snowflake-ml-python 1.6.1__py3-none-any.whl → 1.6.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (284) hide show
  1. snowflake/cortex/__init__.py +4 -0
  2. snowflake/cortex/_classify_text.py +2 -2
  3. snowflake/cortex/_embed_text_1024.py +37 -0
  4. snowflake/cortex/_embed_text_768.py +37 -0
  5. snowflake/cortex/_extract_answer.py +2 -2
  6. snowflake/cortex/_sentiment.py +2 -2
  7. snowflake/cortex/_summarize.py +2 -2
  8. snowflake/cortex/_translate.py +2 -2
  9. snowflake/cortex/_util.py +4 -4
  10. snowflake/ml/_internal/env_utils.py +5 -5
  11. snowflake/ml/_internal/exceptions/error_codes.py +2 -0
  12. snowflake/ml/_internal/telemetry.py +142 -20
  13. snowflake/ml/_internal/utils/db_utils.py +50 -0
  14. snowflake/ml/_internal/utils/identifier.py +48 -11
  15. snowflake/ml/_internal/utils/service_logger.py +63 -0
  16. snowflake/ml/_internal/utils/snowflake_env.py +23 -13
  17. snowflake/ml/_internal/utils/sql_identifier.py +26 -2
  18. snowflake/ml/_internal/utils/table_manager.py +19 -1
  19. snowflake/ml/data/_internal/arrow_ingestor.py +1 -11
  20. snowflake/ml/data/data_connector.py +33 -7
  21. snowflake/ml/data/ingestor_utils.py +20 -10
  22. snowflake/ml/data/torch_utils.py +68 -0
  23. snowflake/ml/dataset/dataset.py +1 -3
  24. snowflake/ml/feature_store/access_manager.py +3 -3
  25. snowflake/ml/feature_store/feature_store.py +60 -19
  26. snowflake/ml/feature_store/feature_view.py +84 -30
  27. snowflake/ml/fileset/embedded_stage_fs.py +1 -1
  28. snowflake/ml/fileset/fileset.py +1 -1
  29. snowflake/ml/fileset/sfcfs.py +9 -3
  30. snowflake/ml/fileset/stage_fs.py +2 -1
  31. snowflake/ml/lineage/lineage_node.py +7 -2
  32. snowflake/ml/model/__init__.py +1 -2
  33. snowflake/ml/model/_client/model/model_version_impl.py +96 -12
  34. snowflake/ml/model/_client/ops/model_ops.py +124 -6
  35. snowflake/ml/model/_client/ops/service_ops.py +309 -9
  36. snowflake/ml/model/_client/service/model_deployment_spec.py +8 -5
  37. snowflake/ml/model/_client/service/model_deployment_spec_schema.py +2 -2
  38. snowflake/ml/model/_client/sql/_base.py +5 -0
  39. snowflake/ml/model/_client/sql/model.py +1 -0
  40. snowflake/ml/model/_client/sql/model_version.py +9 -5
  41. snowflake/ml/model/_client/sql/service.py +121 -20
  42. snowflake/ml/model/_model_composer/model_composer.py +11 -39
  43. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +31 -11
  44. snowflake/ml/model/_packager/model_env/model_env.py +4 -38
  45. snowflake/ml/model/_packager/model_handlers/_utils.py +134 -28
  46. snowflake/ml/model/_packager/model_handlers/catboost.py +31 -30
  47. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +26 -18
  48. snowflake/ml/model/_packager/model_handlers/lightgbm.py +31 -58
  49. snowflake/ml/model/_packager/model_handlers/mlflow.py +3 -5
  50. snowflake/ml/model/_packager/model_handlers/model_objective_utils.py +169 -0
  51. snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +15 -8
  52. snowflake/ml/model/_packager/model_handlers/sklearn.py +56 -60
  53. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +141 -9
  54. snowflake/ml/model/_packager/model_handlers/torchscript.py +2 -2
  55. snowflake/ml/model/_packager/model_handlers/xgboost.py +63 -48
  56. snowflake/ml/model/_packager/model_meta/model_meta.py +16 -42
  57. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +1 -14
  58. snowflake/ml/model/_packager/model_packager.py +14 -8
  59. snowflake/ml/model/_packager/model_runtime/model_runtime.py +11 -0
  60. snowflake/ml/model/_signatures/pytorch_handler.py +1 -1
  61. snowflake/ml/model/_signatures/snowpark_handler.py +3 -2
  62. snowflake/ml/model/_signatures/utils.py +9 -0
  63. snowflake/ml/model/type_hints.py +12 -145
  64. snowflake/ml/modeling/_internal/constants.py +1 -0
  65. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +5 -5
  66. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +9 -6
  67. snowflake/ml/modeling/_internal/model_specifications.py +2 -0
  68. snowflake/ml/modeling/_internal/model_trainer.py +1 -0
  69. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +2 -4
  70. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  71. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +130 -166
  72. snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +0 -1
  73. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +61 -21
  74. snowflake/ml/modeling/cluster/affinity_propagation.py +61 -21
  75. snowflake/ml/modeling/cluster/agglomerative_clustering.py +61 -21
  76. snowflake/ml/modeling/cluster/birch.py +61 -21
  77. snowflake/ml/modeling/cluster/bisecting_k_means.py +61 -21
  78. snowflake/ml/modeling/cluster/dbscan.py +61 -21
  79. snowflake/ml/modeling/cluster/feature_agglomeration.py +61 -21
  80. snowflake/ml/modeling/cluster/k_means.py +61 -21
  81. snowflake/ml/modeling/cluster/mean_shift.py +61 -21
  82. snowflake/ml/modeling/cluster/mini_batch_k_means.py +61 -21
  83. snowflake/ml/modeling/cluster/optics.py +61 -21
  84. snowflake/ml/modeling/cluster/spectral_biclustering.py +61 -21
  85. snowflake/ml/modeling/cluster/spectral_clustering.py +61 -21
  86. snowflake/ml/modeling/cluster/spectral_coclustering.py +61 -21
  87. snowflake/ml/modeling/compose/column_transformer.py +61 -21
  88. snowflake/ml/modeling/compose/transformed_target_regressor.py +61 -21
  89. snowflake/ml/modeling/covariance/elliptic_envelope.py +61 -21
  90. snowflake/ml/modeling/covariance/empirical_covariance.py +61 -21
  91. snowflake/ml/modeling/covariance/graphical_lasso.py +61 -21
  92. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +61 -21
  93. snowflake/ml/modeling/covariance/ledoit_wolf.py +61 -21
  94. snowflake/ml/modeling/covariance/min_cov_det.py +61 -21
  95. snowflake/ml/modeling/covariance/oas.py +61 -21
  96. snowflake/ml/modeling/covariance/shrunk_covariance.py +61 -21
  97. snowflake/ml/modeling/decomposition/dictionary_learning.py +61 -21
  98. snowflake/ml/modeling/decomposition/factor_analysis.py +61 -21
  99. snowflake/ml/modeling/decomposition/fast_ica.py +61 -21
  100. snowflake/ml/modeling/decomposition/incremental_pca.py +61 -21
  101. snowflake/ml/modeling/decomposition/kernel_pca.py +61 -21
  102. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +61 -21
  103. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +61 -21
  104. snowflake/ml/modeling/decomposition/pca.py +61 -21
  105. snowflake/ml/modeling/decomposition/sparse_pca.py +61 -21
  106. snowflake/ml/modeling/decomposition/truncated_svd.py +61 -21
  107. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +61 -21
  108. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +61 -21
  109. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +61 -21
  110. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +61 -21
  111. snowflake/ml/modeling/ensemble/bagging_classifier.py +61 -21
  112. snowflake/ml/modeling/ensemble/bagging_regressor.py +61 -21
  113. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +61 -21
  114. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +61 -21
  115. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +61 -21
  116. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +61 -21
  117. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +61 -21
  118. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +61 -21
  119. snowflake/ml/modeling/ensemble/isolation_forest.py +61 -21
  120. snowflake/ml/modeling/ensemble/random_forest_classifier.py +61 -21
  121. snowflake/ml/modeling/ensemble/random_forest_regressor.py +61 -21
  122. snowflake/ml/modeling/ensemble/stacking_regressor.py +61 -21
  123. snowflake/ml/modeling/ensemble/voting_classifier.py +61 -21
  124. snowflake/ml/modeling/ensemble/voting_regressor.py +61 -21
  125. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +61 -21
  126. snowflake/ml/modeling/feature_selection/select_fdr.py +61 -21
