeHrpidnw,11542
140
139
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
141
140
  snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
142
141
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=GmiqqI-XVjrOX7cSa5GKerKhfHptlsg74MKqTGwJ5Jk,1949
@@ -147,99 +146,100 @@ snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWD
147
146
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
148
147
  snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=fRPGbrnq67PRo3e_uVk01TKZ7AZKYM-_lryePkNk5AY,239
149
148
  snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=9wOtBB1A2Spnsgfs5CjCoLR3oL5JAUnSG-qP0C5DR1Q,5147
149
+ snowflake/ml/model/_packager/model_task/model_task_utils.py,sha256=KSqD71XbwDXAkLpbekhbRjgZKP8ycZ_hp14mJFAO1pY,6282
150
150
  snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
151
151
  snowflake/ml/model/_signatures/builtins_handler.py,sha256=nF-2ptQjeu7ikO72_d14jk1N6BVbmy-mjtZ9I1c7-Qg,2741
152
152
  snowflake/ml/model/_signatures/core.py,sha256=xj4QwfVixzpUjVMfN1-d2l8LMi7b6qH7QvnvD3oMxSw,18480
153
153
  snowflake/ml/model/_signatures/numpy_handler.py,sha256=wE9GNuNNmC-0jLmz8lI_UhyETNkKUvftIABAuNsSe94,5858
154
- snowflake/ml/model/_signatures/pandas_handler.py,sha256=E1Z7nkFX2toMxUOLx595Vv_7bMLK70IFdU9HZp7Z2-g,8219
154
+ snowflake/ml/model/_signatures/pandas_handler.py,sha256=yRemJX7cZjKJ3pBDgiaHht3WN4Hs-C4OLOxW16gP9P0,9266
155
155
  snowflake/ml/model/_signatures/pytorch_handler.py,sha256=rF5StgnAo9qtFs9Rvb5SQVhneJf7ZDgfDD5vJsL0Ivk,4599
156
156
  snowflake/ml/model/_signatures/snowpark_handler.py,sha256=EwJyBsLrLKrBL0ctDK_yuoPm49nTavbh3EXOniWwCVE,5977
157
157
  snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=VZcws6svwupulhDodRYTn6GmlWZRqY9fW_gLkT8slxA,6082
158
158
  snowflake/ml/model/_signatures/utils.py,sha256=lBEAqgiTzFitL5EKSmVhKtHtLSYbwo8yGyTACaXWACQ,12976
159
159
  snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
160
160
  snowflake/ml/modeling/_internal/constants.py,sha256=aJGngY599w3KqN8cDZCYrjbWe6UwYIbgv0gx0Ukdtc0,105
161
- snowflake/ml/modeling/_internal/estimator_utils.py,sha256=XYwOcmhSc053mtItkymKiXk3a_Znxo9AjTep3tSTVzw,11323
161
+ snowflake/ml/modeling/_internal/estimator_utils.py,sha256=mbMm8_5tQde_sQDwI8pS3ljHZ8maCHl2Shb5nQwLYac,11872
162
162
  snowflake/ml/modeling/_internal/model_specifications.py,sha256=P9duVMP9-X7us_RZFPyXvWxOrm5K30sWDVYwSMEzG1M,4876
163
163
  snowflake/ml/modeling/_internal/model_trainer.py,sha256=RxpZ5ARy_3sfRMCvArkdK-KmsdbNXxEZTbXoaJ4c1ag,984
164
164
  snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=11cpEaxU1D7R7m79nVLcCA9dryUPsElS7YdlKZh850U,8422
165
165
  snowflake/ml/modeling/_internal/model_transformer_builder.py,sha256=Y6Y8XSr7X7xAy1FvjPuHTb9Opy7tnGoCuOUBc5WEBJ4,3364
166
166
  snowflake/ml/modeling/_internal/transformer_protocols.py,sha256=adbJH9BcD52Z1VbqoCE_9IexjIxERTXE8932Hz-gw3E,6482
167
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=l9enL00j00-GZ_qIanWUqCuRm-4U9fsCZH-L6DneVco,7812
167
+ snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=UN-23TJ4Usf6N9ZTXcU4IfJmI-uJXOsfdslOAax7d2I,7989
168
168
  snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=h3Zsw9tpBB7WEUyIGy35VYNNR8y_XwiRHyR3mULyxIE,5960
169
169
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py,sha256=fgm1DpBBO0qUo2fXFwuN2uFAyTFhcIhT5_bC326VTVw,5544
170
170
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py,sha256=lM1vYwpJ1jgTh8vnuyMp4tnFibM6UFf50W1IpPWwUWE,2535
171
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=pfreqdjP-s-aGI4KieRoe998nt6mKuHxCHG0Mg-M0Lk,54512
171
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=Jypb-EH4iCOTtFRfF_wUNlm3yMR2WTUrV0YZnuYz_QA,54996
172
172
  snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=HnsSmsXAeJrH9zVeq3CSziIaCUDxeWWx6kRyAK4qajM,6601
173
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=RfMEPXNco4beAz-Ot1-GyRzeWy9AA7B6uy0izfGw_RU,15497
174
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=pxzaU8viTMLb7uZtM3XKCip--5Maqdj28yTam47lxWU,31983
173
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=O6QHRPVS-HzVesw_tMXL6NALAphkqXIEsrEKMva6-Z0,15750
174
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=D4tZY-Fg9U6yY4mkznzzFuf6GmmemS5ZQCUu2yZgDTQ,32259
175
175
  snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=4WP1QVqfSVvziVlQ7k9nWQNCM0GN5kTk4Xnd-9jWTXc,17300
176
176
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
177
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=Zbt3Rp11LOfEV-s4z1dvD0QiuUzI3DS2c9zfW3ZF-Go,53945
177
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=TFIK8t0Q2iWmc7m_Z4RS5NtaFbZ1tXDWoq36lqv0cGs,53602
178
178
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
