snowflake-ml-python 1.6.2__py3-none-any.whl → 1.6.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (262) hide show
  1. snowflake/cortex/__init__.py +4 -0
  2. snowflake/cortex/_classify_text.py +2 -2
  3. snowflake/cortex/_embed_text_1024.py +37 -0
  4. snowflake/cortex/_embed_text_768.py +37 -0
  5. snowflake/cortex/_extract_answer.py +2 -2
  6. snowflake/cortex/_sentiment.py +2 -2
  7. snowflake/cortex/_summarize.py +2 -2
  8. snowflake/cortex/_translate.py +2 -2
  9. snowflake/cortex/_util.py +4 -4
  10. snowflake/ml/_internal/env_utils.py +5 -5
  11. snowflake/ml/_internal/exceptions/error_codes.py +2 -0
  12. snowflake/ml/_internal/utils/db_utils.py +50 -0
  13. snowflake/ml/_internal/utils/service_logger.py +63 -0
  14. snowflake/ml/_internal/utils/sql_identifier.py +25 -1
  15. snowflake/ml/data/_internal/arrow_ingestor.py +1 -11
  16. snowflake/ml/data/ingestor_utils.py +20 -10
  17. snowflake/ml/feature_store/access_manager.py +3 -3
  18. snowflake/ml/feature_store/feature_store.py +19 -2
  19. snowflake/ml/feature_store/feature_view.py +82 -28
  20. snowflake/ml/fileset/stage_fs.py +2 -1
  21. snowflake/ml/lineage/lineage_node.py +7 -2
  22. snowflake/ml/model/__init__.py +1 -2
  23. snowflake/ml/model/_client/model/model_version_impl.py +78 -9
  24. snowflake/ml/model/_client/ops/model_ops.py +89 -7
  25. snowflake/ml/model/_client/ops/service_ops.py +200 -91
  26. snowflake/ml/model/_client/service/model_deployment_spec.py +4 -0
  27. snowflake/ml/model/_client/service/model_deployment_spec_schema.py +1 -0
  28. snowflake/ml/model/_client/sql/_base.py +5 -0
  29. snowflake/ml/model/_client/sql/model.py +1 -0
  30. snowflake/ml/model/_client/sql/model_version.py +9 -5
  31. snowflake/ml/model/_client/sql/service.py +47 -13
  32. snowflake/ml/model/_model_composer/model_composer.py +11 -41
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +29 -4
  34. snowflake/ml/model/_packager/model_env/model_env.py +4 -38
  35. snowflake/ml/model/_packager/model_handlers/_utils.py +106 -32
  36. snowflake/ml/model/_packager/model_handlers/catboost.py +26 -27
  37. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -3
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +21 -6
  39. snowflake/ml/model/_packager/model_handlers/mlflow.py +3 -5
  40. snowflake/ml/model/_packager/model_handlers/model_objective_utils.py +111 -58
  41. snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +15 -8
  42. snowflake/ml/model/_packager/model_handlers/sklearn.py +50 -66
  43. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +36 -17
  44. snowflake/ml/model/_packager/model_handlers/xgboost.py +22 -7
  45. snowflake/ml/model/_packager/model_meta/model_meta.py +16 -45
  46. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +1 -6
  47. snowflake/ml/model/_packager/model_packager.py +14 -10
  48. snowflake/ml/model/_packager/model_runtime/model_runtime.py +11 -0
  49. snowflake/ml/model/_signatures/snowpark_handler.py +3 -2
  50. snowflake/ml/model/type_hints.py +11 -152
  51. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +0 -2
  52. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +17 -6
  53. snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +0 -1
  54. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -0
  55. snowflake/ml/modeling/cluster/affinity_propagation.py +1 -0
  56. snowflake/ml/modeling/cluster/agglomerative_clustering.py +1 -0
  57. snowflake/ml/modeling/cluster/birch.py +1 -0
  58. snowflake/ml/modeling/cluster/bisecting_k_means.py +1 -0
  59. snowflake/ml/modeling/cluster/dbscan.py +1 -0
  60. snowflake/ml/modeling/cluster/feature_agglomeration.py +1 -0
  61. snowflake/ml/modeling/cluster/k_means.py +1 -0
  62. snowflake/ml/modeling/cluster/mean_shift.py +1 -0
  63. snowflake/ml/modeling/cluster/mini_batch_k_means.py +1 -0
  64. snowflake/ml/modeling/cluster/optics.py +1 -0
  65. snowflake/ml/modeling/cluster/spectral_biclustering.py +1 -0
  66. snowflake/ml/modeling/cluster/spectral_clustering.py +1 -0
  67. snowflake/ml/modeling/cluster/spectral_coclustering.py +1 -0
  68. snowflake/ml/modeling/compose/column_transformer.py +1 -0
  69. snowflake/ml/modeling/compose/transformed_target_regressor.py +1 -0
  70. snowflake/ml/modeling/covariance/elliptic_envelope.py +1 -0
  71. snowflake/ml/modeling/covariance/empirical_covariance.py +1 -0
  72. snowflake/ml/modeling/covariance/graphical_lasso.py +1 -0
  73. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +1 -0
  74. snowflake/ml/modeling/covariance/ledoit_wolf.py +1 -0
  75. snowflake/ml/modeling/covariance/min_cov_det.py +1 -0
  76. snowflake/ml/modeling/covariance/oas.py +1 -0
  77. snowflake/ml/modeling/covariance/shrunk_covariance.py +1 -0
  78. snowflake/ml/modeling/decomposition/dictionary_learning.py +1 -0
  79. snowflake/ml/modeling/decomposition/factor_analysis.py +1 -0
  80. snowflake/ml/modeling/decomposition/fast_ica.py +1 -0
  81. snowflake/ml/modeling/decomposition/incremental_pca.py +1 -0
  82. snowflake/ml/modeling/decomposition/kernel_pca.py +1 -0
  83. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +1 -0
  84. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +1 -0
  85. snowflake/ml/modeling/decomposition/pca.py +1 -0
  86. snowflake/ml/modeling/decomposition/sparse_pca.py +1 -0
  87. snowflake/ml/modeling/decomposition/truncated_svd.py +1 -0
  88. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +1 -0
  89. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +1 -0
  90. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -0
  91. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -0
  92. snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -0
  93. snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -0
  94. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +1 -0
  95. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +1 -0
  96. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +1 -0
  97. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +1 -0
  98. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +1 -0
  99. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +1 -0
  100. snowflake/ml/modeling/ensemble/isolation_forest.py +1 -0
  101. snowflake/ml/modeling/ensemble/random_forest_classifier.py +1 -0
  102. snowflake/ml/modeling/ensemble/random_forest_regressor.py +1 -0
  103. snowflake/ml/modeling/ensemble/stacking_regressor.py +1 -0
  104. snowflake/ml/modeling/ensemble/voting_classifier.py +1 -0
  105. snowflake/ml/modeling/ensemble/voting_regressor.py +1 -0
  106. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +1 -0
  107. snowflake/ml/modeling/feature_selection/select_fdr.py +1 -0
  108. snowflake/ml/modeling/feature_selection/select_fpr.py +1 -0
  109. snowflake/ml/modeling/feature_selection/select_fwe.py +1 -0
  110. snowflake/ml/modeling/feature_selection/select_k_best.py +1 -0
  111. snowflake/ml/modeling/feature_selection/select_percentile.py +1 -0
  112. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +1 -0
  113. snowflake/ml/modeling/feature_selection/variance_threshold.py +1 -0
  114. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +1 -0
  115. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +1 -0
  116. snowflake/ml/modeling/impute/iterative_imputer.py +1 -0
  117. snowflake/ml/modeling/impute/knn_imputer.py +1 -0
  118. snowflake/ml/modeling/impute/missing_indicator.py +1 -0
  119. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +1 -0
  120. snowflake/ml/modeling/kernel_approximation/nystroem.py +1 -0
  121. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +1 -0
  122. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +1 -0
  123. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +1 -0
  124. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +1 -0
  125. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +1 -0
  126. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +1 -0
  127. snowflake/ml/modeling/linear_model/ard_regression.py +1 -0
  128. snowflake/ml/modeling/linear_model/bayesian_ridge.py +1 -0
  129. snowflake/ml/modeling/linear_model/elastic_net.py +1 -0
  130. snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -0
  131. snowflake/ml/modeling/linear_model/gamma_regressor.py +1 -0
  132. snowflake/ml/modeling/linear_model/huber_regressor.py +1 -0
  133. snowflake/ml/modeling/linear_model/lars.py +1 -0
  134. snowflake/ml/modeling/linear_model/lars_cv.py +1 -0
  135. snowflake/ml/modeling/linear_model/lasso.py +1 -0
  136. snowflake/ml/modeling/linear_model/lasso_cv.py +1 -0
  137. snowflake/ml/modeling/linear_model/lasso_lars.py +1 -0
  138. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -0
  139. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +1 -0
  140. snowflake/ml/modeling/linear_model/linear_regression.py +1 -0
  141. snowflake/ml/modeling/linear_model/logistic_regression.py +1 -0
  142. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +1 -0
  143. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +1 -0
  144. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -0
  145. snowflake/ml/modeling/linear_model/multi_task_lasso.py +1 -0
  146. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -0
  147. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +1 -0
  148. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +1 -0
  149. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -0
  150. snowflake/ml/modeling/linear_model/perceptron.py +1 -0
  151. snowflake/ml/modeling/linear_model/poisson_regressor.py +1 -0
  152. snowflake/ml/modeling/linear_model/ransac_regressor.py +1 -0
  153. snowflake/ml/modeling/linear_model/ridge.py +1 -0
  154. snowflake/ml/modeling/linear_model/ridge_classifier.py +1 -0
  155. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +1 -0
  156. snowflake/ml/modeling/linear_model/ridge_cv.py +1 -0
  157. snowflake/ml/modeling/linear_model/sgd_classifier.py +1 -0
  158. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +1 -0
  159. snowflake/ml/modeling/linear_model/sgd_regressor.py +1 -0
  160. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +1 -0
  161. snowflake/ml/modeling/linear_model/tweedie_regressor.py +1 -0