  127. snowflake/ml/modeling/feature_selection/select_fpr.py +61 -21
  128. snowflake/ml/modeling/feature_selection/select_fwe.py +61 -21
  129. snowflake/ml/modeling/feature_selection/select_k_best.py +61 -21
  130. snowflake/ml/modeling/feature_selection/select_percentile.py +61 -21
  131. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +61 -21
  132. snowflake/ml/modeling/feature_selection/variance_threshold.py +61 -21
  133. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +61 -21
  134. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +61 -21
  135. snowflake/ml/modeling/impute/iterative_imputer.py +61 -21
  136. snowflake/ml/modeling/impute/knn_imputer.py +61 -21
  137. snowflake/ml/modeling/impute/missing_indicator.py +61 -21
  138. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +61 -21
  139. snowflake/ml/modeling/kernel_approximation/nystroem.py +61 -21
  140. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +61 -21
  141. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +61 -21
  142. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +61 -21
  143. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +61 -21
  144. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +61 -21
  145. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +61 -21
  146. snowflake/ml/modeling/linear_model/ard_regression.py +61 -21
  147. snowflake/ml/modeling/linear_model/bayesian_ridge.py +61 -21
  148. snowflake/ml/modeling/linear_model/elastic_net.py +61 -21
  149. snowflake/ml/modeling/linear_model/elastic_net_cv.py +61 -21
  150. snowflake/ml/modeling/linear_model/gamma_regressor.py +61 -21
  151. snowflake/ml/modeling/linear_model/huber_regressor.py +61 -21
  152. snowflake/ml/modeling/linear_model/lars.py +61 -21
  153. snowflake/ml/modeling/linear_model/lars_cv.py +61 -21
  154. snowflake/ml/modeling/linear_model/lasso.py +61 -21
  155. snowflake/ml/modeling/linear_model/lasso_cv.py +61 -21
  156. snowflake/ml/modeling/linear_model/lasso_lars.py +61 -21
  157. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +61 -21
  158. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +61 -21
  159. snowflake/ml/modeling/linear_model/linear_regression.py +61 -21
  160. snowflake/ml/modeling/linear_model/logistic_regression.py +61 -21
  161. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +61 -21
  162. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +61 -21
  163. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +61 -21
  164. snowflake/ml/modeling/linear_model/multi_task_lasso.py +61 -21
  165. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +61 -21
  166. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +61 -21
  167. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +61 -21
  168. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +61 -21
  169. snowflake/ml/modeling/linear_model/perceptron.py +61 -21
  170. snowflake/ml/modeling/linear_model/poisson_regressor.py +61 -21
  171. snowflake/ml/modeling/linear_model/ransac_regressor.py +61 -21
  172. snowflake/ml/modeling/linear_model/ridge.py +61 -21
  173. snowflake/ml/modeling/linear_model/ridge_classifier.py +61 -21
  174. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +61 -21
  175. snowflake/ml/modeling/linear_model/ridge_cv.py +61 -21
  176. snowflake/ml/modeling/linear_model/sgd_classifier.py +61 -21
  177. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +61 -21
  178. snowflake/ml/modeling/linear_model/sgd_regressor.py +61 -21
  179. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +61 -21
  180. snowflake/ml/modeling/linear_model/tweedie_regressor.py +61 -21
  181. snowflake/ml/modeling/manifold/isomap.py +61 -21
  182. snowflake/ml/modeling/manifold/mds.py +61 -21
  183. snowflake/ml/modeling/manifold/spectral_embedding.py +61 -21
  184. snowflake/ml/modeling/manifold/tsne.py +61 -21
  185. snowflake/ml/modeling/metrics/metrics_utils.py +2 -2
  186. snowflake/ml/modeling/metrics/ranking.py +0 -3
  187. snowflake/ml/modeling/metrics/regression.py +0 -3
  188. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +61 -21
  189. snowflake/ml/modeling/mixture/gaussian_mixture.py +61 -21
  190. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +61 -21
  191. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +61 -21
  192. snowflake/ml/modeling/multiclass/output_code_classifier.py +61 -21
  193. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +61 -21
  194. snowflake/ml/modeling/naive_bayes/categorical_nb.py +61 -21
  195. snowflake/ml/modeling/naive_bayes/complement_nb.py +61 -21
  196. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +61 -21
  197. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +61 -21
  198. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +61 -21
  199. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +61 -21
  200. snowflake/ml/modeling/neighbors/kernel_density.py +61 -21
  201. snowflake/ml/modeling/neighbors/local_outlier_factor.py +61 -21
  202. snowflake/ml/modeling/neighbors/nearest_centroid.py +61 -21
  203. snowflake/ml/modeling/neighbors/nearest_neighbors.py +61 -21
  204. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +61 -21
  205. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +61 -21
  206. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +61 -21
  207. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +61 -21
  208. snowflake/ml/modeling/neural_network/mlp_classifier.py +61 -21
  209. snowflake/ml/modeling/neural_network/mlp_regressor.py +61 -21
  210. snowflake/ml/modeling/parameters/disable_model_tracer.py +5 -0
  211. snowflake/ml/modeling/pipeline/pipeline.py +1 -13
  212. snowflake/ml/modeling/preprocessing/polynomial_features.py +61 -21
  213. snowflake/ml/modeling/semi_supervised/label_propagation.py +61 -21
  214. snowflake/ml/modeling/semi_supervised/label_spreading.py +61 -21
  215. snowflake/ml/modeling/svm/linear_svc.py +61 -21
  216. snowflake/ml/modeling/svm/linear_svr.py +61 -21
  217. snowflake/ml/modeling/svm/nu_svc.py +61 -21
  218. snowflake/ml/modeling/svm/nu_svr.py +61 -21
  219. snowflake/ml/modeling/svm/svc.py +61 -21
  220. snowflake/ml/modeling/svm/svr.py +61 -21
  221. snowflake/ml/modeling/tree/decision_tree_classifier.py +61 -21
  222. snowflake/ml/modeling/tree/decision_tree_regressor.py +61 -21
  223. snowflake/ml/modeling/tree/extra_tree_classifier.py +61 -21
  224. snowflake/ml/modeling/tree/extra_tree_regressor.py +61 -21
  225. snowflake/ml/modeling/xgboost/xgb_classifier.py +64 -23
  226. snowflake/ml/modeling/xgboost/xgb_regressor.py +64 -23
  227. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +64 -23
  228. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +64 -23
  229. snowflake/ml/monitoring/_client/model_monitor.py +126 -0
  230. snowflake/ml/monitoring/_client/model_monitor_manager.py +361 -0
  231. snowflake/ml/monitoring/_client/model_monitor_version.py +1 -0
  232. snowflake/ml/monitoring/_client/monitor_sql_client.py +1335 -0
  233. snowflake/ml/monitoring/_client/queries/record_count.ssql +14 -0
  234. snowflake/ml/monitoring/_client/queries/rmse.ssql +28 -0
  235. snowflake/ml/monitoring/entities/model_monitor_config.py +28 -0
  236. snowflake/ml/monitoring/entities/model_monitor_interval.py +46 -0
  237. snowflake/ml/monitoring/entities/output_score_type.py +90 -0
  238. snowflake/ml/registry/_manager/model_manager.py +4 -0
  239. snowflake/ml/registry/registry.py +166 -8
  240. snowflake/ml/version.py +1 -1
  241. {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.3.dist-info}/METADATA +43 -9
  242. snowflake_ml_python-1.6.3.dist-info/RECORD +400 -0
  243. {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.3.dist-info}/WHEEL +1 -1
  244. snowflake/ml/_internal/container_services/image_registry/credential.py +0 -84
  245. snowflake/ml/_internal/container_services/image_registry/http_client.py +0 -127
