snowflake-ml-python 1.5.3__py3-none-any.whl → 1.6.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (166) hide show
  1. snowflake/cortex/__init__.py +4 -1
  2. snowflake/cortex/_classify_text.py +36 -0
  3. snowflake/cortex/_complete.py +281 -21
  4. snowflake/cortex/_extract_answer.py +0 -1
  5. snowflake/cortex/_sentiment.py +0 -1
  6. snowflake/cortex/_summarize.py +0 -1
  7. snowflake/cortex/_translate.py +0 -1
  8. snowflake/cortex/_util.py +12 -85
  9. snowflake/ml/_internal/container_services/image_registry/http_client.py +10 -3
  10. snowflake/ml/_internal/container_services/image_registry/imagelib.py +23 -10
  11. snowflake/ml/_internal/container_services/image_registry/registry_client.py +7 -1
  12. snowflake/ml/_internal/exceptions/dataset_errors.py +7 -7
  13. snowflake/ml/_internal/exceptions/fileset_errors.py +3 -3
  14. snowflake/ml/_internal/exceptions/sql_error_codes.py +6 -0
  15. snowflake/ml/_internal/lineage/lineage_utils.py +4 -4
  16. snowflake/ml/_internal/telemetry.py +38 -2
  17. snowflake/ml/_internal/utils/identifier.py +14 -0
  18. snowflake/ml/_internal/utils/snowpark_dataframe_utils.py +15 -4
  19. snowflake/ml/data/_internal/arrow_ingestor.py +228 -0
  20. snowflake/ml/data/_internal/ingestor_utils.py +58 -0
  21. snowflake/ml/data/data_connector.py +133 -0
  22. snowflake/ml/data/data_ingestor.py +28 -0
  23. snowflake/ml/data/data_source.py +23 -0
  24. snowflake/ml/dataset/dataset.py +39 -32
  25. snowflake/ml/dataset/dataset_reader.py +18 -118
  26. snowflake/ml/feature_store/access_manager.py +7 -1
  27. snowflake/ml/feature_store/entity.py +19 -2
  28. snowflake/ml/feature_store/examples/citibike_trip_features/entities.py +20 -0
  29. snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py +31 -0
  30. snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py +24 -0
  31. snowflake/ml/feature_store/examples/citibike_trip_features/source.yaml +4 -0
  32. snowflake/ml/feature_store/examples/example_helper.py +240 -0
  33. snowflake/ml/feature_store/examples/new_york_taxi_features/entities.py +12 -0
  34. snowflake/ml/feature_store/examples/new_york_taxi_features/features/dropoff_features.py +39 -0
  35. snowflake/ml/feature_store/examples/new_york_taxi_features/features/pickup_features.py +58 -0
  36. snowflake/ml/feature_store/examples/new_york_taxi_features/source.yaml +5 -0
  37. snowflake/ml/feature_store/examples/source_data/citibike_trips.yaml +36 -0
  38. snowflake/ml/feature_store/examples/source_data/fraud_transactions.yaml +29 -0
  39. snowflake/ml/feature_store/examples/source_data/nyc_yellow_trips.yaml +4 -0
  40. snowflake/ml/feature_store/examples/source_data/winequality_red.yaml +32 -0
  41. snowflake/ml/feature_store/examples/wine_quality_features/entities.py +14 -0
  42. snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py +29 -0
  43. snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py +21 -0
  44. snowflake/ml/feature_store/examples/wine_quality_features/source.yaml +5 -0
  45. snowflake/ml/feature_store/feature_store.py +987 -264
  46. snowflake/ml/feature_store/feature_view.py +228 -13
  47. snowflake/ml/fileset/embedded_stage_fs.py +25 -21
  48. snowflake/ml/fileset/fileset.py +2 -2
  49. snowflake/ml/fileset/snowfs.py +4 -15
  50. snowflake/ml/fileset/stage_fs.py +24 -18
  51. snowflake/ml/lineage/__init__.py +3 -0
  52. snowflake/ml/lineage/lineage_node.py +139 -0
  53. snowflake/ml/model/_client/model/model_impl.py +47 -14
  54. snowflake/ml/model/_client/model/model_version_impl.py +82 -2
  55. snowflake/ml/model/_client/ops/model_ops.py +77 -5
  56. snowflake/ml/model/_client/sql/model.py +1 -0
  57. snowflake/ml/model/_client/sql/model_version.py +45 -2
  58. snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +4 -6
  59. snowflake/ml/model/_model_composer/model_composer.py +15 -17
  60. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +31 -17
  61. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -1
  62. snowflake/ml/model/_model_composer/model_method/function_generator.py +20 -4
  63. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +3 -32
  64. snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template +55 -0
  65. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +5 -34
  66. snowflake/ml/model/_model_composer/model_method/model_method.py +10 -7
  67. snowflake/ml/model/_packager/model_handlers/_base.py +13 -3
  68. snowflake/ml/model/_packager/model_handlers/_utils.py +59 -1
  69. snowflake/ml/model/_packager/model_handlers/catboost.py +44 -2
  70. snowflake/ml/model/_packager/model_handlers/custom.py +12 -4
  71. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +18 -15
  72. snowflake/ml/model/_packager/model_handlers/lightgbm.py +70 -2
  73. snowflake/ml/model/_packager/model_handlers/llm.py +2 -2
  74. snowflake/ml/model/_packager/model_handlers/mlflow.py +2 -2
  75. snowflake/ml/model/_packager/model_handlers/pytorch.py +2 -2
  76. snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +2 -2
  77. snowflake/ml/model/_packager/model_handlers/sklearn.py +2 -2
  78. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +2 -2
  79. snowflake/ml/model/_packager/model_handlers/tensorflow.py +2 -2
  80. snowflake/ml/model/_packager/model_handlers/torchscript.py +2 -2
  81. snowflake/ml/model/_packager/model_handlers/xgboost.py +61 -2
  82. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  83. snowflake/ml/model/_packager/model_meta/model_blob_meta.py +2 -0
  84. snowflake/ml/model/_packager/model_meta/model_meta.py +21 -1
  85. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +6 -1
  86. snowflake/ml/model/_packager/model_packager.py +9 -4
  87. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -1
  88. snowflake/ml/model/_packager/model_runtime/model_runtime.py +3 -5
  89. snowflake/ml/model/custom_model.py +22 -2
  90. snowflake/ml/model/model_signature.py +4 -4
  91. snowflake/ml/model/type_hints.py +77 -4