179
179
  snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=k1ZND2S4qlc45KxBIUkg5T-ajKJ3VWk-4yayLdv44Zk,51855
180
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=WibgQaiDDOVOqBRnXZTAJNMJfP8iUJteBL495_BRLt0,53896
180
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=IsWA50g9Fxi3ddMluCO1eqbJ3zcXTmM13s4NPDfvzeo,53768
181
181
  snowflake/ml/modeling/cluster/birch.py,sha256=M1-7YgDw71fCRt_qtzH_OLKmZhuceq8CLqGw5VjF51M,51768
182
182
  snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=MUoutkGVeTcX1MbXZXqyJh5nR0BWqMvJDoorLoXcYUg,54537
183
- snowflake/ml/modeling/cluster/dbscan.py,sha256=MUhEJ-MPE9EcPwfOs9t8mWqnxFG5oIMjGTnyw-4ymJI,51929
184
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=6oSZW-M_2edDRtx4KWfbSTMQXpGt6dz_6qbLkDrpaLE,54658
185
- snowflake/ml/modeling/cluster/k_means.py,sha256=DyBa7rlObhQjr36XuGFBHUwQm624kLrgxc8nsFN3pgY,54057
183
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=rjplq4RyBsIImQbOO19IbV2zobTPKgUmTRe1grROqiI,52109
184
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=89zIYUVfvbJPZJrsjVnzQhRKDY36neIY2pfy4fOaeQE,54062
185
+ snowflake/ml/modeling/cluster/k_means.py,sha256=eji_ySSPIrxQAYz8VQ41suLUwP7SdKF33Bt9ySLOdlg,54263
186
186
  snowflake/ml/modeling/cluster/mean_shift.py,sha256=7F-VD9ElANRiinzpapgvxxs_u1Tg1ennRUVdLQLcQhU,52142
187
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=4GGwBd68Vzb-vjfTHdeWeMhOy85ntVTviPp52IHGvdI,55455
188
- snowflake/ml/modeling/cluster/optics.py,sha256=wHFgMIDZdgxO9jE90LHXN1FQEccJ882RQP4XjROuSgc,55243
187
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=jFxEH4PXcSVuni4xKGbP4OOJNBu-j4P0QLx8u8CRpYQ,55460
188
+ snowflake/ml/modeling/cluster/optics.py,sha256=-R9TNtmLPrQF_2d2wCSElnsZOrg2EGvCCTdLqMu3sv0,55319
189
189
  snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=o8_SbNh3dYEG8BKz0r-0BZkJZOwXv6gx0nNfAEceiks,52152
190
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=vT55mj3PrT5CU4SSnRjo9pdDfDfn8oe2LAH-8WmPbuM,55342
190
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=zL00K8UQSehQMZ-0Aeqw-vzFKqNXrbVwBYdoam0mXOQ,55436
191
191
  snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=yzrNfxs48JPQPkLdO6So11lJDZKsy8gDD1wlMJ7oxcc,51285
192
192
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
193
- snowflake/ml/modeling/compose/column_transformer.py,sha256=WyLrETqOF6bLK_yVMCW_Cnds3PFzKRjTqUpufThJXXM,54120
194
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=f5i8hfWuK_u-TlejtxgNEOVLQmkW0ta8F7TmxrfN4Gs,51761
193
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=LTaCu3U9lqbGbzGlSggzEfmjih_YEDsKAVYEMPWqBD0,54610
194
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=hk-g-yJFL4CNlmDhTg6vw-N8N-bg9hZvzh2nWe4Z8rM,51897
195
195
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
196
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=OfTEy2rrtuFfHbJPF8bOu2kJHttJVQzseTb5_T9yW3k,52173
196
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=c-BG_eiC01n2ZN76ZEj80TtQRM9z-GPMWfIVgNnqBLA,52186
197
197
  snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=hYRitTNwhsY60qpTbUdhNMQkCG2aX2oxFP0trsYyJeA,49984
198
198
  snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=fsotiESbzirsjULlzda8X0OrJbdCYJjwRUHFsMX5n-4,51843
199
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=NkeudrV8Och5C9UbjovohDmaqYjjIQDppE202z01sxw,53010
199
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=WeiQ8WXeDsy3ly6sx6246jq5hFKkAchXLtK4o2RfbYI,53035
200
200
  snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=GJhlSCGT-nanFY0fAvSCDlfaiiZpOFxeNJ8o54uEFEM,50113
201
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=LnT9d7xoWqw9XDkPm7vMIJNGAfqVq0YHIn_3APxsGdE,50867
202
- snowflake/ml/modeling/covariance/oas.py,sha256=4qheG3BmiG9Uzd42g4EK3ccig2jefWPV_cAiZ4hulT0,49747
201
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=wmRlc8MiDOUOVLVKYcdKHs2aHGp45A-7zlWCJ9CDCw8,50880
202
+ snowflake/ml/modeling/covariance/oas.py,sha256=RL1L8D-Ed9s1rFVnSn4wPvwQao6jYFhDz5tDq1W_KHg,49727
203
203
  snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=ULvwAUtaQUSeqQELKhSaa1kfjeXuqgGSdD71X81YjZo,50136
204
204
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
205
205
  snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=AJBcaae1t9R7XAbjLrmYd9U0AHzVoG_5E8ZAbunYWfU,55135
206
206
  snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=yple9ZHcINCl95OpB0GivWbi-gWC9Q4TW-_YoYg3cNQ,52794
207
207
  snowflake/ml/modeling/decomposition/fast_ica.py,sha256=lUb88ndGnryU1-jU8ASpG86keTSCZ4zELccg-tfC0Ak,52721
208
208
  snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=G_buEnTXWdPX-KVR0YRZrm82118_cYWQV8TFl_eBN-A,51088
209