  246. snowflake/ml/_internal/container_services/image_registry/imagelib.py +0 -400
  247. snowflake/ml/_internal/container_services/image_registry/registry_client.py +0 -212
  248. snowflake/ml/_internal/utils/log_stream_processor.py +0 -30
  249. snowflake/ml/_internal/utils/session_token_manager.py +0 -46
  250. snowflake/ml/_internal/utils/spcs_attribution_utils.py +0 -122
  251. snowflake/ml/_internal/utils/uri.py +0 -77
  252. snowflake/ml/data/torch_dataset.py +0 -33
  253. snowflake/ml/model/_api.py +0 -568
  254. snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +0 -12
  255. snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +0 -249
  256. snowflake/ml/model/_deploy_client/image_builds/docker_context.py +0 -130
  257. snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +0 -36
  258. snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +0 -268
  259. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +0 -215
  260. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +0 -53
  261. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +0 -38
  262. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +0 -105
  263. snowflake/ml/model/_deploy_client/snowservice/deploy.py +0 -611
  264. snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +0 -116
  265. snowflake/ml/model/_deploy_client/snowservice/instance_types.py +0 -10
  266. snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +0 -28
  267. snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template_with_model +0 -21
  268. snowflake/ml/model/_deploy_client/utils/constants.py +0 -48
  269. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +0 -280
  270. snowflake/ml/model/_deploy_client/warehouse/deploy.py +0 -202
  271. snowflake/ml/model/_deploy_client/warehouse/infer_template.py +0 -99
  272. snowflake/ml/model/_packager/model_handlers/llm.py +0 -267
  273. snowflake/ml/model/_packager/model_meta/_core_requirements.py +0 -11
  274. snowflake/ml/model/deploy_platforms.py +0 -6
  275. snowflake/ml/model/models/llm.py +0 -104
  276. snowflake/ml/monitoring/monitor.py +0 -203
  277. snowflake/ml/registry/_initial_schema.py +0 -142
  278. snowflake/ml/registry/_schema.py +0 -82
  279. snowflake/ml/registry/_schema_upgrade_plans.py +0 -116
  280. snowflake/ml/registry/_schema_version_manager.py +0 -163
  281. snowflake/ml/registry/model_registry.py +0 -2048
  282. snowflake_ml_python-1.6.1.dist-info/RECORD +0 -422
  283. {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.3.dist-info}/LICENSE.txt +0 -0
  284. {snowflake_ml_python-1.6.1.dist-info → snowflake_ml_python-1.6.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,400 @@
1
+ snowflake/cortex/__init__.py,sha256=LjSOnx-dbbLaPREJnEDYMPSTeitdn2CNpUUrR9ro-DY,636
2
+ snowflake/cortex/_classify_text.py,sha256=1SnEdAnQ1IbCKp1bUvQSW7zhGtcS_8qk34X1sVQL37U,1338
3
+ snowflake/cortex/_complete.py,sha256=UD9WB9w7VIpEfXu0iylYfcnmBxNScTZdLBbdA4Y3O64,11309
4
+ snowflake/cortex/_embed_text_1024.py,sha256=zQp2F3MTAxacnIJo7zu8OHkXmX-xi8YzoUcs_FM48uo,1381
5
+ snowflake/cortex/_embed_text_768.py,sha256=lTus5A1zehbzX4FV6IYZ8bl66QoxUiC_ZilYeBLdLOE,1377
6
+ snowflake/cortex/_extract_answer.py,sha256=hmJG0iVEe_ww-ll9XEtIL_xPOiNitycUkXBI6WwgfzA,1342
7
+ snowflake/cortex/_sentiment.py,sha256=6_RfOKpwoH0k1puvMaj2TP-0RHQvbkLqrorFvmhdx3E,1206
8
+ snowflake/cortex/_sse_client.py,sha256=_GGmxskEQPVJ2bE3LHySnPFl29CP4YGM4_xmR_Kk-WA,2485
9
+ snowflake/cortex/_summarize.py,sha256=bwpFBzBGmNQSoJqKs3IB5wASjAREnC5ZnViSuZK5IrU,1059
10
+ snowflake/cortex/_translate.py,sha256=69YUps6mnhzVdubdU_H0IfUAlbBwF9OPemFEQ34P-ts,1404
11
+ snowflake/cortex/_util.py,sha256=uZQNsG8uTrlsao0a3A_BtNJQw6xCGgWjXscgZf9beUs,2209
12
+ snowflake/ml/version.py,sha256=WsVT69ZLsnasRlAmBGPzK1f5KkKKlu7FJpIne8-oxe8,16
13
+ snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
14
+ snowflake/ml/_internal/env_utils.py,sha256=J_jitp8jvDoC3a79EbMSDatFRYw-HiXaI9vR81bhtU8,28075
15
+ snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
16
+ snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
17
+ snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
18
+ snowflake/ml/_internal/telemetry.py,sha256=XwzuyTVSDW7RyYLlC0ZsEij19ElFrm-OItLPQW5HeG4,29719
19
+ snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
20
+ snowflake/ml/_internal/exceptions/dataset_error_messages.py,sha256=h7uGJbxBM6se-TW_64LKGGGdBCbwflzbBnmijWKX3Gc,285
21
+ snowflake/ml/_internal/exceptions/dataset_errors.py,sha256=TqESe8cDfWurJdv5X0DOwgzBfHCEqga_F3WQipYbdqg,741
22
+ snowflake/ml/_internal/exceptions/error_codes.py,sha256=S1N9TvjKlAl3GppkcS8y8xnsOzD2b9kOHeLqWhJV0uk,5519
23
+ snowflake/ml/_internal/exceptions/error_messages.py,sha256=vF9XOWJoBuKvFxBkGcDelhXK1dipzTt-AdK4NkCbwTo,47
24
+ snowflake/ml/_internal/exceptions/exceptions.py,sha256=ub0fthrNTVoKhpj1pXnKRfO1Gqnmbe7wY51vaoEOp5M,1653
25
+ snowflake/ml/_internal/exceptions/fileset_error_messages.py,sha256=dqPpRu0cKyQA_0gahvbizgQBTwNhnwveN286JrJLvi8,419
26
+ snowflake/ml/_internal/exceptions/fileset_errors.py,sha256=pHwY7f5c6JH-RZDtkiWy8nICHKy4T5vvWs5cq5rPD_4,1030
27
+ snowflake/ml/_internal/exceptions/modeling_error_messages.py,sha256=M1s_PNHcOGlSDKD2kvSUQYsSaKHdHdnE74609LvF27c,749
28
+ snowflake/ml/_internal/exceptions/sql_error_codes.py,sha256=aEI3-gW7FeNahoPncdOaGGRBmPJmkCHK-a1o2e3c3PI,206
29
+ snowflake/ml/_internal/human_readable_id/adjectives.txt,sha256=5o4MbVeHoELAqyLpyuKleOKR47jPjC_nKoziOIZMwT0,804
30
+ snowflake/ml/_internal/human_readable_id/animals.txt,sha256=GDLzMwzxiL07PhIMxw4t89bhYqqg0bQfPiuQT8VNeME,837
31
+ snowflake/ml/_internal/human_readable_id/hrid_generator.py,sha256=LYWB86qZgsVBvnc6Q5VjfDOmnGSQU3cTRKfId_nJSPY,1341
32
+ snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=D1yoVG1vmAFUhWQ5xCRRU6HCCBPbXHpOXagFd0jK0O8,4519
33
+ snowflake/ml/_internal/lineage/lineage_utils.py,sha256=kxWW7fkSf1HiUQSks3VlzWyntpt4o_pbptXcpQHtnk8,3432
34
+ snowflake/ml/_internal/utils/db_utils.py,sha256=HBAY0-XHzCP4ai5q3Yqd8O19Ar_Q9J3xD4jO6Fe7Zek,1668
35
+ snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
36
+ snowflake/ml/_internal/utils/identifier.py,sha256=fUYXjXKXAkjLUZpomneMHo2wR4_ZNP4ak-5OJxeUS-g,12467
37
+ snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
38
+ snowflake/ml/_internal/utils/parallelize.py,sha256=Q6_-P2t4DoYNO8DyC1kOl7H3qNL-bUK6EgtlQ_b5ThY,4534
39
+ snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=FwdLHFhxi3CAQQduGjFavEBmkD9Ra6ZTkt6Eub-WoSA,5168
40
+ snowflake/ml/_internal/utils/query_result_checker.py,sha256=h1nbUImdB9lSNCON3uIA0xCm8_JrS-TE-jQXJJs9WfU,10668
41
+ snowflake/ml/_internal/utils/result.py,sha256=59Sz6MvhjakUNiONwg9oi2544AmORCJR3XyWTxY2vP0,2405
42
+ snowflake/ml/_internal/utils/retryable_http.py,sha256=1GCuQkTGO4sX-VRbjy31e4_VgUjqsp5Lh2v5tSJjVK8,1321
43
+ snowflake/ml/_internal/utils/service_logger.py,sha256=tSKz7SzC33Btu2QgerXJ__4jRhOvRepOSEvHXSy_FTs,1974
44
+ snowflake/ml/_internal/utils/snowflake_env.py,sha256=WY9KgMcXEydpWObHQCQhvxcSZXMwC-2OHc894njmXEg,3346
45
+ snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=ksWdVV2EUX4SOOcoeC00xZDEoOyukQOGqxO20_XxaMs,5981
46
+ snowflake/ml/_internal/utils/sql_identifier.py,sha256=A5mfeDuz4z6VuUYG3EBpDyQQQCNiRtjVS1WNWAoiqq8,4682
47
+ snowflake/ml/_internal/utils/table_manager.py,sha256=pU7v8Cx-jGObf6RtTmfCmALfhbpJD-lL45T1gWX1nSY,4982
48
+ snowflake/ml/_internal/utils/temp_file_utils.py,sha256=0-HTjXdxVt0kE6XcgyvRvY0btflWlmotP2bMXVpFJPA,1553
49
+ snowflake/ml/data/data_connector.py,sha256=vYCD7iY-9n1xFQBrDTzb-ZxlFQ90P6B4VSYapUjWflE,8698
50
+ snowflake/ml/data/data_ingestor.py,sha256=Nrj5l0cVnoXWI6Ilig-r_pGS902xkZATbqh3OsV53NI,1017
51
+ snowflake/ml/data/data_source.py,sha256=dRemXGi_HHQdn6gaNkxxGJixnQPuUYFDP8NBjmB_ZMk,518
52
+ snowflake/ml/data/ingestor_utils.py,sha256=--nEwJHbYqYHpAzR1APgoeVF9CMgq_fDX81X29HAB4w,2727
53
+ snowflake/ml/data/torch_utils.py,sha256=nsADN444UOqWOomJQJm4GQu2bHUVvImahVlPQldu_vY,2649