  162. snowflake/ml/modeling/manifold/isomap.py +1 -0
  163. snowflake/ml/modeling/manifold/mds.py +1 -0
  164. snowflake/ml/modeling/manifold/spectral_embedding.py +1 -0
  165. snowflake/ml/modeling/manifold/tsne.py +1 -0
  166. snowflake/ml/modeling/metrics/metrics_utils.py +2 -2
  167. snowflake/ml/modeling/metrics/ranking.py +0 -3
  168. snowflake/ml/modeling/metrics/regression.py +0 -3
  169. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +1 -0
  170. snowflake/ml/modeling/mixture/gaussian_mixture.py +1 -0
  171. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +1 -0
  172. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +1 -0
  173. snowflake/ml/modeling/multiclass/output_code_classifier.py +1 -0
  174. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +1 -0
  175. snowflake/ml/modeling/naive_bayes/categorical_nb.py +1 -0
  176. snowflake/ml/modeling/naive_bayes/complement_nb.py +1 -0
  177. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +1 -0
  178. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +1 -0
  179. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +1 -0
  180. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +1 -0
  181. snowflake/ml/modeling/neighbors/kernel_density.py +1 -0
  182. snowflake/ml/modeling/neighbors/local_outlier_factor.py +1 -0
  183. snowflake/ml/modeling/neighbors/nearest_centroid.py +1 -0
  184. snowflake/ml/modeling/neighbors/nearest_neighbors.py +1 -0
  185. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +1 -0
  186. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +1 -0
  187. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -0
  188. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +1 -0
  189. snowflake/ml/modeling/neural_network/mlp_classifier.py +1 -0
  190. snowflake/ml/modeling/neural_network/mlp_regressor.py +1 -0
  191. snowflake/ml/modeling/pipeline/pipeline.py +0 -1
  192. snowflake/ml/modeling/preprocessing/polynomial_features.py +1 -0
  193. snowflake/ml/modeling/semi_supervised/label_propagation.py +1 -0
  194. snowflake/ml/modeling/semi_supervised/label_spreading.py +1 -0
  195. snowflake/ml/modeling/svm/linear_svc.py +1 -0
  196. snowflake/ml/modeling/svm/linear_svr.py +1 -0
  197. snowflake/ml/modeling/svm/nu_svc.py +1 -0
  198. snowflake/ml/modeling/svm/nu_svr.py +1 -0
  199. snowflake/ml/modeling/svm/svc.py +1 -0
  200. snowflake/ml/modeling/svm/svr.py +1 -0
  201. snowflake/ml/modeling/tree/decision_tree_classifier.py +1 -0
  202. snowflake/ml/modeling/tree/decision_tree_regressor.py +1 -0
  203. snowflake/ml/modeling/tree/extra_tree_classifier.py +1 -0
  204. snowflake/ml/modeling/tree/extra_tree_regressor.py +1 -0
  205. snowflake/ml/modeling/xgboost/xgb_classifier.py +1 -0
  206. snowflake/ml/modeling/xgboost/xgb_regressor.py +1 -0
  207. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +1 -0
  208. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +1 -0
  209. snowflake/ml/monitoring/_client/model_monitor.py +126 -0
  210. snowflake/ml/monitoring/_client/model_monitor_manager.py +361 -0
  211. snowflake/ml/monitoring/_client/model_monitor_version.py +1 -0
  212. snowflake/ml/monitoring/_client/monitor_sql_client.py +1335 -0
  213. snowflake/ml/monitoring/_client/queries/record_count.ssql +14 -0
  214. snowflake/ml/monitoring/_client/queries/rmse.ssql +28 -0
  215. snowflake/ml/monitoring/entities/model_monitor_config.py +28 -0
  216. snowflake/ml/monitoring/entities/model_monitor_interval.py +46 -0
  217. snowflake/ml/monitoring/entities/output_score_type.py +90 -0
  218. snowflake/ml/registry/_manager/model_manager.py +4 -4
  219. snowflake/ml/registry/registry.py +165 -6
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.6.2.dist-info → snowflake_ml_python-1.6.3.dist-info}/METADATA +24 -9
  222. {snowflake_ml_python-1.6.2.dist-info → snowflake_ml_python-1.6.3.dist-info}/RECORD +225 -249
  223. {snowflake_ml_python-1.6.2.dist-info → snowflake_ml_python-1.6.3.dist-info}/WHEEL +1 -1
  224. snowflake/ml/_internal/container_services/image_registry/credential.py +0 -84
  225. snowflake/ml/_internal/container_services/image_registry/http_client.py +0 -127
  226. snowflake/ml/_internal/container_services/image_registry/imagelib.py +0 -400
  227. snowflake/ml/_internal/container_services/image_registry/registry_client.py +0 -212
  228. snowflake/ml/_internal/utils/log_stream_processor.py +0 -30
  229. snowflake/ml/_internal/utils/session_token_manager.py +0 -46
  230. snowflake/ml/_internal/utils/spcs_attribution_utils.py +0 -122
  231. snowflake/ml/_internal/utils/uri.py +0 -77
  232. snowflake/ml/model/_api.py +0 -568
  233. snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +0 -12
  234. snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +0 -249
  235. snowflake/ml/model/_deploy_client/image_builds/docker_context.py +0 -130
  236. snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +0 -36
  237. snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +0 -268
  238. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +0 -215
  239. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +0 -53
  240. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +0 -38
  241. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +0 -105
  242. snowflake/ml/model/_deploy_client/snowservice/deploy.py +0 -611
  243. snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +0 -116
  244. snowflake/ml/model/_deploy_client/snowservice/instance_types.py +0 -10
  245. snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +0 -28
  246. snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template_with_model +0 -21
  247. snowflake/ml/model/_deploy_client/utils/constants.py +0 -48
  248. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +0 -280
  249. snowflake/ml/model/_deploy_client/warehouse/deploy.py +0 -202
  250. snowflake/ml/model/_deploy_client/warehouse/infer_template.py +0 -99
  251. snowflake/ml/model/_packager/model_handlers/llm.py +0 -269
  252. snowflake/ml/model/_packager/model_meta/_core_requirements.py +0 -11
  253. snowflake/ml/model/deploy_platforms.py +0 -6
  254. snowflake/ml/model/models/llm.py +0 -106
  255. snowflake/ml/monitoring/monitor.py +0 -203
  256. snowflake/ml/registry/_initial_schema.py +0 -142
  257. snowflake/ml/registry/_schema.py +0 -82
  258. snowflake/ml/registry/_schema_upgrade_plans.py +0 -116
  259. snowflake/ml/registry/_schema_version_manager.py +0 -163
  260. snowflake/ml/registry/model_registry.py +0 -2048
  261. {snowflake_ml_python-1.6.2.dist-info → snowflake_ml_python-1.6.3.dist-info}/LICENSE.txt +0 -0
  262. {snowflake_ml_python-1.6.2.dist-info → snowflake_ml_python-1.6.3.dist-info}/top_level.txt +0 -0
@@ -1,27 +1,25 @@
1
- snowflake/cortex/__init__.py,sha256=Xw7skAa3Eeo0pq2q8gwekpvP_yZbHetNjB2mC1gqnsM,477
2
- snowflake/cortex/_classify_text.py,sha256=lKV_J0TMDgaDCytpHsi8zo2N-aiWW5I8t1PcYiuNovo,1297
1
+ snowflake/cortex/__init__.py,sha256=LjSOnx-dbbLaPREJnEDYMPSTeitdn2CNpUUrR9ro-DY,636
2
+ snowflake/cortex/_classify_text.py,sha256=1SnEdAnQ1IbCKp1bUvQSW7zhGtcS_8qk34X1sVQL37U,1338
3
3
  snowflake/cortex/_complete.py,sha256=UD9WB9w7VIpEfXu0iylYfcnmBxNScTZdLBbdA4Y3O64,11309
4
- snowflake/cortex/_extract_answer.py,sha256=-ZvpnI6i4QmCkgxIEC8QGPlOQzKMVO5abgouXMf6wTw,1301
5
- snowflake/cortex/_sentiment.py,sha256=yhV4T9GW-tcxkg_OYd-hbYHsbjHIYzRjbsmYuzXMPzU,1189
4
+ snowflake/cortex/_embed_text_1024.py,sha256=zQp2F3MTAxacnIJo7zu8OHkXmX-xi8YzoUcs_FM48uo,1381
5
+ snowflake/cortex/_embed_text_768.py,sha256=lTus5A1zehbzX4FV6IYZ8bl66QoxUiC_ZilYeBLdLOE,1377
6
+ snowflake/cortex/_extract_answer.py,sha256=hmJG0iVEe_ww-ll9XEtIL_xPOiNitycUkXBI6WwgfzA,1342
7
+ snowflake/cortex/_sentiment.py,sha256=6_RfOKpwoH0k1puvMaj2TP-0RHQvbkLqrorFvmhdx3E,1206
6
8
  snowflake/cortex/_sse_client.py,sha256=_GGmxskEQPVJ2bE3LHySnPFl29CP4YGM4_xmR_Kk-WA,2485
7
- snowflake/cortex/_summarize.py,sha256=raDFAb31penzEtOtqQv8wQS69MsRt_B75VQ5cDHegbE,1018
8
- snowflake/cortex/_translate.py,sha256=QqngDJ9ijB5wCObSVWMfY2FQzk4S02M85PEAKr_Alrk,1363
9
- snowflake/cortex/_util.py,sha256=5Y_hwZxW_Tygv8TNO7f5b3jvG9HeRwO8l9wv5sZOjCE,2150
10
- snowflake/ml/version.py,sha256=YzEk6IWbxbQSMCX59hbxlyN2XoOJpsR_t_ikcryO_6s,16
9
+ snowflake/cortex/_summarize.py,sha256=bwpFBzBGmNQSoJqKs3IB5wASjAREnC5ZnViSuZK5IrU,1059
10
+ snowflake/cortex/_translate.py,sha256=69YUps6mnhzVdubdU_H0IfUAlbBwF9OPemFEQ34P-ts,1404
11
+ snowflake/cortex/_util.py,sha256=uZQNsG8uTrlsao0a3A_BtNJQw6xCGgWjXscgZf9beUs,2209
12
+ snowflake/ml/version.py,sha256=WsVT69ZLsnasRlAmBGPzK1f5KkKKlu7FJpIne8-oxe8,16
11
13
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
12
- snowflake/ml/_internal/env_utils.py,sha256=cNh9cMO1tEl2jf7VPIJy-st2O625DkDiELTH6dqqW3Y,28033
14
+ snowflake/ml/_internal/env_utils.py,sha256=J_jitp8jvDoC3a79EbMSDatFRYw-HiXaI9vR81bhtU8,28075
13
15
  snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
14
16
  snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
15
17
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
16
18
  snowflake/ml/_internal/telemetry.py,sha256=XwzuyTVSDW7RyYLlC0ZsEij19ElFrm-OItLPQW5HeG4,29719
17
19
  snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
18
- snowflake/ml/_internal/container_services/image_registry/credential.py,sha256=nShNgIb2yNu9w6vceOY3aSgjpuOoi0spWWmvgEafPSk,3291
19
- snowflake/ml/_internal/container_services/image_registry/http_client.py,sha256=JAkZmI9szd3BeAB6bpSlfCWAmQOSGKVO3zrV_0QP6-I,5448
20
- snowflake/ml/_internal/container_services/image_registry/imagelib.py,sha256=362M5dCE4wYWEsHgWaIIvIu-SfUt42skb3bJVSr--5o,14883
21
- snowflake/ml/_internal/container_services/image_registry/registry_client.py,sha256=YngCY0U-m2adQai0XCS8jsJ9COIrMrtKJOLbjXfFeq8,9318
22
20
  snowflake/ml/_internal/exceptions/dataset_error_messages.py,sha256=h7uGJbxBM6se-TW_64LKGGGdBCbwflzbBnmijWKX3Gc,285
23
21
  snowflake/ml/_internal/exceptions/dataset_errors.py,sha256=TqESe8cDfWurJdv5X0DOwgzBfHCEqga_F3WQipYbdqg,741
24
- snowflake/ml/_internal/exceptions/error_codes.py,sha256=eMgsEfIYFQesK_pqLIsyxRZojz8Ke9DTlA5ni60RLv4,5453
22
+ snowflake/ml/_internal/exceptions/error_codes.py,sha256=S1N9TvjKlAl3GppkcS8y8xnsOzD2b9kOHeLqWhJV0uk,5519
25