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=pRKviMd-FIiAv0sz9n_yN7NknUJoe0f2RGgiL0kjxnY,55081
210
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=r0IiwPs8-ErHktnpX8YIQJFiX4bpWbsCznnh4wgoIAA,56185
211
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=rcriInZiuFV4Q5KC52aSi75DdhFbrG8t84dczmysZd0,53441
212
- snowflake/ml/modeling/decomposition/pca.py,sha256=6wiPPOK-gfJeA_N8ggIOaqdPSLQrLzqDyKZjUVEo2o0,54344
209
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=oiV8XnvFPrYLIpfeh7hzKXaQAZtOZ7fZWA2rh0nOuiA,55078
210
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=QorZjT46Fs3Dm5fkALMWhiY-YA5Aq8GAl6WPrckrR4E,55867
211
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=tWHa8KqsBDnwjWes-hs-qiB-JHPLObbm18UxVUu8w_Q,53130
212
+ snowflake/ml/modeling/decomposition/pca.py,sha256=PEUS9WHGS3kFRbyJxgDphJE6gWi5Lpul5pBQ85YfgF8,55298
213
213
  snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=vMWi3cKMuFrJOlggWPs_vQaC9WF_q4M0XHXPpuR34Vs,52237
214
214
  snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=oy1k6zTMb5R9_AaYYJeVAS_U3m0zfVwvKGLbVAUeW8A,51863
215
215
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
216
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=ObpdJ1ljo6xH8BsG80VTccE_nhpsXxIH8CAhQ8-uM9A,54548
216
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=9JKFvGdCZZEqQvHiJxdHQXMBdqaDfAgKOQEQcZBGzfE,54754
217
217
  snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=x536xqmYYQa9n6dJG5uW-kr0Ah-0wIFf5cWq_hlGUCQ,52333
218
218
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
219
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=1DP-y3P8BqIsxnJeaimt7kQloEGCejgFHeBngsMtbTk,53140
220
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=aeRnIVyYJthNCj42OGHvrKvgfGkbbiRdSf687X0fakE,52030
221
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=wLqScjLAPcBs24pm-D7ObalsDClcvSm5jijHQirqmI4,54050
222
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=y5quFztWK6714ts6zHHEcUyQOcqHBXBOH4SBWbyR_OU,53285
223
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=hEhdInzRn5qyiU7RPH2hjSXI4ZnkTYUHl3-Adjn_sXo,58973
224
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=aNhn3uo0daXJ33JlmBLGOwHb3z9ZpDZql8Gy5AmahO8,57576
225
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=IfqyXht5l3K0nH6fhPdL_3RA0G0gl5qIKZXL1naG7DE,60434
226
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=ru3tm4BEYcqy1_hdh08s_5Mm3syNb39HZ069BKQ43QI,60026
227
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=czoc7wR00ErUfE5Ag54lAJabqSUOVw2vvT9QVU8BaDg,60272
228
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=VyvdLc0fOxNdempMk6nJDNAhCz2yx67K0qRWJWoNRVI,58756
219
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=UdGn1aSInpqsmOCycMaotppJ7oIa7KYzYFKSdcKlra0,52535
220
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=1batkzCn0PHyLk8jdN0n3AY0-PKU7bPdHpAlSV1ew2A,51538
221
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=RLOvLvHm-snlgDO8bOywN8K0xsOS7Ay4LEdGg8dooqE,53727
222
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=gE1IIkVpPBdnVz2pQp8m6_HuYglRVWSRpR35Gs8oHB0,52962
223
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=0OPcDnZQfYZGxruEkSC5PfJ1bXt8eEqV5qcPxrCiOqQ,59776
224
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=ktX5IdGEZkLg6OsF_XX0CeuBjc_3VzQyyJZihoHGyLU,58229
225
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=MK8hfnMxLONqj4JAmsparVB_lvMre5EswBGDnfxmR5g,60535
226
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=x0_pDhqifw9waPkib-BsNnSwq0_hqjjCtElrLNn-q_g,60127
227
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=GvXqM5VOGw2PdjK7eoO4cFyX09XK60LhSklAP8j8uPA,61021
228
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=6a3LDEOTnDv8VHy5szdauBxXrWjOC8gCJf9q9zvFjqE,59356
229
229
  snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=bKDKA7N0Cnadd-ed6gcWZLZ-HcA47Z9imUEIURkVOac,53320
230
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=f9a7GyBI8_sGo6w5wAM9meBYKXwnxSfYtYUt8CBSad8,58958
231
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=t3b5368FmDSMsY9ew_od8kFoRJoNG7NbPMbQgYYSAMM,57549
230
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=P60cup1BdqN3CzNvTxPuJN4fzv5WNZeKB3flh87zlNg,59749
231
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=iNJNzWw6Gmp21UmLdNqOVCHfd0rMj7Uor-LYPIls7qw,58202
232
232
  snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=_7UAkQFzVg86CEVt71flU5vKHPkOwk4OLvnBeqVWy9E,53264
233
233
  snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=Tp3Bp2t1eiPaZHMSwzVa-F7jwR21EHwxOjwwelQf6Rw,52816
234
234
  snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=SwoThI21kjcR1SIWGBFfaTBkElC7bT3rYBQPvZjSpxM,51341