54
+ snowflake/ml/data/_internal/arrow_ingestor.py,sha256=T6i87NH4djZwqmc5m-yh2FFrihvFoQfn9LhDRZi7sPc,11667
55
+ snowflake/ml/dataset/__init__.py,sha256=nESj7YEI2u90Oxyit_hKCQMWb7N1BlEM3Ho2Fm0MfHo,274
56
+ snowflake/ml/dataset/dataset.py,sha256=GqdcABGcIlAzPmfTcOC8H_Kw6LNQZ6F_7Ch45hxHOHU,21094
57
+ snowflake/ml/dataset/dataset_factory.py,sha256=Fym4ICK-B1j6Om4ENwWxEvryq3ZKoCslBSZDBenmjOo,1615
58
+ snowflake/ml/dataset/dataset_metadata.py,sha256=tWR3fa2WG3Kj2btKMbg51l5jX68qm1rfXRswU0IDYTg,4157
59
+ snowflake/ml/dataset/dataset_reader.py,sha256=e-IRbxbxFfNbsglmqtzhV_wYFsEflBW6-U_krbfXPpw,4371
60
+ snowflake/ml/feature_store/__init__.py,sha256=VKBVkS050WNF8rcqNqwFfNXa_B9GZjcUpuibOGsUSls,423
61
+ snowflake/ml/feature_store/access_manager.py,sha256=LcsfBKsZzfERQQ_pqZG0W-XbpVGx9jkZOI-7nbfryhg,10666
62
+ snowflake/ml/feature_store/entity.py,sha256=A65FOGlljREUG8IRMSN84v1x2uTeVGCM4NqKXO2Ui8w,4059
63
+ snowflake/ml/feature_store/feature_store.py,sha256=oZWUHrlhYVUfTK0tOhDwt0NgEqKkDcOSF2YU6drS-FQ,113481
64
+ snowflake/ml/feature_store/feature_view.py,sha256=a7BdD6HLU0ycPsdpYuzutG1UFnsFnG1gVHhzvrSqO-k,36687
65
+ snowflake/ml/feature_store/examples/example_helper.py,sha256=hVaPrjtMsMxJ804vTzjrI5cvyyPLx2ExZi2P9Qfg4z0,12248
66
+ snowflake/ml/feature_store/examples/airline_features/entities.py,sha256=V2xVZpHFgGA92Kyd9hCWa2YoiRhH5m6HAgvnh126Nqo,463
67
+ snowflake/ml/feature_store/examples/airline_features/source.yaml,sha256=kzl8ukOK8OuSPsxChEgJ9SPyPnzC-fPHqZC4O6aqd5o,247
68
+ snowflake/ml/feature_store/examples/airline_features/features/plane_features.py,sha256=qVYEGKt7DMioZvf20b3-RNtJOQVYUyWANCdk-CdOyuU,1015
69
+ snowflake/ml/feature_store/examples/airline_features/features/weather_features.py,sha256=A5hkWOQ3CTQfaJaUQ1VsB2Ne8LmIrM9DPyrMX0EOHvI,1634
70
+ snowflake/ml/feature_store/examples/citibike_trip_features/entities.py,sha256=SE8Zx3xqFJk65Tqori4nh0KOPwEY3baMoFsVAYM1e7c,449
71
+ snowflake/ml/feature_store/examples/citibike_trip_features/source.yaml,sha256=gutDfijhGkBu1w4r1286JnuO4EhbuRPKwoHisYlt8Yw,229
72
+ snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py,sha256=3I95LMBEo5lXlaztPhjF_MVUmYXUZ9Xaz8ZmQpT0Cxk,1369
73
+ snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py,sha256=LChqltsCBwD8diJN-Qno7a_gOBTwz6qCPm6qTmYSICc,1194
74
+ snowflake/ml/feature_store/examples/new_york_taxi_features/entities.py,sha256=J5oragmf6UvwruMjHhtrlzcBP-rA3Fyqv9VOJAT4goU,396
75
+ snowflake/ml/feature_store/examples/new_york_taxi_features/source.yaml,sha256=0DShPCG972klJjHod0qkXrT7zkw45B3YCZs5U-x4Pv4,338
76
+ snowflake/ml/feature_store/examples/new_york_taxi_features/features/location_features.py,sha256=ycjBkYxOnvpmToGsoTwohBEPgzzlZnm2wkDeYMUKJKY,1728
77
+ snowflake/ml/feature_store/examples/new_york_taxi_features/features/trip_features.py,sha256=RgDl2KX0y8f3B_yKNg6Tf64CsG6_ItcWoCFWScXhjz4,1273
78
+ snowflake/ml/feature_store/examples/source_data/airline.yaml,sha256=CZV416oTTM6hWCK2GPdb38Q8AR3CGIxAZwXrbP9KT_E,152
79
+ snowflake/ml/feature_store/examples/source_data/citibike_trips.yaml,sha256=OaQwNzUHasgGgy8oIOHVRJ5tg7nnKs11hqDSZYs5-U0,923
80
+ snowflake/ml/feature_store/examples/source_data/fraud_transactions.yaml,sha256=ENAIRcrRmdIplKJP8A5nhXdWSQRNTeQH4ghIT9boE8o,711
81
+ snowflake/ml/feature_store/examples/source_data/nyc_yellow_trips.yaml,sha256=1PkEybh_ieP-HZme9YPuAf6-pL4D6-6dzNlqdZpH8fk,142
82
+ snowflake/ml/feature_store/examples/source_data/winequality_red.yaml,sha256=03qIwx_7KA-56HwKqshSOFCGOvLnQibR_Iv2zprz_Vs,741
83
+ snowflake/ml/feature_store/examples/wine_quality_features/entities.py,sha256=Hk593l6dqruvgcPRcSGKf2UGVQ9CPxmD547UuZ7QCnU,294
84
+ snowflake/ml/feature_store/examples/wine_quality_features/source.yaml,sha256=dPs0nzf4poLhxDVEydb2Ff3mpRCWQ_L4jCoPO7HV4QA,241
85
+ snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py,sha256=fqZWuCjVQ_AX0gIO-HCjzDMVwj749e23Lx2Mg25gX88,1432
86
+ snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py,sha256=xtq3BdvVqTkP17aw0aCizF2EHmmBVeZOD7UMul2z4hs,990
87
+ snowflake/ml/fileset/embedded_stage_fs.py,sha256=fmt8IoYbHtBMjyIC3K87ng-i5uYwE_2XKFQogNkP-nM,6000
88
+ snowflake/ml/fileset/fileset.py,sha256=u-Hkqr7p97ajRYyd93fr62grbiBaA0AqTYkAAOppZj8,26186
89
+ snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
90
+ snowflake/ml/fileset/sfcfs.py,sha256=uPn8v5jlC3h_FrNqb4UMRAZjRZLn0I3tzu0sfi5RHik,15542
91
+ snowflake/ml/fileset/snowfs.py,sha256=uF5QluYtiJ-HezGIhF55dONi3t0E6N7ByaVAIAlM3nk,5133
92
+ snowflake/ml/fileset/stage_fs.py,sha256=IEVZ6imH77JiSOIRlRHNWalwafoACRgHFr8RAaICSP8,20170
93
+ snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx52jX8I,3849
94
+ snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPbt9WKYiBp0,2386
95
+ snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCrzI4,65
96
+ snowflake/ml/lineage/lineage_node.py,sha256=e6L4bdYDSVgTv0BEfqgPQWNoDiTiuI7HmfJ6n-WmNLE,5812
97
+ snowflake/ml/model/__init__.py,sha256=EvPtblqPN6_T6dyVfaYUxCfo_M7D2CQ1OR5giIH4TsQ,314
98
+ snowflake/ml/model/custom_model.py,sha256=Nu9kNa9pDFXmLN1Ipv4bc_htG0lPeWKD0AQ2Ma2-wK0,9172
99
+ snowflake/ml/model/model_signature.py,sha256=Iwll4_VbcDtDX0otGS_NVd0gKSdcHQ_OJbZxNNGMRFg,29473
100
+ snowflake/ml/model/type_hints.py,sha256=mpe-7ueJ7pb47GNAsUhmKxuQ5DVz82qsxTAOJQBdNeA,8731
101
+ snowflake/ml/model/_client/model/model_impl.py,sha256=pqjK8mSZIQJ_30tRWWFPIo8X35InSVoAunXlQNtSJEM,15369
102
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=cEdLIwxL77DEhWvEg9plmI5Vp1o-hgRZuxvZRwY7xhs,31071
103
+ snowflake/ml/model/_client/ops/metadata_ops.py,sha256=7cGx8zYzye2_cvZnyGxoukPtT6Q-Kexd-s4yeZmpmj8,4890
104
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=-caU72yLdXuaBPGQKNWeuu7x0WdDWukBh3qV8IQy1kU,41867
105
+ snowflake/ml/model/_client/ops/service_ops.py,sha256=vVhSFBr7EDT3QdZGou2uAJC8WTiGRenXj19vlpcVs8A,18289
106
+ snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=tfTZl6ukBtrfu558Xu_aB5a9oMo-rDCll3NIGuUM8uA,4124
107
+ snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=bAIdH_RWJuVW_oy94shDYXLxgG_WWerFocinI5OI8PM,767
108
+ snowflake/ml/model/_client/sql/_base.py,sha256=Qrm8M92g3MHb-QnSLUlbd8iVKCRxLhG_zr5M2qmXwJ8,1473
109
+ snowflake/ml/model/_client/sql/model.py,sha256=o36oPq4aU9TwahqY2uODYvICxmj1orLztijJ0yMbWnM,5852
110
+ snowflake/ml/model/_client/sql/model_version.py,sha256=hNMlmwN5JQngKuaeUYV2Bli73RMnHmVH01ABX9NBHFk,20686
111
+ snowflake/ml/model/_client/sql/service.py,sha256=O3EaSX-BT-RGzwr9EFpYzriD8h6xHjiEMy3lKxE2Jic,9850
112
+ snowflake/ml/model/_client/sql/stage.py,sha256=hrCh9P9F4l5R0hLr2r-wLDIEc4XYHMFdX1wNRveMVt0,819
113
+ snowflake/ml/model/_client/sql/tag.py,sha256=pwwrcyPtSnkUfDzL3M8kqM0KSx7CaTtgty3HDhVC9vg,4345
114
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=H-Bla85tdITjEaLtIFTeMgWAYs7LLZZiQTDSwlAFn-U,6588
115
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=qVsMjNbhE-mZSb7ExPPt4_xyys03_FvbAhofDSuDli0,7618
116
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=JF9IPpSrXoyCdFnqidCN67HUqo6MV0CchXzi3klURII,2675
117
+ snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2cE463GKWAJCrqEYD1s8IPzd3iPu0X0eQ12NnXQhGBM,2556
118
+ snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=eQ-FLUGt5r0P9UtDwWFoqSJzGeLBvwEMoHAbe8aCNsE,1418
119
+ snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template,sha256=L5R04QeoW6dH1PdEy3qo1LS478rTmvvRmrwlgqVwimg,1504
120
+ snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=NUDSyFFAdEZEWtSkvYxkU9vB-NTjcTg6sjkrNpcmF6A,1418
121
+ snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=4RfjJ_0Y8NUmI9YpmBqxBT2xk_yQ0RIzznaKGHlS6jU,7076
122
+ snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
123
+ snowflake/ml/model/_packager/model_packager.py,sha256=dBkNAk0GkSiBdJW7qWG1CAZdEsItsNNwv3tCcwVFJo4,6424
124
+ snowflake/ml/model/_packager/model_env/model_env.py,sha256=uUTbCHFTJJ6iMbhu7LkU3PFNB4VohbEFlBMLd1ZDyS8,17008
125
+ snowflake/ml/model/_packager/model_handlers/_base.py,sha256=qQS1ZSz1Ikdj0TvyLU9n8K6KAj-PknL4s801qpnWodo,7164
