snowflake-ml-python 1.6.0__py3-none-any.whl → 1.6.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (252) hide show
  1. snowflake/cortex/_complete.py +7 -33
  2. snowflake/ml/_internal/env_utils.py +11 -5
  3. snowflake/ml/_internal/exceptions/modeling_error_messages.py +4 -1
  4. snowflake/ml/_internal/telemetry.py +156 -20
  5. snowflake/ml/_internal/utils/identifier.py +48 -11
  6. snowflake/ml/_internal/utils/pkg_version_utils.py +8 -22
  7. snowflake/ml/_internal/utils/snowflake_env.py +23 -13
  8. snowflake/ml/_internal/utils/sql_identifier.py +1 -1
  9. snowflake/ml/_internal/utils/table_manager.py +19 -1
  10. snowflake/ml/_internal/utils/uri.py +2 -2
  11. snowflake/ml/data/_internal/arrow_ingestor.py +66 -10
  12. snowflake/ml/data/data_connector.py +88 -9
  13. snowflake/ml/data/data_ingestor.py +18 -1
  14. snowflake/ml/data/{_internal/ingestor_utils.py → ingestor_utils.py} +5 -1
  15. snowflake/ml/data/torch_utils.py +68 -0
  16. snowflake/ml/dataset/dataset.py +1 -3
  17. snowflake/ml/dataset/dataset_metadata.py +3 -1
  18. snowflake/ml/dataset/dataset_reader.py +9 -3
  19. snowflake/ml/feature_store/examples/airline_features/entities.py +16 -0
  20. snowflake/ml/feature_store/examples/airline_features/features/plane_features.py +31 -0
  21. snowflake/ml/feature_store/examples/airline_features/features/weather_features.py +42 -0
  22. snowflake/ml/feature_store/examples/airline_features/source.yaml +7 -0
  23. snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py +10 -4
  24. snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py +6 -0
  25. snowflake/ml/feature_store/examples/citibike_trip_features/source.yaml +3 -0
  26. snowflake/ml/feature_store/examples/example_helper.py +69 -31
  27. snowflake/ml/feature_store/examples/new_york_taxi_features/entities.py +3 -3
  28. snowflake/ml/feature_store/examples/new_york_taxi_features/features/{dropoff_features.py → location_features.py} +14 -9
  29. snowflake/ml/feature_store/examples/new_york_taxi_features/features/trip_features.py +36 -0
  30. snowflake/ml/feature_store/examples/new_york_taxi_features/source.yaml +5 -1
  31. snowflake/ml/feature_store/examples/source_data/airline.yaml +4 -0
  32. snowflake/ml/feature_store/examples/source_data/citibike_trips.yaml +1 -1
  33. snowflake/ml/feature_store/examples/wine_quality_features/entities.py +3 -3
  34. snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py +13 -6
  35. snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py +8 -5
  36. snowflake/ml/feature_store/examples/wine_quality_features/source.yaml +3 -0
  37. snowflake/ml/feature_store/feature_store.py +100 -41
  38. snowflake/ml/feature_store/feature_view.py +149 -5
  39. snowflake/ml/fileset/embedded_stage_fs.py +1 -1
  40. snowflake/ml/fileset/fileset.py +1 -1
  41. snowflake/ml/fileset/sfcfs.py +9 -3
  42. snowflake/ml/model/_client/model/model_impl.py +11 -2
  43. snowflake/ml/model/_client/model/model_version_impl.py +186 -20
  44. snowflake/ml/model/_client/ops/model_ops.py +144 -30
  45. snowflake/ml/model/_client/ops/service_ops.py +312 -0
  46. snowflake/ml/model/_client/service/model_deployment_spec.py +94 -0
  47. snowflake/ml/model/_client/service/model_deployment_spec_schema.py +30 -0
  48. snowflake/ml/model/_client/sql/model_version.py +13 -4
  49. snowflake/ml/model/_client/sql/service.py +196 -0
  50. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -1
  51. snowflake/ml/model/_deploy_client/snowservice/deploy.py +3 -3
  52. snowflake/ml/model/_model_composer/model_composer.py +5 -0
  53. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +13 -10
  54. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +3 -0
  55. snowflake/ml/model/_packager/model_env/model_env.py +7 -2
  56. snowflake/ml/model/_packager/model_handlers/_base.py +29 -12
  57. snowflake/ml/model/_packager/model_handlers/_utils.py +46 -14
  58. snowflake/ml/model/_packager/model_handlers/catboost.py +25 -16
  59. snowflake/ml/model/_packager/model_handlers/custom.py +6 -2
  60. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +32 -20
  61. snowflake/ml/model/_packager/model_handlers/lightgbm.py +23 -56
  62. snowflake/ml/model/_packager/model_handlers/llm.py +11 -5
  63. snowflake/ml/model/_packager/model_handlers/mlflow.py +8 -3
  64. snowflake/ml/model/_packager/model_handlers/model_objective_utils.py +116 -0
  65. snowflake/ml/model/_packager/model_handlers/pytorch.py +8 -3
  66. snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +8 -3
  67. snowflake/ml/model/_packager/model_handlers/sklearn.py +99 -4
  68. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +123 -5
  69. snowflake/ml/model/_packager/model_handlers/tensorflow.py +9 -4
  70. snowflake/ml/model/_packager/model_handlers/torchscript.py +10 -5
  71. snowflake/ml/model/_packager/model_handlers/xgboost.py +56 -47
  72. snowflake/ml/model/_packager/model_meta/model_meta.py +35 -2
  73. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +11 -0
  74. snowflake/ml/model/_packager/model_packager.py +4 -1
  75. snowflake/ml/model/_packager/model_runtime/model_runtime.py +4 -2
  76. snowflake/ml/model/_signatures/pytorch_handler.py +1 -1
  77. snowflake/ml/model/_signatures/utils.py +9 -0
  78. snowflake/ml/model/models/llm.py +3 -1
  79. snowflake/ml/model/type_hints.py +10 -4
  80. snowflake/ml/modeling/_internal/constants.py +1 -0
  81. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +5 -5
  82. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +9 -6
  83. snowflake/ml/modeling/_internal/model_specifications.py +2 -0
  84. snowflake/ml/modeling/_internal/model_trainer.py +1 -0
  85. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +2 -2
  86. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +5 -5
  87. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +113 -160
  88. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +60 -21
  89. snowflake/ml/modeling/cluster/affinity_propagation.py +60 -21
  90. snowflake/ml/modeling/cluster/agglomerative_clustering.py +60 -21
  91. snowflake/ml/modeling/cluster/birch.py +60 -21
  92. snowflake/ml/modeling/cluster/bisecting_k_means.py +60 -21
  93. snowflake/ml/modeling/cluster/dbscan.py +60 -21
  94. snowflake/ml/modeling/cluster/feature_agglomeration.py +60 -21
  95. snowflake/ml/modeling/cluster/k_means.py +60 -21
  96. snowflake/ml/modeling/cluster/mean_shift.py +60 -21
  97. snowflake/ml/modeling/cluster/mini_batch_k_means.py +60 -21
  98. snowflake/ml/modeling/cluster/optics.py +60 -21
  99. snowflake/ml/modeling/cluster/spectral_biclustering.py +60 -21
  100. snowflake/ml/modeling/cluster/spectral_clustering.py +60 -21
  101. snowflake/ml/modeling/cluster/spectral_coclustering.py +60 -21
  102. snowflake/ml/modeling/compose/column_transformer.py +60 -21
  103. snowflake/ml/modeling/compose/transformed_target_regressor.py +60 -21
  104. snowflake/ml/modeling/covariance/elliptic_envelope.py +60 -21
  105. snowflake/ml/modeling/covariance/empirical_covariance.py +60 -21
  106. snowflake/ml/modeling/covariance/graphical_lasso.py +60 -21
  107. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +60 -21
  108. snowflake/ml/modeling/covariance/ledoit_wolf.py +60 -21
  109. snowflake/ml/modeling/covariance/min_cov_det.py +60 -21
  110. snowflake/ml/modeling/covariance/oas.py +60 -21
  111. snowflake/ml/modeling/covariance/shrunk_covariance.py +60 -21
  112. snowflake/ml/modeling/decomposition/dictionary_learning.py +60 -21
  113. snowflake/ml/modeling/decomposition/factor_analysis.py +60 -21
  114. snowflake/ml/modeling/decomposition/fast_ica.py +60 -21
  115. snowflake/ml/modeling/decomposition/incremental_pca.py +60 -21
  116. snowflake/ml/modeling/decomposition/kernel_pca.py +60 -21
  117. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +60 -21
  118. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +60 -21
  119. snowflake/ml/modeling/decomposition/pca.py +60 -21
  120. snowflake/ml/modeling/decomposition/sparse_pca.py +60 -21
  121. snowflake/ml/modeling/decomposition/truncated_svd.py +60 -21
  122. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +60 -21
  123. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +60 -21
  124. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +60 -21
  125. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +60 -21
  126. snowflake/ml/modeling/ensemble/bagging_classifier.py +60 -21
  127. snowflake/ml/modeling/ensemble/bagging_regressor.py +60 -21
  128. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +60 -21
  129. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +60 -21
  130. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +60 -21
  131. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +60 -21
  132. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +60 -21
  133. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +60 -21
  134. snowflake/ml/modeling/ensemble/isolation_forest.py +60 -21
  135. snowflake/ml/modeling/ensemble/random_forest_classifier.py +60 -21
  136. snowflake/ml/modeling/ensemble/random_forest_regressor.py +60 -21
  137. snowflake/ml/modeling/ensemble/stacking_regressor.py +60 -21
  138. snowflake/ml/modeling/ensemble/voting_classifier.py +60 -21
  139. snowflake/ml/modeling/ensemble/voting_regressor.py +60 -21
  140. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +60 -21
  141. snowflake/ml/modeling/feature_selection/select_fdr.py +60 -21
  142. snowflake/ml/modeling/feature_selection/select_fpr.py +60 -21
  143. snowflake/ml/modeling/feature_selection/select_fwe.py +60 -21
  144. snowflake/ml/modeling/feature_selection/select_k_best.py +60 -21
  145. snowflake/ml/modeling/feature_selection/select_percentile.py +60 -21
  146. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +60 -21
  147. snowflake/ml/modeling/feature_selection/variance_threshold.py +60 -21
  148. snowflake/ml/modeling/framework/base.py +28 -19
  149. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +60 -21
  150. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +60 -21
  151. snowflake/ml/modeling/impute/iterative_imputer.py +60 -21
  152. snowflake/ml/modeling/impute/knn_imputer.py +60 -21
  153. snowflake/ml/modeling/impute/missing_indicator.py +60 -21
  154. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +60 -21
  155. snowflake/ml/modeling/kernel_approximation/nystroem.py +60 -21
  156. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +60 -21
  157. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +60 -21
  158. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +60 -21
  159. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +60 -21