235
235
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
236
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=7HhWC_Z-5WOqjT--aC32lSgbmwie38rZnazYjTJ9ers,50686
236
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=VhZLbQDQSlMmVLKUW14T7bS6miRlxbjNLAICDLuSQAw,50811
237
237
  snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=CU5gCe24cP8GqL2XsVX6eiO3-q2AWnL1uN3kyd9fUDU,50273
238
238
  snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=-Dw7VTLNUifbSdlYxReKx20oWljAQSJYD62xa1k2XtA,50267
239
239
  snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=Je3rfzC5lYaFEm5UPVFZL5dHZO4PkNac7jhEzReOFVU,50275
240
240
  snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=HL44ELYoURu3AAEUVAq4jOLb0PqyPR1xzlupclK1zgU,50368
241
241
  snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=g7wL2FyLmeBDUy6-3ArkLlbKWkzb49wHCcEgU7cR1o4,50428
242
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=mQbfAO4auMtPxKojF2zzHbpwEC1ZfUSH-29GfD195m0,53141
242
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=bn_42MIkNfBcRmS_o7csgSq1k8vEmlmjUi-Rrmr8-Y8,53207
243
243
  snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=Uligo8j5-5A6b9WRmZtiFFgokBl9AlpHhQArCwc67S4,50069
244
244
  snowflake/ml/modeling/framework/_utils.py,sha256=7k9iU5zAWa4ZpMZlg8KfSMi4vH3o69w5aAh5RTRNdZ4,10203
245
245
  snowflake/ml/modeling/framework/base.py,sha256=Q1Yq8SesnpVWdtRGc6rbuz9T3hcT0eRjl2ZiWGyWAeQ,31954
@@ -258,58 +258,58 @@ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=_Fy
258
258
  snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=meXIcWyEVtHtIjHwqPA-lfE3xgBPRUGrKwYHXeNJyPY,50563
259
259
  snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=uFOYWOHEazfgLgWBv7r6cfHOskC81I2z_bkoDWYtK7I,50618
260
260
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
261
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=WT8MKwRjx5rdMzWqsybvp5N2I9LcQ4jTL38RLL8tIkY,52064
261
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=OHjaB-MgZvuYFtQawAC1e5rWw98n2n4jpubjdDxoa6w,52067
262
262
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
263
263
  snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=u6VzvMlONA__b6hXqHEd0wekl355SbXxr1z0J6CtXHA,51635
264
264
  snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=NoRt4FFkTF4E5eKFYOYhGFkATlB3XnxPwIBRwjo-3wU,51137
265
265
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
266
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=LPmunp4KwYOpNIcjzkdIYqQLqynSNvNSz3xy3SsguL8,52011
267
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=Lv-b3KkyJ4Av8BQLSi2IpkYq_FGCjv5drLfw7nt8nZg,52427
268
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=M637UZ8vBdTo9s56_Lgi2zHBCyNfBHMxI3mcq2Rd1Ks,52996
269
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=ygf5fxou8N_Hk8vNYYPDOQlxcPRbfCwLlnOAzSdZ28Q,54266
266
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=DEX9-MxB9zuw2kdNZM8fjoUHBwRtmoIxeV6zzDvHIm0,51827
267
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=gc8wvc6ewNnA4L0pSRMgI_we8AN-tNl6FxGgb37xArk,52197
268
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=nGHJOJ5hw_ZLEaMnC8kFFo4emDiTZ6bLKaDmT2hpyMM,53215
269
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=thUXXE4ZXvIOCGHwEzgOHfNCQHuoA46OMjEzgS-lr44,54291
270
270
  snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=uB9Ru3gE1Cex-XyT-yc3qt6uD1XImIjEHkM4gTpFu-E,52080
271
271
  snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=R9ColYTOXUBiOMj0-onT1Lhb3iSDU9rcXMyyA0spy3k,51277
272
- snowflake/ml/modeling/linear_model/lars.py,sha256=EurH_C6n61_RqaoaymWbdIgPGkk6gZAkS6TduzpUveA,52490
273
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=2bSYiuuPq_V0wI0mfdUM6zAgWUTemJEsLQtOrXRc92k,52713
272
+ snowflake/ml/modeling/linear_model/lars.py,sha256=sC5zjOgBSL7QXrHftXla8wiCugE6_Au3Ub2awz9ix7k,51983
273
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=J-pHwX1MQk7FRWf5xsuoijO-jCBJpIrnFyhNR75sMKA,52231
274
274
  snowflake/ml/modeling/linear_model/lasso.py,sha256=oCvyY7P6Dqgyyy6IVMjaWPXR9uJXTCSvepjy1o3ylBU,52597
275
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=80m6u-5dWbinuarAGOHPGh9vj5tgJeaNQM7o3Sx1qkU,53384
276
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=kX0LE94hiqZa6G8zksBXEpyBk5ckLHVJEzcfSSZnqg8,53631
277
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=5kpglEIj8pZGzZf0dWEnn_Ob9Na_sZ5vQ_mUPoNsQYA,53594
278
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=HZPCHTqepAbIrZkZ18ktOHrCwDZ8R6DKB27AfkxxW_8,52940
275
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=rE1GJOuj0HECA9nJ1SwuOBKqH_Zm4hiDhAQYxN-n_84,53409
276
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=Yf1pOMq3SsD-wY_hNmX3f0LEAnUP8Zt5uyS_hoRKM4g,53124