  92. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +3 -1
  93. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py +13 -1
  94. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +1 -0
  95. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +6 -0
  96. snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +1 -0
  97. snowflake/ml/modeling/cluster/affinity_propagation.py +4 -2
  98. snowflake/ml/modeling/cluster/agglomerative_clustering.py +4 -2
  99. snowflake/ml/modeling/cluster/birch.py +4 -2
  100. snowflake/ml/modeling/cluster/bisecting_k_means.py +4 -2
  101. snowflake/ml/modeling/cluster/dbscan.py +4 -2
  102. snowflake/ml/modeling/cluster/feature_agglomeration.py +4 -2
  103. snowflake/ml/modeling/cluster/k_means.py +4 -2
  104. snowflake/ml/modeling/cluster/mean_shift.py +4 -2
  105. snowflake/ml/modeling/cluster/mini_batch_k_means.py +4 -2
  106. snowflake/ml/modeling/cluster/optics.py +4 -2
  107. snowflake/ml/modeling/cluster/spectral_biclustering.py +4 -2
  108. snowflake/ml/modeling/cluster/spectral_clustering.py +4 -2
  109. snowflake/ml/modeling/cluster/spectral_coclustering.py +4 -2
  110. snowflake/ml/modeling/compose/column_transformer.py +4 -2
  111. snowflake/ml/modeling/covariance/elliptic_envelope.py +4 -2
  112. snowflake/ml/modeling/covariance/empirical_covariance.py +4 -2
  113. snowflake/ml/modeling/covariance/graphical_lasso.py +4 -2
  114. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +4 -2
  115. snowflake/ml/modeling/covariance/ledoit_wolf.py +4 -2
  116. snowflake/ml/modeling/covariance/min_cov_det.py +4 -2
  117. snowflake/ml/modeling/covariance/oas.py +4 -2
  118. snowflake/ml/modeling/covariance/shrunk_covariance.py +4 -2
  119. snowflake/ml/modeling/decomposition/dictionary_learning.py +4 -2
  120. snowflake/ml/modeling/decomposition/factor_analysis.py +4 -2
  121. snowflake/ml/modeling/decomposition/fast_ica.py +4 -2
  122. snowflake/ml/modeling/decomposition/incremental_pca.py +4 -2
  123. snowflake/ml/modeling/decomposition/kernel_pca.py +4 -2
  124. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +4 -2
  125. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +4 -2
  126. snowflake/ml/modeling/decomposition/pca.py +4 -2
  127. snowflake/ml/modeling/decomposition/sparse_pca.py +4 -2
  128. snowflake/ml/modeling/decomposition/truncated_svd.py +4 -2
  129. snowflake/ml/modeling/ensemble/isolation_forest.py +4 -2
  130. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +4 -2
  131. snowflake/ml/modeling/feature_selection/variance_threshold.py +4 -2
  132. snowflake/ml/modeling/impute/iterative_imputer.py +4 -2
  133. snowflake/ml/modeling/impute/knn_imputer.py +4 -2
  134. snowflake/ml/modeling/impute/missing_indicator.py +4 -2
  135. snowflake/ml/modeling/impute/simple_imputer.py +26 -0
  136. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +4 -2
  137. snowflake/ml/modeling/kernel_approximation/nystroem.py +4 -2
  138. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +4 -2
  139. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +4 -2
  140. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +4 -2
  141. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +4 -2
  142. snowflake/ml/modeling/manifold/isomap.py +4 -2
  143. snowflake/ml/modeling/manifold/mds.py +4 -2
  144. snowflake/ml/modeling/manifold/spectral_embedding.py +4 -2
  145. snowflake/ml/modeling/manifold/tsne.py +4 -2
  146. snowflake/ml/modeling/metrics/ranking.py +3 -0
  147. snowflake/ml/modeling/metrics/regression.py +3 -0
  148. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +4 -2
  149. snowflake/ml/modeling/mixture/gaussian_mixture.py +4 -2
  150. snowflake/ml/modeling/neighbors/kernel_density.py +4 -2
  151. snowflake/ml/modeling/neighbors/local_outlier_factor.py +4 -2
  152. snowflake/ml/modeling/neighbors/nearest_neighbors.py +4 -2
  153. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +4 -2
  154. snowflake/ml/modeling/pipeline/pipeline.py +5 -4
  155. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +43 -9
  156. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +36 -8
  157. snowflake/ml/modeling/preprocessing/polynomial_features.py +4 -2
  158. snowflake/ml/registry/_manager/model_manager.py +16 -3
  159. snowflake/ml/registry/registry.py +100 -13
  160. snowflake/ml/version.py +1 -1
  161. {snowflake_ml_python-1.5.3.dist-info → snowflake_ml_python-1.6.0.dist-info}/METADATA +81 -7
  162. {snowflake_ml_python-1.5.3.dist-info → snowflake_ml_python-1.6.0.dist-info}/RECORD +165 -139
  163. {snowflake_ml_python-1.5.3.dist-info → snowflake_ml_python-1.6.0.dist-info}/WHEEL +1 -1
  164. snowflake/ml/_internal/lineage/data_source.py +0 -10
  165. {snowflake_ml_python-1.5.3.dist-info → snowflake_ml_python-1.6.0.dist-info}/LICENSE.txt +0 -0
  166. {snowflake_ml_python-1.5.3.dist-info → snowflake_ml_python-1.6.0.dist-info}/top_level.txt +0 -0
@@ -1,39 +1,40 @@
1
- snowflake/cortex/__init__.py,sha256=CAUk94eXmNBXXaiLg-yNodyM2FPHvacErKtdVQYqtRM,360
2
- snowflake/cortex/_complete.py,sha256=Hg5JXtFGYqStCi6BDvgaIPJfDWhX9GDNs2iGTrscJBc,2361
3
- snowflake/cortex/_extract_answer.py,sha256=4tiz4pUisw035ZLmCQDcGuwoT-jFpuo5dzrQYhvYHCA,1358
4
- snowflake/cortex/_sentiment.py,sha256=hY-GVxLnWuRBSG16kMo-I8r-pDiFT6j9ZZhFUECgtFk,1246
1
+ snowflake/cortex/__init__.py,sha256=Xw7skAa3Eeo0pq2q8gwekpvP_yZbHetNjB2mC1gqnsM,477
2
+ snowflake/cortex/_classify_text.py,sha256=lKV_J0TMDgaDCytpHsi8zo2N-aiWW5I8t1PcYiuNovo,1297
3
+ snowflake/cortex/_complete.py,sha256=OMLMG1nU1yXB3Q9isn08Rj5J4J90DceSuwH9ttV7ui0,12625
4
+ snowflake/cortex/_extract_answer.py,sha256=-ZvpnI6i4QmCkgxIEC8QGPlOQzKMVO5abgouXMf6wTw,1301
5
+ snowflake/cortex/_sentiment.py,sha256=yhV4T9GW-tcxkg_OYd-hbYHsbjHIYzRjbsmYuzXMPzU,1189
5
6
  snowflake/cortex/_sse_client.py,sha256=_GGmxskEQPVJ2bE3LHySnPFl29CP4YGM4_xmR_Kk-WA,2485
6
- snowflake/cortex/_summarize.py,sha256=DJRxUrPrTVmtQNgus0ZPF1z8nPmn4Rs5oL3U25CfXxQ,1075
7
- snowflake/cortex/_translate.py,sha256=JPMIXxHTgJPfJqT5Hw_WtYM6FZ8NuQufZ4XR-M8wnyo,1420