  160. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +60 -21
  161. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +60 -21
  162. snowflake/ml/modeling/linear_model/ard_regression.py +60 -21
  163. snowflake/ml/modeling/linear_model/bayesian_ridge.py +60 -21
  164. snowflake/ml/modeling/linear_model/elastic_net.py +60 -21
  165. snowflake/ml/modeling/linear_model/elastic_net_cv.py +60 -21
  166. snowflake/ml/modeling/linear_model/gamma_regressor.py +60 -21
  167. snowflake/ml/modeling/linear_model/huber_regressor.py +60 -21
  168. snowflake/ml/modeling/linear_model/lars.py +60 -21
  169. snowflake/ml/modeling/linear_model/lars_cv.py +60 -21
  170. snowflake/ml/modeling/linear_model/lasso.py +60 -21
  171. snowflake/ml/modeling/linear_model/lasso_cv.py +60 -21
  172. snowflake/ml/modeling/linear_model/lasso_lars.py +60 -21
  173. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +60 -21
  174. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +60 -21
  175. snowflake/ml/modeling/linear_model/linear_regression.py +60 -21
  176. snowflake/ml/modeling/linear_model/logistic_regression.py +60 -21
  177. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +60 -21
  178. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +60 -21
  179. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +60 -21
  180. snowflake/ml/modeling/linear_model/multi_task_lasso.py +60 -21
  181. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +60 -21
  182. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +60 -21
  183. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +60 -21
  184. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +60 -21
  185. snowflake/ml/modeling/linear_model/perceptron.py +60 -21
  186. snowflake/ml/modeling/linear_model/poisson_regressor.py +60 -21
  187. snowflake/ml/modeling/linear_model/ransac_regressor.py +60 -21
  188. snowflake/ml/modeling/linear_model/ridge.py +60 -21
  189. snowflake/ml/modeling/linear_model/ridge_classifier.py +60 -21
  190. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +60 -21
  191. snowflake/ml/modeling/linear_model/ridge_cv.py +60 -21
  192. snowflake/ml/modeling/linear_model/sgd_classifier.py +60 -21
  193. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +60 -21
  194. snowflake/ml/modeling/linear_model/sgd_regressor.py +60 -21
  195. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +60 -21
  196. snowflake/ml/modeling/linear_model/tweedie_regressor.py +60 -21
  197. snowflake/ml/modeling/manifold/isomap.py +60 -21
  198. snowflake/ml/modeling/manifold/mds.py +60 -21
  199. snowflake/ml/modeling/manifold/spectral_embedding.py +60 -21
  200. snowflake/ml/modeling/manifold/tsne.py +60 -21
  201. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +60 -21
  202. snowflake/ml/modeling/mixture/gaussian_mixture.py +60 -21
  203. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +60 -21
  204. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +60 -21
  205. snowflake/ml/modeling/multiclass/output_code_classifier.py +60 -21
  206. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +60 -21
  207. snowflake/ml/modeling/naive_bayes/categorical_nb.py +60 -21
  208. snowflake/ml/modeling/naive_bayes/complement_nb.py +60 -21
  209. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +60 -21
  210. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +60 -21
  211. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +60 -21
  212. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +60 -21
  213. snowflake/ml/modeling/neighbors/kernel_density.py +60 -21
  214. snowflake/ml/modeling/neighbors/local_outlier_factor.py +60 -21
  215. snowflake/ml/modeling/neighbors/nearest_centroid.py +60 -21
  216. snowflake/ml/modeling/neighbors/nearest_neighbors.py +60 -21
  217. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +60 -21
  218. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +60 -21
  219. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +60 -21
  220. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +60 -21
  221. snowflake/ml/modeling/neural_network/mlp_classifier.py +60 -21
  222. snowflake/ml/modeling/neural_network/mlp_regressor.py +60 -21
  223. snowflake/ml/modeling/parameters/disable_model_tracer.py +5 -0
  224. snowflake/ml/modeling/pipeline/pipeline.py +4 -12
  225. snowflake/ml/modeling/preprocessing/polynomial_features.py +60 -21
  226. snowflake/ml/modeling/semi_supervised/label_propagation.py +60 -21
  227. snowflake/ml/modeling/semi_supervised/label_spreading.py +60 -21
  228. snowflake/ml/modeling/svm/linear_svc.py +60 -21
  229. snowflake/ml/modeling/svm/linear_svr.py +60 -21
  230. snowflake/ml/modeling/svm/nu_svc.py +60 -21
  231. snowflake/ml/modeling/svm/nu_svr.py +60 -21
  232. snowflake/ml/modeling/svm/svc.py +60 -21
  233. snowflake/ml/modeling/svm/svr.py +60 -21
  234. snowflake/ml/modeling/tree/decision_tree_classifier.py +60 -21
  235. snowflake/ml/modeling/tree/decision_tree_regressor.py +60 -21
  236. snowflake/ml/modeling/tree/extra_tree_classifier.py +60 -21
  237. snowflake/ml/modeling/tree/extra_tree_regressor.py +60 -21
  238. snowflake/ml/modeling/xgboost/xgb_classifier.py +63 -23
  239. snowflake/ml/modeling/xgboost/xgb_regressor.py +63 -23
  240. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +63 -23
  241. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +63 -23
  242. snowflake/ml/registry/_manager/model_manager.py +20 -2
  243. snowflake/ml/registry/model_registry.py +1 -1
  244. snowflake/ml/registry/registry.py +1 -2
  245. snowflake/ml/utils/sql_client.py +22 -0
  246. snowflake/ml/version.py +1 -1
  247. {snowflake_ml_python-1.6.0.dist-info → snowflake_ml_python-1.6.2.dist-info}/METADATA +55 -3
  248. {snowflake_ml_python-1.6.0.dist-info → snowflake_ml_python-1.6.2.dist-info}/RECORD +251 -238
  249. {snowflake_ml_python-1.6.0.dist-info → snowflake_ml_python-1.6.2.dist-info}/WHEEL +1 -1
  250. snowflake/ml/feature_store/examples/new_york_taxi_features/features/pickup_features.py +0 -58
  251. {snowflake_ml_python-1.6.0.dist-info → snowflake_ml_python-1.6.2.dist-info}/LICENSE.txt +0 -0
  252. {snowflake_ml_python-1.6.0.dist-info → snowflake_ml_python-1.6.2.dist-info}/top_level.txt +0 -0
@@ -1,19 +1,19 @@
1
1
  snowflake/cortex/__init__.py,sha256=Xw7skAa3Eeo0pq2q8gwekpvP_yZbHetNjB2mC1gqnsM,477
2
2
  snowflake/cortex/_classify_text.py,sha256=lKV_J0TMDgaDCytpHsi8zo2N-aiWW5I8t1PcYiuNovo,1297
3
- snowflake/cortex/_complete.py,sha256=OMLMG1nU1yXB3Q9isn08Rj5J4J90DceSuwH9ttV7ui0,12625
3
+ snowflake/cortex/_complete.py,sha256=UD9WB9w7VIpEfXu0iylYfcnmBxNScTZdLBbdA4Y3O64,11309
4
4
  snowflake/cortex/_extract_answer.py,sha256=-ZvpnI6i4QmCkgxIEC8QGPlOQzKMVO5abgouXMf6wTw,1301
5
5
  snowflake/cortex/_sentiment.py,sha256=yhV4T9GW-tcxkg_OYd-hbYHsbjHIYzRjbsmYuzXMPzU,1189
6
6
  snowflake/cortex/_sse_client.py,sha256=_GGmxskEQPVJ2bE3LHySnPFl29CP4YGM4_xmR_Kk-WA,2485
7
7
  snowflake/cortex/_summarize.py,sha256=raDFAb31penzEtOtqQv8wQS69MsRt_B75VQ5cDHegbE,1018
8
8
  snowflake/cortex/_translate.py,sha256=QqngDJ9ijB5wCObSVWMfY2FQzk4S02M85PEAKr_Alrk,1363
9
9
  snowflake/cortex/_util.py,sha256=5Y_hwZxW_Tygv8TNO7f5b3jvG9HeRwO8l9wv5sZOjCE,2150
10
- snowflake/ml/version.py,sha256=ou-ltd3dvQ0ZdIozwgzxGA2B3fPpdrobEg6PEdehJwQ,16
10
+ snowflake/ml/version.py,sha256=YzEk6IWbxbQSMCX59hbxlyN2XoOJpsR_t_ikcryO_6s,16
11
11
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
12
- snowflake/ml/_internal/env_utils.py,sha256=HK5Ug5-gChiUv_z84BDjAuE9eHImrWRsX4Y7wJFApfk,27758
12
+ snowflake/ml/_internal/env_utils.py,sha256=cNh9cMO1tEl2jf7VPIJy-st2O625DkDiELTH6dqqW3Y,28033
13
13
  snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
14
14
  snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
15
15
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
16
- snowflake/ml/_internal/telemetry.py,sha256=9ggB-vgNWfW-X_7tCSZHAn65RG0hJXA6joACS4nc0YU,24391
16
+ snowflake/ml/_internal/telemetry.py,sha256=XwzuyTVSDW7RyYLlC0ZsEij19ElFrm-OItLPQW5HeG4,29719
17
17
  snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
18
18
  snowflake/ml/_internal/container_services/image_registry/credential.py,sha256=nShNgIb2yNu9w6vceOY3aSgjpuOoi0spWWmvgEafPSk,3291
19
19
  snowflake/ml/_internal/container_services/image_registry/http_client.py,sha256=JAkZmI9szd3BeAB6bpSlfCWAmQOSGKVO3zrV_0QP6-I,5448
@@ -26,7 +26,7 @@ snowflake/ml/_internal/exceptions/error_messages.py,sha256=vF9XOWJoBuKvFxBkGcDel
26
26
  snowflake/ml/_internal/exceptions/exceptions.py,sha256=ub0fthrNTVoKhpj1pXnKRfO1Gqnmbe7wY51vaoEOp5M,1653
27
27
  snowflake/ml/_internal/exceptions/fileset_error_messages.py,sha256=dqPpRu0cKyQA_0gahvbizgQBTwNhnwveN286JrJLvi8,419
28
28
  snowflake/ml/_internal/exceptions/fileset_errors.py,sha256=pHwY7f5c6JH-RZDtkiWy8nICHKy4T5vvWs5cq5rPD_4,1030
29
- snowflake/ml/_internal/exceptions/modeling_error_messages.py,sha256=q1Nh7KvnUebdKCwwAPmotdAVS578CgAXcfDOfKoweVw,665
29
+ snowflake/ml/_internal/exceptions/modeling_error_messages.py,sha256=M1s_PNHcOGlSDKD2kvSUQYsSaKHdHdnE74609LvF27c,749
30
30
  snowflake/ml/_internal/exceptions/sql_error_codes.py,sha256=aEI3-gW7FeNahoPncdOaGGRBmPJmkCHK-a1o2e3c3PI,206
31
31
  snowflake/ml/_internal/human_readable_id/adjectives.txt,sha256=5o4MbVeHoELAqyLpyuKleOKR47jPjC_nKoziOIZMwT0,804
32
32
  snowflake/ml/_internal/human_readable_id/animals.txt,sha256=GDLzMwzxiL07PhIMxw4t89bhYqqg0bQfPiuQT8VNeME,837
@@ -34,58 +34,64 @@ snowflake/ml/_internal/human_readable_id/hrid_generator.py,sha256=LYWB86qZgsVBvn
34
34
  snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=D1yoVG1vmAFUhWQ5xCRRU6HCCBPbXHpOXagFd0jK0O8,4519
35
35
  snowflake/ml/_internal/lineage/lineage_utils.py,sha256=kxWW7fkSf1HiUQSks3VlzWyntpt4o_pbptXcpQHtnk8,3432
36
36
  snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
37
- snowflake/ml/_internal/utils/identifier.py,sha256=jlvTl2mjzvuMgNgTU2jBlfQ6TR21t3Q1C-mujeO-Rtc,11375
37
+ snowflake/ml/_internal/utils/identifier.py,sha256=fUYXjXKXAkjLUZpomneMHo2wR4_ZNP4ak-5OJxeUS-g,12467
38
38
  snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
39
39
  snowflake/ml/_internal/utils/log_stream_processor.py,sha256=pBf8ycEamhHjEzUT55Rx_tFqSkYRpD5Dt71Mx9ZdaS8,1001
40
40
  snowflake/ml/_internal/utils/parallelize.py,sha256=Q6_-P2t4DoYNO8DyC1kOl7H3qNL-bUK6EgtlQ_b5ThY,4534
41
- snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=tpu6B0HKpbT-svvU2Pbz7zNqzg-jgoSmwYvtTzXYyzw,5857
41
+ snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=FwdLHFhxi3CAQQduGjFavEBmkD9Ra6ZTkt6Eub-WoSA,5168
42
42
  snowflake/ml/_internal/utils/query_result_checker.py,sha256=h1nbUImdB9lSNCON3uIA0xCm8_JrS-TE-jQXJJs9WfU,10668
43
43
  snowflake/ml/_internal/utils/result.py,sha256=59Sz6MvhjakUNiONwg9oi2544AmORCJR3XyWTxY2vP0,2405