277
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=kKO-V3KYVYqQ3hMy2goGkEdNJFkvwLtaoIMh_d7MWHs,53112
278
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=CC094Ky-JhTsOlTza9ta9UVt4AcspAo3KM84vzeL2_w,52433
279
279
  snowflake/ml/modeling/linear_model/linear_regression.py,sha256=RgsPYYgUVbU7rDbjIU_SkKQ2b_rLKjhaaibaqPXCowM,50821
280
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=ouYRWSOHoBH-KZjV9PjnSLqPFetFXm_5KW_xSekXVDY,57078
281
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=oEHhpvHIDWV1FQXDOZfo1fdAGP0Owlh8QrfUuFHLmRY,58120
280
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=yhfiwaya483nUTGTJmpWFkffzTk8-HQwSbgQ7qk8BL8,57586
281
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=sO7Dyt31IxNShhhe9_a-0_LOuqT5aWLre5SBbBIm4sM,58650
282
282
  snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=oAQ3x8w1uZNCDqIr-onPSUz2guRihpzKqL9XuILSdhA,52296
283
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=arBMkviksZKSW5PSig_g5-oNlK1ve_kWUOJ-j3nlEcQ,53936
283
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=LThFnQRTrOejjRf3pa7ztF3CylliSGa8yfcU6ib5_Wo,53961
284
284
  snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=BfNZNeNC61muK_z6EUJ_5SvDiiUZdoBCO8Jxl-cSxNs,51839
285
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=b5zchLMN9enVwm0uOL20Ox8wUtDkzZiGU4NU3VFtcIk,53103
286
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=eTJmuNWpa_xAQCoYlQ0GNRDhJcuJ8b4PsSwOhYH7npo,51457
287
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=jsMC6JJWT0EBs_iNzCPCen6TIK8d1USF20i-z2TIJJY,54815
288
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=LEDWZ8UMrmM_9H5SMBaqoNPwBaaAGXg813vfTiMKa2M,53881
289
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=m9NsOxW-kPTiutjvM-tPEAF8AXNzeYSxSKzyUtSxpPQ,54182
285
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=Ysr8hVUKS5sBPrL84KgCfqwYY5gDvOOk9CZU8G3BwE8,53128
286
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=jvwmMRDbY8ogcAkfvCDKEz1KBhVw2sv8oo5li78vH7U,51044
287
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=hVFlZCRz4-MiwrHck91H_omQg01EKVlYmNvbPjdQcqc,54868
288
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=sU2S8myRWlqohop7OF9tbltPlDt7PGoSN5gWnzAlwCk,53930
289
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=wclJmFgaaS-8r_QWmrbMeKIyAotU_lA05njfrbM7xLM,54185
290
290
  snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=qZwQ7JeCSP-vQGKwvNXV90UoQQVp8DRLf4P4w8ScAds,52127
291
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=kz2MvslF1KCM3K-dIsrbuX2kkeE2vpbZQbmtPXmJlKE,55245
291
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=PN00XC36LAXoaM8KKRvvL3tbAE-rwi5NfGHo3XYjsVY,55266
292
292
  snowflake/ml/modeling/linear_model/ridge.py,sha256=wEYZos7SjZeeG7pjLIrGVCLU5AszpGZ2s0lmfqlBbTw,54141
293
293
  snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=WkbmCDR-cTO-_ICx-sTPjiUxT5kHIsymk-J5kJSxMnw,54539
294
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=yEUSoui3uCYfgwJoIaYzaOYSfAqD1BJ30jRZ9MHjmNg,52536
295
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=ZNa_Lbmaf42-OFW95izWGzL05NTCUQajbuERXldsKnU,53227
296
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=hGYkK8mUEUzmhokZswTU_m1qr3y1ksublfb-iY4-g_s,59610
297
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=40yqhrgIEJcZH0fJvljQvvDxnxnFu92DDuDHNuApDZ8,54493
298
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=d94hQSEWEJTT8tohPSG-ol1Gr0mxVDGj_8ArkGpS9zk,57080
294
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=_QX8WSk_I9lHQhvd0U5p6YXYnTN3zLUSdpQLNI26FzY,53004
295
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=TbM4YPZeF0LLy_PFSsUqGlvLssS0FLG-kD6PIt36fzA,53611
296
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=Tw9spCSfC5X6q5kCQeZyu_2ZnxFdBUUaj5BwPSbkup8,59596
297
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=47xgTQbKcX_SGb9wXphB8zOgSfdl_SF7webdmuZsT2I,54678
298
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=13qYk0V_Z0T-qfRRhHyRQG1nA8NveRfW2XAYpcoCWS8,57573
299
299
  snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=e9BOBoW54yN1-MN4Qi8gzNgbTc-88kljQdIT81SPQwI,52563
300
300
  snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=9c2cjDRbNGGIhizmC6S-NDZWpeZz8PefjXyq4JLEJtE,53518
301
301
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
302
- snowflake/ml/modeling/manifold/isomap.py,sha256=5zOTV0nWJ0Ak8n0QH0i05KXEYox635ySsqarLKWRxuE,52819
303
- snowflake/ml/modeling/manifold/mds.py,sha256=2HQQp5IDxzC1urNdPESnZ5jNg3-Hdy1I1OBwHU9ATfA,52036
302
+ snowflake/ml/modeling/manifold/isomap.py,sha256=aO4wy-iEjn3meu2ktJO65qDZvSfgblnldzZAjJKgECU,52821
303
