snowflake-ml-python 1.5.4__py3-none-any.whl → 1.6.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (65) hide show
  1. snowflake/cortex/__init__.py +2 -0
  2. snowflake/cortex/_classify_text.py +36 -0
  3. snowflake/cortex/_complete.py +67 -10
  4. snowflake/cortex/_util.py +4 -4
  5. snowflake/ml/_internal/lineage/lineage_utils.py +4 -4
  6. snowflake/ml/_internal/telemetry.py +12 -2
  7. snowflake/ml/data/_internal/arrow_ingestor.py +228 -0
  8. snowflake/ml/data/_internal/ingestor_utils.py +58 -0
  9. snowflake/ml/data/data_connector.py +133 -0
  10. snowflake/ml/data/data_ingestor.py +28 -0
  11. snowflake/ml/data/data_source.py +23 -0
  12. snowflake/ml/dataset/dataset.py +1 -13
  13. snowflake/ml/dataset/dataset_reader.py +18 -118
  14. snowflake/ml/feature_store/access_manager.py +7 -1
  15. snowflake/ml/feature_store/entity.py +19 -2
  16. snowflake/ml/feature_store/examples/citibike_trip_features/entities.py +20 -0
  17. snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py +31 -0
  18. snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py +24 -0
  19. snowflake/ml/feature_store/examples/citibike_trip_features/source.yaml +4 -0
  20. snowflake/ml/feature_store/examples/example_helper.py +240 -0
  21. snowflake/ml/feature_store/examples/new_york_taxi_features/entities.py +12 -0
  22. snowflake/ml/feature_store/examples/new_york_taxi_features/features/dropoff_features.py +39 -0
  23. snowflake/ml/feature_store/examples/new_york_taxi_features/features/pickup_features.py +58 -0
  24. snowflake/ml/feature_store/examples/new_york_taxi_features/source.yaml +5 -0
  25. snowflake/ml/feature_store/examples/source_data/citibike_trips.yaml +36 -0
  26. snowflake/ml/feature_store/examples/source_data/fraud_transactions.yaml +29 -0
  27. snowflake/ml/feature_store/examples/source_data/nyc_yellow_trips.yaml +4 -0
  28. snowflake/ml/feature_store/examples/source_data/winequality_red.yaml +32 -0
  29. snowflake/ml/feature_store/examples/wine_quality_features/entities.py +14 -0
  30. snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py +29 -0
  31. snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py +21 -0
  32. snowflake/ml/feature_store/examples/wine_quality_features/source.yaml +5 -0
  33. snowflake/ml/feature_store/feature_store.py +579 -53
  34. snowflake/ml/feature_store/feature_view.py +168 -5
  35. snowflake/ml/fileset/stage_fs.py +18 -10
  36. snowflake/ml/lineage/lineage_node.py +1 -1
  37. snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +2 -3
  38. snowflake/ml/model/_model_composer/model_composer.py +11 -14
  39. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +24 -16
  40. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -1
  41. snowflake/ml/model/_model_composer/model_method/function_generator.py +3 -3
  42. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +3 -32
  43. snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template +3 -27
  44. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +3 -32
  45. snowflake/ml/model/_model_composer/model_method/model_method.py +5 -2
  46. snowflake/ml/model/_packager/model_handlers/_base.py +11 -1
  47. snowflake/ml/model/_packager/model_handlers/_utils.py +58 -1
  48. snowflake/ml/model/_packager/model_handlers/catboost.py +42 -0
  49. snowflake/ml/model/_packager/model_handlers/lightgbm.py +68 -0
  50. snowflake/ml/model/_packager/model_handlers/xgboost.py +59 -0
  51. snowflake/ml/model/_packager/model_runtime/model_runtime.py +3 -5
  52. snowflake/ml/model/model_signature.py +4 -4
  53. snowflake/ml/model/type_hints.py +4 -0
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +1 -1
  55. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py +13 -1
  56. snowflake/ml/modeling/impute/simple_imputer.py +26 -0
  57. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  58. snowflake/ml/registry/registry.py +100 -13
  59. snowflake/ml/version.py +1 -1
  60. {snowflake_ml_python-1.5.4.dist-info → snowflake_ml_python-1.6.0.dist-info}/METADATA +48 -2
  61. {snowflake_ml_python-1.5.4.dist-info → snowflake_ml_python-1.6.0.dist-info}/RECORD +64 -42
  62. {snowflake_ml_python-1.5.4.dist-info → snowflake_ml_python-1.6.0.dist-info}/WHEEL +1 -1
  63. snowflake/ml/_internal/lineage/data_source.py +0 -10
  64. {snowflake_ml_python-1.5.4.dist-info → snowflake_ml_python-1.6.0.dist-info}/LICENSE.txt +0 -0
  65. {snowflake_ml_python-1.5.4.dist-info → snowflake_ml_python-1.6.0.dist-info}/top_level.txt +0 -0
@@ -1,5 +1,6 @@
1
+ import warnings
1
2
  from types import ModuleType
2
- from typing import Any, Dict, List, Optional
3
+ from typing import Any, Dict, List, Optional, Union, overload
3
4
 
4
5
  import pandas as pd
5
6
 
@@ -68,6 +69,90 @@ class Registry:
68
69
  """Get the location (database.schema) of the registry."""
69
70
  return ".".join([self._database_name.identifier(), self._schema_name.identifier()])
70
71
 
72
+ @overload
73
+ def log_model(
74
+ self,
75
+ model: model_types.SupportedModelType,
76
+ *,
77
+ model_name: str,
78
+ version_name: Optional[str] = None,
79
+ comment: Optional[str] = None,
80
+ metrics: Optional[Dict[str, Any]] = None,
81
+ conda_dependencies: Optional[List[str]] = None,
82
+ pip_requirements: Optional[List[str]] = None,
83
+ python_version: Optional[str] = None,
84
+ signatures: Optional[Dict[str, model_signature.ModelSignature]] = None,
85
+ sample_input_data: Optional[model_types.SupportedDataType] = None,
86
+ code_paths: Optional[List[str]] = None,
87
+ ext_modules: Optional[List[ModuleType]] = None,
88
+ options: Optional[model_types.ModelSaveOption] = None,
89
+ ) -> ModelVersion:
90
+ """
91
+ Log a model with various parameters and metadata.