126
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=D5YVRcsB6mEcD1xO5qr5P2reKmY7d8duxbPAATJBG3o,9031
127
+ snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=CrSbRSd8eER-iYuhXzl3e24GBFnBr1o0Dsnb5E59ayk,10627
128
+ snowflake/ml/model/_packager/model_handlers/custom.py,sha256=59IxqxXvaG3g6NlVEPv8Irw2tBK4k5yLNosXNZJGS4o,8059
129
+ snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=VdpIgf-pn8HiAg9ZNF0-qkB4xFBj9mjIrCowTrRKvug,20967
130
+ snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=kAbTBJQlLq59KkZQTlRDhxH5oEI04n4dq4IG7wB1HBw,10975
131
+ snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=A3HnCa065jtHsRM40ZxfLv5alk0RYhVmsU4Jt2klRwQ,9189
132
+ snowflake/ml/model/_packager/model_handlers/model_objective_utils.py,sha256=Xbl2XZfsPHVCCE6JoFOFrario1zibrhUhhCUywtNZ3o,7048
133
+ snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=DDcf85xisPLT1PyXdmPrjJpIIepkdmWNXCOpT_dCncw,8294
134
+ snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=CKG0q43pL4wbB-5akj-8l-xgcCJ46iXZpnCUsgrO4vs,9584
135
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=4w0E1s2_CnfXgk4FdDvkYTGrX3JMOfcubel3XysAzuw,11630
136
+ snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=_4-eAhSxTFwjQXIhZ8dLJR8wuX_J4nLfLjFu-0HfFeA,14245
137
+ snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=OhqC4GcmDDz4IOgDITLnG7KFY3zVtzOJX3wAtLv0bI0,8448
138
+ snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=IvNL1Fqksfp7nAcXIgOMkzPy8kEylrS-xHWu0dkRLDY,8412
139
+ snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=14dlId6jkF0UO4nAqw2OLL8q9v_vtw6kGtuNM9Rxew4,12668
140
+ snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
141
+ snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
142
+ snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=GmiqqI-XVjrOX7cSa5GKerKhfHptlsg74MKqTGwJ5Jk,1949
143
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=Fn0yrMiTRmp2lgy15DJvIeT_PMOu_ACNO37b9o4_q2Q,18787
144
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=5tl1W9rDDYkDIkVx4DuiIkGn5K9-zzcJqO9rRjC0Vio,2714
145
+ snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
146
+ snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
147
+ snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
148
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=fRPGbrnq67PRo3e_uVk01TKZ7AZKYM-_lryePkNk5AY,239
149
+ snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=9wOtBB1A2Spnsgfs5CjCoLR3oL5JAUnSG-qP0C5DR1Q,5147
150
+ snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
151
+ snowflake/ml/model/_signatures/builtins_handler.py,sha256=nF-2ptQjeu7ikO72_d14jk1N6BVbmy-mjtZ9I1c7-Qg,2741
152
+ snowflake/ml/model/_signatures/core.py,sha256=xj4QwfVixzpUjVMfN1-d2l8LMi7b6qH7QvnvD3oMxSw,18480
153
+ snowflake/ml/model/_signatures/numpy_handler.py,sha256=wE9GNuNNmC-0jLmz8lI_UhyETNkKUvftIABAuNsSe94,5858
154
+ snowflake/ml/model/_signatures/pandas_handler.py,sha256=E1Z7nkFX2toMxUOLx595Vv_7bMLK70IFdU9HZp7Z2-g,8219
155
+ snowflake/ml/model/_signatures/pytorch_handler.py,sha256=rF5StgnAo9qtFs9Rvb5SQVhneJf7ZDgfDD5vJsL0Ivk,4599
156
+ snowflake/ml/model/_signatures/snowpark_handler.py,sha256=EwJyBsLrLKrBL0ctDK_yuoPm49nTavbh3EXOniWwCVE,5977
157
+ snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=VZcws6svwupulhDodRYTn6GmlWZRqY9fW_gLkT8slxA,6082
158
+ snowflake/ml/model/_signatures/utils.py,sha256=lBEAqgiTzFitL5EKSmVhKtHtLSYbwo8yGyTACaXWACQ,12976
159
+ snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
160
+ snowflake/ml/modeling/_internal/constants.py,sha256=aJGngY599w3KqN8cDZCYrjbWe6UwYIbgv0gx0Ukdtc0,105
161
+ snowflake/ml/modeling/_internal/estimator_utils.py,sha256=XYwOcmhSc053mtItkymKiXk3a_Znxo9AjTep3tSTVzw,11323
162
+ snowflake/ml/modeling/_internal/model_specifications.py,sha256=P9duVMP9-X7us_RZFPyXvWxOrm5K30sWDVYwSMEzG1M,4876
163
+ snowflake/ml/modeling/_internal/model_trainer.py,sha256=RxpZ5ARy_3sfRMCvArkdK-KmsdbNXxEZTbXoaJ4c1ag,984
164
+ snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=11cpEaxU1D7R7m79nVLcCA9dryUPsElS7YdlKZh850U,8422
165
+ snowflake/ml/modeling/_internal/model_transformer_builder.py,sha256=Y6Y8XSr7X7xAy1FvjPuHTb9Opy7tnGoCuOUBc5WEBJ4,3364
166
+ snowflake/ml/modeling/_internal/transformer_protocols.py,sha256=adbJH9BcD52Z1VbqoCE_9IexjIxERTXE8932Hz-gw3E,6482
167
+ snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=l9enL00j00-GZ_qIanWUqCuRm-4U9fsCZH-L6DneVco,7812
168
+ snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=h3Zsw9tpBB7WEUyIGy35VYNNR8y_XwiRHyR3mULyxIE,5960
169
+ snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py,sha256=fgm1DpBBO0qUo2fXFwuN2uFAyTFhcIhT5_bC326VTVw,5544
170
+ snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py,sha256=lM1vYwpJ1jgTh8vnuyMp4tnFibM6UFf50W1IpPWwUWE,2535
171
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=pfreqdjP-s-aGI4KieRoe998nt6mKuHxCHG0Mg-M0Lk,54512
172
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=HnsSmsXAeJrH9zVeq3CSziIaCUDxeWWx6kRyAK4qajM,6601
173
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=RfMEPXNco4beAz-Ot1-GyRzeWy9AA7B6uy0izfGw_RU,15497
174
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=pxzaU8viTMLb7uZtM3XKCip--5Maqdj28yTam47lxWU,31983
175
+ snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=4WP1QVqfSVvziVlQ7k9nWQNCM0GN5kTk4Xnd-9jWTXc,17300
176
+ snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
177
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=Zbt3Rp11LOfEV-s4z1dvD0QiuUzI3DS2c9zfW3ZF-Go,53945
178
+ snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
179
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=k1ZND2S4qlc45KxBIUkg5T-ajKJ3VWk-4yayLdv44Zk,51855
180
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=WibgQaiDDOVOqBRnXZTAJNMJfP8iUJteBL495_BRLt0,53896
181
+ snowflake/ml/modeling/cluster/birch.py,sha256=M1-7YgDw71fCRt_qtzH_OLKmZhuceq8CLqGw5VjF51M,51768
182
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=MUoutkGVeTcX1MbXZXqyJh5nR0BWqMvJDoorLoXcYUg,54537
183
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=MUhEJ-MPE9EcPwfOs9t8mWqnxFG5oIMjGTnyw-4ymJI,51929
184
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=6oSZW-M_2edDRtx4KWfbSTMQXpGt6dz_6qbLkDrpaLE,54658
185
+ snowflake/ml/modeling/cluster/k_means.py,sha256=DyBa7rlObhQjr36XuGFBHUwQm624kLrgxc8nsFN3pgY,54057
186
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=7F-VD9ElANRiinzpapgvxxs_u1Tg1ennRUVdLQLcQhU,52142
187
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=4GGwBd68Vzb-vjfTHdeWeMhOy85ntVTviPp52IHGvdI,55455
188
+ snowflake/ml/modeling/cluster/optics.py,sha256=wHFgMIDZdgxO9jE90LHXN1FQEccJ882RQP4XjROuSgc,55243
189
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=o8_SbNh3dYEG8BKz0r-0BZkJZOwXv6gx0nNfAEceiks,52152
190
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=vT55mj3PrT5CU4SSnRjo9pdDfDfn8oe2LAH-8WmPbuM,55342
191
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=yzrNfxs48JPQPkLdO6So11lJDZKsy8gDD1wlMJ7oxcc,51285
192
+ snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
193
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=WyLrETqOF6bLK_yVMCW_Cnds3PFzKRjTqUpufThJXXM,54120
194
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=f5i8hfWuK_u-TlejtxgNEOVLQmkW0ta8F7TmxrfN4Gs,51761
195
+ snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
196
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=OfTEy2rrtuFfHbJPF8bOu2kJHttJVQzseTb5_T9yW3k,52173
197
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=hYRitTNwhsY60qpTbUdhNMQkCG2aX2oxFP0trsYyJeA,49984
198
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=fsotiESbzirsjULlzda8X0OrJbdCYJjwRUHFsMX5n-4,51843
199
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=NkeudrV8Och5C9UbjovohDmaqYjjIQDppE202z01sxw,53010
200
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=GJhlSCGT-nanFY0fAvSCDlfaiiZpOFxeNJ8o54uEFEM,50113
201
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=LnT9d7xoWqw9XDkPm7vMIJNGAfqVq0YHIn_3APxsGdE,50867