+ snowflake/ml/modeling/manifold/mds.py,sha256=Mmgl3nRyd8QTwXCqPh3pUz9rjHAUl0PeHLcmRLC0_30,52037
304
304
  snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=B09ygJjIA49hYV-Y4w1-hnMoWs4z12Xgmun5XBz5pzQ,52901
305
- snowflake/ml/modeling/manifold/tsne.py,sha256=Pi9aDZlpZcN2vbBSdKDoCdqK1adD8piFvclx1NcfCNw,55827
305
+ snowflake/ml/modeling/manifold/tsne.py,sha256=Go_P0kHMAlXBtm9DCubNI3oufPEBnR4eKYVf6sSfGcw,56024
306
306
  snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
307
- snowflake/ml/modeling/metrics/classification.py,sha256=5XbbpxYu9HXB7FUbBJfT7wVNMKBfzxwcaVzlMSyHAWg,66499
307
+ snowflake/ml/modeling/metrics/classification.py,sha256=MrEHOQ6EmfeDl_5t4n1fcE_SQOm8i5jbRSaxcN9s-II,66435
308
308
  snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
309
309
  snowflake/ml/modeling/metrics/covariance.py,sha256=HxJK1mwyt6lMSg8yonHFQ8IxAEa62MHeb1M3eHEtqlk,4672
310
310
  snowflake/ml/modeling/metrics/metrics_utils.py,sha256=9tZQ_Mu6jTWHztwqkPSrFWY_LP551W7FmQrXYwbSlso,13208
311
- snowflake/ml/modeling/metrics/ranking.py,sha256=gA1R1x1jUXA9bRrYn8IfJPM5BDY4DK1JCtoPQVsz5z4,17569
312
- snowflake/ml/modeling/metrics/regression.py,sha256=OEawjdiMZHYlycQFXM_h2czIZmmGe5GKciEQD9MSWx4,25845
311
+ snowflake/ml/modeling/metrics/ranking.py,sha256=5aqY9bi38vSLrfEeInIJMkzL-3Jm8nv1pQNX5onE9EA,17653
312
+ snowflake/ml/modeling/metrics/regression.py,sha256=0vQuk2mLJSWfwnhImT3Uz8e_xjNxYFJlDxb89xaQHJk,25929
313
313
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
314
314
  snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=jx5fKk0dnQYUERg4pACPZlFi-N9soXciNHXoBX-IKb0,57409
315
315
  snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=FTH60ckoW3cyJCfiX5tN73K4S0SKZlfBJHT8hoGxifM,55302
@@ -321,30 +321,30 @@ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=r2gUV5EVWnZiIJe
321
321
  snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=2B0w-gj1nnmCj3ZacJgsaWQA3ArL3Zv_y8fH_hHkZfo,51758
322
322
  snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=RvF9JB11gsk9a7dsuCAvH18lMANj1XgSaxJ1QrJON1U,51095
323
323
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
324
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=Y8V1XM6HVjsPz1G2PoqoWiLP1DEUqRQp6rW3YQ95ZnI,51355
325
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=qzZQhMCRxmpHtTTyZOA_qFS3bF-7lGuwJMV0d-6jxx0,51692
326
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=vVLpjjoJqTw93VlvQrv5mmrb3fOMc_Fy9kZysj2Kdsw,51371
324
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=83IgSrW3GgxiuMF_8XgxaUAkBuKTK8X1w76lWnFx3bA,51350
325
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=0xxdKLFwUfdPdlmlNZ6VisPYgvA671ZDCW5CIQux0k4,51687
326
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=rhzL4TQc874fm9EdU6B1KZtOdtFI_FI9mDW7ZJSCo28,51366
327
327
  snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=fadqQU8Iy3U_ZNyyKZL0JkBLsMT23NLA7YbSyIvq_QA,50498
328
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=xttXBuQPH6Y5GSUYGBIkf7AL4DR3rrA4KsKATh-0G3w,51137
328
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=mpZx0HIIcK5s9DWFL2bc1qb3OETx0acAejcavGC-Ib8,51132
329
329
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
330
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=PUsqF-IJ_PTPOJie9BngSM3f80hHzRJouhf2tCoqz8g,54213
331
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=ITfNPT1xaf3zgaUhYE7S2hwxpPlEn9IR3Tn4z87dpxo,53683
330
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=307GwV6gukR7eG5y768O6D08ek9ao7cOViSU2A-XSZs,54464
331
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=_R9KDDEZ1oe9Ia6Me5pYaifZYXHLszfjn3Mg8IpjZ_8,53830
332
332
  snowflake/ml/modeling/neighbors/kernel_density.py,sha256=-1nhtIF8jiBi0ecJU3yxSMpy_enDBnh_-yMWBeCFg5Q,52119
333
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=iHJHWbBEj70G1KFfgYzdlctIHh2AbVp5SCbqcNQr_04,54702
334
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=o-xi_N8PPxbHqmShmFtZjtFiQTvG9DBxFfuLwvc1j6I,50697
335
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=l3VqkQKCNivnjf52MniTxLZr_gidynpyVProXTkEPhI,52591
333
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=g7OOJYSTQBpYATZhB08lxY-Ird17c35Z0SfxNW3_P8k,54695
334
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=rj0arB6SElA_yynxrBGSzXioC1nBFe96wtNB1nAJ-F0,50283
335
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=xow3kFE1nZX8IeKAacDV7mpWF4cnWb5JbJM4T0EuqWk,52602
336
336
  snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=e5LvLURwNDdFGUqFZZlpCaczWC1wtPzW8IR1llR3cbI,54184
337
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=M6I0v8UhVDypN0SkFrEWz94MwAJKuZSwIRuLt8gHIuM,54631
338
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=N0G_jFDrgks8mM0zm_7hh1BQlEe_0nsxIwg_HJ_GGt8,53511