92
+
93
+ Args:
94
+ model: Model object of supported types such as Scikit-learn, XGBoost, LightGBM, Snowpark ML,
95
+ PyTorch, TorchScript, Tensorflow, Tensorflow Keras, MLFlow, HuggingFace Pipeline,
96
+ Sentence Transformers, Peft-finetuned LLM, or Custom Model.
97
+ model_name: Name to identify the model.
98
+ version_name: Version identifier for the model. Combination of model_name and version_name must be unique.
99
+ If not specified, a random name will be generated.
100
+ comment: Comment associated with the model version. Defaults to None.
101
+ metrics: A JSON serializable dictionary containing metrics linked to the model version. Defaults to None.
102
+ signatures: Model data signatures for inputs and outputs for various target methods. If it is None,
103
+ sample_input_data would be used to infer the signatures for those models that cannot automatically
104
+ infer the signature. If not None, sample_input_data should not be specified. Defaults to None.
105
+ sample_input_data: Sample input data to infer model signatures from. Defaults to None.
106
+ conda_dependencies: List of Conda package specifications. Use "[channel::]package [operator version]" syntax
107
+ to specify a dependency. It is a recommended way to specify your dependencies using conda. When channel
108
+ is not specified, Snowflake Anaconda Channel will be used. Defaults to None.
109
+ pip_requirements: List of Pip package specifications. Defaults to None.
110
+ Currently it is not supported since Model can only executed in Snowflake Warehouse where all
111
+ dependencies are required to be retrieved from Snowflake Anaconda Channel.
112
+ python_version: Python version in which the model is run. Defaults to None.
113
+ code_paths: List of directories containing code to import. Defaults to None.
114
+ ext_modules: List of external modules to pickle with the model object.
115
+ Only supported when logging the following types of model:
116
+ Scikit-learn, Snowpark ML, PyTorch, TorchScript and Custom Model. Defaults to None.
117
+ options (Dict[str, Any], optional): Additional model saving options.
118
+ Model Saving Options include:
119
+ - embed_local_ml_library: Embed local Snowpark ML into the code directory or folder.
120
+ Override to True if the local Snowpark ML version is not available in the Snowflake Anaconda
121
+ Channel. Otherwise, defaults to False
122
+ - relax_version: Whether or not relax the version constraints of the dependencies.
123
+ It detects any ==x.y.z in specifiers and replaced with >=x.y, <(x+1). Defaults to True.
124
+ - function_type: Set the method function type globally. To set method function types individually see
125
+ function_type in model_options.
126
+ - method_options: Per-method saving options including:
127
+ - case_sensitive: Indicates whether the method and its signature should be case sensitive.
128
+ This means when you refer the method in the SQL, you need to double quote it.
129
+ This will be helpful if you need case to tell apart your methods or features, or you have
130
+ non-alphabetic characters in your method or feature name. Defaults to False.
131
+ - max_batch_size: Maximum batch size that the method could accept in the Snowflake Warehouse.
132
+ Defaults to None, determined automatically by Snowflake.
133
+ - function_type: One of supported model method function types (FUNCTION or TABLE_FUNCTION).
134
+ """
135
+ ...
136
+
137
+ @overload
138
+ def log_model(
139
+ self,
140
+ model: ModelVersion,
141
+ *,
142
+ model_name: str,
143
+ version_name: Optional[str] = None,
144
+ ) -> ModelVersion:
145
+ """
146
+ Log a model with a ModelVersion object.
147
+
148
+ Args:
149
+ model: Source ModelVersion object used to create the new ModelVersion object.
150
+ model_name: Name to identify the model.
151
+ version_name: Version identifier for the model. Combination of model_name and version_name must be unique.
152
+ If not specified, a random name will be generated.
153
+ """
154
+ ...
155
+
71
156
  @telemetry.send_api_usage_telemetry(
72
157
  project=_TELEMETRY_PROJECT,
73
158
  subproject=_MODEL_TELEMETRY_SUBPROJECT,
@@ -84,7 +169,7 @@ class Registry:
84
169
  )
85
170
  def log_model(
86
171
  self,
87
- model: model_types.SupportedModelType,
172
+ model: Union[model_types.SupportedModelType, ModelVersion],
88
173
  *,
89
174
  model_name: str,
90
175
  version_name: Optional[str] = None,
@@ -100,12 +185,14 @@ class Registry:
100
185
  options: Optional[model_types.ModelSaveOption] = None,
101
186
  ) -> ModelVersion:
102
187
  """
103
- Log a model with various parameters and metadata.
188
+ Log a model with various parameters and metadata, or a ModelVersion object.
104
189
 
105
190
  Args:
106
- model: Model object of supported types such as Scikit-learn, XGBoost, LightGBM, Snowpark ML,
107
- PyTorch, TorchScript, Tensorflow, Tensorflow Keras, MLFlow, HuggingFace Pipeline,
108
- Sentence Transformers, Peft-finetuned LLM, or Custom Model.
191
+ model: Supported model or ModelVersion object.
192
+ - Supported model: Model object of supported types such as Scikit-learn, XGBoost, LightGBM, Snowpark ML,
193
+ PyTorch, TorchScript, Tensorflow, Tensorflow Keras, MLFlow, HuggingFace Pipeline, Sentence Transformers,
194
+ Peft-finetuned LLM, or Custom Model.
195
+ - ModelVersion: Source ModelVersion object used to create the new ModelVersion object.
109
196
  model_name: Name to identify the model.
110
197
  version_name: Version identifier for the model. Combination of model_name and version_name must be unique.
111
198
  If not specified, a random name will be generated.