202
+ snowflake/ml/modeling/covariance/oas.py,sha256=4qheG3BmiG9Uzd42g4EK3ccig2jefWPV_cAiZ4hulT0,49747
203
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=ULvwAUtaQUSeqQELKhSaa1kfjeXuqgGSdD71X81YjZo,50136
204
+ snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
205
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=AJBcaae1t9R7XAbjLrmYd9U0AHzVoG_5E8ZAbunYWfU,55135
206
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=yple9ZHcINCl95OpB0GivWbi-gWC9Q4TW-_YoYg3cNQ,52794
207
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=lUb88ndGnryU1-jU8ASpG86keTSCZ4zELccg-tfC0Ak,52721
208
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=G_buEnTXWdPX-KVR0YRZrm82118_cYWQV8TFl_eBN-A,51088
209
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=pRKviMd-FIiAv0sz9n_yN7NknUJoe0f2RGgiL0kjxnY,55081
210
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=r0IiwPs8-ErHktnpX8YIQJFiX4bpWbsCznnh4wgoIAA,56185
211
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=rcriInZiuFV4Q5KC52aSi75DdhFbrG8t84dczmysZd0,53441
212
+ snowflake/ml/modeling/decomposition/pca.py,sha256=6wiPPOK-gfJeA_N8ggIOaqdPSLQrLzqDyKZjUVEo2o0,54344
213
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=vMWi3cKMuFrJOlggWPs_vQaC9WF_q4M0XHXPpuR34Vs,52237
214
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=oy1k6zTMb5R9_AaYYJeVAS_U3m0zfVwvKGLbVAUeW8A,51863
215
+ snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
216
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=ObpdJ1ljo6xH8BsG80VTccE_nhpsXxIH8CAhQ8-uM9A,54548
217
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=x536xqmYYQa9n6dJG5uW-kr0Ah-0wIFf5cWq_hlGUCQ,52333
218
+ snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
219
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=1DP-y3P8BqIsxnJeaimt7kQloEGCejgFHeBngsMtbTk,53140
220
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=aeRnIVyYJthNCj42OGHvrKvgfGkbbiRdSf687X0fakE,52030
221
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=wLqScjLAPcBs24pm-D7ObalsDClcvSm5jijHQirqmI4,54050
222
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=y5quFztWK6714ts6zHHEcUyQOcqHBXBOH4SBWbyR_OU,53285
223
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=hEhdInzRn5qyiU7RPH2hjSXI4ZnkTYUHl3-Adjn_sXo,58973
224
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=aNhn3uo0daXJ33JlmBLGOwHb3z9ZpDZql8Gy5AmahO8,57576
225
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=IfqyXht5l3K0nH6fhPdL_3RA0G0gl5qIKZXL1naG7DE,60434
226
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=ru3tm4BEYcqy1_hdh08s_5Mm3syNb39HZ069BKQ43QI,60026
227
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=czoc7wR00ErUfE5Ag54lAJabqSUOVw2vvT9QVU8BaDg,60272
228
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=VyvdLc0fOxNdempMk6nJDNAhCz2yx67K0qRWJWoNRVI,58756
229
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=bKDKA7N0Cnadd-ed6gcWZLZ-HcA47Z9imUEIURkVOac,53320
230
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=f9a7GyBI8_sGo6w5wAM9meBYKXwnxSfYtYUt8CBSad8,58958
231
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=t3b5368FmDSMsY9ew_od8kFoRJoNG7NbPMbQgYYSAMM,57549
232
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=_7UAkQFzVg86CEVt71flU5vKHPkOwk4OLvnBeqVWy9E,53264
233
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=Tp3Bp2t1eiPaZHMSwzVa-F7jwR21EHwxOjwwelQf6Rw,52816
234
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=SwoThI21kjcR1SIWGBFfaTBkElC7bT3rYBQPvZjSpxM,51341
235
+ snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
236
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=7HhWC_Z-5WOqjT--aC32lSgbmwie38rZnazYjTJ9ers,50686
237
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=CU5gCe24cP8GqL2XsVX6eiO3-q2AWnL1uN3kyd9fUDU,50273
238
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=-Dw7VTLNUifbSdlYxReKx20oWljAQSJYD62xa1k2XtA,50267
239
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=Je3rfzC5lYaFEm5UPVFZL5dHZO4PkNac7jhEzReOFVU,50275
240
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=HL44ELYoURu3AAEUVAq4jOLb0PqyPR1xzlupclK1zgU,50368
241
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=g7wL2FyLmeBDUy6-3ArkLlbKWkzb49wHCcEgU7cR1o4,50428
242
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=mQbfAO4auMtPxKojF2zzHbpwEC1ZfUSH-29GfD195m0,53141
243
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=Uligo8j5-5A6b9WRmZtiFFgokBl9AlpHhQArCwc67S4,50069
244
+ snowflake/ml/modeling/framework/_utils.py,sha256=7k9iU5zAWa4ZpMZlg8KfSMi4vH3o69w5aAh5RTRNdZ4,10203
245
+ snowflake/ml/modeling/framework/base.py,sha256=Q1Yq8SesnpVWdtRGc6rbuz9T3hcT0eRjl2ZiWGyWAeQ,31954
246
+ snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
247
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=XhNEhI74o1MIWWdhS6M5VpIi26g4nT3f3q-RFwICu34,55699
248
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=ixMgrUx730ndApkB9AFJoRBgN8VqfYFzH-wYmyuEF5c,54763
249
+ snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
250
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=f6avKsWMH86KMH7dMvFj_JAx6slZk631h3e-jGYo_yY,56592
251
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=7VfopZ9-g_iVsM573g711v86XG7itMNzER2QMBA9nCY,52302
252
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=xFpuMBd2h9yV62MfkKIz6sVS6skOR5Sos5R8xeI8S_k,51165
253
+ snowflake/ml/modeling/impute/simple_imputer.py,sha256=T1niXlhS2vWbhF5IQ2k7qlBXKmvYVC3y1aKq73dCaBs,20946
254
+ snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
255
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=Wv6Qx-CFff8Fo7f_qGyEU2pg9MDoC6XSUn9qIZGr_k0,50199
256
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=Qf9p8v4fE3E3kDxK1MAzE4hQo3UoR5Wglukm9Coj6TM,51959
257
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=_FyxuBoy-0x88etrF2y12uMX_EjscisRYH03y7yqM6w,51220
258
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=meXIcWyEVtHtIjHwqPA-lfE3xgBPRUGrKwYHXeNJyPY,50563
259
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=uFOYWOHEazfgLgWBv7r6cfHOskC81I2z_bkoDWYtK7I,50618
260
+ snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
261
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=WT8MKwRjx5rdMzWqsybvp5N2I9LcQ4jTL38RLL8tIkY,52064
262
+ snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
263
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=u6VzvMlONA__b6hXqHEd0wekl355SbXxr1z0J6CtXHA,51635
264
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=NoRt4FFkTF4E5eKFYOYhGFkATlB3XnxPwIBRwjo-3wU,51137
265
+ snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
266
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=LPmunp4KwYOpNIcjzkdIYqQLqynSNvNSz3xy3SsguL8,52011
267
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=Lv-b3KkyJ4Av8BQLSi2IpkYq_FGCjv5drLfw7nt8nZg,52427
268
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=M637UZ8vBdTo9s56_Lgi2zHBCyNfBHMxI3mcq2Rd1Ks,52996
269
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=ygf5fxou8N_Hk8vNYYPDOQlxcPRbfCwLlnOAzSdZ28Q,54266
270
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=uB9Ru3gE1Cex-XyT-yc3qt6uD1XImIjEHkM4gTpFu-E,52080
271
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=R9ColYTOXUBiOMj0-onT1Lhb3iSDU9rcXMyyA0spy3k,51277
272
+ snowflake/ml/modeling/linear_model/lars.py,sha256=EurH_C6n61_RqaoaymWbdIgPGkk6gZAkS6TduzpUveA,52490
273
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=2bSYiuuPq_V0wI0mfdUM6zAgWUTemJEsLQtOrXRc92k,52713
274
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=oCvyY7P6Dqgyyy6IVMjaWPXR9uJXTCSvepjy1o3ylBU,52597
275
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=80m6u-5dWbinuarAGOHPGh9vj5tgJeaNQM7o3Sx1qkU,53384
276
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=kX0LE94hiqZa6G8zksBXEpyBk5ckLHVJEzcfSSZnqg8,53631
277
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=5kpglEIj8pZGzZf0dWEnn_Ob9Na_sZ5vQ_mUPoNsQYA,53594
278
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=HZPCHTqepAbIrZkZ18ktOHrCwDZ8R6DKB27AfkxxW_8,52940