337
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=6m2TeZhPrqYN88qONR1LgYuclapd3Oqtj4naeSbKtBY,54913
338
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=gSUNGHJOHIv11HZghrSOcN8Sqjr2djUdYiXMSg7ph6o,53513
339
339
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
340
340
  snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=novw3YKaMmdblfTz6MeBjU7xXrL8Gh51dknXyYV2Flo,51326
341
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=pFyopjAv_1G0W4ikuWr_5Pcof9ROvWS5L5Y_xcMSAB8,58579
342
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=t4lh7YUkg4lr5aSYa6bVPpSf8fcdV480l1UyflDE9AA,57847
341
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=SVvJ33chdtNsSIYccwM5t_QG4g-ijyKPMONzpFHTHco,58880
342
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=mhCxHQrzqd8kJlF7kOIchwUDv8v7mgTYJsymqsQfzss,57992
343
343
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
344
344
  snowflake/ml/modeling/parameters/disable_model_tracer.py,sha256=uj6SZz7HQpThGLs90zfUDcNMChxf0C6DKRN2xOfjmvI,203
345
345
  snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
346
346
  snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
347
- snowflake/ml/modeling/pipeline/pipeline.py,sha256=MjwZA4moXFEnUQCgbKRCt3GuL6gMk68NFBNkzWQx5IA,46244
347
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=X5V_YQ881QZyowJh8-Tnt-oWgk0gMXPqV_C6psAkDAo,46320
348
348
  snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
349
349
  snowflake/ml/modeling/preprocessing/binarizer.py,sha256=MrgSVTw9RpajyYe0dzai-qnpdOb3Zq0SfJRpHJjpnoY,7383
350
350
  snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=FdIy8mpjsiMqWsUL07S27T-JNDVgE2bvNUJf4HcBik4,21533
@@ -352,8 +352,8 @@ snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=jQV2UgA-qtzxNxHzgyhf
352
352
  snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=P03PP907SbofOFv1cJhTe1R2_-lnFYHfGsvYsVFofWY,9146
353
353
  snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=leLeIrVsXn08agPqL-N50ohrWlC9FVuztMleQ043H5o,12467
354
354
  snowflake/ml/modeling/preprocessing/normalizer.py,sha256=0VmTIwldr3F3KQC--6RsYkybWjWuiqtxn4PuWinH0ME,6997
355
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=DgV6eF4a-d4LtRqoYxC5H9ASx8EBlBVp6nZ2YaqqPQA,75081
356
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=ngdmbJiGXtiePfh_6TUM9LCxu22MJPzRXv3yQJXzSwA,35272
355
+ snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=BW4T4u7EnN62jBOd9pc5UsNVT1_7HzIJJtnUYFLRYtA,75172
356
+ snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=CfY50IV-akM1hhmt9A05IlgXEdMuRQsHE8PLkOxKUsM,35319
357
357
  snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=RFn6ECCYuCK9kMqPv67uXph2zE872_loKw6jLJGN570,51258
358
358
  snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=Dp58jHxBdGdiFQAYmFW39JUdaPHO7dKfMy3KREtKAy0,12653
359
359
  snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=ui5pWnt2dL2VTTzCWikY8siG3fh_R9J1Wk_VZCHU-rA,11773
@@ -361,40 +361,40 @@ snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEh
361
361
  snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=rZ3qjcpXNq1dYweHFAPhrbvOBZw-3wcKegen75I5dXQ,51597
362
362
  snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=8PHYgqhhINa7fEPPzRsbQFSkvG2nlfFlks7Yd0t-fuU,51944
363
363
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
364
- snowflake/ml/modeling/svm/linear_svc.py,sha256=L1SUoJcvCEIkHefmqiOJaiPXrjkaxXQIfFSOyAEeIMQ,54400
365
- snowflake/ml/modeling/svm/linear_svr.py,sha256=IO08pYm2mHFap8w_h0HnGKpFIeTWS4gTDDnUvf-UmuE,52753
366
- snowflake/ml/modeling/svm/nu_svc.py,sha256=9s-VYUkYHOhaYTvMs_8UwmK9IX1RXeXNRAYlfT1F80Q,54708
367
- snowflake/ml/modeling/svm/nu_svr.py,sha256=Ouq38IvVtH-oMj1zWhMava9i_8mUnTTzYzYEnEnkpVI,51787
368
- snowflake/ml/modeling/svm/svc.py,sha256=41xnxNUGoUM9ydgZkxTjZc-GjoZYdh2fFGwqXm8tLIE,54855
369
- snowflake/ml/modeling/svm/svr.py,sha256=EMlXpDWJSgFN55vnYFP2zJkNzGFHTG0IbISvBE-TTT0,51974
364
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=OcXLU66uy-QvYw7-A41L1DeIZ5xkgAkWqLKz0s0dX2E,55169
365
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=xGGCMlP8_XNjTqyXdg3OEOLr8TEd72rO3h3qplKU-tQ,53352
366
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=IM4cxpv2DObfp_dQMU8hTSwQ3fUp4WSGnENo9-vNL9Y,54837
367
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=ZI-XO8aTkG5hr-zCF_98ENEjTeLS7kZPj7WsNQHterg,51951
368
+ snowflake/ml/modeling/svm/svc.py,sha256=XuU-zhPmo0CupeLBgl5gO487r5cE50fK8zcD0Qc9I_A,55151
369
+ snowflake/ml/modeling/svm/svr.py,sha256=pIUkD6kKW8inUKIFb9Nt1n6N0HK05Njz6F9bIzpTCdU,52130
370
370
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
371