@@ -146,9 +233,6 @@ class Registry:
146
233
  Defaults to None, determined automatically by Snowflake.
147
234
  - function_type: One of supported model method function types (FUNCTION or TABLE_FUNCTION).
148
235
 
149
- Raises:
150
- NotImplementedError: `pip_requirements` is not supported.
151
-
152
236
  Returns:
153
237
  ModelVersion: ModelVersion object corresponding to the model just logged.
154
238
  """
@@ -157,10 +241,13 @@ class Registry:
157
241
  subproject=_MODEL_TELEMETRY_SUBPROJECT,
158
242
  )
159
243
  if pip_requirements:
160
- raise NotImplementedError(
161
- "Currently `pip_requirements` is not supported since Model can only executed "
244
+ warnings.warn(
245
+ "Models logged specifying `pip_requirements` can not be executed "
162
246
  "in Snowflake Warehouse where all dependencies are required to be retrieved "
163
- "from Snowflake Anaconda Channel."
247
+ "from Snowflake Anaconda Channel. Specify model save option `include_pip_dependencies`"
248
+ "to log model with pip dependencies.",
249
+ category=UserWarning,
250
+ stacklevel=1,
164
251
  )
165
252
  return self._model_manager.log_model(
166
253
  model=model,
@@ -169,7 +256,7 @@ class Registry:
169
256
  comment=comment,
170
257
  metrics=metrics,
171
258
  conda_dependencies=conda_dependencies,
172
- pip_requirements=None,
259
+ pip_requirements=pip_requirements,
173
260
  python_version=python_version,
174
261
  signatures=signatures,
175
262
  sample_input_data=sample_input_data,
snowflake/ml/version.py CHANGED
@@ -1 +1 @@
1
- VERSION="1.5.4"
1
+ VERSION="1.6.0"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: snowflake-ml-python
3
- Version: 1.5.4
3
+ Version: 1.6.0
4
4
  Summary: The machine learning client library that is used for interacting with Snowflake to build machine learning solutions.
5
5
  Author-email: "Snowflake, Inc" <support@snowflake.com>
6
6
  License:
@@ -373,7 +373,53 @@ be compatibility issues. Server-side functionality that `snowflake-ml-python` de
373
373
 
374
374
  # Release History
375
375
 
376
- ## 1.5.4
376
+ ## 1.6.0
377
+
378
+ ### Bug Fixes
379
+
380
+ - Modeling: `SimpleImputer` can impute integer columns with integer values.
381
+ - Registry: Fix an issue when providing a pandas Dataframe whose index is not starting from 0 as the input to
382
+ the `ModelVersion.run`.
383
+
384
+ ### New Features
385
+
386
+ - Feature Store: Add overloads to APIs accept both object and name/version. Impacted APIs include read_feature_view(),
387
+ refresh_feature_view(), get_refresh_history(), resume_feature_view(), suspend_feature_view(), delete_feature_view().
388
+ - Feature Store: Add docstring inline examples for all public APIs.
389
+ - Feature Store: Add new utility class `ExampleHelper` to help with load source data to simplify public notebooks.
390
+ - Registry: Option to `enable_explainability` when registering XGBoost models as a pre-PuPr feature.
391
+ - Feature Store: add new API `update_entity()`.
392
+ - Registry: Option to `enable_explainability` when registering Catboost models as a pre-PuPr feature.
393
+ - Feature Store: Add new argument warehouse to FeatureView constructor to overwrite the default warehouse. Also add
394
+ a new column 'warehouse' to the output of list_feature_views().
395
+ - Registry: Add support for logging model from a model version.
396
+ - Modeling: Distributed Hyperparameter Optimization now announce GA refresh version. The latest memory efficient version
397
+ will not have the 10GB training limitation for dataset any more. To turn off, please run
398
+ `
399
+ from snowflake.ml.modeling._internal.snowpark_implementations import (
400
+ distributed_hpo_trainer,
401
+ )
402
+ distributed_hpo_trainer.ENABLE_EFFICIENT_MEMORY_USAGE = False
403
+ `
404
+ - Registry: Option to `enable_explainability` when registering LightGBM models as a pre-PuPr feature.
405
+
406
+ ### Behavior Changes
407
+
408
+ - Feature Store: change some positional parameters to keyword arguments in following APIs:
409
+ - Entity(): desc.
410
+ - FeatureView(): timestamp_col, refresh_freq, desc.
411
+ - FeatureStore(): creation_mode.
412
+ - update_entity(): desc.
413
+ - register_feature_view(): block, overwrite.
414
+ - list_feature_views(): entity_name, feature_view_name.
415
+ - get_refresh_history(): verbose.
416
+ - retrieve_feature_values(): spine_timestamp_col, exclude_columns, include_feature_view_timestamp_col.
417
+ - generate_training_set(): save_as, spine_timestamp_col, spine_label_cols, exclude_columns,
418
+ include_feature_view_timestamp_col.
419
+ - generate_dataset(): version, spine_timestamp_col, spine_label_cols, exclude_columns,
420
+ include_feature_view_timestamp_col, desc, output_type.