44
44
  snowflake/ml/_internal/utils/retryable_http.py,sha256=1GCuQkTGO4sX-VRbjy31e4_VgUjqsp5Lh2v5tSJjVK8,1321
45
45
  snowflake/ml/_internal/utils/session_token_manager.py,sha256=qXRlE7pyw-Gb0q_BmTdWZEu9pCq2oRNuJBoqfKD9QDQ,1727
46
- snowflake/ml/_internal/utils/snowflake_env.py,sha256=Mrov0v95pzVUeAe7r1e1PtlIco9ytj5SGAuUWORQaKs,2927
46
+ snowflake/ml/_internal/utils/snowflake_env.py,sha256=WY9KgMcXEydpWObHQCQhvxcSZXMwC-2OHc894njmXEg,3346
47
47
  snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=ksWdVV2EUX4SOOcoeC00xZDEoOyukQOGqxO20_XxaMs,5981
48
48
  snowflake/ml/_internal/utils/spcs_attribution_utils.py,sha256=9XPKe1BDkWhnGuHDXBHE4FP-m3U22lTZnrQLsHGFhWU,4292
49
- snowflake/ml/_internal/utils/sql_identifier.py,sha256=ZcRjSfpovsqaY7S8bFB6z44z28XICncHGwOIzs8rLDI,3729
50
- snowflake/ml/_internal/utils/table_manager.py,sha256=jHGfl0YSqhFLL7DOOQkjUMzTmLkqFDIM7Gs0LBQw8BM,4384
49
+ snowflake/ml/_internal/utils/sql_identifier.py,sha256=YNSE5NHX-bgMBy3UO4XE0g24R7Nbb4ARIzDkrJ3Dhgw,3726
50
+ snowflake/ml/_internal/utils/table_manager.py,sha256=pU7v8Cx-jGObf6RtTmfCmALfhbpJD-lL45T1gWX1nSY,4982
51
51
  snowflake/ml/_internal/utils/temp_file_utils.py,sha256=0-HTjXdxVt0kE6XcgyvRvY0btflWlmotP2bMXVpFJPA,1553
52
- snowflake/ml/_internal/utils/uri.py,sha256=pvskcWoeS0M66DaU2XlJzK9wce55z4J5dn5kTy_-Tqs,2828
53
- snowflake/ml/data/data_connector.py,sha256=1XQphZRbmbAKQT9nw3rWGrh-lSgnard0LhKrnhezYdI,5533
54
- snowflake/ml/data/data_ingestor.py,sha256=cRM_ijBqLS4XDYH7riOkCCHM5n7BVbEm-d9yVlmeMAc,736
52
+ snowflake/ml/_internal/utils/uri.py,sha256=Q3_CkzGovO36b9v9M3u1IBTIG-9KJN6uKFTE6pjLl7k,2808
53
+ snowflake/ml/data/data_connector.py,sha256=vYCD7iY-9n1xFQBrDTzb-ZxlFQ90P6B4VSYapUjWflE,8698
54
+ snowflake/ml/data/data_ingestor.py,sha256=Nrj5l0cVnoXWI6Ilig-r_pGS902xkZATbqh3OsV53NI,1017
55
55
  snowflake/ml/data/data_source.py,sha256=dRemXGi_HHQdn6gaNkxxGJixnQPuUYFDP8NBjmB_ZMk,518
56
- snowflake/ml/data/_internal/arrow_ingestor.py,sha256=NoNpMlVIF-VBwq14HQo68PHxQ-22uKjHJ9bYovPU0wg,9538
57
- snowflake/ml/data/_internal/ingestor_utils.py,sha256=tf3Ov51lv0C07b-kuJzIoG9MPPaN_Ejx7Y2tqNav37k,2130
56
+ snowflake/ml/data/ingestor_utils.py,sha256=oeUb631XgG7XBJxoqeGcY-ormEjyESj_Iu74Vc6GQqQ,2352
57
+ snowflake/ml/data/torch_utils.py,sha256=nsADN444UOqWOomJQJm4GQu2bHUVvImahVlPQldu_vY,2649
58
+ snowflake/ml/data/_internal/arrow_ingestor.py,sha256=hjk0jbf-QOGAr-PE9Vwu8MNVPd9lc8bAkM51QzyCNqE,12157
58
59
  snowflake/ml/dataset/__init__.py,sha256=nESj7YEI2u90Oxyit_hKCQMWb7N1BlEM3Ho2Fm0MfHo,274
59
- snowflake/ml/dataset/dataset.py,sha256=NNwEyfHwyZ0ZRwp6poBxZE982RjAFUfN645yDFTdmUI,21188
60
+ snowflake/ml/dataset/dataset.py,sha256=GqdcABGcIlAzPmfTcOC8H_Kw6LNQZ6F_7Ch45hxHOHU,21094
60
61
  snowflake/ml/dataset/dataset_factory.py,sha256=Fym4ICK-B1j6Om4ENwWxEvryq3ZKoCslBSZDBenmjOo,1615
61
- snowflake/ml/dataset/dataset_metadata.py,sha256=lvaYd1sNOgWcXD1q_-J7fQZ0ndOC8guR9IgKpChBcFA,3992
62
- snowflake/ml/dataset/dataset_reader.py,sha256=8d6lBBg6LlDC0HmiJmmGyPN4dBIJzi1UdrFr5-EOlVQ,4066
62
+ snowflake/ml/dataset/dataset_metadata.py,sha256=tWR3fa2WG3Kj2btKMbg51l5jX68qm1rfXRswU0IDYTg,4157
63
+ snowflake/ml/dataset/dataset_reader.py,sha256=e-IRbxbxFfNbsglmqtzhV_wYFsEflBW6-U_krbfXPpw,4371
63
64
  snowflake/ml/feature_store/__init__.py,sha256=VKBVkS050WNF8rcqNqwFfNXa_B9GZjcUpuibOGsUSls,423
64
65
  snowflake/ml/feature_store/access_manager.py,sha256=WBRRzmUUB_K9_xX6duv4tFExb7d4RksO_7FZjzEtoww,10696
65
66
  snowflake/ml/feature_store/entity.py,sha256=A65FOGlljREUG8IRMSN84v1x2uTeVGCM4NqKXO2Ui8w,4059
66
- snowflake/ml/feature_store/feature_store.py,sha256=XheIPc4PHxTec9158fjUg7jeBaiinoSDzMCdBOVZv1I,110502
67
- snowflake/ml/feature_store/feature_view.py,sha256=a_Z9Ai5hzn3i0NBuuUM0yeCCgTpLtdhFyqCJRlHNujA,27566
68
- snowflake/ml/feature_store/examples/example_helper.py,sha256=6OwDNoC1ndTkihaUAoAgnR25z3Or2cgQQas4hr1IbX0,10629
67
+ snowflake/ml/feature_store/feature_store.py,sha256=6YKZqkT9Phf8tZVyJMmU9qFcQPcoK3hla6KABQ7g6Oc,112850
68
+ snowflake/ml/feature_store/feature_view.py,sha256=Ru5oeJm2Mmw1n-srLmv9AQwTMgjb39mcScGOGilmdd8,34227
69
+ snowflake/ml/feature_store/examples/example_helper.py,sha256=hVaPrjtMsMxJ804vTzjrI5cvyyPLx2ExZi2P9Qfg4z0,12248
70
+ snowflake/ml/feature_store/examples/airline_features/entities.py,sha256=V2xVZpHFgGA92Kyd9hCWa2YoiRhH5m6HAgvnh126Nqo,463
71
+ snowflake/ml/feature_store/examples/airline_features/source.yaml,sha256=kzl8ukOK8OuSPsxChEgJ9SPyPnzC-fPHqZC4O6aqd5o,247
72
+ snowflake/ml/feature_store/examples/airline_features/features/plane_features.py,sha256=qVYEGKt7DMioZvf20b3-RNtJOQVYUyWANCdk-CdOyuU,1015
73
+ snowflake/ml/feature_store/examples/airline_features/features/weather_features.py,sha256=A5hkWOQ3CTQfaJaUQ1VsB2Ne8LmIrM9DPyrMX0EOHvI,1634
69
74
  snowflake/ml/feature_store/examples/citibike_trip_features/entities.py,sha256=SE8Zx3xqFJk65Tqori4nh0KOPwEY3baMoFsVAYM1e7c,449
70
- snowflake/ml/feature_store/examples/citibike_trip_features/source.yaml,sha256=NMV4ujacID4r007HOttLBm3cLUgY4egAW2kEqX56D4A,83
71
- snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py,sha256=RL6dsxwA1kN4Wvd4N8rCFLoV2bByJEtkB7vtBwq0Vqg,1128
72
- snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py,sha256=WF7wRQf992cSN-3Gl3ozgR9V2OzTJRmXXHrXanza3_U,961
73
- snowflake/ml/feature_store/examples/new_york_taxi_features/entities.py,sha256=7gjTaeIW1URCEZpxHBazbS2wBTgX2a9yZmz5lOC3tTY,425
74
- snowflake/ml/feature_store/examples/new_york_taxi_features/source.yaml,sha256=7t3HAXkF00liOg8-flZMIa-Cy7mJt2Wj6kuaPkxXclg,168
75
- snowflake/ml/feature_store/examples/new_york_taxi_features/features/dropoff_features.py,sha256=Hi0uRTiDG3p2GurWGNgXaSKVdfWNImuc-16hO7GUYf4,1512
76
- snowflake/ml/feature_store/examples/new_york_taxi_features/features/pickup_features.py,sha256=IEenGMwpRub16IBOcWKAcvaxAQXX7Un7TGMuUIUWRlw,2489
77
- snowflake/ml/feature_store/examples/source_data/citibike_trips.yaml,sha256=m0RIaEQ-4iJYq-7P57WdZpUcqeKjW9JgWAHxksstgIQ,918
75
+ snowflake/ml/feature_store/examples/citibike_trip_features/source.yaml,sha256=gutDfijhGkBu1w4r1286JnuO4EhbuRPKwoHisYlt8Yw,229
76
+ snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py,sha256=3I95LMBEo5lXlaztPhjF_MVUmYXUZ9Xaz8ZmQpT0Cxk,1369
77
+ snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py,sha256=LChqltsCBwD8diJN-Qno7a_gOBTwz6qCPm6qTmYSICc,1194
78
+ snowflake/ml/feature_store/examples/new_york_taxi_features/entities.py,sha256=J5oragmf6UvwruMjHhtrlzcBP-rA3Fyqv9VOJAT4goU,396
79
+ snowflake/ml/feature_store/examples/new_york_taxi_features/source.yaml,sha256=0DShPCG972klJjHod0qkXrT7zkw45B3YCZs5U-x4Pv4,338
80
+ snowflake/ml/feature_store/examples/new_york_taxi_features/features/location_features.py,sha256=ycjBkYxOnvpmToGsoTwohBEPgzzlZnm2wkDeYMUKJKY,1728
81
+ snowflake/ml/feature_store/examples/new_york_taxi_features/features/trip_features.py,sha256=RgDl2KX0y8f3B_yKNg6Tf64CsG6_ItcWoCFWScXhjz4,1273
82
+ snowflake/ml/feature_store/examples/source_data/airline.yaml,sha256=CZV416oTTM6hWCK2GPdb38Q8AR3CGIxAZwXrbP9KT_E,152
83
+ snowflake/ml/feature_store/examples/source_data/citibike_trips.yaml,sha256=OaQwNzUHasgGgy8oIOHVRJ5tg7nnKs11hqDSZYs5-U0,923
78
84
  snowflake/ml/feature_store/examples/source_data/fraud_transactions.yaml,sha256=ENAIRcrRmdIplKJP8A5nhXdWSQRNTeQH4ghIT9boE8o,711
79
85
  snowflake/ml/feature_store/examples/source_data/nyc_yellow_trips.yaml,sha256=1PkEybh_ieP-HZme9YPuAf6-pL4D6-6dzNlqdZpH8fk,142
80
86
  snowflake/ml/feature_store/examples/source_data/winequality_red.yaml,sha256=03qIwx_7KA-56HwKqshSOFCGOvLnQibR_Iv2zprz_Vs,741
81
- snowflake/ml/feature_store/examples/wine_quality_features/entities.py,sha256=BmQYBnMglqV1th18JxzH5jZqz4snUgik_lBH7Pf8HV4,309
82
- snowflake/ml/feature_store/examples/wine_quality_features/source.yaml,sha256=uh9gtRpXqlhMvhV7gHmtub1BAkGiRSfCSk_QWFIbCr4,105
83
- snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py,sha256=x0zjiadljbM4juO0uadBKwOZ2AaTDOlDHJEOjuG68i4,1101
84
- snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py,sha256=ePrKOmPS2ZH9HqJwhpCfyW_DK1jLlMeDlU9et9jCF4s,890
85
- snowflake/ml/fileset/embedded_stage_fs.py,sha256=AYa0vRiqQTvi1Z86tAeID_Mxl3kgxbhi35A0o_-DJF0,6003
86
- snowflake/ml/fileset/fileset.py,sha256=yfYFZL2b1vYqL0zs6m9_hmjzyP3TAGTINNz6hF1yalQ,26196
87
+ snowflake/ml/feature_store/examples/wine_quality_features/entities.py,sha256=Hk593l6dqruvgcPRcSGKf2UGVQ9CPxmD547UuZ7QCnU,294
88
+ snowflake/ml/feature_store/examples/wine_quality_features/source.yaml,sha256=dPs0nzf4poLhxDVEydb2Ff3mpRCWQ_L4jCoPO7HV4QA,241
89
+ snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py,sha256=fqZWuCjVQ_AX0gIO-HCjzDMVwj749e23Lx2Mg25gX88,1432
90
+ snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py,sha256=xtq3BdvVqTkP17aw0aCizF2EHmmBVeZOD7UMul2z4hs,990
91
+ snowflake/ml/fileset/embedded_stage_fs.py,sha256=fmt8IoYbHtBMjyIC3K87ng-i5uYwE_2XKFQogNkP-nM,6000
92
+ snowflake/ml/fileset/fileset.py,sha256=u-Hkqr7p97ajRYyd93fr62grbiBaA0AqTYkAAOppZj8,26186
87
93
  snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
88
- snowflake/ml/fileset/sfcfs.py,sha256=a77UJFz5Ve9s_26QpcOOoFNOBIKN91KmhYVTQkafn0c,15344
94
+ snowflake/ml/fileset/sfcfs.py,sha256=uPn8v5jlC3h_FrNqb4UMRAZjRZLn0I3tzu0sfi5RHik,15542
89
95
  snowflake/ml/fileset/snowfs.py,sha256=uF5QluYtiJ-HezGIhF55dONi3t0E6N7ByaVAIAlM3nk,5133
90
96
  snowflake/ml/fileset/stage_fs.py,sha256=9v6TybA8pbQ9n1vp6Sh4Ds2LwPW2M_EGoAhGsBEeLVs,20068
91
97
  snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx52jX8I,3849
@@ -97,26 +103,30 @@ snowflake/ml/model/_api.py,sha256=u2VUcZ0OK4b8DtlqB_IMaT8EWt_onRVaw3VaWAm4OA4,22
97
103
  snowflake/ml/model/custom_model.py,sha256=Nu9kNa9pDFXmLN1Ipv4bc_htG0lPeWKD0AQ2Ma2-wK0,9172
98
104
  snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
99
105
  snowflake/ml/model/model_signature.py,sha256=Iwll4_VbcDtDX0otGS_NVd0gKSdcHQ_OJbZxNNGMRFg,29473
100
- snowflake/ml/model/type_hints.py,sha256=ZPtFuovdHtylrUjuG4fRPPPAdjYyMugSr-xqn542Ab0,14223
101
- snowflake/ml/model/_client/model/model_impl.py,sha256=QC3h0v0kfbfUIia2z6f0AE2b1SRI8OFxxhOxd1wJeOI,15036
102
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=g64uvaCbowz4b-b53DRzV-lX9KJA9bTiW5GvpqBHRH8,20850
106
+ snowflake/ml/model/type_hints.py,sha256=dUu817CywJ8bmJtBTn_pty6DXIOz7Ae_rFOp8eK8raM,14317
107
+ snowflake/ml/model/_client/model/model_impl.py,sha256=pqjK8mSZIQJ_30tRWWFPIo8X35InSVoAunXlQNtSJEM,15369
108
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=_mzPrDqpAfbqmZ5eHBEz5sSeopVdb4eWaDO5u9XAmM4,28314
103
109
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=7cGx8zYzye2_cvZnyGxoukPtT6Q-Kexd-s4yeZmpmj8,4890
104
- snowflake/ml/model/_client/ops/model_ops.py,sha256=-QMtGhdi4qdmro7Dub-bt6ZkZ_XSTVQi8a7EFpH24r4,33470
110