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=Z04GMmdO39Q6kt9VAuS2dLL0HWg2JhA51mXbICxUUCs,57150
372
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=hn739D2TuEw0hK6_maDzrGpP-IYxcDLZrDld4S6v9YU,55848
373
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=5vy27lb-Boy-cVeGgnw-rqyClRAFy3IcOgaB5Af0p48,56489
374
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=Ca2Z5p2-ZWNVc0ZV8QEtix6X5lKsPnKh6osML_ES9QY,55196
371
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=MmvRKdYqG5zQ_kB1ADOfn45KynYuFv3Z_R-yVY0qHt4,57937
372
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=5eE6INs96PvqqAGgk-gNtZdbCP6_fJ8BFsvv61f6kJk,56485
373
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=GacBZnYfIFmce00DR4mEBpGRcyOgUDDPWhcGLd47BMc,57248
374
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=dretp3_soBuChs_3u2FTT1a00xOtwh0FqacgeKnt41E,55833
375
375
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
376
376
  snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=2QEK6-NihXjKXO8Ue-fOZDyucIBn5ADSyq-fQS3d6Lg,62205
377
377
  snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=ZorEmRohT2-AUdS8fK0xH8BdB8ENxvVMMDYy34Jzm1o,61703
378
378
  snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=67jh9RosrTeYCWsJbnJ6_MQICHeG22z-DMy8CegP8Vg,62383
379
379
  snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=7_ZwF_QvVqBrkFx_zgGgLXyxtbX26XrWWLozAF-EBB0,61908
380
+ snowflake/ml/monitoring/model_monitor.py,sha256=C43rXGzbJb5gwkLsFg8hfICgLaufKJDFcRs35ipQRns,5387
381
+ snowflake/ml/monitoring/model_monitor_version.py,sha256=TlmDJZDE0lCVatRaBRgXIjzDF538nrMIc-zWj9MM_nk,46
380
382
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
381
- snowflake/ml/monitoring/_client/model_monitor.py,sha256=hfR1lj_IJUTbc7XbzFALYXks0BwR-PMRuOvD7VmZDms,5371
382
- snowflake/ml/monitoring/_client/model_monitor_manager.py,sha256=RHibb1_m8CvFKKtl7Su_ZTB7faZ7T2zSPnjPBz3eHxU,17337
383
- snowflake/ml/monitoring/_client/model_monitor_version.py,sha256=TlmDJZDE0lCVatRaBRgXIjzDF538nrMIc-zWj9MM_nk,46
384
- snowflake/ml/monitoring/_client/monitor_sql_client.py,sha256=hKU6BMdz01XQLWnJFDJny7sKc2DSIGTFKNixeJTHtWc,57963
383
+ snowflake/ml/monitoring/_client/model_monitor_sql_client.py,sha256=6tx7qoH6yMLiccDk00Ln4KHIiuvGTQsLYfxemGqN_WY,57962
385
384
  snowflake/ml/monitoring/_client/queries/record_count.ssql,sha256=Bd1uNMwhPKqPyrDd5ug8iY493t9KamJjrlo82OAfmjY,335
386
385
  snowflake/ml/monitoring/_client/queries/rmse.ssql,sha256=OEJiSStRz9-qKoZaFvmubtY_n0xMUjyVU2uiQHCp7KU,822
386
+ snowflake/ml/monitoring/_manager/model_monitor_manager.py,sha256=dunte0Tyo17Dxt6hvTI3l6O9PXgryxAfGBgy8AIIoAw,17417
387
387
  snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=rOKG9JirzptIaVFG9rCjjNdc1_eCzGTdjiAcrNSmxjU,867
388
388
  snowflake/ml/monitoring/entities/model_monitor_interval.py,sha256=yDUaAXmYRQEFGW9rXihrEs5p0Ur94LCnoqKBjqi0Cyk,1681
389
389
  snowflake/ml/monitoring/entities/output_score_type.py,sha256=UJyS4z5hncRZ0agVNa6_X041RY9q3Us-6Bh3dPVAmEw,2982
390
390
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
391
- snowflake/ml/registry/registry.py,sha256=3SwDhN-0j1WEyFuUAA9rnCR_QKb6xWrVHqrnZay0lxg,23602
392
- snowflake/ml/registry/_manager/model_manager.py,sha256=hf0KR9qxzg0ZbFJ3BUgDn6NBTz3KEnLkVVoICzY0ejs,11177
391
+ snowflake/ml/registry/registry.py,sha256=ppEnhweTvBzA68NO3IE95kJy9RMGuBJHfz6rvgswqR8,24428
392
+ snowflake/ml/registry/_manager/model_manager.py,sha256=gFr1EqaMR2Eb4erwVz7fi7xK1G1YsFXz1PF5GvOR0pg,12131
393
393
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
394
394
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
395
395
  snowflake/ml/utils/sql_client.py,sha256=z4Rhi7pQz3s9cyu_Uzfr3deCnrkCdFh9IYIvicsuwdc,692
396
- snowflake_ml_python-1.6.3.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
397
- snowflake_ml_python-1.6.3.dist-info/METADATA,sha256=XifrW7buIAW06Xmg4KixGOPnaCnTcZ-FJS8Rnh6yQgo,61028
398
- snowflake_ml_python-1.6.3.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
399
- snowflake_ml_python-1.6.3.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
400
- snowflake_ml_python-1.6.3.dist-info/RECORD,,
396
+ snowflake_ml_python-1.7.0.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
397
+ snowflake_ml_python-1.7.0.dist-info/METADATA,sha256=e7xopfWC3OKJpcZ57-PYr02ie8Eop4eLmKDhbGfQJ_s,64150
398
+ snowflake_ml_python-1.7.0.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
399
+ snowflake_ml_python-1.7.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
400
+ snowflake_ml_python-1.7.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.1.0)
2
+ Generator: setuptools (75.2.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5