421
+
422
+ ## 1.5.4 (2024-07-11)
377
423
 
378
424
  ### Bug Fixes
379
425
 
@@ -1,18 +1,19 @@
1
- snowflake/cortex/__init__.py,sha256=CDjClvxuVO5feVi3EgdYMU0RIO89UO72g-hqjvfPiI4,400
2
- snowflake/cortex/_complete.py,sha256=79WiddAYdMs8m2tHnRJ3OV01WdxYu6yZsW8PEuvsh5Y,10246
1
+ snowflake/cortex/__init__.py,sha256=Xw7skAa3Eeo0pq2q8gwekpvP_yZbHetNjB2mC1gqnsM,477
2
+ snowflake/cortex/_classify_text.py,sha256=lKV_J0TMDgaDCytpHsi8zo2N-aiWW5I8t1PcYiuNovo,1297
3
+ snowflake/cortex/_complete.py,sha256=OMLMG1nU1yXB3Q9isn08Rj5J4J90DceSuwH9ttV7ui0,12625
3
4
  snowflake/cortex/_extract_answer.py,sha256=-ZvpnI6i4QmCkgxIEC8QGPlOQzKMVO5abgouXMf6wTw,1301
4
5
  snowflake/cortex/_sentiment.py,sha256=yhV4T9GW-tcxkg_OYd-hbYHsbjHIYzRjbsmYuzXMPzU,1189
5
6
  snowflake/cortex/_sse_client.py,sha256=_GGmxskEQPVJ2bE3LHySnPFl29CP4YGM4_xmR_Kk-WA,2485
6
7
  snowflake/cortex/_summarize.py,sha256=raDFAb31penzEtOtqQv8wQS69MsRt_B75VQ5cDHegbE,1018
7
8
  snowflake/cortex/_translate.py,sha256=QqngDJ9ijB5wCObSVWMfY2FQzk4S02M85PEAKr_Alrk,1363
8
- snowflake/cortex/_util.py,sha256=5G8N3iLlyEN_cqRKEabW2em6x8y768XFxrcFurrDMX0,2111
9
- snowflake/ml/version.py,sha256=iIDybYLB9gFebNDKdRllkCJ7KAxZctaCoWfqMEK3Qu4,16
9
+ snowflake/cortex/_util.py,sha256=5Y_hwZxW_Tygv8TNO7f5b3jvG9HeRwO8l9wv5sZOjCE,2150
10
+ snowflake/ml/version.py,sha256=ou-ltd3dvQ0ZdIozwgzxGA2B3fPpdrobEg6PEdehJwQ,16
10
11
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
11
12
  snowflake/ml/_internal/env_utils.py,sha256=HK5Ug5-gChiUv_z84BDjAuE9eHImrWRsX4Y7wJFApfk,27758
12
13
  snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
13
14
  snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
14
15
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
15
- snowflake/ml/_internal/telemetry.py,sha256=2X9qQWkxKVTp0JKkgQr7tzCpu_Qeiy9p9zrRpnACckE,23843
16
+ snowflake/ml/_internal/telemetry.py,sha256=9ggB-vgNWfW-X_7tCSZHAn65RG0hJXA6joACS4nc0YU,24391
16
17
  snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
17
18
  snowflake/ml/_internal/container_services/image_registry/credential.py,sha256=nShNgIb2yNu9w6vceOY3aSgjpuOoi0spWWmvgEafPSk,3291
18
19
  snowflake/ml/_internal/container_services/image_registry/http_client.py,sha256=JAkZmI9szd3BeAB6bpSlfCWAmQOSGKVO3zrV_0QP6-I,5448
@@ -31,8 +32,7 @@ snowflake/ml/_internal/human_readable_id/adjectives.txt,sha256=5o4MbVeHoELAqyLpy
31
32
  snowflake/ml/_internal/human_readable_id/animals.txt,sha256=GDLzMwzxiL07PhIMxw4t89bhYqqg0bQfPiuQT8VNeME,837
32
33
  snowflake/ml/_internal/human_readable_id/hrid_generator.py,sha256=LYWB86qZgsVBvnc6Q5VjfDOmnGSQU3cTRKfId_nJSPY,1341
33
34
  snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=D1yoVG1vmAFUhWQ5xCRRU6HCCBPbXHpOXagFd0jK0O8,4519
34
- snowflake/ml/_internal/lineage/data_source.py,sha256=D24FdR6Wq_PdUuCsBDvSMCr5CfHqpMamrc8-F5iZVJ0,214
35
- snowflake/ml/_internal/lineage/lineage_utils.py,sha256=-eO01yjER2qGYvaS-2SD9oxmWN52vrk3VEWlduHZO78,3415
35
+ snowflake/ml/_internal/lineage/lineage_utils.py,sha256=kxWW7fkSf1HiUQSks3VlzWyntpt4o_pbptXcpQHtnk8,3432
36
36
  snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
37
37
  snowflake/ml/_internal/utils/identifier.py,sha256=jlvTl2mjzvuMgNgTU2jBlfQ6TR21t3Q1C-mujeO-Rtc,11375
38
38
  snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
@@ -50,32 +50,54 @@ snowflake/ml/_internal/utils/sql_identifier.py,sha256=ZcRjSfpovsqaY7S8bFB6z44z28
50
50
  snowflake/ml/_internal/utils/table_manager.py,sha256=jHGfl0YSqhFLL7DOOQkjUMzTmLkqFDIM7Gs0LBQw8BM,4384
51
51
  snowflake/ml/_internal/utils/temp_file_utils.py,sha256=0-HTjXdxVt0kE6XcgyvRvY0btflWlmotP2bMXVpFJPA,1553
52
52
  snowflake/ml/_internal/utils/uri.py,sha256=pvskcWoeS0M66DaU2XlJzK9wce55z4J5dn5kTy_-Tqs,2828
53
+ snowflake/ml/data/data_connector.py,sha256=1XQphZRbmbAKQT9nw3rWGrh-lSgnard0LhKrnhezYdI,5533
54
+ snowflake/ml/data/data_ingestor.py,sha256=cRM_ijBqLS4XDYH7riOkCCHM5n7BVbEm-d9yVlmeMAc,736
55
+ snowflake/ml/data/data_source.py,sha256=dRemXGi_HHQdn6gaNkxxGJixnQPuUYFDP8NBjmB_ZMk,518
56
+ snowflake/ml/data/_internal/arrow_ingestor.py,sha256=NoNpMlVIF-VBwq14HQo68PHxQ-22uKjHJ9bYovPU0wg,9538
57
+ snowflake/ml/data/_internal/ingestor_utils.py,sha256=tf3Ov51lv0C07b-kuJzIoG9MPPaN_Ejx7Y2tqNav37k,2130
53
58
  snowflake/ml/dataset/__init__.py,sha256=nESj7YEI2u90Oxyit_hKCQMWb7N1BlEM3Ho2Fm0MfHo,274
54
- snowflake/ml/dataset/dataset.py,sha256=bRaUgiqSSHfVsET6-rm60jSdEf7ZDAKgFD-Zqsquh_c,21596
59