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=6XomTNeLB_awYMlWamFkLiTBhWdStQBY9ZzL6BUM3BE,38199
111
+ snowflake/ml/model/_client/ops/service_ops.py,sha256=8MBEpYAm8v3g78xNQPRXg_oXOn8wsymTwfdm7YhUvIk,12690
112
+ snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=ybPCanfy-LkMSarmerQKtlrammCJA31rwME2I4o6wzw,3997
113
+ snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=XXmVl7CeDfRZw8S1caI4r5UHj27FTybD4jdDBhqG2_Y,730
105
114
  snowflake/ml/model/_client/sql/_base.py,sha256=pN5hxyC0gGzEJgZh2FBHLU0Y6iIoLcebHoE7wTpoUZQ,1252
106
115
  snowflake/ml/model/_client/sql/model.py,sha256=kdglOjmrOsFZYoEu63-BfyLXgnWBe7RrwkknalDKDkQ,5783
107
- snowflake/ml/model/_client/sql/model_version.py,sha256=lguEWCQDdbc_QsUW7FNv-mO2bi5a0BEQSnrDB-fYheE,19989
116
+ snowflake/ml/model/_client/sql/model_version.py,sha256=hkxmpUR0fiVcecnsJ3W-zkwREr6cV_AQggpMJap2os8,20366
117
+ snowflake/ml/model/_client/sql/service.py,sha256=5zHu9MZC4XNlWyTtfHJ6zzYLsrgxYjkPpUCtpy2nnv8,8146
108
118
  snowflake/ml/model/_client/sql/stage.py,sha256=hrCh9P9F4l5R0hLr2r-wLDIEc4XYHMFdX1wNRveMVt0,819
109
119
  snowflake/ml/model/_client/sql/tag.py,sha256=pwwrcyPtSnkUfDzL3M8kqM0KSx7CaTtgty3HDhVC9vg,4345
110
120
  snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py,sha256=clCaoO0DZam4X79UtQV1ZuMQtTezAJkhLu9ViAX18Xk,302
111
121
  snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py,sha256=G74D9lV2B3d544YzFN-YrjPkaST7tbQeh-rM17dtoJc,10681
112
122
  snowflake/ml/model/_deploy_client/image_builds/docker_context.py,sha256=7uhAJsHsk7LbiZv_w3xOCE2O88rTUVnS3_B6OAz-JG4,6129
113
123
  snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh,sha256=1pntXgqFthW4gdomqlyWx9CJF-Wqv8VMoLkgSiTHEJ0,1578
114
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=SNXqUBkI_tPAgdnLrQW10smG_7O_DGwAuK3dLFE-wJA,10095
124
+ snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=l3DAcni567_zLTdr58UHJPrns7q1phlkLDX5Jw-ErCY,10085
115
125
  snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=dC-02DfGfij5IwnhuVxj-oN_a85n54o7txNLL2_r4Z4,10977
116
126
  snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template,sha256=8jYNmQfGw7bJgHCEd3iK9Tj68ne_x5U0hWhgKqPxEXw,1783
117
127
  snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template,sha256=g8mEvpJmwQ9OnAkZomeErPQ6h4OJ5NdtRCoylyIp7f4,1225
118
128
  snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template,sha256=nEK7fqo_XHJEVKLNe--EkES4oiDm7M5E9CacxGItFU0,3633
119
- snowflake/ml/model/_deploy_client/snowservice/deploy.py,sha256=3Jn--iC5_dP_lJLWVShPvivH7EccT9AUWBX2tOavjYU,29286
129
+ snowflake/ml/model/_deploy_client/snowservice/deploy.py,sha256=aJDELD1G_PYLLTsUqvPHkbBEl2n90oUeDG6gzQPvbfQ,29270
120
130
  snowflake/ml/model/_deploy_client/snowservice/deploy_options.py,sha256=X4ncWgcgS9DKaNDiauOR9aVC6D27yb3DNouXDEHEjMQ,5989
121
131
  snowflake/ml/model/_deploy_client/snowservice/instance_types.py,sha256=YHI5D7UXNlEbV_Bzk0Nq6nrzfv2VUJfxwchLe7hY-lA,232
122
132
  snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template,sha256=hZX8XYPAlEU2R6JhZLj46js91g7XSfe2pysflCYH4HM,734
@@ -125,200 +135,201 @@ snowflake/ml/model/_deploy_client/utils/constants.py,sha256=Ip_2GgsCYRXj_mD4MUdk
125
135
  snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=k0SulzWdttRvJkyuXM59aluEVgQg8Qd7XZUUpEBKuO4,11671
126
136
  snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=yZR9M76oh6JbPQJHb6t3wGO3wuD04w0zLEXiEyZW_tg,8358
127
137
  snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
128
- snowflake/ml/model/_model_composer/model_composer.py,sha256=pqEjpNIDgVMaslFazkUyrN9rRixh3Dwr2Wf8A9CYwBE,7631
129
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=4FvWGXHn9C0mvNNh1Dl_F4azmOswyPsA6aW8J8XaC_c,6342
130
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=ED2Ki7mD9SKokNChoOyXRYFJ6TUArH6aYqmV72BqLto,2559
138
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=ZXtHQ4oqmTs1p3a_6iv-Qql4_iRkQeCOVStwQM3xTVQ,7985
139
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=rdIN5qj1D6d5_Ipxcmw5xRDxna_rnZBvF2Ba2b-QTQk,6491
140
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=JF9IPpSrXoyCdFnqidCN67HUqo6MV0CchXzi3klURII,2675
131
141
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2cE463GKWAJCrqEYD1s8IPzd3iPu0X0eQ12NnXQhGBM,2556
132
142
  snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=eQ-FLUGt5r0P9UtDwWFoqSJzGeLBvwEMoHAbe8aCNsE,1418
133
143
  snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template,sha256=L5R04QeoW6dH1PdEy3qo1LS478rTmvvRmrwlgqVwimg,1504
134
144
  snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=NUDSyFFAdEZEWtSkvYxkU9vB-NTjcTg6sjkrNpcmF6A,1418
135
145
  snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=4RfjJ_0Y8NUmI9YpmBqxBT2xk_yQ0RIzznaKGHlS6jU,7076
136
146
  snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
137
- snowflake/ml/model/_packager/model_packager.py,sha256=mbIN3NzvF6akwJ86zBjOn6pJyNPDHaUBT0ohpAtHMGo,5980
138
- snowflake/ml/model/_packager/model_env/model_env.py,sha256=3FTftb2OMqCjushFLBISbF6E4z2CQ8G_rNewf-ahVGQ,18312
139
- snowflake/ml/model/_packager/model_handlers/_base.py,sha256=iz9LRBLKCIASj4TonQ-jK_r7doPSdxErwYz3tX7TCxw,6393
140
- snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=XpVZM8KjCjy7swfWFb0TpKC6uqAqTL1nZbFdJ8DM8ng,4653
141
- snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=_zesJM4Ok4LrshxxPTyv647rCJHaO12XASDsDVXxyLw,10220
142
- snowflake/ml/model/_packager/model_handlers/custom.py,sha256=aqhvRFzmgAxpzRQdMxwrMzBXsjr-q9489Vwf_Y_eXM4,7805
143
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=VQIvkvGZBSZ8bg8QKAyRJ5xvmjL0qi9A3s3ml7mtjjI,20296
144
- snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=1aqeJNEA14hQBuSqo9oQco8T5ogdR_XCjtPiVmrgR3A,11534
145
- snowflake/ml/model/_packager/model_handlers/llm.py,sha256=rPsTXrA70Va8vV0wHKj8O3fwrh24HppRHxyWGIIe3lY,10770
146
- snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=h0FUuuq5y4M_1eRe7klDNCudDaw_YuE_v1kwrOX5FH0,9026
147
- snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=bL6CJApzBUZ903Ays0mQ2ONvn5Qnn01zP40GPThQbCA,8039
148
- snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=6pAnXmVhHt4UKEM4eLDC8hxY1OMEm4Gx_TbirQetaMA,9083
149
- snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=BT5dQsdudIi3qTAIvEYgHDVw-oJap4BdKkaTM4m6Woc,8226
150
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=Y9wqTMc7ODEuhOAf3FQrDstaT_4wxWzntVYAcEa106g,7977
151
- snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=OFhh3QRI085F0dpn4iLpxZtCKnotAEcztrv4Sh4AAGM,8191
152
- snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=3fQ4z8fJE-MjKuIBVLeNXZp7vpQzw00Wk1W3rSe_Xm4,8118
153
- snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=7fofU6KiWflK0euZynWox2k1FXNSDraqrZkioFniHig,12027
147
+ snowflake/ml/model/_packager/model_packager.py,sha256=tbUnu1sdyEY5S60H47jnQWOca7VSiGKPGaOAKEII-iU,6225
148
+ snowflake/ml/model/_packager/model_env/model_env.py,sha256=BXj-YTyWtj_g-8YLN-lqMVAhoS5jE-ZEVIIi8X1EKoc,18485
149
+ snowflake/ml/model/_packager/model_handlers/_base.py,sha256=qQS1ZSz1Ikdj0TvyLU9n8K6KAj-PknL4s801qpnWodo,7164
150
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=cOpS2X-jAgyNyS42BEYlvHGEooiRvmKYLFV-q5USyv4,6015
151
+ snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=hXa-63ysDLg2nE6hahvQv_iiNRb0olzCdj4SLWdS0uA,10836
152
+ snowflake/ml/model/_packager/model_handlers/custom.py,sha256=59IxqxXvaG3g6NlVEPv8Irw2tBK4k5yLNosXNZJGS4o,8059
153
+ snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=2EGUN9ccQXAVL0rclrg1XniU1rimnMC_WmnMUdY-Z-o,20974
154
+ snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=6cXY1yacplIoGpOMaCwN7Jb9ES6uvOpl2QwluILSSJ8,10160
155
+ snowflake/ml/model/_packager/model_handlers/llm.py,sha256=gDXijXHWuhRayM7n5fJXiQX1cV0lvgaRx-eSbo-DeuA,11101
156
+ snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=ZJ1Tb6hQhaYv5z2DZUm4d4QSzNf2uFScFy_sZFdjlVA,9280
157
+ snowflake/ml/model/_packager/model_handlers/model_objective_utils.py,sha256=iC9oy9c9QtfeFV3adUOhYEPxgkQzOjGOnexAZBc4IWw,4685
158
+ snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=DDcf85xisPLT1PyXdmPrjJpIIepkdmWNXCOpT_dCncw,8294
159
+ snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=bBqJxXPzF8COgprUPnujHKpPEjOVVNH1E1VG_h8-5V0,9351
160
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=GUUl0WgZ291I4Xy3pIGF5-WkOoh2OboIMjNzGE67VEQ,12768
161
+ snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=J74vb6EE6Cs-lWTAXUzWxL2QTNJrKcnN3wyUac4_f-U,13262
162
+ snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=OhqC4GcmDDz4IOgDITLnG7KFY3zVtzOJX3wAtLv0bI0,8448
163
+ snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=IvNL1Fqksfp7nAcXIgOMkzPy8kEylrS-xHWu0dkRLDY,8412
164
+ snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=LBdWQIjzFWhZB9dIG9d63wTGenNw6knIeQvgPAcDlTQ,11886
154
165
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
155
166
  snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=z0WnMVFR9RySEpldoPrDsMgSrSW8EOiTaylnTsBwhe4,265
156
167
  snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
157
168
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=GmiqqI-XVjrOX7cSa5GKerKhfHptlsg74MKqTGwJ5Jk,1949
158
- snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=BlBOQF7lPhK9pUK48bwGytXpnTlW53B_8XeLS7YJgtY,18100
159
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=yN5-rbOsjT8vm5SgKoM-GFygxGwQzuKZMbYRxujjiGU,2531
169
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=-CcRzm7lu-DBfRoJvhy5IWIkcTigRODFpDSFq8QNAec,20290
170
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=IEHztlkTYOF0UjCVLF1FRImaKl-51mS5enkcFEFFkEI,2831
160
171
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
161
172
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
162
173
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
163
174
  snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=fRPGbrnq67PRo3e_uVk01TKZ7AZKYM-_lryePkNk5AY,239
164
- snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=UaX0EUYDR_4s9u682UcrR0TXvqj-VcS_zBW0qAwuEQY,4654
175
+ snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=J9oS2x5ZSJb3dQM98xyBrxcsIwx1vyOu6lc0HQCzlFU,4790
165
176
  snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
166
177
  snowflake/ml/model/_signatures/builtins_handler.py,sha256=nF-2ptQjeu7ikO72_d14jk1N6BVbmy-mjtZ9I1c7-Qg,2741
167
178
  snowflake/ml/model/_signatures/core.py,sha256=xj4QwfVixzpUjVMfN1-d2l8LMi7b6qH7QvnvD3oMxSw,18480
168
179
  snowflake/ml/model/_signatures/numpy_handler.py,sha256=wE9GNuNNmC-0jLmz8lI_UhyETNkKUvftIABAuNsSe94,5858
169
180
  snowflake/ml/model/_signatures/pandas_handler.py,sha256=E1Z7nkFX2toMxUOLx595Vv_7bMLK70IFdU9HZp7Z2-g,8219
170
- snowflake/ml/model/_signatures/pytorch_handler.py,sha256=QkSiWCBSRRCnsOaONvRPOyMIi4BfUv0zrirXMPmzUD4,4568
181
+ snowflake/ml/model/_signatures/pytorch_handler.py,sha256=rF5StgnAo9qtFs9Rvb5SQVhneJf7ZDgfDD5vJsL0Ivk,4599