23
  snowflake/ml/_internal/exceptions/error_messages.py,sha256=vF9XOWJoBuKvFxBkGcDelhXK1dipzTt-AdK4NkCbwTo,47
26
24
  snowflake/ml/_internal/exceptions/exceptions.py,sha256=ub0fthrNTVoKhpj1pXnKRfO1Gqnmbe7wY51vaoEOp5M,1653
27
25
  snowflake/ml/_internal/exceptions/fileset_error_messages.py,sha256=dqPpRu0cKyQA_0gahvbizgQBTwNhnwveN286JrJLvi8,419
@@ -33,39 +31,37 @@ snowflake/ml/_internal/human_readable_id/animals.txt,sha256=GDLzMwzxiL07PhIMxw4t
33
31
  snowflake/ml/_internal/human_readable_id/hrid_generator.py,sha256=LYWB86qZgsVBvnc6Q5VjfDOmnGSQU3cTRKfId_nJSPY,1341
34
32
  snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=D1yoVG1vmAFUhWQ5xCRRU6HCCBPbXHpOXagFd0jK0O8,4519
35
33
  snowflake/ml/_internal/lineage/lineage_utils.py,sha256=kxWW7fkSf1HiUQSks3VlzWyntpt4o_pbptXcpQHtnk8,3432
34
+ snowflake/ml/_internal/utils/db_utils.py,sha256=HBAY0-XHzCP4ai5q3Yqd8O19Ar_Q9J3xD4jO6Fe7Zek,1668
36
35
  snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
37
36
  snowflake/ml/_internal/utils/identifier.py,sha256=fUYXjXKXAkjLUZpomneMHo2wR4_ZNP4ak-5OJxeUS-g,12467
38
37
  snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
39
- snowflake/ml/_internal/utils/log_stream_processor.py,sha256=pBf8ycEamhHjEzUT55Rx_tFqSkYRpD5Dt71Mx9ZdaS8,1001
40
38
  snowflake/ml/_internal/utils/parallelize.py,sha256=Q6_-P2t4DoYNO8DyC1kOl7H3qNL-bUK6EgtlQ_b5ThY,4534
41
39
  snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=FwdLHFhxi3CAQQduGjFavEBmkD9Ra6ZTkt6Eub-WoSA,5168
42
40
  snowflake/ml/_internal/utils/query_result_checker.py,sha256=h1nbUImdB9lSNCON3uIA0xCm8_JrS-TE-jQXJJs9WfU,10668
43
41
  snowflake/ml/_internal/utils/result.py,sha256=59Sz6MvhjakUNiONwg9oi2544AmORCJR3XyWTxY2vP0,2405
44
42
  snowflake/ml/_internal/utils/retryable_http.py,sha256=1GCuQkTGO4sX-VRbjy31e4_VgUjqsp5Lh2v5tSJjVK8,1321
45
- snowflake/ml/_internal/utils/session_token_manager.py,sha256=qXRlE7pyw-Gb0q_BmTdWZEu9pCq2oRNuJBoqfKD9QDQ,1727
43
+ snowflake/ml/_internal/utils/service_logger.py,sha256=tSKz7SzC33Btu2QgerXJ__4jRhOvRepOSEvHXSy_FTs,1974
46
44
  snowflake/ml/_internal/utils/snowflake_env.py,sha256=WY9KgMcXEydpWObHQCQhvxcSZXMwC-2OHc894njmXEg,3346
47
45
  snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=ksWdVV2EUX4SOOcoeC00xZDEoOyukQOGqxO20_XxaMs,5981
48
- snowflake/ml/_internal/utils/spcs_attribution_utils.py,sha256=9XPKe1BDkWhnGuHDXBHE4FP-m3U22lTZnrQLsHGFhWU,4292
49
- snowflake/ml/_internal/utils/sql_identifier.py,sha256=YNSE5NHX-bgMBy3UO4XE0g24R7Nbb4ARIzDkrJ3Dhgw,3726
46
+ snowflake/ml/_internal/utils/sql_identifier.py,sha256=A5mfeDuz4z6VuUYG3EBpDyQQQCNiRtjVS1WNWAoiqq8,4682
50
47
  snowflake/ml/_internal/utils/table_manager.py,sha256=pU7v8Cx-jGObf6RtTmfCmALfhbpJD-lL45T1gWX1nSY,4982
51
48
  snowflake/ml/_internal/utils/temp_file_utils.py,sha256=0-HTjXdxVt0kE6XcgyvRvY0btflWlmotP2bMXVpFJPA,1553
52
- snowflake/ml/_internal/utils/uri.py,sha256=Q3_CkzGovO36b9v9M3u1IBTIG-9KJN6uKFTE6pjLl7k,2808
53
49
  snowflake/ml/data/data_connector.py,sha256=vYCD7iY-9n1xFQBrDTzb-ZxlFQ90P6B4VSYapUjWflE,8698
54
50
  snowflake/ml/data/data_ingestor.py,sha256=Nrj5l0cVnoXWI6Ilig-r_pGS902xkZATbqh3OsV53NI,1017
55
51
  snowflake/ml/data/data_source.py,sha256=dRemXGi_HHQdn6gaNkxxGJixnQPuUYFDP8NBjmB_ZMk,518
56
- snowflake/ml/data/ingestor_utils.py,sha256=oeUb631XgG7XBJxoqeGcY-ormEjyESj_Iu74Vc6GQqQ,2352
52
+ snowflake/ml/data/ingestor_utils.py,sha256=--nEwJHbYqYHpAzR1APgoeVF9CMgq_fDX81X29HAB4w,2727
57
53
  snowflake/ml/data/torch_utils.py,sha256=nsADN444UOqWOomJQJm4GQu2bHUVvImahVlPQldu_vY,2649
58
- snowflake/ml/data/_internal/arrow_ingestor.py,sha256=hjk0jbf-QOGAr-PE9Vwu8MNVPd9lc8bAkM51QzyCNqE,12157
54
+ snowflake/ml/data/_internal/arrow_ingestor.py,sha256=T6i87NH4djZwqmc5m-yh2FFrihvFoQfn9LhDRZi7sPc,11667
59
55
  snowflake/ml/dataset/__init__.py,sha256=nESj7YEI2u90Oxyit_hKCQMWb7N1BlEM3Ho2Fm0MfHo,274
60
56
  snowflake/ml/dataset/dataset.py,sha256=GqdcABGcIlAzPmfTcOC8H_Kw6LNQZ6F_7Ch45hxHOHU,21094
61
57
  snowflake/ml/dataset/dataset_factory.py,sha256=Fym4ICK-B1j6Om4ENwWxEvryq3ZKoCslBSZDBenmjOo,1615
62
58
  snowflake/ml/dataset/dataset_metadata.py,sha256=tWR3fa2WG3Kj2btKMbg51l5jX68qm1rfXRswU0IDYTg,4157
63
59
  snowflake/ml/dataset/dataset_reader.py,sha256=e-IRbxbxFfNbsglmqtzhV_wYFsEflBW6-U_krbfXPpw,4371
64
60
  snowflake/ml/feature_store/__init__.py,sha256=VKBVkS050WNF8rcqNqwFfNXa_B9GZjcUpuibOGsUSls,423
65
- snowflake/ml/feature_store/access_manager.py,sha256=WBRRzmUUB_K9_xX6duv4tFExb7d4RksO_7FZjzEtoww,10696
61
+ snowflake/ml/feature_store/access_manager.py,sha256=LcsfBKsZzfERQQ_pqZG0W-XbpVGx9jkZOI-7nbfryhg,10666
66
62
  snowflake/ml/feature_store/entity.py,sha256=A65FOGlljREUG8IRMSN84v1x2uTeVGCM4NqKXO2Ui8w,4059
67
- snowflake/ml/feature_store/feature_store.py,sha256=6YKZqkT9Phf8tZVyJMmU9qFcQPcoK3hla6KABQ7g6Oc,112850
68
- snowflake/ml/feature_store/feature_view.py,sha256=Ru5oeJm2Mmw1n-srLmv9AQwTMgjb39mcScGOGilmdd8,34227
63
+ snowflake/ml/feature_store/feature_store.py,sha256=oZWUHrlhYVUfTK0tOhDwt0NgEqKkDcOSF2YU6drS-FQ,113481
64
+ snowflake/ml/feature_store/feature_view.py,sha256=a7BdD6HLU0ycPsdpYuzutG1UFnsFnG1gVHhzvrSqO-k,36687
69
65
  snowflake/ml/feature_store/examples/example_helper.py,sha256=hVaPrjtMsMxJ804vTzjrI5cvyyPLx2ExZi2P9Qfg4z0,12248
70
66
  snowflake/ml/feature_store/examples/airline_features/entities.py,sha256=V2xVZpHFgGA92Kyd9hCWa2YoiRhH5m6HAgvnh126Nqo,463
71
67
  snowflake/ml/feature_store/examples/airline_features/source.yaml,sha256=kzl8ukOK8OuSPsxChEgJ9SPyPnzC-fPHqZC4O6aqd5o,247
@@ -93,50 +89,30 @@ snowflake/ml/fileset/fileset.py,sha256=u-Hkqr7p97ajRYyd93fr62grbiBaA0AqTYkAAOppZ
93
89
  snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
94
90
  snowflake/ml/fileset/sfcfs.py,sha256=uPn8v5jlC3h_FrNqb4UMRAZjRZLn0I3tzu0sfi5RHik,15542
95
91
  snowflake/ml/fileset/snowfs.py,sha256=uF5QluYtiJ-HezGIhF55dONi3t0E6N7ByaVAIAlM3nk,5133
96
- snowflake/ml/fileset/stage_fs.py,sha256=9v6TybA8pbQ9n1vp6Sh4Ds2LwPW2M_EGoAhGsBEeLVs,20068
92
+ snowflake/ml/fileset/stage_fs.py,sha256=IEVZ6imH77JiSOIRlRHNWalwafoACRgHFr8RAaICSP8,20170
97
93
  snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx52jX8I,3849
98
94
  snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPbt9WKYiBp0,2386
99
95
  snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCrzI4,65
100
- snowflake/ml/lineage/lineage_node.py,sha256=ac_TYngOt7Q_o_JgZQWysREyAzy12j3Q15xgMkAltgk,5576
101
- snowflake/ml/model/__init__.py,sha256=KgZmgLHXmkmEU5Q7pzYQlpfvIll4SRTSiT9s4RjeleI,393
102
- snowflake/ml/model/_api.py,sha256=u2VUcZ0OK4b8DtlqB_IMaT8EWt_onRVaw3VaWAm4OA4,22329
96
+ snowflake/ml/lineage/lineage_node.py,sha256=e6L4bdYDSVgTv0BEfqgPQWNoDiTiuI7HmfJ6n-WmNLE,5812
97
+ snowflake/ml/model/__init__.py,sha256=EvPtblqPN6_T6dyVfaYUxCfo_M7D2CQ1OR5giIH4TsQ,314
103
98
  snowflake/ml/model/custom_model.py,sha256=Nu9kNa9pDFXmLN1Ipv4bc_htG0lPeWKD0AQ2Ma2-wK0,9172
104
- snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
105
99
  snowflake/ml/model/model_signature.py,sha256=Iwll4_VbcDtDX0otGS_NVd0gKSdcHQ_OJbZxNNGMRFg,29473
106
- snowflake/ml/model/type_hints.py,sha256=dUu817CywJ8bmJtBTn_pty6DXIOz7Ae_rFOp8eK8raM,14317
100
+ snowflake/ml/model/type_hints.py,sha256=mpe-7ueJ7pb47GNAsUhmKxuQ5DVz82qsxTAOJQBdNeA,8731
107
101
  snowflake/ml/model/_client/model/model_impl.py,sha256=pqjK8mSZIQJ_30tRWWFPIo8X35InSVoAunXlQNtSJEM,15369
108
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=_mzPrDqpAfbqmZ5eHBEz5sSeopVdb4eWaDO5u9XAmM4,28314
102
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=cEdLIwxL77DEhWvEg9plmI5Vp1o-hgRZuxvZRwY7xhs,31071
109
103
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=7cGx8zYzye2_cvZnyGxoukPtT6Q-Kexd-s4yeZmpmj8,4890
110
- snowflake/ml/model/_client/ops/model_ops.py,sha256=6XomTNeLB_awYMlWamFkLiTBhWdStQBY9ZzL6BUM3BE,38199
111
- snowflake/ml/model/_client/ops/service_ops.py,sha256=8MBEpYAm8v3g78xNQPRXg_oXOn8wsymTwfdm7YhUvIk,12690
112
- snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=ybPCanfy-LkMSarmerQKtlrammCJA31rwME2I4o6wzw,3997
113
- snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=XXmVl7CeDfRZw8S1caI4r5UHj27FTybD4jdDBhqG2_Y,730
114
- snowflake/ml/model/_client/sql/_base.py,sha256=pN5hxyC0gGzEJgZh2FBHLU0Y6iIoLcebHoE7wTpoUZQ,1252
115
- snowflake/ml/model/_client/sql/model.py,sha256=kdglOjmrOsFZYoEu63-BfyLXgnWBe7RrwkknalDKDkQ,5783
116
- snowflake/ml/model/_client/sql/model_version.py,sha256=hkxmpUR0fiVcecnsJ3W-zkwREr6cV_AQggpMJap2os8,20366
117
- snowflake/ml/model/_client/sql/service.py,sha256=5zHu9MZC4XNlWyTtfHJ6zzYLsrgxYjkPpUCtpy2nnv8,8146
104
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=-caU72yLdXuaBPGQKNWeuu7x0WdDWukBh3qV8IQy1kU,41867
105
+ snowflake/ml/model/_client/ops/service_ops.py,sha256=vVhSFBr7EDT3QdZGou2uAJC8WTiGRenXj19vlpcVs8A,18289
106
+ snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=tfTZl6ukBtrfu558Xu_aB5a9oMo-rDCll3NIGuUM8uA,4124
107
+ snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=bAIdH_RWJuVW_oy94shDYXLxgG_WWerFocinI5OI8PM,767
108
+ snowflake/ml/model/_client/sql/_base.py,sha256=Qrm8M92g3MHb-QnSLUlbd8iVKCRxLhG_zr5M2qmXwJ8,1473
109
+ snowflake/ml/model/_client/sql/model.py,sha256=o36oPq4aU9TwahqY2uODYvICxmj1orLztijJ0yMbWnM,5852
110
+ snowflake/ml/model/_client/sql/model_version.py,sha256=hNMlmwN5JQngKuaeUYV2Bli73RMnHmVH01ABX9NBHFk,20686
111
+ snowflake/ml/model/_client/sql/service.py,sha256=O3EaSX-BT-RGzwr9EFpYzriD8h6xHjiEMy3lKxE2Jic,9850
118
112
  snowflake/ml/model/_client/sql/stage.py,sha256=hrCh9P9F4l5R0hLr2r-wLDIEc4XYHMFdX1wNRveMVt0,819
119
113
  snowflake/ml/model/_client/sql/tag.py,sha256=pwwrcyPtSnkUfDzL3M8kqM0KSx7CaTtgty3HDhVC9vg,4345
120
- snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py,sha256=clCaoO0DZam4X79UtQV1ZuMQtTezAJkhLu9ViAX18Xk,302
121
- snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py,sha256=G74D9lV2B3d544YzFN-YrjPkaST7tbQeh-rM17dtoJc,10681
122
- snowflake/ml/model/_deploy_client/image_builds/docker_context.py,sha256=7uhAJsHsk7LbiZv_w3xOCE2O88rTUVnS3_B6OAz-JG4,6129
123
- snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh,sha256=1pntXgqFthW4gdomqlyWx9CJF-Wqv8VMoLkgSiTHEJ0,1578
124
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=l3DAcni567_zLTdr58UHJPrns7q1phlkLDX5Jw-ErCY,10085
125
- snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=dC-02DfGfij5IwnhuVxj-oN_a85n54o7txNLL2_r4Z4,10977
126
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template,sha256=8jYNmQfGw7bJgHCEd3iK9Tj68ne_x5U0hWhgKqPxEXw,1783
127
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template,sha256=g8mEvpJmwQ9OnAkZomeErPQ6h4OJ5NdtRCoylyIp7f4,1225
128
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template,sha256=nEK7fqo_XHJEVKLNe--EkES4oiDm7M5E9CacxGItFU0,3633
129
- snowflake/ml/model/_deploy_client/snowservice/deploy.py,sha256=aJDELD1G_PYLLTsUqvPHkbBEl2n90oUeDG6gzQPvbfQ,29270
130
- snowflake/ml/model/_deploy_client/snowservice/deploy_options.py,sha256=X4ncWgcgS9DKaNDiauOR9aVC6D27yb3DNouXDEHEjMQ,5989
131
- snowflake/ml/model/_deploy_client/snowservice/instance_types.py,sha256=YHI5D7UXNlEbV_Bzk0Nq6nrzfv2VUJfxwchLe7hY-lA,232
132
- snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template,sha256=hZX8XYPAlEU2R6JhZLj46js91g7XSfe2pysflCYH4HM,734
133
- snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template_with_model,sha256=2SUfeKVOSuZJgY6HZLi0m80ZrOzofjABbnusUl_JT1U,540
134
- snowflake/ml/model/_deploy_client/utils/constants.py,sha256=Ip_2GgsCYRXj_mD4MUdktQRlYGkqOXoznE49oignd7Y,1696
135
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=k0SulzWdttRvJkyuXM59aluEVgQg8Qd7XZUUpEBKuO4,11671
136
- snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=yZR9M76oh6JbPQJHb6t3wGO3wuD04w0zLEXiEyZW_tg,8358
137
- snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
138
- snowflake/ml/model/_model_composer/model_composer.py,sha256=ZXtHQ4oqmTs1p3a_6iv-Qql4_iRkQeCOVStwQM3xTVQ,7985
139
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=rdIN5qj1D6d5_Ipxcmw5xRDxna_rnZBvF2Ba2b-QTQk,6491
114
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=H-Bla85tdITjEaLtIFTeMgWAYs7LLZZiQTDSwlAFn-U,6588
115
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=qVsMjNbhE-mZSb7ExPPt4_xyys03_FvbAhofDSuDli0,7618
140
116
  snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=JF9IPpSrXoyCdFnqidCN67HUqo6MV0CchXzi3klURII,2675
141
117
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2cE463GKWAJCrqEYD1s8IPzd3iPu0X0eQ12NnXQhGBM,2556
142
118
  snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=eQ-FLUGt5r0P9UtDwWFoqSJzGeLBvwEMoHAbe8aCNsE,1418
@@ -144,46 +120,43 @@ snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template,sh
144
120
  snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=NUDSyFFAdEZEWtSkvYxkU9vB-NTjcTg6sjkrNpcmF6A,1418
145
121
  snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=4RfjJ_0Y8NUmI9YpmBqxBT2xk_yQ0RIzznaKGHlS6jU,7076
146
122
  snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
147
- snowflake/ml/model/_packager/model_packager.py,sha256=tbUnu1sdyEY5S60H47jnQWOca7VSiGKPGaOAKEII-iU,6225
148
- snowflake/ml/model/_packager/model_env/model_env.py,sha256=BXj-YTyWtj_g-8YLN-lqMVAhoS5jE-ZEVIIi8X1EKoc,18485
123
+ snowflake/ml/model/_packager/model_packager.py,sha256=dBkNAk0GkSiBdJW7qWG1CAZdEsItsNNwv3tCcwVFJo4,6424
124
+ snowflake/ml/model/_packager/model_env/model_env.py,sha256=uUTbCHFTJJ6iMbhu7LkU3PFNB4VohbEFlBMLd1ZDyS8,17008
149
125
  snowflake/ml/model/_packager/model_handlers/_base.py,sha256=qQS1ZSz1Ikdj0TvyLU9n8K6KAj-PknL4s801qpnWodo,7164
150
- snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=cOpS2X-jAgyNyS42BEYlvHGEooiRvmKYLFV-q5USyv4,6015
151
- snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=hXa-63ysDLg2nE6hahvQv_iiNRb0olzCdj4SLWdS0uA,10836
126
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=D5YVRcsB6mEcD1xO5qr5P2reKmY7d8duxbPAATJBG3o,9031
127
+ snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=CrSbRSd8eER-iYuhXzl3e24GBFnBr1o0Dsnb5E59ayk,10627
152
128
  snowflake/ml/model/_packager/model_handlers/custom.py,sha256=59IxqxXvaG3g6NlVEPv8Irw2tBK4k5yLNosXNZJGS4o,8059
153
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=2EGUN9ccQXAVL0rclrg1XniU1rimnMC_WmnMUdY-Z-o,20974
154
- snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=6cXY1yacplIoGpOMaCwN7Jb9ES6uvOpl2QwluILSSJ8,10160
155
- snowflake/ml/model/_packager/model_handlers/llm.py,sha256=gDXijXHWuhRayM7n5fJXiQX1cV0lvgaRx-eSbo-DeuA,11101
156
- snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=ZJ1Tb6hQhaYv5z2DZUm4d4QSzNf2uFScFy_sZFdjlVA,9280
157
- snowflake/ml/model/_packager/model_handlers/model_objective_utils.py,sha256=iC9oy9c9QtfeFV3adUOhYEPxgkQzOjGOnexAZBc4IWw,4685
129
+ snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=VdpIgf-pn8HiAg9ZNF0-qkB4xFBj9mjIrCowTrRKvug,20967
130
+ snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=kAbTBJQlLq59KkZQTlRDhxH5oEI04n4dq4IG7wB1HBw,10975
131
+ snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=A3HnCa065jtHsRM40ZxfLv5alk0RYhVmsU4Jt2klRwQ,9189
132
+ snowflake/ml/model/_packager/model_handlers/model_objective_utils.py,sha256=Xbl2XZfsPHVCCE6JoFOFrario1zibrhUhhCUywtNZ3o,7048
158
133
  snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=DDcf85xisPLT1PyXdmPrjJpIIepkdmWNXCOpT_dCncw,8294
159
- snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=bBqJxXPzF8COgprUPnujHKpPEjOVVNH1E1VG_h8-5V0,9351
160
- snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=GUUl0WgZ291I4Xy3pIGF5-WkOoh2OboIMjNzGE67VEQ,12768
161
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=J74vb6EE6Cs-lWTAXUzWxL2QTNJrKcnN3wyUac4_f-U,13262
134
+ snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=CKG0q43pL4wbB-5akj-8l-xgcCJ46iXZpnCUsgrO4vs,9584
135
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=4w0E1s2_CnfXgk4FdDvkYTGrX3JMOfcubel3XysAzuw,11630
136
+ snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=_4-eAhSxTFwjQXIhZ8dLJR8wuX_J4nLfLjFu-0HfFeA,14245
162
137
  snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=OhqC4GcmDDz4IOgDITLnG7KFY3zVtzOJX3wAtLv0bI0,8448
163
138
  snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=IvNL1Fqksfp7nAcXIgOMkzPy8kEylrS-xHWu0dkRLDY,8412
164
- snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=LBdWQIjzFWhZB9dIG9d63wTGenNw6knIeQvgPAcDlTQ,11886
139
+ snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=14dlId6jkF0UO4nAqw2OLL8q9v_vtw6kGtuNM9Rxew4,12668
165
140
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
166
- snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=z0WnMVFR9RySEpldoPrDsMgSrSW8EOiTaylnTsBwhe4,265
167
141
  snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
168
142
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=GmiqqI-XVjrOX7cSa5GKerKhfHptlsg74MKqTGwJ5Jk,1949
169
- snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=-CcRzm7lu-DBfRoJvhy5IWIkcTigRODFpDSFq8QNAec,20290
170
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=IEHztlkTYOF0UjCVLF1FRImaKl-51mS5enkcFEFFkEI,2831
143
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=Fn0yrMiTRmp2lgy15DJvIeT_PMOu_ACNO37b9o4_q2Q,18787
144
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=5tl1W9rDDYkDIkVx4DuiIkGn5K9-zzcJqO9rRjC0Vio,2714
171
145
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
172
146
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
173
147
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
174
148
  snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=fRPGbrnq67PRo3e_uVk01TKZ7AZKYM-_lryePkNk5AY,239
175
- snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=J9oS2x5ZSJb3dQM98xyBrxcsIwx1vyOu6lc0HQCzlFU,4790
149
+ snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=9wOtBB1A2Spnsgfs5CjCoLR3oL5JAUnSG-qP0C5DR1Q,5147
176
150
  snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
177
151
  snowflake/ml/model/_signatures/builtins_handler.py,sha256=nF-2ptQjeu7ikO72_d14jk1N6BVbmy-mjtZ9I1c7-Qg,2741
178
152
  snowflake/ml/model/_signatures/core.py,sha256=xj4QwfVixzpUjVMfN1-d2l8LMi7b6qH7QvnvD3oMxSw,18480
179
153
  snowflake/ml/model/_signatures/numpy_handler.py,sha256=wE9GNuNNmC-0jLmz8lI_UhyETNkKUvftIABAuNsSe94,5858
180
154
  snowflake/ml/model/_signatures/pandas_handler.py,sha256=E1Z7nkFX2toMxUOLx595Vv_7bMLK70IFdU9HZp7Z2-g,8219
181
155
  snowflake/ml/model/_signatures/pytorch_handler.py,sha256=rF5StgnAo9qtFs9Rvb5SQVhneJf7ZDgfDD5vJsL0Ivk,4599
182
- snowflake/ml/model/_signatures/snowpark_handler.py,sha256=3WjPhkyUFuIQ8x8cgQMOMrjlqOhifn_g5amPoHM7FVk,6033
156
+ snowflake/ml/model/_signatures/snowpark_handler.py,sha256=EwJyBsLrLKrBL0ctDK_yuoPm49nTavbh3EXOniWwCVE,5977
183
157
  snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=VZcws6svwupulhDodRYTn6GmlWZRqY9fW_gLkT8slxA,6082
184
158
  snowflake/ml/model/_signatures/utils.py,sha256=lBEAqgiTzFitL5EKSmVhKtHtLSYbwo8yGyTACaXWACQ,12976
185
159
  snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
186
- snowflake/ml/model/models/llm.py,sha256=E2aD4-fKRcB0VHwSdaXSyFWFenWgxAsSbS3q6LkY1Ak,3663
187
160
  snowflake/ml/modeling/_internal/constants.py,sha256=aJGngY599w3KqN8cDZCYrjbWe6UwYIbgv0gx0Ukdtc0,105
188
161
  snowflake/ml/modeling/_internal/estimator_utils.py,sha256=XYwOcmhSc053mtItkymKiXk3a_Znxo9AjTep3tSTVzw,11323
189
162
  snowflake/ml/modeling/_internal/model_specifications.py,sha256=P9duVMP9-X7us_RZFPyXvWxOrm5K30sWDVYwSMEzG1M,4876
@@ -195,183 +168,183 @@ snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=
195
168
  snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=h3Zsw9tpBB7WEUyIGy35VYNNR8y_XwiRHyR3mULyxIE,5960
196
169
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py,sha256=fgm1DpBBO0qUo2fXFwuN2uFAyTFhcIhT5_bC326VTVw,5544
197
170
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py,sha256=lM1vYwpJ1jgTh8vnuyMp4tnFibM6UFf50W1IpPWwUWE,2535
198
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=HSN443DF9mJ30dKUSfIwKr2k4eiOs1LUwA0aRlJOL9s,54578
171
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=pfreqdjP-s-aGI4KieRoe998nt6mKuHxCHG0Mg-M0Lk,54512
199
172
  snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=HnsSmsXAeJrH9zVeq3CSziIaCUDxeWWx6kRyAK4qajM,6601
200
173
  snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=RfMEPXNco4beAz-Ot1-GyRzeWy9AA7B6uy0izfGw_RU,15497
201
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=zvPnuoabpxpi8kznKGgOCrmaBhheeWOX0FzeIVVcudE,31378
202
- snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=JHAo8u7myo1ZF1g1Ia_E2GDnPJqGdunl7ezma9mtANI,17333
174
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=pxzaU8viTMLb7uZtM3XKCip--5Maqdj28yTam47lxWU,31983
175
+ snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=4WP1QVqfSVvziVlQ7k9nWQNCM0GN5kTk4Xnd-9jWTXc,17300
203
176
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
204
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=UFm0q-00zs2KkobGf5Pyhv5q7E4rPBXbgJK7ckywsnY,53944
177
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=Zbt3Rp11LOfEV-s4z1dvD0QiuUzI3DS2c9zfW3ZF-Go,53945
205
178
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
206
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=pAcWWWolEt0yYBDE5HRzLK_h3oiIuOMSvs3hNXPefHE,51854
207
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=PY0ZxsG-shXMKN4HP4fwSlCbWISvJW1PHMG7Dwwvb88,53895
208
- snowflake/ml/modeling/cluster/birch.py,sha256=WpppoDJd8cPko_q7SqERNQmWinKvkJugXYpC_yreJLA,51767
209
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=3n3ufwOZ-AArgEdbxktWG7t5IPef4cEaYBUVl-6-xq0,54536
210
- snowflake/ml/modeling/cluster/dbscan.py,sha256=Bane9kntOAeUBXDhD6UH7hS1qpmirx8Xxgq6YlGyv-U,51928
211
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=1rizt0sQf1n4uS4SUWbEmA_jsDjsV8verQVye6no8gA,54657
212
- snowflake/ml/modeling/cluster/k_means.py,sha256=hqKpi8RTOgQ-m82Gecn-9T02vXDHWbP4dTJ6kZ7VOdo,54056
213
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=FXjZo84ujNRDawFcvwszAsA_70mWeTdxYSkqcUKBRPs,52141
214
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=HF7S2i7-nHjZXkkHgPpGsFVnyinTQgGAvqJEMR5RULI,55454
215
- snowflake/ml/modeling/cluster/optics.py,sha256=iQjN8gGAOuiuApi5H5wWfovxp1B14PvCFjBS8G9dCi4,55242
216
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=IKIfXLiXrO2kBZF7_GizIjvRwi8mgddOq7hZeG_C9H4,52151
217
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=eyNUzvyzECk30N43k8oXJ1PKu4IKhJbEslFRCHzFtsA,55341
218
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=3KANeCAdngsz0rjGYry_iIzs6THpKOYOrvlCxlmzqYg,51284
179
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=k1ZND2S4qlc45KxBIUkg5T-ajKJ3VWk-4yayLdv44Zk,51855
180
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=WibgQaiDDOVOqBRnXZTAJNMJfP8iUJteBL495_BRLt0,53896
181
+ snowflake/ml/modeling/cluster/birch.py,sha256=M1-7YgDw71fCRt_qtzH_OLKmZhuceq8CLqGw5VjF51M,51768
182
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=MUoutkGVeTcX1MbXZXqyJh5nR0BWqMvJDoorLoXcYUg,54537
183
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=MUhEJ-MPE9EcPwfOs9t8mWqnxFG5oIMjGTnyw-4ymJI,51929
184
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=6oSZW-M_2edDRtx4KWfbSTMQXpGt6dz_6qbLkDrpaLE,54658
185
+ snowflake/ml/modeling/cluster/k_means.py,sha256=DyBa7rlObhQjr36XuGFBHUwQm624kLrgxc8nsFN3pgY,54057
186
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=7F-VD9ElANRiinzpapgvxxs_u1Tg1ennRUVdLQLcQhU,52142
187
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=4GGwBd68Vzb-vjfTHdeWeMhOy85ntVTviPp52IHGvdI,55455
188
+ snowflake/ml/modeling/cluster/optics.py,sha256=wHFgMIDZdgxO9jE90LHXN1FQEccJ882RQP4XjROuSgc,55243
189
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=o8_SbNh3dYEG8BKz0r-0BZkJZOwXv6gx0nNfAEceiks,52152
190
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=vT55mj3PrT5CU4SSnRjo9pdDfDfn8oe2LAH-8WmPbuM,55342
191
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=yzrNfxs48JPQPkLdO6So11lJDZKsy8gDD1wlMJ7oxcc,51285
219
192
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
220
- snowflake/ml/modeling/compose/column_transformer.py,sha256=XFRXmQal2PxA5kOpkYcGRV-UR1WOu48jv9zpTcPp9zI,54119
221
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=yzrAq5ItbmNYrLFcb1ZPg8p4HJ8bZq-2B5BbkQ90_pE,51760
193
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=WyLrETqOF6bLK_yVMCW_Cnds3PFzKRjTqUpufThJXXM,54120
194
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=f5i8hfWuK_u-TlejtxgNEOVLQmkW0ta8F7TmxrfN4Gs,51761
222
195
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
223
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=5Flt-asnoNd75KFXlmaVXn7xDVUcjj6KTvIAEXkwa2U,52172
224
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=iCTnOfJVBC4bb_9oXFld-y0L0N8QDwo1gVeVlc1FSR8,49983
225
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=i2uuR95OjrPvDoXso2j8_VoWz_XL4NftMkuro8CKSyg,51842
226
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=RA-e3c1QdabVsDLDRKQ9qy_BKvoXDIlP727gaIvA7ME,53009
227
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=mNmGUIUe5bA7MNKt0Dvca-nwWj-mSmuUH6Szq4lBIa4,50112
228
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=vCDZWd_XxPS2zyQfe8Cfx-IfrzT-YUdHRfoO3CrZkx0,50866
229
- snowflake/ml/modeling/covariance/oas.py,sha256=jjjGqnMLAvn6sC-_iag5mVVKUEPZYO8Rctaju_q1p-4,49746
230
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=DlzVcSYaZ7MVLtTDfKIHrSDcFggTfNKoPuTLp2mgz1Q,50135
196
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=OfTEy2rrtuFfHbJPF8bOu2kJHttJVQzseTb5_T9yW3k,52173
197
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=hYRitTNwhsY60qpTbUdhNMQkCG2aX2oxFP0trsYyJeA,49984
198
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=fsotiESbzirsjULlzda8X0OrJbdCYJjwRUHFsMX5n-4,51843
199
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=NkeudrV8Och5C9UbjovohDmaqYjjIQDppE202z01sxw,53010
200
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=GJhlSCGT-nanFY0fAvSCDlfaiiZpOFxeNJ8o54uEFEM,50113
201
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=LnT9d7xoWqw9XDkPm7vMIJNGAfqVq0YHIn_3APxsGdE,50867
202
+ snowflake/ml/modeling/covariance/oas.py,sha256=4qheG3BmiG9Uzd42g4EK3ccig2jefWPV_cAiZ4hulT0,49747
203
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=ULvwAUtaQUSeqQELKhSaa1kfjeXuqgGSdD71X81YjZo,50136
231
204
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
232
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=1xEhOQZsBFl5rn_lF7rP5KuAC99YKuCyoc4RQ2Ggql8,55134
233
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=lMqWTJ-36-phThLF8YNdzyetAfgRN1gbth2KgZWqjGk,52793
234
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=fDQuyIGBh1MRdUrQ52edrUwv8C4hHkF8zlqCqN7mIKs,52720
235
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=WkpLcxw4CjZduHFe_fbc1VJVrr06AMwFgIyXLQhZPSg,51087
236
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=BvQ3QLyZGTwPVRAN6W_J0Ei2tw8T0Dz4dkLh_maFK7E,55080
237
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=mMfX7_NuA2i1bPDvQknKjMAX2I5RmekbVR7JUUWUFgU,56184
238
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=UbtMCC-7o5FiE-dv1hiQKyQs65DUss8ADzZSoFOrTIY,53440
239
- snowflake/ml/modeling/decomposition/pca.py,sha256=SzsTeCZSNgMl4bcYfim0QYtoBs0WU3h6uQFv8nsNBys,54343
240
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=44DZQ03cwwNoRKAMhGuxlnTxtOqDgb5nrqZdEx_-h6w,52236
241
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=UNHwW7QC7TnGFUJQ-O2GhfRojk0JB89jVY1UKb6gM4g,51862
205
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=AJBcaae1t9R7XAbjLrmYd9U0AHzVoG_5E8ZAbunYWfU,55135
206
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=yple9ZHcINCl95OpB0GivWbi-gWC9Q4TW-_YoYg3cNQ,52794
207
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=lUb88ndGnryU1-jU8ASpG86keTSCZ4zELccg-tfC0Ak,52721
208
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=G_buEnTXWdPX-KVR0YRZrm82118_cYWQV8TFl_eBN-A,51088
209
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=pRKviMd-FIiAv0sz9n_yN7NknUJoe0f2RGgiL0kjxnY,55081
210
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=r0IiwPs8-ErHktnpX8YIQJFiX4bpWbsCznnh4wgoIAA,56185
211
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=rcriInZiuFV4Q5KC52aSi75DdhFbrG8t84dczmysZd0,53441
212
+ snowflake/ml/modeling/decomposition/pca.py,sha256=6wiPPOK-gfJeA_N8ggIOaqdPSLQrLzqDyKZjUVEo2o0,54344
213
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=vMWi3cKMuFrJOlggWPs_vQaC9WF_q4M0XHXPpuR34Vs,52237
214
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=oy1k6zTMb5R9_AaYYJeVAS_U3m0zfVwvKGLbVAUeW8A,51863
242
215
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
243
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=D5lJ6zwdlo48VihJQ5n-RwprKVXj-R9bP2x4YhAGruw,54547
244
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=1tcGe7xSzmM3joGcDYqueMaZmzjY1T73jJUuRaMY3I8,52332
216
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=ObpdJ1ljo6xH8BsG80VTccE_nhpsXxIH8CAhQ8-uM9A,54548
217
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=x536xqmYYQa9n6dJG5uW-kr0Ah-0wIFf5cWq_hlGUCQ,52333
245
218
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
246
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=xCHPxHk_bvkvuC0L2mAPNOuvGm3QXUdcnyYj8SOsf6g,53139
247
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=Gfe1Bp3StmoSw2M8RifRHEce-3hURMjiP0kMnQDfJWo,52029
248
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=T0CNkJDEXyFRbW22fZFhPnPgSivBkQFRq0htV6UzTcU,54049
249
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=f9NKeKpFhZq5LvFDx7l-HvPGXHXS1FucxobYjxXzJrk,53284
250
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=TVzQ9MRnAmDaoB5S64NLkW3vxkZ1ys2XyvEE1t77lsg,58972
251
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=uFOzK33D-ty8yST6jidpApZzCJGkOmk7QLzq0gHYKjc,57575
252
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=K5JwHhK7Op-QdfRLH1udZRYczp2rci9cr-6fAig_I_M,60433
253
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=VCoHa2uav0ifLlrSr_rVckXOH052AcwsderN_3RQ_sE,60025
254
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=k7vKo7DkWLf8hgNCBiu4Q6LuTeUR-qCJXjWsr8hyKz4,60271
255
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=sBiAAFwSO0mIH1Azg40E6kfn_0bq9dVnDv3Rgf6BvgQ,58755
256
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=CQMsz8HnJFOG1iIdHh0aJQNeUk3xc7OjMBqHWrbSq-M,53319
257
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=efQ-b4M1fy1dNfJssNi--DBbvGkl17M5ZiNh_g3-i2A,58957
258
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=3d7mwPNJp_N0XU9fMJZaslrmoukXbhc4kQgl_kpFXQs,57548
259
- snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=tJ8KSqKV2Isa4vn_jk9jbdWYdICBmOfj0z1RevkxAhg,53263
260
- snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=yIbXpk0ugAIi3l6H0MLenOBv5BY0c6ZZSooqTwQ-UUs,52815
261
- snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=tJS36XXNspERN0a5DbBfjidxUgzmZHGD7uJkG44JdhQ,51340
219
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=1DP-y3P8BqIsxnJeaimt7kQloEGCejgFHeBngsMtbTk,53140
220