+ snowflake/ml/dataset/dataset.py,sha256=NNwEyfHwyZ0ZRwp6poBxZE982RjAFUfN645yDFTdmUI,21188
55
60
  snowflake/ml/dataset/dataset_factory.py,sha256=Fym4ICK-B1j6Om4ENwWxEvryq3ZKoCslBSZDBenmjOo,1615
56
61
  snowflake/ml/dataset/dataset_metadata.py,sha256=lvaYd1sNOgWcXD1q_-J7fQZ0ndOC8guR9IgKpChBcFA,3992
57
- snowflake/ml/dataset/dataset_reader.py,sha256=TKitOC7YBk3yZ9axL9nI1paSI2ooSqBn4zw5eOYpCGY,8061
62
+ snowflake/ml/dataset/dataset_reader.py,sha256=8d6lBBg6LlDC0HmiJmmGyPN4dBIJzi1UdrFr5-EOlVQ,4066
58
63
  snowflake/ml/feature_store/__init__.py,sha256=VKBVkS050WNF8rcqNqwFfNXa_B9GZjcUpuibOGsUSls,423
59
- snowflake/ml/feature_store/access_manager.py,sha256=QqAgOQ2r2JxR4CXuFiCeQ8JWk-YdPCC_QrM1boa5nsU,10607
60
- snowflake/ml/feature_store/entity.py,sha256=dCpzLC3jrt5wDHqFYJXbAYkMiZ0zEmiVDMGkks6MXkA,3378
61
- snowflake/ml/feature_store/feature_store.py,sha256=RfwlPLFJgYlx3mX2PBdztFdUabpLQw4AU5UjmrC-45k,87179
62
- snowflake/ml/feature_store/feature_view.py,sha256=YcAKOv2B8jZpEJVzIObMdiU1s8WA7Lfpzm0zxH3Oers,21200
64
+ snowflake/ml/feature_store/access_manager.py,sha256=WBRRzmUUB_K9_xX6duv4tFExb7d4RksO_7FZjzEtoww,10696
65
+ snowflake/ml/feature_store/entity.py,sha256=A65FOGlljREUG8IRMSN84v1x2uTeVGCM4NqKXO2Ui8w,4059
66
+ snowflake/ml/feature_store/feature_store.py,sha256=XheIPc4PHxTec9158fjUg7jeBaiinoSDzMCdBOVZv1I,110502
67
+ snowflake/ml/feature_store/feature_view.py,sha256=a_Z9Ai5hzn3i0NBuuUM0yeCCgTpLtdhFyqCJRlHNujA,27566
68
+ snowflake/ml/feature_store/examples/example_helper.py,sha256=6OwDNoC1ndTkihaUAoAgnR25z3Or2cgQQas4hr1IbX0,10629
69
+ snowflake/ml/feature_store/examples/citibike_trip_features/entities.py,sha256=SE8Zx3xqFJk65Tqori4nh0KOPwEY3baMoFsVAYM1e7c,449
70
+ snowflake/ml/feature_store/examples/citibike_trip_features/source.yaml,sha256=NMV4ujacID4r007HOttLBm3cLUgY4egAW2kEqX56D4A,83
71
+ snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py,sha256=RL6dsxwA1kN4Wvd4N8rCFLoV2bByJEtkB7vtBwq0Vqg,1128
72
+ snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py,sha256=WF7wRQf992cSN-3Gl3ozgR9V2OzTJRmXXHrXanza3_U,961
73
+ snowflake/ml/feature_store/examples/new_york_taxi_features/entities.py,sha256=7gjTaeIW1URCEZpxHBazbS2wBTgX2a9yZmz5lOC3tTY,425
74
+ snowflake/ml/feature_store/examples/new_york_taxi_features/source.yaml,sha256=7t3HAXkF00liOg8-flZMIa-Cy7mJt2Wj6kuaPkxXclg,168
75
+ snowflake/ml/feature_store/examples/new_york_taxi_features/features/dropoff_features.py,sha256=Hi0uRTiDG3p2GurWGNgXaSKVdfWNImuc-16hO7GUYf4,1512
76
+ snowflake/ml/feature_store/examples/new_york_taxi_features/features/pickup_features.py,sha256=IEenGMwpRub16IBOcWKAcvaxAQXX7Un7TGMuUIUWRlw,2489
77
+ snowflake/ml/feature_store/examples/source_data/citibike_trips.yaml,sha256=m0RIaEQ-4iJYq-7P57WdZpUcqeKjW9JgWAHxksstgIQ,918
78
+ snowflake/ml/feature_store/examples/source_data/fraud_transactions.yaml,sha256=ENAIRcrRmdIplKJP8A5nhXdWSQRNTeQH4ghIT9boE8o,711
79
+ snowflake/ml/feature_store/examples/source_data/nyc_yellow_trips.yaml,sha256=1PkEybh_ieP-HZme9YPuAf6-pL4D6-6dzNlqdZpH8fk,142
80
+ snowflake/ml/feature_store/examples/source_data/winequality_red.yaml,sha256=03qIwx_7KA-56HwKqshSOFCGOvLnQibR_Iv2zprz_Vs,741
81
+ snowflake/ml/feature_store/examples/wine_quality_features/entities.py,sha256=BmQYBnMglqV1th18JxzH5jZqz4snUgik_lBH7Pf8HV4,309
82
+ snowflake/ml/feature_store/examples/wine_quality_features/source.yaml,sha256=uh9gtRpXqlhMvhV7gHmtub1BAkGiRSfCSk_QWFIbCr4,105
83
+ snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py,sha256=x0zjiadljbM4juO0uadBKwOZ2AaTDOlDHJEOjuG68i4,1101
84
+ snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py,sha256=ePrKOmPS2ZH9HqJwhpCfyW_DK1jLlMeDlU9et9jCF4s,890
63
85
  snowflake/ml/fileset/embedded_stage_fs.py,sha256=AYa0vRiqQTvi1Z86tAeID_Mxl3kgxbhi35A0o_-DJF0,6003
64
86
  snowflake/ml/fileset/fileset.py,sha256=yfYFZL2b1vYqL0zs6m9_hmjzyP3TAGTINNz6hF1yalQ,26196
65
87
  snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
66
88
  snowflake/ml/fileset/sfcfs.py,sha256=a77UJFz5Ve9s_26QpcOOoFNOBIKN91KmhYVTQkafn0c,15344
67
89
  snowflake/ml/fileset/snowfs.py,sha256=uF5QluYtiJ-HezGIhF55dONi3t0E6N7ByaVAIAlM3nk,5133
68
- snowflake/ml/fileset/stage_fs.py,sha256=Xo7oijoVAbpdWNF_bXsxeXJ-6DBwQ15lrUY7-kJTo4A,19478
90
+ snowflake/ml/fileset/stage_fs.py,sha256=9v6TybA8pbQ9n1vp6Sh4Ds2LwPW2M_EGoAhGsBEeLVs,20068
69
91
  snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx52jX8I,3849
70
92
  snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPbt9WKYiBp0,2386