171
182
  snowflake/ml/model/_signatures/snowpark_handler.py,sha256=3WjPhkyUFuIQ8x8cgQMOMrjlqOhifn_g5amPoHM7FVk,6033
172
183
  snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=VZcws6svwupulhDodRYTn6GmlWZRqY9fW_gLkT8slxA,6082
173
- snowflake/ml/model/_signatures/utils.py,sha256=aP5lkxiT4lY5gtN6vnupAJhXwRXFSlWFumIYNVH7AtU,12687
184
+ snowflake/ml/model/_signatures/utils.py,sha256=lBEAqgiTzFitL5EKSmVhKtHtLSYbwo8yGyTACaXWACQ,12976
174
185
  snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
175
- snowflake/ml/model/models/llm.py,sha256=ofrdHH4LQEQmnxYAGwmHV2sWLPenf0WcgBLg9MPwSmY,3616
176
- snowflake/ml/modeling/_internal/constants.py,sha256=xI4ofa3ATQ2UszRPpkfUAxghV_gXmvxleqOew4UI1PM,45
186
+ snowflake/ml/model/models/llm.py,sha256=E2aD4-fKRcB0VHwSdaXSyFWFenWgxAsSbS3q6LkY1Ak,3663
187
+ snowflake/ml/modeling/_internal/constants.py,sha256=aJGngY599w3KqN8cDZCYrjbWe6UwYIbgv0gx0Ukdtc0,105
177
188
  snowflake/ml/modeling/_internal/estimator_utils.py,sha256=XYwOcmhSc053mtItkymKiXk3a_Znxo9AjTep3tSTVzw,11323
178
- snowflake/ml/modeling/_internal/model_specifications.py,sha256=nAqgw7i1LcYMKRQq9mg2I50Kl0tsayh2_do5UMDXdT0,4801
179
- snowflake/ml/modeling/_internal/model_trainer.py,sha256=wLAfgWjwWXj3dqhyzZLCJVYSSgujq6zrYBa4q0pw_II,923
189
+ snowflake/ml/modeling/_internal/model_specifications.py,sha256=P9duVMP9-X7us_RZFPyXvWxOrm5K30sWDVYwSMEzG1M,4876
190
+ snowflake/ml/modeling/_internal/model_trainer.py,sha256=RxpZ5ARy_3sfRMCvArkdK-KmsdbNXxEZTbXoaJ4c1ag,984
180
191
  snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=11cpEaxU1D7R7m79nVLcCA9dryUPsElS7YdlKZh850U,8422
181
192
  snowflake/ml/modeling/_internal/model_transformer_builder.py,sha256=Y6Y8XSr7X7xAy1FvjPuHTb9Opy7tnGoCuOUBc5WEBJ4,3364
182
193
  snowflake/ml/modeling/_internal/transformer_protocols.py,sha256=adbJH9BcD52Z1VbqoCE_9IexjIxERTXE8932Hz-gw3E,6482
183
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=xrayZRLP8_qrnfLJE4uPZ1uz0z3xy4Y5HrJqM3c7MA4,7831
184
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=MyTRkBV3zbDeO7HJaWrKYT3KkVqW51Q0AX2BbUtN4og,5737
194
+ snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=l9enL00j00-GZ_qIanWUqCuRm-4U9fsCZH-L6DneVco,7812
195
+ snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=h3Zsw9tpBB7WEUyIGy35VYNNR8y_XwiRHyR3mULyxIE,5960
185
196
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py,sha256=fgm1DpBBO0qUo2fXFwuN2uFAyTFhcIhT5_bC326VTVw,5544
186
197
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py,sha256=lM1vYwpJ1jgTh8vnuyMp4tnFibM6UFf50W1IpPWwUWE,2535
187
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=6U7rHVgn_RqDyuwJ4hkNpDwQ2sbp4CFv4UZ-Eis0kbM,54650
198
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=HSN443DF9mJ30dKUSfIwKr2k4eiOs1LUwA0aRlJOL9s,54578
188
199
  snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=HnsSmsXAeJrH9zVeq3CSziIaCUDxeWWx6kRyAK4qajM,6601
189
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=Iqk8y4ltjfwDfrBOHmmvYRGyNzR3ZokQNukByUyH8NU,15516
190
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=BVUHR4k5uQzVTddXvfDgzm9nZ_ZnkDg4SxTM69yV9a8,33588
200
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=RfMEPXNco4beAz-Ot1-GyRzeWy9AA7B6uy0izfGw_RU,15497
201
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=zvPnuoabpxpi8kznKGgOCrmaBhheeWOX0FzeIVVcudE,31378
191
202
  snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=JHAo8u7myo1ZF1g1Ia_E2GDnPJqGdunl7ezma9mtANI,17333
192
203
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
193
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=K9_iTZRo_XU7THcR6t51OcmHQxHj07CxdBkKHi-4FSY,51596
204
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=UFm0q-00zs2KkobGf5Pyhv5q7E4rPBXbgJK7ckywsnY,53944
194
205
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
195
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=XGpuBMEU0CfXa3NumS5eBY1k2TA2nUXoDpbUlF8EZKg,49509
196
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=YX5_3a4h-esiuO3h-IBNyQRETx8ROqjppxqseabxY1A,51546
197
- snowflake/ml/modeling/cluster/birch.py,sha256=JOhh4CekZQNVxU1hNf6eWLLM0g1t-LjBBsIgeC1z_JY,49436
198
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=XqzVUjQ6zcilP-PgslRYNRe3FTBDDkx85VTcaIB_YhU,52195
199
- snowflake/ml/modeling/cluster/dbscan.py,sha256=w-d3CY5KHTk0zm05Q0aYR15PaXa9tjTtmyC6xC_rtOg,49596
200
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=DRyJPbDYdvXCLM39VNWCh9V7Dsc4jgw4dz5lHWGP1ew,52311
201
- snowflake/ml/modeling/cluster/k_means.py,sha256=azFG8uEX5J6lS9PqKDgv1kQo7tyrUt4dBs0JmRr347c,51724
202
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=EPXQI46vf3B7ky9PmDCK86Nl1m1JeGNo_O1oYSwrT04,49806
203
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=n_A2V1HZRfkAPKG36by6305ghy7DMbZlfryUdRFZDEQ,53113
204
- snowflake/ml/modeling/cluster/optics.py,sha256=GoIOqcEu7V-y1C5lk3aK13CUrhdsx3r2Tweamci2vdY,52910
205
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=HpWYWZtAwWC_06XcBNIT1RUVW_8QklJw18Q0f3VjML0,49805
206
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=DlL3--nc-R_ISnG4gV6MwB5KmMmOTV2m0xltRSO2OKE,52997
207
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=3mXD667Al2Z7LMT9hYP_0Ykp1XkGpOryWhMWjlQZkeA,48938
206
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=pAcWWWolEt0yYBDE5HRzLK_h3oiIuOMSvs3hNXPefHE,51854
207
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=PY0ZxsG-shXMKN4HP4fwSlCbWISvJW1PHMG7Dwwvb88,53895
208
+ snowflake/ml/modeling/cluster/birch.py,sha256=WpppoDJd8cPko_q7SqERNQmWinKvkJugXYpC_yreJLA,51767
209
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=3n3ufwOZ-AArgEdbxktWG7t5IPef4cEaYBUVl-6-xq0,54536
210
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=Bane9kntOAeUBXDhD6UH7hS1qpmirx8Xxgq6YlGyv-U,51928
211
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=1rizt0sQf1n4uS4SUWbEmA_jsDjsV8verQVye6no8gA,54657
212
+ snowflake/ml/modeling/cluster/k_means.py,sha256=hqKpi8RTOgQ-m82Gecn-9T02vXDHWbP4dTJ6kZ7VOdo,54056
213
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=FXjZo84ujNRDawFcvwszAsA_70mWeTdxYSkqcUKBRPs,52141
214
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=HF7S2i7-nHjZXkkHgPpGsFVnyinTQgGAvqJEMR5RULI,55454
215
+ snowflake/ml/modeling/cluster/optics.py,sha256=iQjN8gGAOuiuApi5H5wWfovxp1B14PvCFjBS8G9dCi4,55242
216
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=IKIfXLiXrO2kBZF7_GizIjvRwi8mgddOq7hZeG_C9H4,52151
217
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=eyNUzvyzECk30N43k8oXJ1PKu4IKhJbEslFRCHzFtsA,55341
218
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=3KANeCAdngsz0rjGYry_iIzs6THpKOYOrvlCxlmzqYg,51284
208
219
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
209
- snowflake/ml/modeling/compose/column_transformer.py,sha256=71LEirqv49TIUt3yMEjW_SpUdZeDLc6Eq2D0m3n_eMM,51776
210
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=1NwaWTVABvYhApdXJHSb7BLrOOnmGc2u-v0n_4Hv4IU,49408
220
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=XFRXmQal2PxA5kOpkYcGRV-UR1WOu48jv9zpTcPp9zI,54119
221
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=yzrAq5ItbmNYrLFcb1ZPg8p4HJ8bZq-2B5BbkQ90_pE,51760
211
222
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
212
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=pXq9oGodQZvBcUHBk8BqWMAnTZHeSP_sKA5PSCllTBE,49830
213
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=xnc9sqX5yYXTpCSXaKTM5MWvWSg1vLQUc3bxLNeYw2w,47638
214
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=g9S1OFD8oDG8eFHdbxeRVRoXq51ZmY1gyEfGD7ZoOY4,49502
215
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=_LQa69Vms5LRZZfDFY2ZIs97I_NS5-fNUBX-fnHpymM,50667
216
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=Ic3JsS3FnKFOkqTyKl7hnJKBJ0f2QvVsxa0S2H-ozak,47776
217
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=_kBmsMyNcA_moBOvjucLfMp90y3YlU9HKZZImOxGbdw,48531
218
- snowflake/ml/modeling/covariance/oas.py,sha256=Zhdeao4qKP-QxSTVJEDGLSZfsfRlMw1SEaB7fU997Hg,47417
219
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=Gi2fFZj5UxmsKgLldV5GSSoLeAkcbAueEjaNnqc7ET0,47793
223
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=5Flt-asnoNd75KFXlmaVXn7xDVUcjj6KTvIAEXkwa2U,52172
224
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=iCTnOfJVBC4bb_9oXFld-y0L0N8QDwo1gVeVlc1FSR8,49983
225
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=i2uuR95OjrPvDoXso2j8_VoWz_XL4NftMkuro8CKSyg,51842
226
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=RA-e3c1QdabVsDLDRKQ9qy_BKvoXDIlP727gaIvA7ME,53009
227
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=mNmGUIUe5bA7MNKt0Dvca-nwWj-mSmuUH6Szq4lBIa4,50112
228
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=vCDZWd_XxPS2zyQfe8Cfx-IfrzT-YUdHRfoO3CrZkx0,50866
229
+ snowflake/ml/modeling/covariance/oas.py,sha256=jjjGqnMLAvn6sC-_iag5mVVKUEPZYO8Rctaju_q1p-4,49746
230
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=DlzVcSYaZ7MVLtTDfKIHrSDcFggTfNKoPuTLp2mgz1Q,50135
220
231
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
221
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=4VquBu3aa87sQc4t-bhb3Hzqh6rGUkNQACibKnMWHRI,52790
222
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=xsf4a7lZyMq3xvu0zQ_M9iMlLbQgpUrypSS1HB8busg,50453
223
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=s9PfbTA8l5PTl0aIw54NrbznfusUQjao5zW9lXeZaFE,50387
224
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=8S7WBdrn0n7wvQd9rJb4oVJ9mS5IKzhegpYokh6PTs0,48747
225
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=3P91UeX8jksZB9QVXsjHTmCP7BR3Bug-r42KUFQBvQM,52745
226
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=zbOwmPz28O0XcgfkdoUFoQoIjllKq1Gs_1Lp-3ePKqw,53831
227
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=-ZhoeMEb39KNk2pOKSCinQhnBFUNaxuTL4kJAyMafCI,51096
228
- snowflake/ml/modeling/decomposition/pca.py,sha256=lT0TUUGTp1TTmn3gRLIM3DDw_3qNu1rV-IsoZra9YNE,52014
229
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=cGna3ORrGfpzDxjj6A7J5eQcakX-MTD-eLU3iGP8lAQ,49901
230
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=T970CkfwOVxwqofaNc5BYTObXGN4SFuq1oP0q-ysPZ0,49524
232
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=1xEhOQZsBFl5rn_lF7rP5KuAC99YKuCyoc4RQ2Ggql8,55134
233
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=lMqWTJ-36-phThLF8YNdzyetAfgRN1gbth2KgZWqjGk,52793
234
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=fDQuyIGBh1MRdUrQ52edrUwv8C4hHkF8zlqCqN7mIKs,52720
235
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=WkpLcxw4CjZduHFe_fbc1VJVrr06AMwFgIyXLQhZPSg,51087
236
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=BvQ3QLyZGTwPVRAN6W_J0Ei2tw8T0Dz4dkLh_maFK7E,55080
237
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=mMfX7_NuA2i1bPDvQknKjMAX2I5RmekbVR7JUUWUFgU,56184
238