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=aeRnIVyYJthNCj42OGHvrKvgfGkbbiRdSf687X0fakE,52030
221
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=wLqScjLAPcBs24pm-D7ObalsDClcvSm5jijHQirqmI4,54050
222
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=y5quFztWK6714ts6zHHEcUyQOcqHBXBOH4SBWbyR_OU,53285
223
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=hEhdInzRn5qyiU7RPH2hjSXI4ZnkTYUHl3-Adjn_sXo,58973
224
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=aNhn3uo0daXJ33JlmBLGOwHb3z9ZpDZql8Gy5AmahO8,57576
225
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=IfqyXht5l3K0nH6fhPdL_3RA0G0gl5qIKZXL1naG7DE,60434
226
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=ru3tm4BEYcqy1_hdh08s_5Mm3syNb39HZ069BKQ43QI,60026
227
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=czoc7wR00ErUfE5Ag54lAJabqSUOVw2vvT9QVU8BaDg,60272
228
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=VyvdLc0fOxNdempMk6nJDNAhCz2yx67K0qRWJWoNRVI,58756
229
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=bKDKA7N0Cnadd-ed6gcWZLZ-HcA47Z9imUEIURkVOac,53320
230
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=f9a7GyBI8_sGo6w5wAM9meBYKXwnxSfYtYUt8CBSad8,58958
231
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=t3b5368FmDSMsY9ew_od8kFoRJoNG7NbPMbQgYYSAMM,57549
232
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=_7UAkQFzVg86CEVt71flU5vKHPkOwk4OLvnBeqVWy9E,53264
233
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=Tp3Bp2t1eiPaZHMSwzVa-F7jwR21EHwxOjwwelQf6Rw,52816
234
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=SwoThI21kjcR1SIWGBFfaTBkElC7bT3rYBQPvZjSpxM,51341
262
235
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
263
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=xgfmh7bezs1f7RbsSPJX6oNHrYGbeDZRVwLgcXDUwyc,50685
264
- snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=iK0MT9DDjKa8e7GTqc87tsSdZOBYKyfVvWrd1vFmB5g,50272
265
- snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=1kutkr5n1O2g1VNGszPA_QcR9OeaHkR4NZp3qMPepmU,50266
266
- snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=JUaO9gBs8RrEzCmpYGKuFROjEQ-v8PA7ahoUDW2kmOs,50274
267
- snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=iaLCu3mAez_uC9WBSJ2Rv8AdXHvh0J1XX1MZpUV-D1o,50367
268
- snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=43gdD6VBf-7Yc3ZDAviBmaDdCp8X3w5Sm_HdN1Mfa0s,50427
269
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=BvAUyW7OXR49orK1y_JI6Zdh-25cSBYAb6qvxtjXM38,53140
270
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=Vhpo_aSGepWYZmY8n2ksFacvSkoytD7xGW3MQpzbGos,50068
236
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=7HhWC_Z-5WOqjT--aC32lSgbmwie38rZnazYjTJ9ers,50686
237
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=CU5gCe24cP8GqL2XsVX6eiO3-q2AWnL1uN3kyd9fUDU,50273
238
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=-Dw7VTLNUifbSdlYxReKx20oWljAQSJYD62xa1k2XtA,50267
239
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=Je3rfzC5lYaFEm5UPVFZL5dHZO4PkNac7jhEzReOFVU,50275
240
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=HL44ELYoURu3AAEUVAq4jOLb0PqyPR1xzlupclK1zgU,50368
241
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=g7wL2FyLmeBDUy6-3ArkLlbKWkzb49wHCcEgU7cR1o4,50428
242
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=mQbfAO4auMtPxKojF2zzHbpwEC1ZfUSH-29GfD195m0,53141
243
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=Uligo8j5-5A6b9WRmZtiFFgokBl9AlpHhQArCwc67S4,50069
271
244
  snowflake/ml/modeling/framework/_utils.py,sha256=7k9iU5zAWa4ZpMZlg8KfSMi4vH3o69w5aAh5RTRNdZ4,10203
272
245
  snowflake/ml/modeling/framework/base.py,sha256=Q1Yq8SesnpVWdtRGc6rbuz9T3hcT0eRjl2ZiWGyWAeQ,31954
273
246
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
274
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=MIaZ3SDDWhuGn5UP4PXsxEP3If8CqsnUPYep367bxwI,55698
275
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=Jx_lz8VBjvrJIEDnZTpg2xKEeaTzZxyVFl-MnyUewe0,54762
247
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=XhNEhI74o1MIWWdhS6M5VpIi26g4nT3f3q-RFwICu34,55699
248
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=ixMgrUx730ndApkB9AFJoRBgN8VqfYFzH-wYmyuEF5c,54763
276
249
  snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
277
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=f9-lkXp6A5MWsIotG2jhjgwfpBT5SmEXbBLVHlfpNzE,56591
278
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=psSu3ZKVEdBbt2CrGFQvE74WRKneMiZY7nGmx8R7dqs,52301
279
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=oFIk0D4rxyI2BPc7q44hvjHx5jshZB1ogCCfG5Z_W8o,51164
250
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=f6avKsWMH86KMH7dMvFj_JAx6slZk631h3e-jGYo_yY,56592
251
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=7VfopZ9-g_iVsM573g711v86XG7itMNzER2QMBA9nCY,52302
252
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=xFpuMBd2h9yV62MfkKIz6sVS6skOR5Sos5R8xeI8S_k,51165
280
253
  snowflake/ml/modeling/impute/simple_imputer.py,sha256=T1niXlhS2vWbhF5IQ2k7qlBXKmvYVC3y1aKq73dCaBs,20946
281
254
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
282
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=lO7b5Sy_dp0CMPURuZLFSYuPrWtst_9U2spr8T3CFMQ,50198
283
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=qZ7ojF6y3E9iCY_8pU1Mlw88t-hDk-9R1PYAR-CPN7s,51958
284
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=c3waM-uuzIYmHbWxbGomi61ckhjdny4y7HZNO5vYEVc,51219
285
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=r9Xe6SW103BcXe0P63EU5DO94Hx8haJil0Izc2EwGwA,50562
286
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=5sBa5nr3q9SHuzLsdKvm5ftGv8_8b66rY8x_N4a1O9A,50617
255
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=Wv6Qx-CFff8Fo7f_qGyEU2pg9MDoC6XSUn9qIZGr_k0,50199
256
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=Qf9p8v4fE3E3kDxK1MAzE4hQo3UoR5Wglukm9Coj6TM,51959
257
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=_FyxuBoy-0x88etrF2y12uMX_EjscisRYH03y7yqM6w,51220
258
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=meXIcWyEVtHtIjHwqPA-lfE3xgBPRUGrKwYHXeNJyPY,50563
259
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=uFOYWOHEazfgLgWBv7r6cfHOskC81I2z_bkoDWYtK7I,50618
287
260
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
288
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=sE-B1WSY5FFIXLUN6gSEMBEDqI6YkWPFKJnakkyd_iI,52063
261
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=WT8MKwRjx5rdMzWqsybvp5N2I9LcQ4jTL38RLL8tIkY,52064
289
262
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
290
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=51XS2g0xVbBrTrhfF-qNKX1UKVOG5vZBDTbJnBLXgxo,51634
291
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=g4Ktzk8fbuM7yiugZTMkoD3et-NjMFqVlIR_zG9UBQE,51136
263
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=u6VzvMlONA__b6hXqHEd0wekl355SbXxr1z0J6CtXHA,51635
264
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=NoRt4FFkTF4E5eKFYOYhGFkATlB3XnxPwIBRwjo-3wU,51137
292
265
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
293
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=libX-3jCf9ANQiQBCnUi3mCJH_sTqYcOzNXaTjkxMpQ,52010
294
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=2lKuNXLrWe6iSPp9TH8GVMhTr3YYOOd37tTnQkZS2sI,52426
295
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=shdLZBXrS9SHU65vYoMHRPxnhF86kQTjp4Gjj6-lQl8,52995
296
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=xO--Rmj0zhws9oILt5-201PKSgPLaZhl1dWmwOUr37E,54265
297
- snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=ku2c1aw5BsZWyV_bU6QQGT4TaYexWEen36C24pXNFQ4,52079
298
- snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=xd5mIGMPwvVWvsHaXaSp8sASgoaqpkhsGGIUKZZnhGs,51276
299
- snowflake/ml/modeling/linear_model/lars.py,sha256=Ao-lvzLWHGK6ScztTF3b9BfyXXsM77V34IaAEaFe38k,52489
300
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=Ybz3eySqUzIlW5Se4nVs9-H8K1JCAoiL0XSykPVG2v0,52712
301
- snowflake/ml/modeling/linear_model/lasso.py,sha256=23Xq6mW2MhbqSB2QmTrom2GNYrrSazyYRvgW4UoyNlM,52596
302
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=XvqnxUArlW2ueY6a86CZb3VCprZoSvM0ujTW7tHLooc,53383
303
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=Gn9ep6c4ywNHITQXs9Xzq0yOi_IX9y_ZDnQGGmnYKNU,53630
304
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=6-EA1HiM9E66RPYRibpclinOf_y3jfiucY1-wh7v38E,53593
305
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=VYRyJbbdg-mUbzFNrJBXcrY1ktESPQM-_gLyPAv2sCo,52939
306
- snowflake/ml/modeling/linear_model/linear_regression.py,sha256=8J1dRfvW4EHBJASbWfMTSn7UhFNGB4dSPgtuep7F5bI,50820
307
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=tK5o_8_Kvw2tbG9PuHp1JWEH2sgDqZB43MmmCUzn9mU,57077
308
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=F12MzbzspZeDslTT25QGyy6HWTgpoL0ft7hXGj2zjyE,58119
309
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=fvqTB8Vux9C_c8u9ZgbPbP4uzGIAm3swngQ-wfHu2h8,52295
310
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=caxAkAk9BL8qcvlhcDmQQo2p4T2f7eMhizGN3xo8iNM,53935
311
- snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=LAXSR5drLsCeK5AFt2OBsq7sWsJVbuKo8AYzRb24VN8,51838
312
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=rSuQCsPb0UWZWDq3YPGR_wPWpeKnGjK6eaN4xRR1NGE,53102
313
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=INhaAfXVXCix6I0B8QzxhNRqy9F9JDEfiQ-mUvwxU48,51456
314
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=Cfv0rTGYjMqXBYiuM_-OpWEevU6_GNqYCYi-BbbqHjM,54814
315
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=r4SpeD5UDnkeoUc8WcqJjWyZ1CmWDiEnYr_bMhqg3iM,53880
316
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=CJeXuFbdTXF-AaUlK4hniRNIroJtfQkYpxWZdGcKMEI,54181
317
- snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=s6i0l3MTZliAKJRPC5XPBNG0XME_MrVcrsFFQtwvVAA,52126
318
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=ekr8u3gRP5R0E2_AN0rrbb-AQnfqYYK9cyCZO31muMA,55244
319
- snowflake/ml/modeling/linear_model/ridge.py,sha256=rLcIYcZPUfUgcYyd1GFxGkMBck6-xhlAFg4Uvcqit3o,54140
320
- snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=JPeO1BTt_f5o0mysVy6-3lY79TEPgr_cEYdc9iL9Jaw,54538
321
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=VyC_5vuOCfQ1_V50xZFgF3275TaXyIjE5BlY4L0lRdE,52535
322