71
93
  snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCrzI4,65
72
- snowflake/ml/lineage/lineage_node.py,sha256=7GwA7XZzKt93XVo1RyzjOQLev3Phs0afAo_v2EpD20k,5535
94
+ snowflake/ml/lineage/lineage_node.py,sha256=ac_TYngOt7Q_o_JgZQWysREyAzy12j3Q15xgMkAltgk,5576
73
95
  snowflake/ml/model/__init__.py,sha256=KgZmgLHXmkmEU5Q7pzYQlpfvIll4SRTSiT9s4RjeleI,393
74
96
  snowflake/ml/model/_api.py,sha256=u2VUcZ0OK4b8DtlqB_IMaT8EWt_onRVaw3VaWAm4OA4,22329
75
97
  snowflake/ml/model/custom_model.py,sha256=Nu9kNa9pDFXmLN1Ipv4bc_htG0lPeWKD0AQ2Ma2-wK0,9172
76
98
  snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
77
- snowflake/ml/model/model_signature.py,sha256=ZnkgY-6BL7gNGRPXJTgK0EbZ6RQ7hDJjiDxsPNXHKi4,29453
78
- snowflake/ml/model/type_hints.py,sha256=MSQ0ZnrIZ4ViCrihE8JE-PeQ5qG2BE9CiKzQ1n8ZTfk,14040
99
+ snowflake/ml/model/model_signature.py,sha256=Iwll4_VbcDtDX0otGS_NVd0gKSdcHQ_OJbZxNNGMRFg,29473
100
+ snowflake/ml/model/type_hints.py,sha256=ZPtFuovdHtylrUjuG4fRPPPAdjYyMugSr-xqn542Ab0,14223
79
101
  snowflake/ml/model/_client/model/model_impl.py,sha256=QC3h0v0kfbfUIia2z6f0AE2b1SRI8OFxxhOxd1wJeOI,15036
80
102
  snowflake/ml/model/_client/model/model_version_impl.py,sha256=g64uvaCbowz4b-b53DRzV-lX9KJA9bTiW5GvpqBHRH8,20850
81
103
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=7cGx8zYzye2_cvZnyGxoukPtT6Q-Kexd-s4yeZmpmj8,4890
@@ -90,7 +112,7 @@ snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py,sha256=G7
90
112
  snowflake/ml/model/_deploy_client/image_builds/docker_context.py,sha256=7uhAJsHsk7LbiZv_w3xOCE2O88rTUVnS3_B6OAz-JG4,6129
91
113
  snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh,sha256=1pntXgqFthW4gdomqlyWx9CJF-Wqv8VMoLkgSiTHEJ0,1578
92
114
  snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=SNXqUBkI_tPAgdnLrQW10smG_7O_DGwAuK3dLFE-wJA,10095
93
- snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=xtEm1fklRGR9euMCwR9FsAL38LSnBqDWkIVv_stnRIw,11021
115
+ snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=dC-02DfGfij5IwnhuVxj-oN_a85n54o7txNLL2_r4Z4,10977
94
116
  snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template,sha256=8jYNmQfGw7bJgHCEd3iK9Tj68ne_x5U0hWhgKqPxEXw,1783
95
117
  snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template,sha256=g8mEvpJmwQ9OnAkZomeErPQ6h4OJ5NdtRCoylyIp7f4,1225
96
118
  snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template,sha256=nEK7fqo_XHJEVKLNe--EkES4oiDm7M5E9CacxGItFU0,3633
@@ -103,23 +125,23 @@ snowflake/ml/model/_deploy_client/utils/constants.py,sha256=Ip_2GgsCYRXj_mD4MUdk
103
125
  snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=k0SulzWdttRvJkyuXM59aluEVgQg8Qd7XZUUpEBKuO4,11671
104
126
  snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=yZR9M76oh6JbPQJHb6t3wGO3wuD04w0zLEXiEyZW_tg,8358
105
127
  snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
106
- snowflake/ml/model/_model_composer/model_composer.py,sha256=LOqvBYHTGSlCkBOnwf6T_gqxJXh76OptHF_tOHvfvac,7731
107
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=m-pRrR05L1MX20SHeehJccIr3U0_mEohhNEFL1Rr_OM,5899
108
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=PsRVrOt15Zr-t2K64_GK5aHjTWN4yLgixRqaYchY2rA,2530
109
- snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=4jeAtbsZFbD6jhonr1tIKuNO5WCa5R6lu5s_ZTAauUg,2561
110
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=QpQXAIKDs9cotLOL0JdI6xLet1QJU7KtaF7O10nDQcs,2291
111
- snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template,sha256=4m-nOYWr35tHw4FdjSLlJL7Qr-cr4xdZiUlRnXFNDLk,2266
112
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=L_aWZ0hRHgcbGXlM-qeqVCjJr4OrB18qKqVA4BydNRg,2291
113
- snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=5N_j_HsOhrZkxYiosUlBexB2Pak9KuSPd823M3y0m2Y,6782
128
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=pqEjpNIDgVMaslFazkUyrN9rRixh3Dwr2Wf8A9CYwBE,7631
129
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=4FvWGXHn9C0mvNNh1Dl_F4azmOswyPsA6aW8J8XaC_c,6342
130
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=ED2Ki7mD9SKokNChoOyXRYFJ6TUArH6aYqmV72BqLto,2559
131
+ snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2cE463GKWAJCrqEYD1s8IPzd3iPu0X0eQ12NnXQhGBM,2556
132
+ snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=eQ-FLUGt5r0P9UtDwWFoqSJzGeLBvwEMoHAbe8aCNsE,1418
133
+ snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template,sha256=L5R04QeoW6dH1PdEy3qo1LS478rTmvvRmrwlgqVwimg,1504