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=UbtMCC-7o5FiE-dv1hiQKyQs65DUss8ADzZSoFOrTIY,53440
239
+ snowflake/ml/modeling/decomposition/pca.py,sha256=SzsTeCZSNgMl4bcYfim0QYtoBs0WU3h6uQFv8nsNBys,54343
240
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=44DZQ03cwwNoRKAMhGuxlnTxtOqDgb5nrqZdEx_-h6w,52236
241
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=UNHwW7QC7TnGFUJQ-O2GhfRojk0JB89jVY1UKb6gM4g,51862
231
242
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
232
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=aD4eyWhCJ0dtHnuiRdiMROYGa5pk1Ww5PSFtKZGcsTM,52195
233
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=I4zI7ebh8m4WbtTo5HIjQGY20RLeW4Yd-bwTTvRVhHg,49977
243
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=D5lJ6zwdlo48VihJQ5n-RwprKVXj-R9bP2x4YhAGruw,54547
244
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=1tcGe7xSzmM3joGcDYqueMaZmzjY1T73jJUuRaMY3I8,52332
234
245
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
235
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=QSROCmhdBdQXL35Qo_58mgzklGFAFoMREBSlFSDKHRg,50795
236
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=sru0E3Jluo-xblOsiQu2i7uVq5Ii3NJy5qVOuYuphgE,49686
237
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=dfzXRYNMgFPRtKiHZJ2-sV7GnfuuYC5dXaxip4hooaU,51706
238
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=3Y9DXqe5CCRbpkAWFNdEshCHSfTr5b473kcPzHNpCI8,50942
239
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=4vwYcR0Gxm4dWlsLLxrDZIkb7yd5rBII3ICzVYAvdT8,56626
240
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=OY7vVz9GnevpLL6_vP_tj9uTYnRAU_VRfDLt-eBzV68,55230
241
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=jyjuwXiI-o_08lz1FEwbMo4Qvx8WFuYQJvfxEIh6NLk,58081
242
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=kzDj-tzK1Zh3hG8nslnZk-V6Yeudwi8TUe9_w0rJmgY,57674
243
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=jFK9JOyTZq4VDRNuhYXJguqkHogM-mshxQhA-EYV5KQ,57915
244
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=jlzEtA-Il_zcgrN2AsypiiUsbekGHKE90FNq2igIhIg,56400
245
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=OtQ_grOT13s47YaB4fsgDwKcJTylExq5f_uL3jAFHdQ,50978
246
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=iI_pjip7zCA70IBVZmIUX1wM84aw1BA0GfC6ATldGSg,56609
247
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=XSb3MwsB4esvoZHx_XAPahF8ABjdeJNCdTOAKImT9y0,55201
248
- snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=cVydbNy2f7a2NBxvUCw9E46whcv7NMnfA-p7D0-FT5s,50920
249
- snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=0uWv7Z5iOU5g24MhtxFYb-F6NzWcsE0Ef7IsV47SJZo,50473
250
- snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=IFYsFGYI1tFa21MArt03HrX5JvddyRNm4hEzoEUlEXM,48999
246
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=xCHPxHk_bvkvuC0L2mAPNOuvGm3QXUdcnyYj8SOsf6g,53139
247
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=Gfe1Bp3StmoSw2M8RifRHEce-3hURMjiP0kMnQDfJWo,52029
248
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=T0CNkJDEXyFRbW22fZFhPnPgSivBkQFRq0htV6UzTcU,54049
249
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=f9NKeKpFhZq5LvFDx7l-HvPGXHXS1FucxobYjxXzJrk,53284
250
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=TVzQ9MRnAmDaoB5S64NLkW3vxkZ1ys2XyvEE1t77lsg,58972
251
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=uFOzK33D-ty8yST6jidpApZzCJGkOmk7QLzq0gHYKjc,57575
252
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=K5JwHhK7Op-QdfRLH1udZRYczp2rci9cr-6fAig_I_M,60433
253
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=VCoHa2uav0ifLlrSr_rVckXOH052AcwsderN_3RQ_sE,60025
254
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=k7vKo7DkWLf8hgNCBiu4Q6LuTeUR-qCJXjWsr8hyKz4,60271
255
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=sBiAAFwSO0mIH1Azg40E6kfn_0bq9dVnDv3Rgf6BvgQ,58755
256
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=CQMsz8HnJFOG1iIdHh0aJQNeUk3xc7OjMBqHWrbSq-M,53319
257
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=efQ-b4M1fy1dNfJssNi--DBbvGkl17M5ZiNh_g3-i2A,58957
258
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=3d7mwPNJp_N0XU9fMJZaslrmoukXbhc4kQgl_kpFXQs,57548
259
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=tJ8KSqKV2Isa4vn_jk9jbdWYdICBmOfj0z1RevkxAhg,53263
260
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=yIbXpk0ugAIi3l6H0MLenOBv5BY0c6ZZSooqTwQ-UUs,52815
261
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=tJS36XXNspERN0a5DbBfjidxUgzmZHGD7uJkG44JdhQ,51340
251
262
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
252
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=eS-igVAnxLlhBpn3GVTB9kzxOE9aSDom8tCI8kuxLnk,48336
253
- snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=XQlFrwBMCt-2DrRNzGj7bJiWxlcyYRpAPXzzfMJ87LE,47937
254
- snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=1OkuVewZQZg2qthlIOASK8XPZaeaJMyRK5Jwj4tDF7g,47931
255
- snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=OyPeCIcUFypzdEhl3NRFBB7dDkSGQGlipV-UacRVeXU,47939
256
- snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=zO_JGWE0U5iF_ruiJOS1xWbbJLKTDzlheEy3bHbR2rg,48030
257
- snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=Uh_WEWjInPmaRCSh0JXuqSj3Ai2fVE1xRoaAtv3p0vc,48085
258
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=EgCyX3pdkdVeOByVvgiqgfTlbmTmJdrxKEWCydrONg8,50789
259
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=KWlDhy65YXAyt3qS2nqOuAYVxtV8gnS1bSjEUFyazjI,47725
263
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=xgfmh7bezs1f7RbsSPJX6oNHrYGbeDZRVwLgcXDUwyc,50685
264
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=iK0MT9DDjKa8e7GTqc87tsSdZOBYKyfVvWrd1vFmB5g,50272
265
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=1kutkr5n1O2g1VNGszPA_QcR9OeaHkR4NZp3qMPepmU,50266
266
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=JUaO9gBs8RrEzCmpYGKuFROjEQ-v8PA7ahoUDW2kmOs,50274
267
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=iaLCu3mAez_uC9WBSJ2Rv8AdXHvh0J1XX1MZpUV-D1o,50367
268
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=43gdD6VBf-7Yc3ZDAviBmaDdCp8X3w5Sm_HdN1Mfa0s,50427
269
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=BvAUyW7OXR49orK1y_JI6Zdh-25cSBYAb6qvxtjXM38,53140
270
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=Vhpo_aSGepWYZmY8n2ksFacvSkoytD7xGW3MQpzbGos,50068
260
271
  snowflake/ml/modeling/framework/_utils.py,sha256=7k9iU5zAWa4ZpMZlg8KfSMi4vH3o69w5aAh5RTRNdZ4,10203
261
- snowflake/ml/modeling/framework/base.py,sha256=gGsQLJJQcFvtRn_6uhiB5UB3bV0HFiijJpkBvvDyFUU,31156
272
+ snowflake/ml/modeling/framework/base.py,sha256=Q1Yq8SesnpVWdtRGc6rbuz9T3hcT0eRjl2ZiWGyWAeQ,31954
262
273
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
263
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=04H5iTImclnaG3QYJRSfnRQfBl2EfNnheJXlhzeuu-c,53347
264
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=I33qYg_R8NDieFBJvd12mpCpe6jxy-fNhqwelw8e5uQ,52412
274
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=MIaZ3SDDWhuGn5UP4PXsxEP3If8CqsnUPYep367bxwI,55698
275
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=Jx_lz8VBjvrJIEDnZTpg2xKEeaTzZxyVFl-MnyUewe0,54762
265
276
  snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
266
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=9RXx_881cjE1D_Ge-4XcCuL-PHs7w-PwhKyazd669lc,54249
267
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=ok-sB6aF1Myilb7obFQFec4RoWv790E984yeup32cWQ,49965
268
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=Teuf0BKOr3i6RmmW4K7UBMGIHOkg4-NPu-XOiyFp1-s,48822
277
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=f9-lkXp6A5MWsIotG2jhjgwfpBT5SmEXbBLVHlfpNzE,56591
278
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=psSu3ZKVEdBbt2CrGFQvE74WRKneMiZY7nGmx8R7dqs,52301
279
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=oFIk0D4rxyI2BPc7q44hvjHx5jshZB1ogCCfG5Z_W8o,51164
269
280
  snowflake/ml/modeling/impute/simple_imputer.py,sha256=T1niXlhS2vWbhF5IQ2k7qlBXKmvYVC3y1aKq73dCaBs,20946
270
281
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
271
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=iYAZ8PxMQ4yurlSYdk5v0daPSyo_bXBZBbbatm721jY,47853
272
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=ghFz9Tt3S4qSb2V7yG5Idzgf4leJNvovQO7JscUUSRQ,49624
273
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=KV-nopNzaNO5hY085EL2b1IGToCMYiAAkcfkLdIjDsI,48872
274
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=CkfxVDFXH0g0bBHtj4YqqizleB5g-XQbvQbVkkaYeB4,48226
275
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=V103IK-LVZV_GnNRKHRvf8SqtZzRf2z-humuv3Px-c4,48274
282
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=lO7b5Sy_dp0CMPURuZLFSYuPrWtst_9U2spr8T3CFMQ,50198
283
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=qZ7ojF6y3E9iCY_8pU1Mlw88t-hDk-9R1PYAR-CPN7s,51958
284
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=c3waM-uuzIYmHbWxbGomi61ckhjdny4y7HZNO5vYEVc,51219
285
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=r9Xe6SW103BcXe0P63EU5DO94Hx8haJil0Izc2EwGwA,50562
286
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=5sBa5nr3q9SHuzLsdKvm5ftGv8_8b66rY8x_N4a1O9A,50617
276
287
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
277
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=NBdl_aCcc78yYNSf31N-oeHycA_l-WTW0xluEgUMooA,49726
288
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=sE-B1WSY5FFIXLUN6gSEMBEDqI6YkWPFKJnakkyd_iI,52063
278
289
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
279
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=L9Bih5uStC-Ta8oyjJR0jv9Q7k5yiEKCArjaySHCid0,49294
280
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=YU2A2Ewo99AL0oOqK5nYSKwA6hjaGYLo4DPBH9--Qm8,48797
290
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=51XS2g0xVbBrTrhfF-qNKX1UKVOG5vZBDTbJnBLXgxo,51634
291
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=g4Ktzk8fbuM7yiugZTMkoD3et-NjMFqVlIR_zG9UBQE,51136
281
292
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
282
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=XEYZvnaJJlElbUFJP_Zt6WBCbADd8tYYPDyoD_uAV8g,49671
283
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=iZjGFwKoGVoMK7_KBFC3EoPVNnSeNQgv4pUz4Yt_AfQ,50087
284
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=EIAn_BBDDbpRq5GNhH3xLeernz3eXufnKZrK7ydWk_Q,50659
285
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=OQrwzyFAhJCJS4kYDTXMYD3U0sLQt1QPNT_Svtd9JMk,51927
286
- snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=XNPXohb_s8-ZE04r3QmN3XS5z645M8EcZtWG7cqo5gE,49739
287
- snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=hPdF84DJGnarFa3RD6pdiapqKTZ6jP6texhqMRHVtPc,48936
288
- snowflake/ml/modeling/linear_model/lars.py,sha256=7CQlfXJIc7Xz_97nKaD38LLydFEp3g4EurTudDPgvBY,50159
289