8
- snowflake/cortex/_util.py,sha256=6KVmrFZQrY1myI8VxtbDPBjqz39jVbFdQx8UbVVtpJg,4644
9
- snowflake/ml/version.py,sha256=bfI2NojWQ0mSVWuSsEep7KAW_E2qdiO7VDpCL3cN5Bs,16
7
+ snowflake/cortex/_summarize.py,sha256=raDFAb31penzEtOtqQv8wQS69MsRt_B75VQ5cDHegbE,1018
8
+ snowflake/cortex/_translate.py,sha256=QqngDJ9ijB5wCObSVWMfY2FQzk4S02M85PEAKr_Alrk,1363
9
+ snowflake/cortex/_util.py,sha256=5Y_hwZxW_Tygv8TNO7f5b3jvG9HeRwO8l9wv5sZOjCE,2150
10
+ snowflake/ml/version.py,sha256=ou-ltd3dvQ0ZdIozwgzxGA2B3fPpdrobEg6PEdehJwQ,16
10
11
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
11
12
  snowflake/ml/_internal/env_utils.py,sha256=HK5Ug5-gChiUv_z84BDjAuE9eHImrWRsX4Y7wJFApfk,27758
12
13
  snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
13
14
  snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
14
15
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
15
- snowflake/ml/_internal/telemetry.py,sha256=E8AEeXgmSKzYx709WYMaTBMWF8VAr259cgmsIFs3IAw,22820
16
+ snowflake/ml/_internal/telemetry.py,sha256=9ggB-vgNWfW-X_7tCSZHAn65RG0hJXA6joACS4nc0YU,24391
16
17
  snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
17
18
  snowflake/ml/_internal/container_services/image_registry/credential.py,sha256=nShNgIb2yNu9w6vceOY3aSgjpuOoi0spWWmvgEafPSk,3291
18
- snowflake/ml/_internal/container_services/image_registry/http_client.py,sha256=_zqPPp76Vk0jQ8eVK0OJ4mJgcWsdY4suUd1P7Orqmm8,5214
19
- snowflake/ml/_internal/container_services/image_registry/imagelib.py,sha256=Vh684uUZfwGGnxO-BZ4tRGa50l2uGM-4WfTg6QftlMY,14537
20
- snowflake/ml/_internal/container_services/image_registry/registry_client.py,sha256=Zic4bF67DMqEZbQMHffyeNoa83-FhswpZx02iBMjyrc,9115
19
+ snowflake/ml/_internal/container_services/image_registry/http_client.py,sha256=JAkZmI9szd3BeAB6bpSlfCWAmQOSGKVO3zrV_0QP6-I,5448
20
+ snowflake/ml/_internal/container_services/image_registry/imagelib.py,sha256=362M5dCE4wYWEsHgWaIIvIu-SfUt42skb3bJVSr--5o,14883
21
+ snowflake/ml/_internal/container_services/image_registry/registry_client.py,sha256=YngCY0U-m2adQai0XCS8jsJ9COIrMrtKJOLbjXfFeq8,9318
21
22
  snowflake/ml/_internal/exceptions/dataset_error_messages.py,sha256=h7uGJbxBM6se-TW_64LKGGGdBCbwflzbBnmijWKX3Gc,285
22
- snowflake/ml/_internal/exceptions/dataset_errors.py,sha256=wZTPKZRJSYsfeTs0vDL8r4bFFSP_9ob8XinMgPi63RM,762
23
+ snowflake/ml/_internal/exceptions/dataset_errors.py,sha256=TqESe8cDfWurJdv5X0DOwgzBfHCEqga_F3WQipYbdqg,741
23
24
  snowflake/ml/_internal/exceptions/error_codes.py,sha256=eMgsEfIYFQesK_pqLIsyxRZojz8Ke9DTlA5ni60RLv4,5453
24
25
  snowflake/ml/_internal/exceptions/error_messages.py,sha256=vF9XOWJoBuKvFxBkGcDelhXK1dipzTt-AdK4NkCbwTo,47
25
26
  snowflake/ml/_internal/exceptions/exceptions.py,sha256=ub0fthrNTVoKhpj1pXnKRfO1Gqnmbe7wY51vaoEOp5M,1653
26
27
  snowflake/ml/_internal/exceptions/fileset_error_messages.py,sha256=dqPpRu0cKyQA_0gahvbizgQBTwNhnwveN286JrJLvi8,419
27
- snowflake/ml/_internal/exceptions/fileset_errors.py,sha256=ZJfkpeDgRIw3qA876fk9FIzxIrm-yZ8I9RXUbzaeM84,1040
28
+ snowflake/ml/_internal/exceptions/fileset_errors.py,sha256=pHwY7f5c6JH-RZDtkiWy8nICHKy4T5vvWs5cq5rPD_4,1030
28
29
  snowflake/ml/_internal/exceptions/modeling_error_messages.py,sha256=q1Nh7KvnUebdKCwwAPmotdAVS578CgAXcfDOfKoweVw,665
30
+ snowflake/ml/_internal/exceptions/sql_error_codes.py,sha256=aEI3-gW7FeNahoPncdOaGGRBmPJmkCHK-a1o2e3c3PI,206
29
31
  snowflake/ml/_internal/human_readable_id/adjectives.txt,sha256=5o4MbVeHoELAqyLpyuKleOKR47jPjC_nKoziOIZMwT0,804
30
32
  snowflake/ml/_internal/human_readable_id/animals.txt,sha256=GDLzMwzxiL07PhIMxw4t89bhYqqg0bQfPiuQT8VNeME,837
31
33
  snowflake/ml/_internal/human_readable_id/hrid_generator.py,sha256=LYWB86qZgsVBvnc6Q5VjfDOmnGSQU3cTRKfId_nJSPY,1341
32
34
  snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=D1yoVG1vmAFUhWQ5xCRRU6HCCBPbXHpOXagFd0jK0O8,4519
33
- snowflake/ml/_internal/lineage/data_source.py,sha256=D24FdR6Wq_PdUuCsBDvSMCr5CfHqpMamrc8-F5iZVJ0,214
34
- snowflake/ml/_internal/lineage/lineage_utils.py,sha256=-eO01yjER2qGYvaS-2SD9oxmWN52vrk3VEWlduHZO78,3415
35
+ snowflake/ml/_internal/lineage/lineage_utils.py,sha256=kxWW7fkSf1HiUQSks3VlzWyntpt4o_pbptXcpQHtnk8,3432
35
36
  snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
36
- snowflake/ml/_internal/utils/identifier.py,sha256=7dV6dN_KAoupT-xJS8f19K69GVWa4069RmKVWMuWH9k,10926
37
+ snowflake/ml/_internal/utils/identifier.py,sha256=jlvTl2mjzvuMgNgTU2jBlfQ6TR21t3Q1C-mujeO-Rtc,11375
37
38
  snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
38
39
  snowflake/ml/_internal/utils/log_stream_processor.py,sha256=pBf8ycEamhHjEzUT55Rx_tFqSkYRpD5Dt71Mx9ZdaS8,1001
39
40
  snowflake/ml/_internal/utils/parallelize.py,sha256=Q6_-P2t4DoYNO8DyC1kOl7H3qNL-bUK6EgtlQ_b5ThY,4534
@@ -43,43 +44,67 @@ snowflake/ml/_internal/utils/result.py,sha256=59Sz6MvhjakUNiONwg9oi2544AmORCJR3X
43
44
  snowflake/ml/_internal/utils/retryable_http.py,sha256=1GCuQkTGO4sX-VRbjy31e4_VgUjqsp5Lh2v5tSJjVK8,1321
44
45
  snowflake/ml/_internal/utils/session_token_manager.py,sha256=qXRlE7pyw-Gb0q_BmTdWZEu9pCq2oRNuJBoqfKD9QDQ,1727
45
46
  snowflake/ml/_internal/utils/snowflake_env.py,sha256=Mrov0v95pzVUeAe7r1e1PtlIco9ytj5SGAuUWORQaKs,2927
46
- snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=HPyWxj-SwgvWUrYR38BkBtx813eMqz5wmQosgc1sce0,5403
47
+ snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=ksWdVV2EUX4SOOcoeC00xZDEoOyukQOGqxO20_XxaMs,5981
47
48
  snowflake/ml/_internal/utils/spcs_attribution_utils.py,sha256=9XPKe1BDkWhnGuHDXBHE4FP-m3U22lTZnrQLsHGFhWU,4292
48
49
  snowflake/ml/_internal/utils/sql_identifier.py,sha256=ZcRjSfpovsqaY7S8bFB6z44z28XICncHGwOIzs8rLDI,3729
49
50
  snowflake/ml/_internal/utils/table_manager.py,sha256=jHGfl0YSqhFLL7DOOQkjUMzTmLkqFDIM7Gs0LBQw8BM,4384
50
51
  snowflake/ml/_internal/utils/temp_file_utils.py,sha256=0-HTjXdxVt0kE6XcgyvRvY0btflWlmotP2bMXVpFJPA,1553
51
52
  snowflake/ml/_internal/utils/uri.py,sha256=pvskcWoeS0M66DaU2XlJzK9wce55z4J5dn5kTy_-Tqs,2828
53