279
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=RgsPYYgUVbU7rDbjIU_SkKQ2b_rLKjhaaibaqPXCowM,50821
280
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=ouYRWSOHoBH-KZjV9PjnSLqPFetFXm_5KW_xSekXVDY,57078
281
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=oEHhpvHIDWV1FQXDOZfo1fdAGP0Owlh8QrfUuFHLmRY,58120
282
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=oAQ3x8w1uZNCDqIr-onPSUz2guRihpzKqL9XuILSdhA,52296
283
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=arBMkviksZKSW5PSig_g5-oNlK1ve_kWUOJ-j3nlEcQ,53936
284
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=BfNZNeNC61muK_z6EUJ_5SvDiiUZdoBCO8Jxl-cSxNs,51839
285
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=b5zchLMN9enVwm0uOL20Ox8wUtDkzZiGU4NU3VFtcIk,53103
286
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=eTJmuNWpa_xAQCoYlQ0GNRDhJcuJ8b4PsSwOhYH7npo,51457
287
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=jsMC6JJWT0EBs_iNzCPCen6TIK8d1USF20i-z2TIJJY,54815
288
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=LEDWZ8UMrmM_9H5SMBaqoNPwBaaAGXg813vfTiMKa2M,53881
289
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=m9NsOxW-kPTiutjvM-tPEAF8AXNzeYSxSKzyUtSxpPQ,54182
290
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=qZwQ7JeCSP-vQGKwvNXV90UoQQVp8DRLf4P4w8ScAds,52127
291
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=kz2MvslF1KCM3K-dIsrbuX2kkeE2vpbZQbmtPXmJlKE,55245
292
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=wEYZos7SjZeeG7pjLIrGVCLU5AszpGZ2s0lmfqlBbTw,54141
293
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=WkbmCDR-cTO-_ICx-sTPjiUxT5kHIsymk-J5kJSxMnw,54539
294
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=yEUSoui3uCYfgwJoIaYzaOYSfAqD1BJ30jRZ9MHjmNg,52536
295
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=ZNa_Lbmaf42-OFW95izWGzL05NTCUQajbuERXldsKnU,53227
296
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=hGYkK8mUEUzmhokZswTU_m1qr3y1ksublfb-iY4-g_s,59610
297
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=40yqhrgIEJcZH0fJvljQvvDxnxnFu92DDuDHNuApDZ8,54493
298
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=d94hQSEWEJTT8tohPSG-ol1Gr0mxVDGj_8ArkGpS9zk,57080
299
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=e9BOBoW54yN1-MN4Qi8gzNgbTc-88kljQdIT81SPQwI,52563
300
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=9c2cjDRbNGGIhizmC6S-NDZWpeZz8PefjXyq4JLEJtE,53518
301
+ snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
302
+ snowflake/ml/modeling/manifold/isomap.py,sha256=5zOTV0nWJ0Ak8n0QH0i05KXEYox635ySsqarLKWRxuE,52819
303
+ snowflake/ml/modeling/manifold/mds.py,sha256=2HQQp5IDxzC1urNdPESnZ5jNg3-Hdy1I1OBwHU9ATfA,52036
304
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=B09ygJjIA49hYV-Y4w1-hnMoWs4z12Xgmun5XBz5pzQ,52901
305
+ snowflake/ml/modeling/manifold/tsne.py,sha256=Pi9aDZlpZcN2vbBSdKDoCdqK1adD8piFvclx1NcfCNw,55827
306
+ snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
307
+ snowflake/ml/modeling/metrics/classification.py,sha256=5XbbpxYu9HXB7FUbBJfT7wVNMKBfzxwcaVzlMSyHAWg,66499
308
+ snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
309
+ snowflake/ml/modeling/metrics/covariance.py,sha256=HxJK1mwyt6lMSg8yonHFQ8IxAEa62MHeb1M3eHEtqlk,4672
310
+ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=9tZQ_Mu6jTWHztwqkPSrFWY_LP551W7FmQrXYwbSlso,13208
311
+ snowflake/ml/modeling/metrics/ranking.py,sha256=gA1R1x1jUXA9bRrYn8IfJPM5BDY4DK1JCtoPQVsz5z4,17569
312
+ snowflake/ml/modeling/metrics/regression.py,sha256=OEawjdiMZHYlycQFXM_h2czIZmmGe5GKciEQD9MSWx4,25845
313
+ snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
314
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=jx5fKk0dnQYUERg4pACPZlFi-N9soXciNHXoBX-IKb0,57409
315
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=FTH60ckoW3cyJCfiX5tN73K4S0SKZlfBJHT8hoGxifM,55302
316
+ snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
317
+ snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=K8edz_VVGTWezSxeq5EeReKSrFkgZfmw-5fg5LuD_Bo,38021
318
+ snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=gPnJ3_YL_QasD6dx2YSDBltDErylZjYSKNKXBus448c,38763
319
+ snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
320
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=r2gUV5EVWnZiIJe41MN_4VHOEyhdkAyDgDLs-fOtFL0,50823
321
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=2B0w-gj1nnmCj3ZacJgsaWQA3ArL3Zv_y8fH_hHkZfo,51758
322
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=RvF9JB11gsk9a7dsuCAvH18lMANj1XgSaxJ1QrJON1U,51095
323
+ snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
324
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=Y8V1XM6HVjsPz1G2PoqoWiLP1DEUqRQp6rW3YQ95ZnI,51355
325
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=qzZQhMCRxmpHtTTyZOA_qFS3bF-7lGuwJMV0d-6jxx0,51692
326
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=vVLpjjoJqTw93VlvQrv5mmrb3fOMc_Fy9kZysj2Kdsw,51371
327
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=fadqQU8Iy3U_ZNyyKZL0JkBLsMT23NLA7YbSyIvq_QA,50498
328
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=xttXBuQPH6Y5GSUYGBIkf7AL4DR3rrA4KsKATh-0G3w,51137
329
+ snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
330
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=PUsqF-IJ_PTPOJie9BngSM3f80hHzRJouhf2tCoqz8g,54213
331
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=ITfNPT1xaf3zgaUhYE7S2hwxpPlEn9IR3Tn4z87dpxo,53683
332
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=-1nhtIF8jiBi0ecJU3yxSMpy_enDBnh_-yMWBeCFg5Q,52119
333
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=iHJHWbBEj70G1KFfgYzdlctIHh2AbVp5SCbqcNQr_04,54702
334
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=o-xi_N8PPxbHqmShmFtZjtFiQTvG9DBxFfuLwvc1j6I,50697
335
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=l3VqkQKCNivnjf52MniTxLZr_gidynpyVProXTkEPhI,52591
336
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=e5LvLURwNDdFGUqFZZlpCaczWC1wtPzW8IR1llR3cbI,54184
337
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=M6I0v8UhVDypN0SkFrEWz94MwAJKuZSwIRuLt8gHIuM,54631
338
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=N0G_jFDrgks8mM0zm_7hh1BQlEe_0nsxIwg_HJ_GGt8,53511
339
+ snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
340
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=novw3YKaMmdblfTz6MeBjU7xXrL8Gh51dknXyYV2Flo,51326
341
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=pFyopjAv_1G0W4ikuWr_5Pcof9ROvWS5L5Y_xcMSAB8,58579
342
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=t4lh7YUkg4lr5aSYa6bVPpSf8fcdV480l1UyflDE9AA,57847
343
+ snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
344
+ snowflake/ml/modeling/parameters/disable_model_tracer.py,sha256=uj6SZz7HQpThGLs90zfUDcNMChxf0C6DKRN2xOfjmvI,203
345
+ snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
346
+ snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
347
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=MjwZA4moXFEnUQCgbKRCt3GuL6gMk68NFBNkzWQx5IA,46244
348
+ snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
349
+ snowflake/ml/modeling/preprocessing/binarizer.py,sha256=MrgSVTw9RpajyYe0dzai-qnpdOb3Zq0SfJRpHJjpnoY,7383
350
+ snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=FdIy8mpjsiMqWsUL07S27T-JNDVgE2bvNUJf4HcBik4,21533
351
+ snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=jQV2UgA-qtzxNxHzgyhfJtWYIT_8L81miwcQy4dxHIA,7802
352
+ snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=P03PP907SbofOFv1cJhTe1R2_-lnFYHfGsvYsVFofWY,9146
353
+ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=leLeIrVsXn08agPqL-N50ohrWlC9FVuztMleQ043H5o,12467
354
+ snowflake/ml/modeling/preprocessing/normalizer.py,sha256=0VmTIwldr3F3KQC--6RsYkybWjWuiqtxn4PuWinH0ME,6997
355
+ snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=DgV6eF4a-d4LtRqoYxC5H9ASx8EBlBVp6nZ2YaqqPQA,75081
356
+ snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=ngdmbJiGXtiePfh_6TUM9LCxu22MJPzRXv3yQJXzSwA,35272