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=f4QPrnc2s5_olqNIauFLyBJJPnjCMiiBYl2lP2QPea0,50380
290
- snowflake/ml/modeling/linear_model/lasso.py,sha256=_LNtPWVKs5Ijqi5Vbyp9BBbJcbGCS30cXhHN0dkEQyI,50265
291
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=mBoCFXehOaQM4jXZupM0BMAT6pZUbe6we90LV0sFN68,51050
292
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=Cw049plEqVJA868QR47vHuTDive1sEExoQ3P6uBwncM,51295
293
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=_PO0Y4iZCwAOz7tJG2XbGUns5avUvQrilr-INJ9Ewv8,51256
294
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=gd1TJhxGctmsPmnxpL_jsvUNeL0WOygibM-OsRkfF8Q,50602
295
- snowflake/ml/modeling/linear_model/linear_regression.py,sha256=j5Xh-HAb_rIcQMfewhspu5w4M3eQLBrDHTDxaAw1fCA,48478
296
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=JjeIgmCQjD5ScyfYFl42cag6jBI15n1XS37WvtNn5Ec,54733
297
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=2CzGvL-O0REYKTDalFrHuzDXjFvUX8oeB3KPyK2oMxc,55773
298
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=ppjO4PZiZANuD9Aq9IkCmWG4HeQ-1KiHmnS3GGL_H0o,49950
299
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=-GnfKXcdfV2aL1JImYUhbdBmKJUrauo4K9m_hrB61QU,51588
300
- snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=Hz2olnylyEZBsHjyoB1c1JtN7daGg_u3WavDt-vZDfI,49498
301
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=y20mLXkHbSWjtOaus5tXKrGlHazmWHg6GBExCEzI85s,50760
302
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=mZiCfvcu-c_d7aoyqrIKA0gBbsH6VKW8CZgem2mBrkQ,49105
303
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=2h6NzmbiDCYKq-oToc9sj425h_yUWuIdJHmfx3o96pQ,52461
304
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=C5O73iGAiAeWgS6_OvI0Y7yznCAfVNio7T_3maoU9nM,51528
305
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=0txxyIYrP_TCFFtHCLT7ZZQY-KX2fsRyopSt1PaoJa8,51845
306
- snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=LUGDYcOJhj5J2w6LUvWdLRJW6ocjRhSqYAxewr-02W4,49784
307
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=XCa_uSPa-ufmlu-Cjxk7RC2vdbmXorZDNRKVIAgK2XM,52903
308
- snowflake/ml/modeling/linear_model/ridge.py,sha256=7PxOQSaNP_WoGWhyruKX0yaqJCkHd8nocJCs_pihfYU,51809
309
- snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=mphwSuzmQdfhmNyVMijXFifDLVLEkLDdhax1YnI5IO8,52197
310
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=NLp1ih9pmk71OHWHdIvuOUnF8vr7tCTZtmrJCBpObjU,50192
311
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=BlJLP44TG4M8Fd1ygQ6DTKpR6zzipvn10KzzafijSzE,50893
312
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=NSqWxj693EefNlIjH1NGjN0hITDzPOtBcGhIw2vTSu8,57270
313
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=s46-agva7istln4N96cCt_iOEft-5ZAAdrcAY7zvq48,52152
314
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=LxbXjd-ZukPmvZ7dsOXp3XNIkxf02ESWrvbRC52DeEc,54741
315
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=RoupM8uJLO8Wei3a1Vtbz6LJv9UkYWyovjzQKkOPDeQ,50219
316
- snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=j3WY7u3mxWQYIjBjh-8NeBFbUNF_OIWpQTrN8771iqg,51175
293
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=libX-3jCf9ANQiQBCnUi3mCJH_sTqYcOzNXaTjkxMpQ,52010
294
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=2lKuNXLrWe6iSPp9TH8GVMhTr3YYOOd37tTnQkZS2sI,52426
295
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=shdLZBXrS9SHU65vYoMHRPxnhF86kQTjp4Gjj6-lQl8,52995
296
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=xO--Rmj0zhws9oILt5-201PKSgPLaZhl1dWmwOUr37E,54265
297
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=ku2c1aw5BsZWyV_bU6QQGT4TaYexWEen36C24pXNFQ4,52079
298
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=xd5mIGMPwvVWvsHaXaSp8sASgoaqpkhsGGIUKZZnhGs,51276
299
+ snowflake/ml/modeling/linear_model/lars.py,sha256=Ao-lvzLWHGK6ScztTF3b9BfyXXsM77V34IaAEaFe38k,52489
300
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=Ybz3eySqUzIlW5Se4nVs9-H8K1JCAoiL0XSykPVG2v0,52712
301
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=23Xq6mW2MhbqSB2QmTrom2GNYrrSazyYRvgW4UoyNlM,52596
302
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=XvqnxUArlW2ueY6a86CZb3VCprZoSvM0ujTW7tHLooc,53383
303
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=Gn9ep6c4ywNHITQXs9Xzq0yOi_IX9y_ZDnQGGmnYKNU,53630
304
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=6-EA1HiM9E66RPYRibpclinOf_y3jfiucY1-wh7v38E,53593
305
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=VYRyJbbdg-mUbzFNrJBXcrY1ktESPQM-_gLyPAv2sCo,52939
306
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=8J1dRfvW4EHBJASbWfMTSn7UhFNGB4dSPgtuep7F5bI,50820
307
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=tK5o_8_Kvw2tbG9PuHp1JWEH2sgDqZB43MmmCUzn9mU,57077
308
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=F12MzbzspZeDslTT25QGyy6HWTgpoL0ft7hXGj2zjyE,58119
309
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=fvqTB8Vux9C_c8u9ZgbPbP4uzGIAm3swngQ-wfHu2h8,52295
310
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=caxAkAk9BL8qcvlhcDmQQo2p4T2f7eMhizGN3xo8iNM,53935
311
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=LAXSR5drLsCeK5AFt2OBsq7sWsJVbuKo8AYzRb24VN8,51838
312
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=rSuQCsPb0UWZWDq3YPGR_wPWpeKnGjK6eaN4xRR1NGE,53102
313
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=INhaAfXVXCix6I0B8QzxhNRqy9F9JDEfiQ-mUvwxU48,51456
314
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=Cfv0rTGYjMqXBYiuM_-OpWEevU6_GNqYCYi-BbbqHjM,54814
315
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=r4SpeD5UDnkeoUc8WcqJjWyZ1CmWDiEnYr_bMhqg3iM,53880
316
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=CJeXuFbdTXF-AaUlK4hniRNIroJtfQkYpxWZdGcKMEI,54181
317
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=s6i0l3MTZliAKJRPC5XPBNG0XME_MrVcrsFFQtwvVAA,52126
318
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=ekr8u3gRP5R0E2_AN0rrbb-AQnfqYYK9cyCZO31muMA,55244
319
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=rLcIYcZPUfUgcYyd1GFxGkMBck6-xhlAFg4Uvcqit3o,54140
320
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=JPeO1BTt_f5o0mysVy6-3lY79TEPgr_cEYdc9iL9Jaw,54538
321
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=VyC_5vuOCfQ1_V50xZFgF3275TaXyIjE5BlY4L0lRdE,52535
322
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=sGDUCU5_k7rTS5uT-thJEeejio2Xze8IfQNsmvx34xc,53226
323
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=UujlwkpZFVCjB-juO80r4ztn1ieUNhI_Pk3Nd4lzuDI,59609
324
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=OFIZsnjS3XTZbBwPrWQ9HX53-nJL_a3zU0g6HQamQIw,54492
325
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=XkcLGt_uYPJlfTFLUnSHWbqp-57-44erp5o2P6PS3b8,57079
326
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=sBxKQ-aOuGum9OD8mT-2KOvj74LOoG98HskFzAcgxxE,52562
327
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=84HPzLmXY8JwExYgOypjqa4j2czXykDRiVIY2xbw_u8,53517
317
328
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
318
- snowflake/ml/modeling/manifold/isomap.py,sha256=X78nMPqC7lRkgXr_QOESTmZVL3ofekECR2UqDiLX7O0,50486
319
- snowflake/ml/modeling/manifold/mds.py,sha256=eiouIDYVXFAUG0oiA-epAzwOiiJf2o-6jWwIyjuoldM,49706
320
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=b-uNomRv_TZlIdGlITeaayUzYHagWgr5l4cs4yTvTsE,50557
321
- snowflake/ml/modeling/manifold/tsne.py,sha256=-PSot6jXJpnycXj_4TH6w2W5x9i-yiavmIz-9gd5BxM,53496
329
+ snowflake/ml/modeling/manifold/isomap.py,sha256=98zMptQAidUb8Vm9cSR7Q5X0j7sFvYXvIWo7RZzbAPI,52818
330
+ snowflake/ml/modeling/manifold/mds.py,sha256=iG1ddsWHZMPAZoEVnjZ5zdz9eYzIaFJgyDWk_226BKU,52035
331
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=0KNqYB4xqiF0n88iYiYgJRBTzNqLbFKnELgoCeo4Uy8,52900
332
+ snowflake/ml/modeling/manifold/tsne.py,sha256=Hi1tXZfdZ0ewuJlvMHF8OP4aUdqs9jrWGeW3gFrWFDo,55826
322
333
  snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
323
334
  snowflake/ml/modeling/metrics/classification.py,sha256=5XbbpxYu9HXB7FUbBJfT7wVNMKBfzxwcaVzlMSyHAWg,66499
324
335
  snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
@@ -327,39 +338,40 @@ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=NETSOkhP9m_GZSywiDydCQXKuX
327
338
  snowflake/ml/modeling/metrics/ranking.py,sha256=J2o8cDhS2JmcwF8zTA6AclmIgOb4P3qRNSqTb0FWZuI,17656
328
339
  snowflake/ml/modeling/metrics/regression.py,sha256=FEr48UddRq5ToD4J9fiwZlo0NDB82oi_iaAtnBxJ56A,25932
329
340
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
330
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=t26TTCmcTbZ33uRpytCZofh9CHavg95qkhpl-4yW_kQ,55059
331
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=nwQ4O0rJtP2C4Iqtp36x8k6_kJ70-xM3umhbOgETowM,52960
341
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=0stI79bHg7N-qW5m_9M_GVrvrNbYpP3yryoDuhJfmOs,57408
342
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=dwnTh-PP-j8cWEegPNrbY_jAMBuZGp-Jqx_3-8WLLQU,55301
332
343
  snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
333
344
  snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=K8edz_VVGTWezSxeq5EeReKSrFkgZfmw-5fg5LuD_Bo,38021
334
345
  snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=gPnJ3_YL_QasD6dx2YSDBltDErylZjYSKNKXBus448c,38763
335
346
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
336
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=5_m8RqzkhdZh3-4N8SvgnmWwgXA1JkRUMSt2BDdsdlQ,48478
337
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=Q_wLk-JijO1IQt1gikXFctSSLLd8f1I9sGXqAJECHqU,49412
338
- snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=GYokPhI3RO_iwdgcYvp9eLRge8VygB4J8G-x4hQ1HpQ,48748
347
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=AXJtry0aTK2ywBYi7TYVFoF550x6RncY8T4wF9QkxIM,50822
348
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=Bjz-owatiS4mJ41B_TfQwtX8WbWibFJybH-XUaTPSh0,51757
349
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=BHGD0Nd5F2B4S3LAgmB8OuQ6VoLa9u89jix_vBBzLdM,51094
339
350
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
340
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=m-sdAtV2kmpepve-JugFRDgcWBROvcIpk36oFO6MO04,49017
341
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=z4HV6tyWp76OLO3OIsNYjzbkWbl7eZXYzF8ZiIPFlcc,49352
342
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=ZGwz9bjMxSEiHz5eawTh2gvwp6Iq_rzK4DBJHYhPQ74,49032
343
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=7J-AVaTK-z3iRgWLdSyWUGCJEyc5O8JZlOBv11cqaYU,48161
344
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=1t7DdWZXdHfbBJWukvyVf3KMAyQLpQ1ZZ9Oj6NIYLZY,48797
351
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=RzNfiLQOWWhoVfMQkW08XODFak0PYvwL9nQq4Oqpmzk,51354
352
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=WsmZ24Um6XBMyxKi3t8vw7jfrp2tJgsxFKtq76j-qZg,51691
353
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=YjleyMvB9_s4Z3rt1NL-gWS01POnhL_WpWpvMD2hx6s,51370