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=sGDUCU5_k7rTS5uT-thJEeejio2Xze8IfQNsmvx34xc,53226
323
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=UujlwkpZFVCjB-juO80r4ztn1ieUNhI_Pk3Nd4lzuDI,59609
324
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=OFIZsnjS3XTZbBwPrWQ9HX53-nJL_a3zU0g6HQamQIw,54492
325
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=XkcLGt_uYPJlfTFLUnSHWbqp-57-44erp5o2P6PS3b8,57079
326
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=sBxKQ-aOuGum9OD8mT-2KOvj74LOoG98HskFzAcgxxE,52562
327
- snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=84HPzLmXY8JwExYgOypjqa4j2czXykDRiVIY2xbw_u8,53517
266
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=LPmunp4KwYOpNIcjzkdIYqQLqynSNvNSz3xy3SsguL8,52011
267
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=Lv-b3KkyJ4Av8BQLSi2IpkYq_FGCjv5drLfw7nt8nZg,52427
268
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=M637UZ8vBdTo9s56_Lgi2zHBCyNfBHMxI3mcq2Rd1Ks,52996
269
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=ygf5fxou8N_Hk8vNYYPDOQlxcPRbfCwLlnOAzSdZ28Q,54266
270
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=uB9Ru3gE1Cex-XyT-yc3qt6uD1XImIjEHkM4gTpFu-E,52080
271
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=R9ColYTOXUBiOMj0-onT1Lhb3iSDU9rcXMyyA0spy3k,51277
272
+ snowflake/ml/modeling/linear_model/lars.py,sha256=EurH_C6n61_RqaoaymWbdIgPGkk6gZAkS6TduzpUveA,52490
273
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=2bSYiuuPq_V0wI0mfdUM6zAgWUTemJEsLQtOrXRc92k,52713
274
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=oCvyY7P6Dqgyyy6IVMjaWPXR9uJXTCSvepjy1o3ylBU,52597
275
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=80m6u-5dWbinuarAGOHPGh9vj5tgJeaNQM7o3Sx1qkU,53384
276
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=kX0LE94hiqZa6G8zksBXEpyBk5ckLHVJEzcfSSZnqg8,53631
277
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=5kpglEIj8pZGzZf0dWEnn_Ob9Na_sZ5vQ_mUPoNsQYA,53594
278
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=HZPCHTqepAbIrZkZ18ktOHrCwDZ8R6DKB27AfkxxW_8,52940
279
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=RgsPYYgUVbU7rDbjIU_SkKQ2b_rLKjhaaibaqPXCowM,50821
280
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=ouYRWSOHoBH-KZjV9PjnSLqPFetFXm_5KW_xSekXVDY,57078
281
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=oEHhpvHIDWV1FQXDOZfo1fdAGP0Owlh8QrfUuFHLmRY,58120
282
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=oAQ3x8w1uZNCDqIr-onPSUz2guRihpzKqL9XuILSdhA,52296
283
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=arBMkviksZKSW5PSig_g5-oNlK1ve_kWUOJ-j3nlEcQ,53936
284
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=BfNZNeNC61muK_z6EUJ_5SvDiiUZdoBCO8Jxl-cSxNs,51839
285
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=b5zchLMN9enVwm0uOL20Ox8wUtDkzZiGU4NU3VFtcIk,53103
286
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=eTJmuNWpa_xAQCoYlQ0GNRDhJcuJ8b4PsSwOhYH7npo,51457
287
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=jsMC6JJWT0EBs_iNzCPCen6TIK8d1USF20i-z2TIJJY,54815
288
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=LEDWZ8UMrmM_9H5SMBaqoNPwBaaAGXg813vfTiMKa2M,53881
289
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=m9NsOxW-kPTiutjvM-tPEAF8AXNzeYSxSKzyUtSxpPQ,54182
290
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=qZwQ7JeCSP-vQGKwvNXV90UoQQVp8DRLf4P4w8ScAds,52127
291
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=kz2MvslF1KCM3K-dIsrbuX2kkeE2vpbZQbmtPXmJlKE,55245
292
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=wEYZos7SjZeeG7pjLIrGVCLU5AszpGZ2s0lmfqlBbTw,54141
293
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=WkbmCDR-cTO-_ICx-sTPjiUxT5kHIsymk-J5kJSxMnw,54539
294
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=yEUSoui3uCYfgwJoIaYzaOYSfAqD1BJ30jRZ9MHjmNg,52536
295
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=ZNa_Lbmaf42-OFW95izWGzL05NTCUQajbuERXldsKnU,53227
296
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=hGYkK8mUEUzmhokZswTU_m1qr3y1ksublfb-iY4-g_s,59610
297
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=40yqhrgIEJcZH0fJvljQvvDxnxnFu92DDuDHNuApDZ8,54493
298
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=d94hQSEWEJTT8tohPSG-ol1Gr0mxVDGj_8ArkGpS9zk,57080
299
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=e9BOBoW54yN1-MN4Qi8gzNgbTc-88kljQdIT81SPQwI,52563
300
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=9c2cjDRbNGGIhizmC6S-NDZWpeZz8PefjXyq4JLEJtE,53518
328
301
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
329
- snowflake/ml/modeling/manifold/isomap.py,sha256=98zMptQAidUb8Vm9cSR7Q5X0j7sFvYXvIWo7RZzbAPI,52818
330
- snowflake/ml/modeling/manifold/mds.py,sha256=iG1ddsWHZMPAZoEVnjZ5zdz9eYzIaFJgyDWk_226BKU,52035
331
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=0KNqYB4xqiF0n88iYiYgJRBTzNqLbFKnELgoCeo4Uy8,52900
332
- snowflake/ml/modeling/manifold/tsne.py,sha256=Hi1tXZfdZ0ewuJlvMHF8OP4aUdqs9jrWGeW3gFrWFDo,55826
302
+ snowflake/ml/modeling/manifold/isomap.py,sha256=5zOTV0nWJ0Ak8n0QH0i05KXEYox635ySsqarLKWRxuE,52819
303
+ snowflake/ml/modeling/manifold/mds.py,sha256=2HQQp5IDxzC1urNdPESnZ5jNg3-Hdy1I1OBwHU9ATfA,52036
304
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=B09ygJjIA49hYV-Y4w1-hnMoWs4z12Xgmun5XBz5pzQ,52901
305
+ snowflake/ml/modeling/manifold/tsne.py,sha256=Pi9aDZlpZcN2vbBSdKDoCdqK1adD8piFvclx1NcfCNw,55827
333
306
  snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
334
307
  snowflake/ml/modeling/metrics/classification.py,sha256=5XbbpxYu9HXB7FUbBJfT7wVNMKBfzxwcaVzlMSyHAWg,66499
335
308
  snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
336
309
  snowflake/ml/modeling/metrics/covariance.py,sha256=HxJK1mwyt6lMSg8yonHFQ8IxAEa62MHeb1M3eHEtqlk,4672
337
- snowflake/ml/modeling/metrics/metrics_utils.py,sha256=NETSOkhP9m_GZSywiDydCQXKuXOp3qltNgbabROtJAw,13114
338
- snowflake/ml/modeling/metrics/ranking.py,sha256=J2o8cDhS2JmcwF8zTA6AclmIgOb4P3qRNSqTb0FWZuI,17656
339
- snowflake/ml/modeling/metrics/regression.py,sha256=FEr48UddRq5ToD4J9fiwZlo0NDB82oi_iaAtnBxJ56A,25932
310
+ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=9tZQ_Mu6jTWHztwqkPSrFWY_LP551W7FmQrXYwbSlso,13208
311
+ snowflake/ml/modeling/metrics/ranking.py,sha256=gA1R1x1jUXA9bRrYn8IfJPM5BDY4DK1JCtoPQVsz5z4,17569
312
+ snowflake/ml/modeling/metrics/regression.py,sha256=OEawjdiMZHYlycQFXM_h2czIZmmGe5GKciEQD9MSWx4,25845
340
313
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
341
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=0stI79bHg7N-qW5m_9M_GVrvrNbYpP3yryoDuhJfmOs,57408
342
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=dwnTh-PP-j8cWEegPNrbY_jAMBuZGp-Jqx_3-8WLLQU,55301
314
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=jx5fKk0dnQYUERg4pACPZlFi-N9soXciNHXoBX-IKb0,57409
315
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=FTH60ckoW3cyJCfiX5tN73K4S0SKZlfBJHT8hoGxifM,55302
343
316
  snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
344
317
  snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=K8edz_VVGTWezSxeq5EeReKSrFkgZfmw-5fg5LuD_Bo,38021
345
318
  snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=gPnJ3_YL_QasD6dx2YSDBltDErylZjYSKNKXBus448c,38763
346
319
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
347
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=AXJtry0aTK2ywBYi7TYVFoF550x6RncY8T4wF9QkxIM,50822
348
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=Bjz-owatiS4mJ41B_TfQwtX8WbWibFJybH-XUaTPSh0,51757
349
- snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=BHGD0Nd5F2B4S3LAgmB8OuQ6VoLa9u89jix_vBBzLdM,51094
320
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=r2gUV5EVWnZiIJe41MN_4VHOEyhdkAyDgDLs-fOtFL0,50823
321
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=2B0w-gj1nnmCj3ZacJgsaWQA3ArL3Zv_y8fH_hHkZfo,51758
322
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=RvF9JB11gsk9a7dsuCAvH18lMANj1XgSaxJ1QrJON1U,51095
350
323
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
351
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=RzNfiLQOWWhoVfMQkW08XODFak0PYvwL9nQq4Oqpmzk,51354
352
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=WsmZ24Um6XBMyxKi3t8vw7jfrp2tJgsxFKtq76j-qZg,51691
353
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=YjleyMvB9_s4Z3rt1NL-gWS01POnhL_WpWpvMD2hx6s,51370
354
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=J_K2Z9cXK9CBmMYLnVTUj5Yk2Ep15VvkrqNrHN3XJD0,50497
355
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=TZo5x7YbBminpr8efvAItmBS6wAYKabufwmgRqEtW8k,51136
324
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=Y8V1XM6HVjsPz1G2PoqoWiLP1DEUqRQp6rW3YQ95ZnI,51355
325
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=qzZQhMCRxmpHtTTyZOA_qFS3bF-7lGuwJMV0d-6jxx0,51692
326
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=vVLpjjoJqTw93VlvQrv5mmrb3fOMc_Fy9kZysj2Kdsw,51371
327
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=fadqQU8Iy3U_ZNyyKZL0JkBLsMT23NLA7YbSyIvq_QA,50498
328
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=xttXBuQPH6Y5GSUYGBIkf7AL4DR3rrA4KsKATh-0G3w,51137
356
329
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
357
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=nw8667CaIoF3gHfmthNQS1jNf63Y-TGL3kA9JaEFkjc,54212
358
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=0DdYz_tUzXR4tGNi_GOh6ZowABk5h6w1NTaTx7a7WJM,53682
359
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=k3rkq3vP5gslGNDTa-Z_7ASQg68QRtLwcbNeMecQqHE,52118
360
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=K1fuquRTzFijOn_ZEAXO1H_RkzCz11EEjvl9NAg1jhQ,54701
361
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=Jxsdvy8wa4UOV9woTRPVp2VYVRo1WKM9gcIH4RRePoo,50696
362
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=kRHojziGM-gery2SJGna0WaP_2WWNUyKTg2DMrr21Kw,52590
363
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=n3Kgl0Xfy_jxa1Jrnu7Sh3U-PtcbwGxTNOrJmTSoFKw,54183
364
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=SbBxsp-M5ugqSmOHqzD7WwGwVWSWVyoqw8vzCsvXedE,54630
365
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=1Ohg6swTb7btnEwGF0HS395Zu2HgsfhH_URMqCAeMBs,53510
330
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=PUsqF-IJ_PTPOJie9BngSM3f80hHzRJouhf2tCoqz8g,54213
331