357
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=RFn6ECCYuCK9kMqPv67uXph2zE872_loKw6jLJGN570,51258
358
+ snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=Dp58jHxBdGdiFQAYmFW39JUdaPHO7dKfMy3KREtKAy0,12653
359
+ snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=ui5pWnt2dL2VTTzCWikY8siG3fh_R9J1Wk_VZCHU-rA,11773
360
+ snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
361
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=rZ3qjcpXNq1dYweHFAPhrbvOBZw-3wcKegen75I5dXQ,51597
362
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=8PHYgqhhINa7fEPPzRsbQFSkvG2nlfFlks7Yd0t-fuU,51944
363
+ snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
364
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=L1SUoJcvCEIkHefmqiOJaiPXrjkaxXQIfFSOyAEeIMQ,54400
365
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=IO08pYm2mHFap8w_h0HnGKpFIeTWS4gTDDnUvf-UmuE,52753
366
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=9s-VYUkYHOhaYTvMs_8UwmK9IX1RXeXNRAYlfT1F80Q,54708
367
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=Ouq38IvVtH-oMj1zWhMava9i_8mUnTTzYzYEnEnkpVI,51787
368
+ snowflake/ml/modeling/svm/svc.py,sha256=41xnxNUGoUM9ydgZkxTjZc-GjoZYdh2fFGwqXm8tLIE,54855
369
+ snowflake/ml/modeling/svm/svr.py,sha256=EMlXpDWJSgFN55vnYFP2zJkNzGFHTG0IbISvBE-TTT0,51974
370
+ snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
371
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=Z04GMmdO39Q6kt9VAuS2dLL0HWg2JhA51mXbICxUUCs,57150
372
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=hn739D2TuEw0hK6_maDzrGpP-IYxcDLZrDld4S6v9YU,55848
373
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=5vy27lb-Boy-cVeGgnw-rqyClRAFy3IcOgaB5Af0p48,56489
374
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=Ca2Z5p2-ZWNVc0ZV8QEtix6X5lKsPnKh6osML_ES9QY,55196
375
+ snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
376
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=2QEK6-NihXjKXO8Ue-fOZDyucIBn5ADSyq-fQS3d6Lg,62205
377
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=ZorEmRohT2-AUdS8fK0xH8BdB8ENxvVMMDYy34Jzm1o,61703
378
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=67jh9RosrTeYCWsJbnJ6_MQICHeG22z-DMy8CegP8Vg,62383
379
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=7_ZwF_QvVqBrkFx_zgGgLXyxtbX26XrWWLozAF-EBB0,61908
380
+ snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
381
+ snowflake/ml/monitoring/_client/model_monitor.py,sha256=hfR1lj_IJUTbc7XbzFALYXks0BwR-PMRuOvD7VmZDms,5371
382
+ snowflake/ml/monitoring/_client/model_monitor_manager.py,sha256=RHibb1_m8CvFKKtl7Su_ZTB7faZ7T2zSPnjPBz3eHxU,17337
383
+ snowflake/ml/monitoring/_client/model_monitor_version.py,sha256=TlmDJZDE0lCVatRaBRgXIjzDF538nrMIc-zWj9MM_nk,46
384
+ snowflake/ml/monitoring/_client/monitor_sql_client.py,sha256=hKU6BMdz01XQLWnJFDJny7sKc2DSIGTFKNixeJTHtWc,57963
385
+ snowflake/ml/monitoring/_client/queries/record_count.ssql,sha256=Bd1uNMwhPKqPyrDd5ug8iY493t9KamJjrlo82OAfmjY,335
386
+ snowflake/ml/monitoring/_client/queries/rmse.ssql,sha256=OEJiSStRz9-qKoZaFvmubtY_n0xMUjyVU2uiQHCp7KU,822
387
+ snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=rOKG9JirzptIaVFG9rCjjNdc1_eCzGTdjiAcrNSmxjU,867
388
+ snowflake/ml/monitoring/entities/model_monitor_interval.py,sha256=yDUaAXmYRQEFGW9rXihrEs5p0Ur94LCnoqKBjqi0Cyk,1681
389
+ snowflake/ml/monitoring/entities/output_score_type.py,sha256=UJyS4z5hncRZ0agVNa6_X041RY9q3Us-6Bh3dPVAmEw,2982
390
+ snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
391
+ snowflake/ml/registry/registry.py,sha256=3SwDhN-0j1WEyFuUAA9rnCR_QKb6xWrVHqrnZay0lxg,23602
392
+ snowflake/ml/registry/_manager/model_manager.py,sha256=hf0KR9qxzg0ZbFJ3BUgDn6NBTz3KEnLkVVoICzY0ejs,11177
393
+ snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
394
+ snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
395
+ snowflake/ml/utils/sql_client.py,sha256=z4Rhi7pQz3s9cyu_Uzfr3deCnrkCdFh9IYIvicsuwdc,692
396
+ snowflake_ml_python-1.6.3.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
397
+ snowflake_ml_python-1.6.3.dist-info/METADATA,sha256=XifrW7buIAW06Xmg4KixGOPnaCnTcZ-FJS8Rnh6yQgo,61028
398
+ snowflake_ml_python-1.6.3.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
399
+ snowflake_ml_python-1.6.3.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
400
+ snowflake_ml_python-1.6.3.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (72.1.0)
2
+ Generator: setuptools (75.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,84 +0,0 @@
1
- # TODO[shchen]: Remove this file and use session_token_manager instead.
2
- import base64
3
- import contextlib
4
- import json
5
- from typing import Generator, TypedDict
6
-
7
- from snowflake import snowpark
8
- from snowflake.ml._internal.utils import query_result_checker
9
-
10
-
11
- class SessionToken(TypedDict):
12
- token: str
13
- expires_in: str
14
-
15
-
16
- @contextlib.contextmanager
17
- def generate_image_registry_credential(session: snowpark.Session) -> Generator[str, None, None]:
18
- """Construct basic auth credential that is specific to SPCS image registry. For image registry authentication, we
19
- will use a session token obtained from the Snowpark session object. The token authentication mechanism is
20
- automatically used when the username is set to "0sessiontoken" according to the registry implementation.
21
-
22
- As a workaround for SNOW-841699: Fail to authenticate to image registry with session token generated from
23
- Snowpark. We need to temporarily set the json query format in order to process GS token response. Note that we
24
- should set the format back only after registry authentication is complete, otherwise authentication will fail.
25
-
26
- Args:
27
- session: snowpark session
28
-
29
- Yields:
30
- base64-encoded credentials.
31
- """
32
-
33
- query_result = (
34
- query_result_checker.SqlResultValidator(
35
- session,
36
- query="SHOW PARAMETERS LIKE 'PYTHON_CONNECTOR_QUERY_RESULT_FORMAT' IN SESSION",
37
- )
38
- .has_dimensions(expected_rows=1)
39
- .validate()
40
- )
41
- prev_format = query_result[0].value
42
- try:
43
- session.sql("ALTER SESSION SET PYTHON_CONNECTOR_QUERY_RESULT_FORMAT = 'json'").collect()
44
- token = _get_session_token(session)
45
- yield _get_base64_encoded_credentials(username="0sessiontoken", password=json.dumps(token))
46
- finally:
47
- session.sql(f"ALTER SESSION SET PYTHON_CONNECTOR_QUERY_RESULT_FORMAT = '{prev_format}'").collect()
48
-
49
-
50
- def _get_session_token(session: snowpark.Session) -> SessionToken:
51
- """
52
- This function retrieves the session token from a given Snowpark session object.
53
-
54
- Args:
55
- session: snowpark session.
56
-
57
- Returns:
58
- The session token string value.
59
- """
60
- ctx = session._conn._conn
61
- assert ctx._rest, "SnowflakeRestful is not set in session"
62
- token_data = ctx._rest._token_request("ISSUE")
63
- session_token = token_data["data"]["sessionToken"]
64
- validity_in_seconds = token_data["data"]["validityInSecondsST"]
65
- assert session_token, "session_token is not obtained successfully from the session object"
66
- assert validity_in_seconds, "validityInSecondsST is not obtained successfully from the session object"
67
- return {"token": session_token, "expires_in": validity_in_seconds}
68
-
69
-
70
- def _get_base64_encoded_credentials(username: str, password: str) -> str:
71
- """This function returns the base64 encoded username:password, which is compatible with registry, such as
72
- SnowService image registry, that uses Docker credential helper.
73
-
74
- Args:
75
- username: username for authentication.
76
- password: password for authentication.
77
-
78
- Returns:
79
- base64 encoded credential string.
80
-
81
- """
82
- credentials = f"{username}:{password}"
83
- encoded_credentials = base64.b64encode(credentials.encode("utf-8")).decode("utf-8")
84
- return encoded_credentials