+ snowflake/ml/data/data_connector.py,sha256=1XQphZRbmbAKQT9nw3rWGrh-lSgnard0LhKrnhezYdI,5533
54
+ snowflake/ml/data/data_ingestor.py,sha256=cRM_ijBqLS4XDYH7riOkCCHM5n7BVbEm-d9yVlmeMAc,736
55
+ snowflake/ml/data/data_source.py,sha256=dRemXGi_HHQdn6gaNkxxGJixnQPuUYFDP8NBjmB_ZMk,518
56
+ snowflake/ml/data/_internal/arrow_ingestor.py,sha256=NoNpMlVIF-VBwq14HQo68PHxQ-22uKjHJ9bYovPU0wg,9538
57
+ snowflake/ml/data/_internal/ingestor_utils.py,sha256=tf3Ov51lv0C07b-kuJzIoG9MPPaN_Ejx7Y2tqNav37k,2130
52
58
  snowflake/ml/dataset/__init__.py,sha256=nESj7YEI2u90Oxyit_hKCQMWb7N1BlEM3Ho2Fm0MfHo,274
53
- snowflake/ml/dataset/dataset.py,sha256=6_4WPEw0SxU0O_2ock3UmcYjLU51Drmu7VRQQ8vU1gg,21117
59
+ snowflake/ml/dataset/dataset.py,sha256=NNwEyfHwyZ0ZRwp6poBxZE982RjAFUfN645yDFTdmUI,21188
54
60
  snowflake/ml/dataset/dataset_factory.py,sha256=Fym4ICK-B1j6Om4ENwWxEvryq3ZKoCslBSZDBenmjOo,1615
55
61
  snowflake/ml/dataset/dataset_metadata.py,sha256=lvaYd1sNOgWcXD1q_-J7fQZ0ndOC8guR9IgKpChBcFA,3992
56
- snowflake/ml/dataset/dataset_reader.py,sha256=TKitOC7YBk3yZ9axL9nI1paSI2ooSqBn4zw5eOYpCGY,8061
62
+ snowflake/ml/dataset/dataset_reader.py,sha256=8d6lBBg6LlDC0HmiJmmGyPN4dBIJzi1UdrFr5-EOlVQ,4066
57
63
  snowflake/ml/feature_store/__init__.py,sha256=VKBVkS050WNF8rcqNqwFfNXa_B9GZjcUpuibOGsUSls,423
58
- snowflake/ml/feature_store/access_manager.py,sha256=QqAgOQ2r2JxR4CXuFiCeQ8JWk-YdPCC_QrM1boa5nsU,10607
59
- snowflake/ml/feature_store/entity.py,sha256=dCpzLC3jrt5wDHqFYJXbAYkMiZ0zEmiVDMGkks6MXkA,3378
60
- snowflake/ml/feature_store/feature_store.py,sha256=Xy5wnUanl1AsfBXyIoPGPlwugE6h-Vf9QmeYqyPYH84,78694
61
- snowflake/ml/feature_store/feature_view.py,sha256=6D4hB0v2jmLLjBlpiIVkSUXdSXxqqozf0XLc8EZ3bys,19332
62
- snowflake/ml/fileset/embedded_stage_fs.py,sha256=90nCRvRm2EZpDlx-Hu-NLI5s9fYbEFHdf0ggwjdrkQM,5919
63
- snowflake/ml/fileset/fileset.py,sha256=QRhxLeKf1QBqvXO4RyyRd1c8TixhYpHuBEII8Qi3C_M,26201
64
+ snowflake/ml/feature_store/access_manager.py,sha256=WBRRzmUUB_K9_xX6duv4tFExb7d4RksO_7FZjzEtoww,10696
65
+ snowflake/ml/feature_store/entity.py,sha256=A65FOGlljREUG8IRMSN84v1x2uTeVGCM4NqKXO2Ui8w,4059
66
+ snowflake/ml/feature_store/feature_store.py,sha256=XheIPc4PHxTec9158fjUg7jeBaiinoSDzMCdBOVZv1I,110502
67
+ snowflake/ml/feature_store/feature_view.py,sha256=a_Z9Ai5hzn3i0NBuuUM0yeCCgTpLtdhFyqCJRlHNujA,27566
68
+ snowflake/ml/feature_store/examples/example_helper.py,sha256=6OwDNoC1ndTkihaUAoAgnR25z3Or2cgQQas4hr1IbX0,10629
69
+ snowflake/ml/feature_store/examples/citibike_trip_features/entities.py,sha256=SE8Zx3xqFJk65Tqori4nh0KOPwEY3baMoFsVAYM1e7c,449
70
+ snowflake/ml/feature_store/examples/citibike_trip_features/source.yaml,sha256=NMV4ujacID4r007HOttLBm3cLUgY4egAW2kEqX56D4A,83
71
+ snowflake/ml/feature_store/examples/citibike_trip_features/features/station_feature.py,sha256=RL6dsxwA1kN4Wvd4N8rCFLoV2bByJEtkB7vtBwq0Vqg,1128
72
+ snowflake/ml/feature_store/examples/citibike_trip_features/features/trip_feature.py,sha256=WF7wRQf992cSN-3Gl3ozgR9V2OzTJRmXXHrXanza3_U,961
73
+ snowflake/ml/feature_store/examples/new_york_taxi_features/entities.py,sha256=7gjTaeIW1URCEZpxHBazbS2wBTgX2a9yZmz5lOC3tTY,425
74
+ snowflake/ml/feature_store/examples/new_york_taxi_features/source.yaml,sha256=7t3HAXkF00liOg8-flZMIa-Cy7mJt2Wj6kuaPkxXclg,168
75
+ snowflake/ml/feature_store/examples/new_york_taxi_features/features/dropoff_features.py,sha256=Hi0uRTiDG3p2GurWGNgXaSKVdfWNImuc-16hO7GUYf4,1512
76
+ snowflake/ml/feature_store/examples/new_york_taxi_features/features/pickup_features.py,sha256=IEenGMwpRub16IBOcWKAcvaxAQXX7Un7TGMuUIUWRlw,2489
77
+ snowflake/ml/feature_store/examples/source_data/citibike_trips.yaml,sha256=m0RIaEQ-4iJYq-7P57WdZpUcqeKjW9JgWAHxksstgIQ,918
78
+ snowflake/ml/feature_store/examples/source_data/fraud_transactions.yaml,sha256=ENAIRcrRmdIplKJP8A5nhXdWSQRNTeQH4ghIT9boE8o,711
79
+ snowflake/ml/feature_store/examples/source_data/nyc_yellow_trips.yaml,sha256=1PkEybh_ieP-HZme9YPuAf6-pL4D6-6dzNlqdZpH8fk,142
80
+ snowflake/ml/feature_store/examples/source_data/winequality_red.yaml,sha256=03qIwx_7KA-56HwKqshSOFCGOvLnQibR_Iv2zprz_Vs,741
81
+ snowflake/ml/feature_store/examples/wine_quality_features/entities.py,sha256=BmQYBnMglqV1th18JxzH5jZqz4snUgik_lBH7Pf8HV4,309
82
+ snowflake/ml/feature_store/examples/wine_quality_features/source.yaml,sha256=uh9gtRpXqlhMvhV7gHmtub1BAkGiRSfCSk_QWFIbCr4,105
83
+ snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py,sha256=x0zjiadljbM4juO0uadBKwOZ2AaTDOlDHJEOjuG68i4,1101
84
+ snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py,sha256=ePrKOmPS2ZH9HqJwhpCfyW_DK1jLlMeDlU9et9jCF4s,890
85
+ snowflake/ml/fileset/embedded_stage_fs.py,sha256=AYa0vRiqQTvi1Z86tAeID_Mxl3kgxbhi35A0o_-DJF0,6003
86
+ snowflake/ml/fileset/fileset.py,sha256=yfYFZL2b1vYqL0zs6m9_hmjzyP3TAGTINNz6hF1yalQ,26196
64
87
  snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
65
88
  snowflake/ml/fileset/sfcfs.py,sha256=a77UJFz5Ve9s_26QpcOOoFNOBIKN91KmhYVTQkafn0c,15344
66
- snowflake/ml/fileset/snowfs.py,sha256=AGP0Uj-59T6B40dQQHhnc_46gpmugz6Xkxp505SyMkw,5392
67
- snowflake/ml/fileset/stage_fs.py,sha256=IebRjgPlJdwdAlpg_99DGbgIBD3XJb2p9N36O0tU3wI,19532
89
+ snowflake/ml/fileset/snowfs.py,sha256=uF5QluYtiJ-HezGIhF55dONi3t0E6N7ByaVAIAlM3nk,5133
90
+ snowflake/ml/fileset/stage_fs.py,sha256=9v6TybA8pbQ9n1vp6Sh4Ds2LwPW2M_EGoAhGsBEeLVs,20068
68
91
  snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx52jX8I,3849
69
92
  snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPbt9WKYiBp0,2386
93
+ snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCrzI4,65
94
+ snowflake/ml/lineage/lineage_node.py,sha256=ac_TYngOt7Q_o_JgZQWysREyAzy12j3Q15xgMkAltgk,5576
70
95
  snowflake/ml/model/__init__.py,sha256=KgZmgLHXmkmEU5Q7pzYQlpfvIll4SRTSiT9s4RjeleI,393
71
96
  snowflake/ml/model/_api.py,sha256=u2VUcZ0OK4b8DtlqB_IMaT8EWt_onRVaw3VaWAm4OA4,22329
72
- snowflake/ml/model/custom_model.py,sha256=xvu7WZ1YmOdvuPePyAj6qMwKq-HNeVV9bNfkOT09CRI,8267
97
+ snowflake/ml/model/custom_model.py,sha256=Nu9kNa9pDFXmLN1Ipv4bc_htG0lPeWKD0AQ2Ma2-wK0,9172