134
+ snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=NUDSyFFAdEZEWtSkvYxkU9vB-NTjcTg6sjkrNpcmF6A,1418
135
+ snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=4RfjJ_0Y8NUmI9YpmBqxBT2xk_yQ0RIzznaKGHlS6jU,7076
114
136
  snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
115
137
  snowflake/ml/model/_packager/model_packager.py,sha256=mbIN3NzvF6akwJ86zBjOn6pJyNPDHaUBT0ohpAtHMGo,5980
116
138
  snowflake/ml/model/_packager/model_env/model_env.py,sha256=3FTftb2OMqCjushFLBISbF6E4z2CQ8G_rNewf-ahVGQ,18312
117
- snowflake/ml/model/_packager/model_handlers/_base.py,sha256=aJ-d3HOlMog0egz9f8P4tPmSNQ_IKCJV1b7SnHCmoa0,6041
118
- snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=Za44AtkP1ktNstg6LXl26uUqODkAmQybcG_Za_hlZaQ,2623
119
- snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=253KNSePi248WKqBZHLugwVx3T0bAvQGFjtuLVhWPCg,8160
139
+ snowflake/ml/model/_packager/model_handlers/_base.py,sha256=iz9LRBLKCIASj4TonQ-jK_r7doPSdxErwYz3tX7TCxw,6393
140
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=XpVZM8KjCjy7swfWFb0TpKC6uqAqTL1nZbFdJ8DM8ng,4653
141
+ snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=_zesJM4Ok4LrshxxPTyv647rCJHaO12XASDsDVXxyLw,10220
120
142
  snowflake/ml/model/_packager/model_handlers/custom.py,sha256=aqhvRFzmgAxpzRQdMxwrMzBXsjr-q9489Vwf_Y_eXM4,7805
121
143
  snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=VQIvkvGZBSZ8bg8QKAyRJ5xvmjL0qi9A3s3ml7mtjjI,20296
122
- snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=Uh2mHRlj5SYWfDDfVFJi9tij8JuIV0tDts4VSnlsjuw,8455
144
+ snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=1aqeJNEA14hQBuSqo9oQco8T5ogdR_XCjtPiVmrgR3A,11534
123
145
  snowflake/ml/model/_packager/model_handlers/llm.py,sha256=rPsTXrA70Va8vV0wHKj8O3fwrh24HppRHxyWGIIe3lY,10770
124
146
  snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=h0FUuuq5y4M_1eRe7klDNCudDaw_YuE_v1kwrOX5FH0,9026
125
147
  snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=bL6CJApzBUZ903Ays0mQ2ONvn5Qnn01zP40GPThQbCA,8039
@@ -128,7 +150,7 @@ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=BT5dQsdudIi3qTAIvE
128
150
  snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=Y9wqTMc7ODEuhOAf3FQrDstaT_4wxWzntVYAcEa106g,7977
129
151
  snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=OFhh3QRI085F0dpn4iLpxZtCKnotAEcztrv4Sh4AAGM,8191
130
152
  snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=3fQ4z8fJE-MjKuIBVLeNXZp7vpQzw00Wk1W3rSe_Xm4,8118
131
- snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=joheYlYo-E3F0R5BxhR7el1la8qLv4ZkAR3d8eXAQMA,8882
153
+ snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=7fofU6KiWflK0euZynWox2k1FXNSDraqrZkioFniHig,12027
132
154
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
133
155
  snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=z0WnMVFR9RySEpldoPrDsMgSrSW8EOiTaylnTsBwhe4,265
134
156
  snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
@@ -139,7 +161,7 @@ snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpP
139
161
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
140
162
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
141
163
  snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=fRPGbrnq67PRo3e_uVk01TKZ7AZKYM-_lryePkNk5AY,239
142
- snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=5Wo_MW_ub00t_TNi438tcjHY7Fi_8NI6gmrDzVxO45I,4723
164
+ snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=UaX0EUYDR_4s9u682UcrR0TXvqj-VcS_zBW0qAwuEQY,4654
143
165
  snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
144
166
  snowflake/ml/model/_signatures/builtins_handler.py,sha256=nF-2ptQjeu7ikO72_d14jk1N6BVbmy-mjtZ9I1c7-Qg,2741
145
167
  snowflake/ml/model/_signatures/core.py,sha256=xj4QwfVixzpUjVMfN1-d2l8LMi7b6qH7QvnvD3oMxSw,18480
@@ -162,8 +184,8 @@ snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=
162
184
  snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=MyTRkBV3zbDeO7HJaWrKYT3KkVqW51Q0AX2BbUtN4og,5737
163
185
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py,sha256=fgm1DpBBO0qUo2fXFwuN2uFAyTFhcIhT5_bC326VTVw,5544
164
186
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py,sha256=lM1vYwpJ1jgTh8vnuyMp4tnFibM6UFf50W1IpPWwUWE,2535
165
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=sC3nlhrSV39uSfe01eMsCXc13bNFUf3evRYhJ7SRS0g,54651
166
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=YN8I_U_7_hL42o5_7NnEYY05aiuwgdO4Q2Iw__7Qa_w,6180
187