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=ITfNPT1xaf3zgaUhYE7S2hwxpPlEn9IR3Tn4z87dpxo,53683
332
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=-1nhtIF8jiBi0ecJU3yxSMpy_enDBnh_-yMWBeCFg5Q,52119
333
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=iHJHWbBEj70G1KFfgYzdlctIHh2AbVp5SCbqcNQr_04,54702
334
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=o-xi_N8PPxbHqmShmFtZjtFiQTvG9DBxFfuLwvc1j6I,50697
335
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=l3VqkQKCNivnjf52MniTxLZr_gidynpyVProXTkEPhI,52591
336
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=e5LvLURwNDdFGUqFZZlpCaczWC1wtPzW8IR1llR3cbI,54184
337
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=M6I0v8UhVDypN0SkFrEWz94MwAJKuZSwIRuLt8gHIuM,54631
338
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=N0G_jFDrgks8mM0zm_7hh1BQlEe_0nsxIwg_HJ_GGt8,53511
366
339
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
367
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=4ZLIC5utii-aHyQxyu0eng154uf-loFL2wAyA7J-DnA,51325
368
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=IvUTN_b7gGge8guBLUYMXpSA-hinwz4DjNoY54zAP5I,58578
369
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=WxiKTe_5BO7VUMYZfn58dM6hPg-KTXfw0KwLUb2CPIE,57846
340
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=novw3YKaMmdblfTz6MeBjU7xXrL8Gh51dknXyYV2Flo,51326
341
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=pFyopjAv_1G0W4ikuWr_5Pcof9ROvWS5L5Y_xcMSAB8,58579
342
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=t4lh7YUkg4lr5aSYa6bVPpSf8fcdV480l1UyflDE9AA,57847
370
343
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
371
344
  snowflake/ml/modeling/parameters/disable_model_tracer.py,sha256=uj6SZz7HQpThGLs90zfUDcNMChxf0C6DKRN2xOfjmvI,203
372
345
  snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
373
346
  snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
374
- snowflake/ml/modeling/pipeline/pipeline.py,sha256=xY5uZGxf8JXLrX78s6_Q0eqxOYRuOe2Pz_XxOSG3Akk,46281
347
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=MjwZA4moXFEnUQCgbKRCt3GuL6gMk68NFBNkzWQx5IA,46244
375
348
  snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
376
349
  snowflake/ml/modeling/preprocessing/binarizer.py,sha256=MrgSVTw9RpajyYe0dzai-qnpdOb3Zq0SfJRpHJjpnoY,7383
377
350
  snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=FdIy8mpjsiMqWsUL07S27T-JNDVgE2bvNUJf4HcBik4,21533
@@ -381,44 +354,47 @@ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=leLeIrVsXn08agPqL-N
381
354
  snowflake/ml/modeling/preprocessing/normalizer.py,sha256=0VmTIwldr3F3KQC--6RsYkybWjWuiqtxn4PuWinH0ME,6997
382
355
  snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=DgV6eF4a-d4LtRqoYxC5H9ASx8EBlBVp6nZ2YaqqPQA,75081
383
356
  snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=ngdmbJiGXtiePfh_6TUM9LCxu22MJPzRXv3yQJXzSwA,35272
384
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=0DBoxfSCh3M16fJyqp9Q8PGFlKa9zgQ_cAAL_frgwVE,51257
357
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=RFn6ECCYuCK9kMqPv67uXph2zE872_loKw6jLJGN570,51258
385
358
  snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=Dp58jHxBdGdiFQAYmFW39JUdaPHO7dKfMy3KREtKAy0,12653
386
359
  snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=ui5pWnt2dL2VTTzCWikY8siG3fh_R9J1Wk_VZCHU-rA,11773
387
360
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
388
- snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=Kn_g84Pbh3NhjdroTmweYSvbqbMZeaEAHF6mmhsGeWw,51596
389
- snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=BYqL2obyT1nZGM9R0gcr9YSFOZ3vR12Onoh-zYx8n9k,51943
361
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=rZ3qjcpXNq1dYweHFAPhrbvOBZw-3wcKegen75I5dXQ,51597
362
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=8PHYgqhhINa7fEPPzRsbQFSkvG2nlfFlks7Yd0t-fuU,51944
390
363
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
391
- snowflake/ml/modeling/svm/linear_svc.py,sha256=RiYOHtb0ZFxQg1SnAojhwLmAo-H4g6PTiSQXP-5VKOk,54399
392
- snowflake/ml/modeling/svm/linear_svr.py,sha256=QrNb7QJAAZdE37dda9COk7XTdu62fFo1FrYiMtHGYtI,52752
393
- snowflake/ml/modeling/svm/nu_svc.py,sha256=ElGa9vTbiML3c8pwvZ13simUUj-hYC3pzX5Otq4iYpc,54707
394
- snowflake/ml/modeling/svm/nu_svr.py,sha256=M9ZMvSDvhF_QJVJcXYA5KDIDDjFs3O1fXMQz4-xiEIw,51786
395
- snowflake/ml/modeling/svm/svc.py,sha256=KxScXhSYGdxrPfw55kI8-kXMNIsKOKdWKER7oz8PExY,54854
396
- snowflake/ml/modeling/svm/svr.py,sha256=BjqOHmJqRbgcWyEG7EmhSXHIXAkPbqWKReSkGi8xWz0,51973
364
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=L1SUoJcvCEIkHefmqiOJaiPXrjkaxXQIfFSOyAEeIMQ,54400
365
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=IO08pYm2mHFap8w_h0HnGKpFIeTWS4gTDDnUvf-UmuE,52753
366
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=9s-VYUkYHOhaYTvMs_8UwmK9IX1RXeXNRAYlfT1F80Q,54708
367
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=Ouq38IvVtH-oMj1zWhMava9i_8mUnTTzYzYEnEnkpVI,51787
368
+ snowflake/ml/modeling/svm/svc.py,sha256=41xnxNUGoUM9ydgZkxTjZc-GjoZYdh2fFGwqXm8tLIE,54855
369
+ snowflake/ml/modeling/svm/svr.py,sha256=EMlXpDWJSgFN55vnYFP2zJkNzGFHTG0IbISvBE-TTT0,51974
397
370
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
398
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=cKYu9uJLcckJW1nQ6o_Ux0HfkrRp37gO6pIkDhbNM9c,57149
399
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=NDHNSGZqZVt3tunkvD1ZWMJsh16XUKPuandqY4BR5so,55847
400
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=Lf8EXgit97Y8S_bRTs7MaBbMx43jGvQkBuodQJXKHns,56488
401
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=heQgMLQ95UyzixwhWxFEbHspjHiQp9nvjyn69wzDcjg,55195
371
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=Z04GMmdO39Q6kt9VAuS2dLL0HWg2JhA51mXbICxUUCs,57150
372
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=hn739D2TuEw0hK6_maDzrGpP-IYxcDLZrDld4S6v9YU,55848
373
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=5vy27lb-Boy-cVeGgnw-rqyClRAFy3IcOgaB5Af0p48,56489
374
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=Ca2Z5p2-ZWNVc0ZV8QEtix6X5lKsPnKh6osML_ES9QY,55196
402
375
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
403
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=4k_fQvGehyTaDcXmlDLi5-kp5tF3gpq9I1mzXjtp6ww,62204
404
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=i1sAuXRSsQXhWma9iximiqPsxvPV5qae9oqmk7CnEZw,61702
405
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=XAWCoVNo4pEx34hi-sLfD9R9NhxiPRqTsgl6NnxG6XE,62382
406
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=fUEX65oRD8umXccxHckGIMtd4SUzVf-BO0T6KFVfvaM,61907
407
- snowflake/ml/monitoring/monitor.py,sha256=M9IRk6bnVwKNEvCexEJ5Rf95zEFap4O5qjbwfwdXGS0,7135
376
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=2QEK6-NihXjKXO8Ue-fOZDyucIBn5ADSyq-fQS3d6Lg,62205
377
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=ZorEmRohT2-AUdS8fK0xH8BdB8ENxvVMMDYy34Jzm1o,61703
378
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=67jh9RosrTeYCWsJbnJ6_MQICHeG22z-DMy8CegP8Vg,62383
379
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=7_ZwF_QvVqBrkFx_zgGgLXyxtbX26XrWWLozAF-EBB0,61908
408
380
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
381
+ snowflake/ml/monitoring/_client/model_monitor.py,sha256=hfR1lj_IJUTbc7XbzFALYXks0BwR-PMRuOvD7VmZDms,5371
382
+ snowflake/ml/monitoring/_client/model_monitor_manager.py,sha256=RHibb1_m8CvFKKtl7Su_ZTB7faZ7T2zSPnjPBz3eHxU,17337
383
+ snowflake/ml/monitoring/_client/model_monitor_version.py,sha256=TlmDJZDE0lCVatRaBRgXIjzDF538nrMIc-zWj9MM_nk,46
384
+ snowflake/ml/monitoring/_client/monitor_sql_client.py,sha256=hKU6BMdz01XQLWnJFDJny7sKc2DSIGTFKNixeJTHtWc,57963
385
+ snowflake/ml/monitoring/_client/queries/record_count.ssql,sha256=Bd1uNMwhPKqPyrDd5ug8iY493t9KamJjrlo82OAfmjY,335
386
+ snowflake/ml/monitoring/_client/queries/rmse.ssql,sha256=OEJiSStRz9-qKoZaFvmubtY_n0xMUjyVU2uiQHCp7KU,822
387
+ snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=rOKG9JirzptIaVFG9rCjjNdc1_eCzGTdjiAcrNSmxjU,867
388
+ snowflake/ml/monitoring/entities/model_monitor_interval.py,sha256=yDUaAXmYRQEFGW9rXihrEs5p0Ur94LCnoqKBjqi0Cyk,1681
389
+ snowflake/ml/monitoring/entities/output_score_type.py,sha256=UJyS4z5hncRZ0agVNa6_X041RY9q3Us-6Bh3dPVAmEw,2982
409
390
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
410
- snowflake/ml/registry/_initial_schema.py,sha256=KusBbu0vpgCh-dPHgC90xRSfP6Z79qC-eXTqT8GXpFI,5316
411
- snowflake/ml/registry/_schema.py,sha256=GOA427_mVKkq9RWRENHuqDimRS0SmmP4EWThNCu1Kz4,3166
412
- snowflake/ml/registry/_schema_upgrade_plans.py,sha256=LxZNXYGjGG-NmB7w7_SxgaJpZuXUO66XVMuh04oL6SI,4209
413
- snowflake/ml/registry/_schema_version_manager.py,sha256=-9wGH-7ELSZxp7-fW7hXTMqkJSIebXdSpwwgzdvnoYs,6922
414
- snowflake/ml/registry/model_registry.py,sha256=Dw4bg-E-vmpQTHNhWfu6XPmKHzA_wuc5hpUap-ePsnY,84785
415
- snowflake/ml/registry/registry.py,sha256=kXnMjkNj29i65wr63OkSkvzaL1FuhPMj2jepslNo4eI,16705
416
- snowflake/ml/registry/_manager/model_manager.py,sha256=ogVWCaKbymo0DtE2aue_3qsaJJQysg7725pv3t-_-Lc,11283
391
+ snowflake/ml/registry/registry.py,sha256=3SwDhN-0j1WEyFuUAA9rnCR_QKb6xWrVHqrnZay0lxg,23602
392
+ snowflake/ml/registry/_manager/model_manager.py,sha256=hf0KR9qxzg0ZbFJ3BUgDn6NBTz3KEnLkVVoICzY0ejs,11177
417
393
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
418
394
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
419
395
  snowflake/ml/utils/sql_client.py,sha256=z4Rhi7pQz3s9cyu_Uzfr3deCnrkCdFh9IYIvicsuwdc,692
420
- snowflake_ml_python-1.6.2.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
421
- snowflake_ml_python-1.6.2.dist-info/METADATA,sha256=4AwK_OfWl2cvUHH0rw5rXC9nbxHfroT1BpSRR8Y9ED8,60290
422
- snowflake_ml_python-1.6.2.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
423
- snowflake_ml_python-1.6.2.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
424
- snowflake_ml_python-1.6.2.dist-info/RECORD,,
396
+ snowflake_ml_python-1.6.3.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
397
+ snowflake_ml_python-1.6.3.dist-info/METADATA,sha256=XifrW7buIAW06Xmg4KixGOPnaCnTcZ-FJS8Rnh6yQgo,61028
398
+ snowflake_ml_python-1.6.3.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
399
+ snowflake_ml_python-1.6.3.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
400
+ snowflake_ml_python-1.6.3.dist-info/RECORD,,