73
98
  snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
74
- snowflake/ml/model/model_signature.py,sha256=ZnkgY-6BL7gNGRPXJTgK0EbZ6RQ7hDJjiDxsPNXHKi4,29453
75
- snowflake/ml/model/type_hints.py,sha256=ZHnhoAV_oAAPz3QmXtzrrpstVyame48-KgTpyIHGM6k,12726
76
- snowflake/ml/model/_client/model/model_impl.py,sha256=hVtAHejB2pTDquWs4XNS7E7XZS1DI7nH7EILbd0btbc,13655
77
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=Li9JtKwZvNqKjpAQM4qA52-F0fu-HASt0RWPDEJGFPE,17994
99
+ snowflake/ml/model/model_signature.py,sha256=Iwll4_VbcDtDX0otGS_NVd0gKSdcHQ_OJbZxNNGMRFg,29473
100
+ snowflake/ml/model/type_hints.py,sha256=ZPtFuovdHtylrUjuG4fRPPPAdjYyMugSr-xqn542Ab0,14223
101
+ snowflake/ml/model/_client/model/model_impl.py,sha256=QC3h0v0kfbfUIia2z6f0AE2b1SRI8OFxxhOxd1wJeOI,15036
102
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=g64uvaCbowz4b-b53DRzV-lX9KJA9bTiW5GvpqBHRH8,20850
78
103
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=7cGx8zYzye2_cvZnyGxoukPtT6Q-Kexd-s4yeZmpmj8,4890
79
- snowflake/ml/model/_client/ops/model_ops.py,sha256=YWhR_MVvp8bCFJ_yvSHp0fRe9ZCWSAmFCvZUNLqs7Ko,30615
104
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=-QMtGhdi4qdmro7Dub-bt6ZkZ_XSTVQi8a7EFpH24r4,33470
80
105
  snowflake/ml/model/_client/sql/_base.py,sha256=pN5hxyC0gGzEJgZh2FBHLU0Y6iIoLcebHoE7wTpoUZQ,1252
81
- snowflake/ml/model/_client/sql/model.py,sha256=dKgrkYKuuAIaOcAC1K7_wxWgrtGF1r89sItcP00hUzY,5736
82
- snowflake/ml/model/_client/sql/model_version.py,sha256=aLNXLKqDAEG1LjxdLdSc05E_3hK9i-Ry6MwSTWGS1kg,18106
106
+ snowflake/ml/model/_client/sql/model.py,sha256=kdglOjmrOsFZYoEu63-BfyLXgnWBe7RrwkknalDKDkQ,5783
107
+ snowflake/ml/model/_client/sql/model_version.py,sha256=lguEWCQDdbc_QsUW7FNv-mO2bi5a0BEQSnrDB-fYheE,19989
83
108
  snowflake/ml/model/_client/sql/stage.py,sha256=hrCh9P9F4l5R0hLr2r-wLDIEc4XYHMFdX1wNRveMVt0,819
84
109
  snowflake/ml/model/_client/sql/tag.py,sha256=pwwrcyPtSnkUfDzL3M8kqM0KSx7CaTtgty3HDhVC9vg,4345
85
110
  snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py,sha256=clCaoO0DZam4X79UtQV1ZuMQtTezAJkhLu9ViAX18Xk,302
@@ -87,7 +112,7 @@ snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py,sha256=G7
87
112
  snowflake/ml/model/_deploy_client/image_builds/docker_context.py,sha256=7uhAJsHsk7LbiZv_w3xOCE2O88rTUVnS3_B6OAz-JG4,6129
88
113
  snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh,sha256=1pntXgqFthW4gdomqlyWx9CJF-Wqv8VMoLkgSiTHEJ0,1578
89
114
  snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=SNXqUBkI_tPAgdnLrQW10smG_7O_DGwAuK3dLFE-wJA,10095
90
- snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=Ltk7KrYsp-nrghMhbMWKqi3snU8inbqmKLHFFyBCeBY,11148
115
+ snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=dC-02DfGfij5IwnhuVxj-oN_a85n54o7txNLL2_r4Z4,10977
91
116
  snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template,sha256=8jYNmQfGw7bJgHCEd3iK9Tj68ne_x5U0hWhgKqPxEXw,1783
92
117
  snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template,sha256=g8mEvpJmwQ9OnAkZomeErPQ6h4OJ5NdtRCoylyIp7f4,1225
93
118
  snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template,sha256=nEK7fqo_XHJEVKLNe--EkES4oiDm7M5E9CacxGItFU0,3633
@@ -100,42 +125,43 @@ snowflake/ml/model/_deploy_client/utils/constants.py,sha256=Ip_2GgsCYRXj_mD4MUdk
100
125
  snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=k0SulzWdttRvJkyuXM59aluEVgQg8Qd7XZUUpEBKuO4,11671
101
126
  snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=yZR9M76oh6JbPQJHb6t3wGO3wuD04w0zLEXiEyZW_tg,8358
102
127
  snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
103
- snowflake/ml/model/_model_composer/model_composer.py,sha256=DPTI_-krAIzlYgs5-ojSpoBP-OQ_vamcI1uim3s9n08,7580
104
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=5tMz0d7t9f0oJAEAOXC4BDDpMNAV4atKoK9C66ZHgvU,5667
105
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=PsRVrOt15Zr-t2K64_GK5aHjTWN4yLgixRqaYchY2rA,2530
106
- snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2B-fykyanYlGWA4Ie2nOwXx2N5D2qZEvTbbPuSSreeI,1837
107
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=QpQXAIKDs9cotLOL0JdI6xLet1QJU7KtaF7O10nDQcs,2291
108
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=4m-nOYWr35tHw4FdjSLlJL7Qr-cr4xdZiUlRnXFNDLk,2266
109
- snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=cr5soVDesBm19tjDG6lHLN6xrxj_uwPv1lKt8FgpM-c,6682
128
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=pqEjpNIDgVMaslFazkUyrN9rRixh3Dwr2Wf8A9CYwBE,7631
129
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=4FvWGXHn9C0mvNNh1Dl_F4azmOswyPsA6aW8J8XaC_c,6342
130
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=ED2Ki7mD9SKokNChoOyXRYFJ6TUArH6aYqmV72BqLto,2559
131
+ snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2cE463GKWAJCrqEYD1s8IPzd3iPu0X0eQ12NnXQhGBM,2556
132
+ snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=eQ-FLUGt5r0P9UtDwWFoqSJzGeLBvwEMoHAbe8aCNsE,1418
133
+ snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template,sha256=L5R04QeoW6dH1PdEy3qo1LS478rTmvvRmrwlgqVwimg,1504
134
+ snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=NUDSyFFAdEZEWtSkvYxkU9vB-NTjcTg6sjkrNpcmF6A,1418
135
+ snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=4RfjJ_0Y8NUmI9YpmBqxBT2xk_yQ0RIzznaKGHlS6jU,7076
110
136
  snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
111
- snowflake/ml/model/_packager/model_packager.py,sha256=6YQkmE5LCYIni7bKLMc9yDyS_ozdWuvExh5Wt7Ez2uY,5836
137
+ snowflake/ml/model/_packager/model_packager.py,sha256=mbIN3NzvF6akwJ86zBjOn6pJyNPDHaUBT0ohpAtHMGo,5980
112
138
  snowflake/ml/model/_packager/model_env/model_env.py,sha256=3FTftb2OMqCjushFLBISbF6E4z2CQ8G_rNewf-ahVGQ,18312
113
- snowflake/ml/model/_packager/model_handlers/_base.py,sha256=-FfoDfULcfFRizya5ZHOjx48_w04Zy4eLEqOOrQIDHM,6033
114
- snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=KKwS93yZnrUr2JERuRGWpzxCWwD6LOCCvR3ZfjZTnyQ,2622
115
- snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=FC0Yw2QDknaR9jdzncTI4QckozT-y87hWSHsqQYHLTs,8142