354
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=J_K2Z9cXK9CBmMYLnVTUj5Yk2Ep15VvkrqNrHN3XJD0,50497
355
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=TZo5x7YbBminpr8efvAItmBS6wAYKabufwmgRqEtW8k,51136
345
356
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
346
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=Za3lXdpV1yltloLN1CjtU383s4Yz0kmUfWwSzxh5cSU,51866
347
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=1QJLPrEGqCfbk5QyPzH3jMvWo1ds-is6qPXDRBMfXp4,51337
348
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=I_gVXJreNpuLVgT6I_ASgyxDcLjm-czpz6-eBOi80Dg,49779
349
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=kKcBCH7K59OECYWrgsSWUu4qDbpkmtry14B_Ngso80s,52357
350
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=KPD4psFrwMu_2KaDV6zZiY_I8WxRRO62yv8VpykgREE,48355
351
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=2bpzr1CbixQ_mrfZfn6YCSpWk20nkkjSMvAJlcCKir4,50248
352
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=ZRsEVMYQM3KzXKNkKz4wmCAj3Km4CBo-aEDzddZtoOo,51827
353
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=-ebpHawA51N0FZ_YWXDK5PquKZl8cu72b1dIlCQ8p1M,52279
354
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=LxkVr2eaPZzYM1FgUnnky8UYLb3Fw_JTv82kh4ZouSk,51160
357
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=nw8667CaIoF3gHfmthNQS1jNf63Y-TGL3kA9JaEFkjc,54212
358
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=0DdYz_tUzXR4tGNi_GOh6ZowABk5h6w1NTaTx7a7WJM,53682
359
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=k3rkq3vP5gslGNDTa-Z_7ASQg68QRtLwcbNeMecQqHE,52118
360
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=K1fuquRTzFijOn_ZEAXO1H_RkzCz11EEjvl9NAg1jhQ,54701
361
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=Jxsdvy8wa4UOV9woTRPVp2VYVRo1WKM9gcIH4RRePoo,50696
362
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=kRHojziGM-gery2SJGna0WaP_2WWNUyKTg2DMrr21Kw,52590
363
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=n3Kgl0Xfy_jxa1Jrnu7Sh3U-PtcbwGxTNOrJmTSoFKw,54183
364
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=SbBxsp-M5ugqSmOHqzD7WwGwVWSWVyoqw8vzCsvXedE,54630
365
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=1Ohg6swTb7btnEwGF0HS395Zu2HgsfhH_URMqCAeMBs,53510
355
366
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
356
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=HtRiANwEwCjpgbhj4klsCOUw6HHMRkXUBeSfz4ZboQA,48987
357
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=tfNfjBo2I5-l9hzN3qLTiZ3pAL89JTquebp_KLKLxM8,56239
358
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=gUa_VVRgGUhEhRTNHoDgmgFN8nI19SyjmxG4MC8SIjI,55508
367
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=4ZLIC5utii-aHyQxyu0eng154uf-loFL2wAyA7J-DnA,51325
368
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=IvUTN_b7gGge8guBLUYMXpSA-hinwz4DjNoY54zAP5I,58578
369
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=WxiKTe_5BO7VUMYZfn58dM6hPg-KTXfw0KwLUb2CPIE,57846
359
370
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
371
+ snowflake/ml/modeling/parameters/disable_model_tracer.py,sha256=uj6SZz7HQpThGLs90zfUDcNMChxf0C6DKRN2xOfjmvI,203
360
372
  snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
361
373
  snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
362
- snowflake/ml/modeling/pipeline/pipeline.py,sha256=XXP-km2B6AqPGMREyjaiYxLYqCSdsJIf66ZMc1vRvYo,46517
374
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=xY5uZGxf8JXLrX78s6_Q0eqxOYRuOe2Pz_XxOSG3Akk,46281
363
375
  snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
364
376
  snowflake/ml/modeling/preprocessing/binarizer.py,sha256=MrgSVTw9RpajyYe0dzai-qnpdOb3Zq0SfJRpHJjpnoY,7383
365
377
  snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=FdIy8mpjsiMqWsUL07S27T-JNDVgE2bvNUJf4HcBik4,21533
@@ -369,29 +381,29 @@ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=leLeIrVsXn08agPqL-N
369
381
  snowflake/ml/modeling/preprocessing/normalizer.py,sha256=0VmTIwldr3F3KQC--6RsYkybWjWuiqtxn4PuWinH0ME,6997
370
382
  snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=DgV6eF4a-d4LtRqoYxC5H9ASx8EBlBVp6nZ2YaqqPQA,75081
371
383
  snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=ngdmbJiGXtiePfh_6TUM9LCxu22MJPzRXv3yQJXzSwA,35272
372
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=8m9zXUihjZdWp6Y0aiCA10-QNt16vOqP2WQ9dbUHdFg,48913
384
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=0DBoxfSCh3M16fJyqp9Q8PGFlKa9zgQ_cAAL_frgwVE,51257
373
385
  snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=Dp58jHxBdGdiFQAYmFW39JUdaPHO7dKfMy3KREtKAy0,12653
374
386
  snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=ui5pWnt2dL2VTTzCWikY8siG3fh_R9J1Wk_VZCHU-rA,11773
375
387
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
376
- snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=JNqyn8_mBpFd2KNFw3yV73nf2OPCzzdc_2MiRS7vlkI,49254
377
- snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=xpqYChOh09EkR4JYoQHYAjQZCciayBwy10YfQLND-Ic,49603
388
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=Kn_g84Pbh3NhjdroTmweYSvbqbMZeaEAHF6mmhsGeWw,51596
389
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=BYqL2obyT1nZGM9R0gcr9YSFOZ3vR12Onoh-zYx8n9k,51943
378
390
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
379
- snowflake/ml/modeling/svm/linear_svc.py,sha256=V_TjCNEWxcYsVRH54BzTYQxXO_uZPS4guyNW4oKL9Zw,52064
380
- snowflake/ml/modeling/svm/linear_svr.py,sha256=WNUOPuV44w3a0DrocdTl5cmblyuMjMG1gHryqMY4k9Y,50417
381
- snowflake/ml/modeling/svm/nu_svc.py,sha256=2v328m5Hma68-BFyrn9-U0kH2fAyJJCxTTBhhW9yWSU,52376
382
- snowflake/ml/modeling/svm/nu_svr.py,sha256=WCR-dZGzFAXI_uU1H6zjvbDgPzQYQzlOd-hnH8cRqUw,49455
383
- snowflake/ml/modeling/svm/svc.py,sha256=zViOG2YXKJeigjfay0hUHcOOBK-Hsf5fJrkMlh1xI6g,52525
384
- snowflake/ml/modeling/svm/svr.py,sha256=WeJVanTur3gixpYQE1R4IEvHRdh1MG6_ukdw_euxmqA,49644
391
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=RiYOHtb0ZFxQg1SnAojhwLmAo-H4g6PTiSQXP-5VKOk,54399
392
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=QrNb7QJAAZdE37dda9COk7XTdu62fFo1FrYiMtHGYtI,52752
393
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=ElGa9vTbiML3c8pwvZ13simUUj-hYC3pzX5Otq4iYpc,54707
394
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=M9ZMvSDvhF_QJVJcXYA5KDIDDjFs3O1fXMQz4-xiEIw,51786
395
+ snowflake/ml/modeling/svm/svc.py,sha256=KxScXhSYGdxrPfw55kI8-kXMNIsKOKdWKER7oz8PExY,54854
396
+ snowflake/ml/modeling/svm/svr.py,sha256=BjqOHmJqRbgcWyEG7EmhSXHIXAkPbqWKReSkGi8xWz0,51973
385
397
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
386
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=NKlBReihnRitvNcHWF_lnCawd1XjGYSEh4oMKnOT9lY,54801
387
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=XjZU24CGl4sw_FKGofqE8lR-gao-9x_bLfVeEbHdmZo,53500
388
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=IGCdc76GRioanYSBFfwr3-qRtJdrPje_E-EeGuNyn3k,54143
389
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=fveGEGkR__qFajfH0ULWb06c6vKoE4bLmd5wpn5DisA,52851
398
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=cKYu9uJLcckJW1nQ6o_Ux0HfkrRp37gO6pIkDhbNM9c,57149
399
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=NDHNSGZqZVt3tunkvD1ZWMJsh16XUKPuandqY4BR5so,55847
400
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=Lf8EXgit97Y8S_bRTs7MaBbMx43jGvQkBuodQJXKHns,56488
401
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=heQgMLQ95UyzixwhWxFEbHspjHiQp9nvjyn69wzDcjg,55195
390
402
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
391
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=_seC-DVsdqi7Q5tk-xjT_zqluT7xfiyCdzkjmrHV8nU,59799
392
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=wAuZ__0CBwOznAWEXNCt4QrVTw9ZiG430xeObePwk9I,59298
393
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=52378Wq21gp7LXfZbFYhM8UxwBC0z6xY953p9yNWnS8,59975
394
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=EUwkEFWgeFWqNssI2eBrIJLKyqDe7RZoLYkEMGc9Z8I,59501
403
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=4k_fQvGehyTaDcXmlDLi5-kp5tF3gpq9I1mzXjtp6ww,62204
404
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=i1sAuXRSsQXhWma9iximiqPsxvPV5qae9oqmk7CnEZw,61702
405
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=XAWCoVNo4pEx34hi-sLfD9R9NhxiPRqTsgl6NnxG6XE,62382
406
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=fUEX65oRD8umXccxHckGIMtd4SUzVf-BO0T6KFVfvaM,61907
395
407
  snowflake/ml/monitoring/monitor.py,sha256=M9IRk6bnVwKNEvCexEJ5Rf95zEFap4O5qjbwfwdXGS0,7135
396
408
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
397
409
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
@@ -399,13 +411,14 @@ snowflake/ml/registry/_initial_schema.py,sha256=KusBbu0vpgCh-dPHgC90xRSfP6Z79qC-
399
411
  snowflake/ml/registry/_schema.py,sha256=GOA427_mVKkq9RWRENHuqDimRS0SmmP4EWThNCu1Kz4,3166
400
412
  snowflake/ml/registry/_schema_upgrade_plans.py,sha256=LxZNXYGjGG-NmB7w7_SxgaJpZuXUO66XVMuh04oL6SI,4209
401
413
  snowflake/ml/registry/_schema_version_manager.py,sha256=-9wGH-7ELSZxp7-fW7hXTMqkJSIebXdSpwwgzdvnoYs,6922
402
- snowflake/ml/registry/model_registry.py,sha256=x42wR2lEyW99NnG8auNPOowg34bF87ksXQqrjMFd7Pw,84795
403
- snowflake/ml/registry/registry.py,sha256=cU-LLTkQuCz9iwaTEj6-oxDzn8f7_CRcrmbg5SX62i8,16812
404
- snowflake/ml/registry/_manager/model_manager.py,sha256=grUa1d55mFbvvG5J32JZWEIvcj4nKhX30xx1Yt1V6Ys,10274
414
+ snowflake/ml/registry/model_registry.py,sha256=Dw4bg-E-vmpQTHNhWfu6XPmKHzA_wuc5hpUap-ePsnY,84785
415
+ snowflake/ml/registry/registry.py,sha256=kXnMjkNj29i65wr63OkSkvzaL1FuhPMj2jepslNo4eI,16705
416
+ snowflake/ml/registry/_manager/model_manager.py,sha256=ogVWCaKbymo0DtE2aue_3qsaJJQysg7725pv3t-_-Lc,11283
405
417
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
406
418
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
407
- snowflake_ml_python-1.6.0.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
408
- snowflake_ml_python-1.6.0.dist-info/METADATA,sha256=ouIH5DVdvopseueYG7anO6BjJSEzHZGh6Sed-GtOB50,57370
409
- snowflake_ml_python-1.6.0.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
410
- snowflake_ml_python-1.6.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
411
- snowflake_ml_python-1.6.0.dist-info/RECORD,,
419
+ snowflake/ml/utils/sql_client.py,sha256=z4Rhi7pQz3s9cyu_Uzfr3deCnrkCdFh9IYIvicsuwdc,692
420
+ snowflake_ml_python-1.6.2.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
421
+ snowflake_ml_python-1.6.2.dist-info/METADATA,sha256=4AwK_OfWl2cvUHH0rw5rXC9nbxHfroT1BpSRR8Y9ED8,60290
422
+ snowflake_ml_python-1.6.2.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
423
+ snowflake_ml_python-1.6.2.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
424
+ snowflake_ml_python-1.6.2.dist-info/RECORD,,