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=6U7rHVgn_RqDyuwJ4hkNpDwQ2sbp4CFv4UZ-Eis0kbM,54650
188
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=HnsSmsXAeJrH9zVeq3CSziIaCUDxeWWx6kRyAK4qajM,6601
167
189
  snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=Iqk8y4ltjfwDfrBOHmmvYRGyNzR3ZokQNukByUyH8NU,15516
168
190
  snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=BVUHR4k5uQzVTddXvfDgzm9nZ_ZnkDg4SxTM69yV9a8,33588
169
191
  snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=JHAo8u7myo1ZF1g1Ia_E2GDnPJqGdunl7ezma9mtANI,17333
@@ -244,7 +266,7 @@ snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_K
244
266
  snowflake/ml/modeling/impute/iterative_imputer.py,sha256=9RXx_881cjE1D_Ge-4XcCuL-PHs7w-PwhKyazd669lc,54249
245
267
  snowflake/ml/modeling/impute/knn_imputer.py,sha256=ok-sB6aF1Myilb7obFQFec4RoWv790E984yeup32cWQ,49965
246
268
  snowflake/ml/modeling/impute/missing_indicator.py,sha256=Teuf0BKOr3i6RmmW4K7UBMGIHOkg4-NPu-XOiyFp1-s,48822
247
- snowflake/ml/modeling/impute/simple_imputer.py,sha256=Y-oSvi8CXOyBJSCkLoNZNjdZ_NVwjvQhaOmxvgo2HAY,19847
269
+ snowflake/ml/modeling/impute/simple_imputer.py,sha256=T1niXlhS2vWbhF5IQ2k7qlBXKmvYVC3y1aKq73dCaBs,20946
248
270
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
249
271
  snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=iYAZ8PxMQ4yurlSYdk5v0daPSyo_bXBZBbbatm721jY,47853
250
272
  snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=ghFz9Tt3S4qSb2V7yG5Idzgf4leJNvovQO7JscUUSRQ,49624
@@ -337,7 +359,7 @@ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=gUa_VVRgGUhEhRTNHoD
337
359
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
338
360
  snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
339
361
  snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
340
- snowflake/ml/modeling/pipeline/pipeline.py,sha256=_4LPhCL9fdG2h1IDMgdo2ht7E0Dfi4nHbC8hupgP9zk,46521
362
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=XXP-km2B6AqPGMREyjaiYxLYqCSdsJIf66ZMc1vRvYo,46517
341
363
  snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
342
364
  snowflake/ml/modeling/preprocessing/binarizer.py,sha256=MrgSVTw9RpajyYe0dzai-qnpdOb3Zq0SfJRpHJjpnoY,7383
343
365
  snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=FdIy8mpjsiMqWsUL07S27T-JNDVgE2bvNUJf4HcBik4,21533
@@ -378,12 +400,12 @@ snowflake/ml/registry/_schema.py,sha256=GOA427_mVKkq9RWRENHuqDimRS0SmmP4EWThNCu1
378
400
  snowflake/ml/registry/_schema_upgrade_plans.py,sha256=LxZNXYGjGG-NmB7w7_SxgaJpZuXUO66XVMuh04oL6SI,4209
379
401
  snowflake/ml/registry/_schema_version_manager.py,sha256=-9wGH-7ELSZxp7-fW7hXTMqkJSIebXdSpwwgzdvnoYs,6922
380
402
  snowflake/ml/registry/model_registry.py,sha256=x42wR2lEyW99NnG8auNPOowg34bF87ksXQqrjMFd7Pw,84795
381
- snowflake/ml/registry/registry.py,sha256=2Ud9MWTFKFE-VO3ByGwiml8kTBu2GcjnceK93PyM2Uw,11210
403
+ snowflake/ml/registry/registry.py,sha256=cU-LLTkQuCz9iwaTEj6-oxDzn8f7_CRcrmbg5SX62i8,16812
382
404
  snowflake/ml/registry/_manager/model_manager.py,sha256=grUa1d55mFbvvG5J32JZWEIvcj4nKhX30xx1Yt1V6Ys,10274
383
405
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
384
406
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
385
- snowflake_ml_python-1.5.4.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
386
- snowflake_ml_python-1.5.4.dist-info/METADATA,sha256=Z9gtPGVQ35nk8HRTBe6ssGQ9kbg668PnrkjabJTxKZI,54910
387
- snowflake_ml_python-1.5.4.dist-info/WHEEL,sha256=Z4pYXqR_rTB7OWNDYFOm1qRk0RX6GFP2o8LgvP453Hk,91
388
- snowflake_ml_python-1.5.4.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
389
- snowflake_ml_python-1.5.4.dist-info/RECORD,,
407
+ snowflake_ml_python-1.6.0.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
408
+ snowflake_ml_python-1.6.0.dist-info/METADATA,sha256=ouIH5DVdvopseueYG7anO6BjJSEzHZGh6Sed-GtOB50,57370
409
+ snowflake_ml_python-1.6.0.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
410
+ snowflake_ml_python-1.6.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
411
+ snowflake_ml_python-1.6.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (70.3.0)
2
+ Generator: setuptools (72.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,10 +0,0 @@
1
- import dataclasses
2
- from typing import List, Optional
3
-
4
-
5
- @dataclasses.dataclass(frozen=True)
6
- class DataSource:
7
- fully_qualified_name: str
8
- version: str
9
- url: str
10
- exclude_cols: Optional[List[str]] = None