116
- snowflake/ml/model/_packager/model_handlers/custom.py,sha256=y5CHdEeKWAO08uor2OtEob4-67zv1CVfRf1CLvBHN40,7325
117
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=Z7vZ5zhZByLVPfNdSkhgzBot1Y8UBOM3ITj3Qfway3A,19985
118
- snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=PWPdpOdden2vfloXZA5sA20b2dCBiGO1-NfJ8atH-Uc,8445
119
- snowflake/ml/model/_packager/model_handlers/llm.py,sha256=SgCgy9Ys5KivNymjF35ufCpPOtMtSby2Zu4Tllir8Mg,10772
120
- snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=5Kyfg962x_kJQyabIQXf72bO0cAgNgj1vfy48RD9osw,9022
121
- snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=dSxKO530_IlF1OK3t9_UYpVntdPiszKy-x_7XGk0bzQ,8033
122
- snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=JRPargMNEJaDFQIpzqEVvOml62G_UVVvJdqBH8Lhu_Y,9051
123
- snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=u4ino0SxjAMxEl2jgTqt6Mqs1dKGZmSE90mIp3qHErU,8218
124
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=le4Y_dbiPlcjhiFpK1shla3pVgQ5UASdx2g7a70tYYY,7967
125
- snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=ujBcbJ1-Ymv7ZeLfuxuDBe7QZ7KNU7x1p2k6OM_yi-0,8179
126
- snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=8s8sMWQ9ydJpK1Nk2uPQ-FVeB-xclfX5qzRDr9G1bdk,8104
127
- snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=x5bXz5DRzb3O7DMDOF535LBPGnydCa78JHP_7-vsnjY,8874
139
+ snowflake/ml/model/_packager/model_handlers/_base.py,sha256=iz9LRBLKCIASj4TonQ-jK_r7doPSdxErwYz3tX7TCxw,6393
140
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=XpVZM8KjCjy7swfWFb0TpKC6uqAqTL1nZbFdJ8DM8ng,4653
141
+ snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=_zesJM4Ok4LrshxxPTyv647rCJHaO12XASDsDVXxyLw,10220
142
+ snowflake/ml/model/_packager/model_handlers/custom.py,sha256=aqhvRFzmgAxpzRQdMxwrMzBXsjr-q9489Vwf_Y_eXM4,7805
143
+ snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=VQIvkvGZBSZ8bg8QKAyRJ5xvmjL0qi9A3s3ml7mtjjI,20296
144
+ snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=1aqeJNEA14hQBuSqo9oQco8T5ogdR_XCjtPiVmrgR3A,11534
145
+ snowflake/ml/model/_packager/model_handlers/llm.py,sha256=rPsTXrA70Va8vV0wHKj8O3fwrh24HppRHxyWGIIe3lY,10770
146
+ snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=h0FUuuq5y4M_1eRe7klDNCudDaw_YuE_v1kwrOX5FH0,9026
147
+ snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=bL6CJApzBUZ903Ays0mQ2ONvn5Qnn01zP40GPThQbCA,8039
148
+ snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=6pAnXmVhHt4UKEM4eLDC8hxY1OMEm4Gx_TbirQetaMA,9083
149
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=BT5dQsdudIi3qTAIvEYgHDVw-oJap4BdKkaTM4m6Woc,8226
150
+ snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=Y9wqTMc7ODEuhOAf3FQrDstaT_4wxWzntVYAcEa106g,7977
151
+ snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=OFhh3QRI085F0dpn4iLpxZtCKnotAEcztrv4Sh4AAGM,8191
152
+ snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=3fQ4z8fJE-MjKuIBVLeNXZp7vpQzw00Wk1W3rSe_Xm4,8118
153
+ snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=7fofU6KiWflK0euZynWox2k1FXNSDraqrZkioFniHig,12027
128
154
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
129
- snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=QaB-eiwoyIl5BT5HSI_Jrb-FxqGJ6LgvsNRrPiI8UQc,265
155
+ snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=z0WnMVFR9RySEpldoPrDsMgSrSW8EOiTaylnTsBwhe4,265
130
156
  snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
131
- snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=qwgBneEA9xu34FBKDDhxM1igRiviUsuQSGUfKatu_Ro,1818
132
- snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=lmztlpzedTtJ2PNyLm5vYATGoMPVPXluu2qppmvEVJ8,17137
133
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=8eutgCBiL8IFjFIya0NyHLekPhtAsuMhyMA8MCA9VOQ,2380
157
+ snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=GmiqqI-XVjrOX7cSa5GKerKhfHptlsg74MKqTGwJ5Jk,1949
158
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=BlBOQF7lPhK9pUK48bwGytXpnTlW53B_8XeLS7YJgtY,18100
159
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=yN5-rbOsjT8vm5SgKoM-GFygxGwQzuKZMbYRxujjiGU,2531
134
160
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
135
161
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
136
162
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
137
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=ZGtLo1foiSMGE3KyAmyCcNoeYHeyQgeRIMMSgwuQBW4,239
138
- snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=5Wo_MW_ub00t_TNi438tcjHY7Fi_8NI6gmrDzVxO45I,4723
163
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=fRPGbrnq67PRo3e_uVk01TKZ7AZKYM-_lryePkNk5AY,239
164
+ snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=UaX0EUYDR_4s9u682UcrR0TXvqj-VcS_zBW0qAwuEQY,4654
139
165
  snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
140
166
  snowflake/ml/model/_signatures/builtins_handler.py,sha256=nF-2ptQjeu7ikO72_d14jk1N6BVbmy-mjtZ9I1c7-Qg,2741
141
167
  snowflake/ml/model/_signatures/core.py,sha256=xj4QwfVixzpUjVMfN1-d2l8LMi7b6qH7QvnvD3oMxSw,18480
@@ -158,50 +184,50 @@ snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=
158
184
  snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=MyTRkBV3zbDeO7HJaWrKYT3KkVqW51Q0AX2BbUtN4og,5737
159
185
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py,sha256=fgm1DpBBO0qUo2fXFwuN2uFAyTFhcIhT5_bC326VTVw,5544
160
186
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py,sha256=lM1vYwpJ1jgTh8vnuyMp4tnFibM6UFf50W1IpPWwUWE,2535
161
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=ueX0rtJSn3x9cJL9w1j_AiAG1ud6iykHOgkhSyjcAFQ,54585
162
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=YN8I_U_7_hL42o5_7NnEYY05aiuwgdO4Q2Iw__7Qa_w,6180
163
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=rt3xsJg0q82EbBgV1GF6OQjwGSYRbNMPr5a3mOn8iY0,15483
164
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=C2-_fJxOSre3mDhn9SAWLZThKj11BT42mecB4xppgKA,33390
165
- snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=4WP1QVqfSVvziVlQ7k9nWQNCM0GN5kTk4Xnd-9jWTXc,17300
187
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=6U7rHVgn_RqDyuwJ4hkNpDwQ2sbp4CFv4UZ-Eis0kbM,54650
188
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=HnsSmsXAeJrH9zVeq3CSziIaCUDxeWWx6kRyAK4qajM,6601
189
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=Iqk8y4ltjfwDfrBOHmmvYRGyNzR3ZokQNukByUyH8NU,15516
190
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=BVUHR4k5uQzVTddXvfDgzm9nZ_ZnkDg4SxTM69yV9a8,33588
191
+ snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=JHAo8u7myo1ZF1g1Ia_E2GDnPJqGdunl7ezma9mtANI,17333
166
192
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
167
193
  snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=K9_iTZRo_XU7THcR6t51OcmHQxHj07CxdBkKHi-4FSY,51596
168
194
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
169
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=uW6rQmBiarz-6kw_F6Qmdma4oaL4QAscifZI56PRMhQ,49425
170
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=cs1FQycRGsXdRUEpKl_OC7Hyfg14bQSDv7eU11e7Kss,51462
171
- snowflake/ml/modeling/cluster/birch.py,sha256=CA4yNF5eVMx7IOsUAXmIRevtEZN_6ufzBorY8ZOeK5w,49352
172
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=w19X53Mk9pdkmr0sjU8wRyVNTIycPrum1P3Z3MBXSSo,52111
173
- snowflake/ml/modeling/cluster/dbscan.py,sha256=71SaDPql_w2PKnge8-CQRa1zR5m9fwvUJkWB9AAfEYk,49512
174
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=AszdjTzVfmlnhzlB4HEqNJ0fTjBvlRVSAqibjWVwgOY,52227
175
- snowflake/ml/modeling/cluster/k_means.py,sha256=Nj8XpH64T39A-KrTHkkdT5Aghhsz4O37mltb59DgUXs,51640
176
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=pLLZ7SO-m8PmJ7EwDn0j3m_fZ01FzO7BsI0KfJzdwe0,49722
177
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=HBadAGegSP1RDMBUcdai5cqlOOofDiN01Le4jxYBYnI,53029
178
- snowflake/ml/modeling/cluster/optics.py,sha256=Urt2e02Ilhg5CNaSajX86x-5OIzh_YORI8PzZnyNyUA,52826
179
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=YfxvYnLw55ntCeaqAVdwNo27YYp4YAF7gUQm9InF62M,49721
180
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=rrHwdYx6qKQyBAd3R38YtWl2CVKJwwxLoXNsYRd8mJk,52913
181
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=OU4L3Ib_do0TYp8kfyfuZu7JjsYih53tPrCzbOx1ms0,48854
195
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=XGpuBMEU0CfXa3NumS5eBY1k2TA2nUXoDpbUlF8EZKg,49509
196
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=YX5_3a4h-esiuO3h-IBNyQRETx8ROqjppxqseabxY1A,51546
197
+ snowflake/ml/modeling/cluster/birch.py,sha256=JOhh4CekZQNVxU1hNf6eWLLM0g1t-LjBBsIgeC1z_JY,49436
198
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=XqzVUjQ6zcilP-PgslRYNRe3FTBDDkx85VTcaIB_YhU,52195
199
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=w-d3CY5KHTk0zm05Q0aYR15PaXa9tjTtmyC6xC_rtOg,49596
200
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=DRyJPbDYdvXCLM39VNWCh9V7Dsc4jgw4dz5lHWGP1ew,52311
201
+ snowflake/ml/modeling/cluster/k_means.py,sha256=azFG8uEX5J6lS9PqKDgv1kQo7tyrUt4dBs0JmRr347c,51724
202
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=EPXQI46vf3B7ky9PmDCK86Nl1m1JeGNo_O1oYSwrT04,49806
203
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=n_A2V1HZRfkAPKG36by6305ghy7DMbZlfryUdRFZDEQ,53113
204
+ snowflake/ml/modeling/cluster/optics.py,sha256=GoIOqcEu7V-y1C5lk3aK13CUrhdsx3r2Tweamci2vdY,52910
205
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=HpWYWZtAwWC_06XcBNIT1RUVW_8QklJw18Q0f3VjML0,49805
206
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=DlL3--nc-R_ISnG4gV6MwB5KmMmOTV2m0xltRSO2OKE,52997
207
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=3mXD667Al2Z7LMT9hYP_0Ykp1XkGpOryWhMWjlQZkeA,48938
182
208
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
183
- snowflake/ml/modeling/compose/column_transformer.py,sha256=cG78wvFzaWF2dNYhiNv_PDqSiWn4TQz2LvZnhyvLCmQ,51692
209
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=71LEirqv49TIUt3yMEjW_SpUdZeDLc6Eq2D0m3n_eMM,51776
184
210
  snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=1NwaWTVABvYhApdXJHSb7BLrOOnmGc2u-v0n_4Hv4IU,49408
185
211
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
186
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=H5jLT_yDAwiFYi2JcsgRCihKRpy9GWWrBMtHvceExQ0,49746
187
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=9vFnH0oRwbY7wfHDexO3xf9vlw6seqbu1pO_7Jc9svg,47554
188
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=EvxbRLYslQyDjhHqje5yx6VoJLmPiQX0rkoyP09Hk_A,49418
189
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=sNUEFH-e4BerMZ0zSOeL3VBDP0p8q_k1w5mujKK4Tkw,50583
190
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=Bl1nx4pdWzp-yqOFOO9TCO2U5BM_p3T6947YxswKFl4,47692
191
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=3RMyEMkYV7CpapjcLZ__p4pOnPpOsZHQzrMr_G9ySn8,48447
192
- snowflake/ml/modeling/covariance/oas.py,sha256=atSOn1SSJ2mXwB0Ym_A4gZPcXWJwvIxoqE6LbtqZDfM,47333
193
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=CWAEhnyz3rxDgrEaoCqmwVLGbf7SKe_MOmPqcr2-DUA,47709
212
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=pXq9oGodQZvBcUHBk8BqWMAnTZHeSP_sKA5PSCllTBE,49830
213
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=xnc9sqX5yYXTpCSXaKTM5MWvWSg1vLQUc3bxLNeYw2w,47638
214
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=g9S1OFD8oDG8eFHdbxeRVRoXq51ZmY1gyEfGD7ZoOY4,49502
215
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=_LQa69Vms5LRZZfDFY2ZIs97I_NS5-fNUBX-fnHpymM,50667
216
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=Ic3JsS3FnKFOkqTyKl7hnJKBJ0f2QvVsxa0S2H-ozak,47776
217
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=_kBmsMyNcA_moBOvjucLfMp90y3YlU9HKZZImOxGbdw,48531
218
+ snowflake/ml/modeling/covariance/oas.py,sha256=Zhdeao4qKP-QxSTVJEDGLSZfsfRlMw1SEaB7fU997Hg,47417
219
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=Gi2fFZj5UxmsKgLldV5GSSoLeAkcbAueEjaNnqc7ET0,47793
194
220
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
195
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=TC9EW-abr5-s2Si6q3RzBoTwDSDPoB0SEuWGvbm4_c8,52706
196
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=DpZT0nesVDJJjsi267IY9eJHCmUideN_DEl6tQnUj0U,50369
197
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=ENQYsxckx7NrsghQMRaLwBn5pyzL4mbZ90ptH39j8yU,50303
198
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=HaqFYKoXLzpvuXbyMRKCHJOTxVH485Yhp55-sM_MhPY,48663
199
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=MCrYz74F1eM_9EklxwA-QYleSUcDQmcUVx71ubQMus0,52661
200
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=GTNS6j-LaorTq-VnmrYHxIWHBDyT3HSVmMBMZSe0WHE,53747
201
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=p5_gbVDBkImMwiuUsoquFSzuaRFFF_EYKlOvf9Cdr6c,51012
202
- snowflake/ml/modeling/decomposition/pca.py,sha256=ECUXv2XWoQy5SZpD9OcBZhcGX0h23C__BDUioMVeJM4,51930
203
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=vDbHgJYAQGa3mc7wsZWxmHC1774ubTlL-EC5nnFqzbQ,49817
204
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=8JKkBGV46Ltf54HSsBgdwLpZQS9ui6j642DBH00bnsU,49440
221
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=4VquBu3aa87sQc4t-bhb3Hzqh6rGUkNQACibKnMWHRI,52790
222
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=xsf4a7lZyMq3xvu0zQ_M9iMlLbQgpUrypSS1HB8busg,50453
223
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=s9PfbTA8l5PTl0aIw54NrbznfusUQjao5zW9lXeZaFE,50387
224
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=8S7WBdrn0n7wvQd9rJb4oVJ9mS5IKzhegpYokh6PTs0,48747
225
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=3P91UeX8jksZB9QVXsjHTmCP7BR3Bug-r42KUFQBvQM,52745
226
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=zbOwmPz28O0XcgfkdoUFoQoIjllKq1Gs_1Lp-3ePKqw,53831
227
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=-ZhoeMEb39KNk2pOKSCinQhnBFUNaxuTL4kJAyMafCI,51096
228
+ snowflake/ml/modeling/decomposition/pca.py,sha256=lT0TUUGTp1TTmn3gRLIM3DDw_3qNu1rV-IsoZra9YNE,52014
229
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=cGna3ORrGfpzDxjj6A7J5eQcakX-MTD-eLU3iGP8lAQ,49901
230
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=T970CkfwOVxwqofaNc5BYTObXGN4SFuq1oP0q-ysPZ0,49524
205
231
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
206
232
  snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=aD4eyWhCJ0dtHnuiRdiMROYGa5pk1Ww5PSFtKZGcsTM,52195
207
233
  snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=I4zI7ebh8m4WbtTo5HIjQGY20RLeW4Yd-bwTTvRVhHg,49977
@@ -216,7 +242,7 @@ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=jyjuwXiI-o
216
242
  snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=kzDj-tzK1Zh3hG8nslnZk-V6Yeudwi8TUe9_w0rJmgY,57674
217
243
  snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=jFK9JOyTZq4VDRNuhYXJguqkHogM-mshxQhA-EYV5KQ,57915
218
244
  snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=jlzEtA-Il_zcgrN2AsypiiUsbekGHKE90FNq2igIhIg,56400
219
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=EAojT9PzpKJVnWJ3rxJQzmAqG7bvYHdCWPHa_fHsrJE,50894
245
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=OtQ_grOT13s47YaB4fsgDwKcJTylExq5f_uL3jAFHdQ,50978
220
246
  snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=iI_pjip7zCA70IBVZmIUX1wM84aw1BA0GfC6ATldGSg,56609
221
247
  snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=XSb3MwsB4esvoZHx_XAPahF8ABjdeJNCdTOAKImT9y0,55201
222
248
  snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=cVydbNy2f7a2NBxvUCw9E46whcv7NMnfA-p7D0-FT5s,50920
@@ -229,24 +255,24 @@ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=1OkuVewZQZg2qthlIOA
229
255
  snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=OyPeCIcUFypzdEhl3NRFBB7dDkSGQGlipV-UacRVeXU,47939
230
256
  snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=zO_JGWE0U5iF_ruiJOS1xWbbJLKTDzlheEy3bHbR2rg,48030
231
257
  snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=Uh_WEWjInPmaRCSh0JXuqSj3Ai2fVE1xRoaAtv3p0vc,48085
232
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=XwdAvIRvEkB6X7Ge-RhoQctiuXoRqE_BDpsoyea32i4,50705
233
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=IioNNW_h6c2ChsWrmDmCUmNOR9kRhQqeF0hC9Z9DFPk,47641
258
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=EgCyX3pdkdVeOByVvgiqgfTlbmTmJdrxKEWCydrONg8,50789
259
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=KWlDhy65YXAyt3qS2nqOuAYVxtV8gnS1bSjEUFyazjI,47725
234
260
  snowflake/ml/modeling/framework/_utils.py,sha256=7k9iU5zAWa4ZpMZlg8KfSMi4vH3o69w5aAh5RTRNdZ4,10203
235
261
  snowflake/ml/modeling/framework/base.py,sha256=gGsQLJJQcFvtRn_6uhiB5UB3bV0HFiijJpkBvvDyFUU,31156
236
262
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
237
263
  snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=04H5iTImclnaG3QYJRSfnRQfBl2EfNnheJXlhzeuu-c,53347
238
264
  snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=I33qYg_R8NDieFBJvd12mpCpe6jxy-fNhqwelw8e5uQ,52412
239
265
  snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
240
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=fce1UrFCL9fHpaBQ4-3eJ-icZQeinARojCAOGB3wxg0,54165
241
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=mNBzoaOomnP7ptuwZhMfgA2DuqJl5Aus5com4VPe5Wk,49881
242
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=L214K6TSNLifdZyqWEBBJpIhmehdjGGvNj95li9B5Lw,48738
243
- snowflake/ml/modeling/impute/simple_imputer.py,sha256=Y-oSvi8CXOyBJSCkLoNZNjdZ_NVwjvQhaOmxvgo2HAY,19847
266
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=9RXx_881cjE1D_Ge-4XcCuL-PHs7w-PwhKyazd669lc,54249
267
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=ok-sB6aF1Myilb7obFQFec4RoWv790E984yeup32cWQ,49965
268
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=Teuf0BKOr3i6RmmW4K7UBMGIHOkg4-NPu-XOiyFp1-s,48822
269
+ snowflake/ml/modeling/impute/simple_imputer.py,sha256=T1niXlhS2vWbhF5IQ2k7qlBXKmvYVC3y1aKq73dCaBs,20946
244
270
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
245
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=jzkCrzcsW9Bza1tEm_oXO71ax1Rt4jBEocs2HYKVDnY,47769
246
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=U2Eumczi05eTUZCiSpUQsk7ka5Z7pV9ZVjiFlA20_Ys,49540
247
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=Eb6RD5A-imt-R1uGjabMlOQDA0ufAIjuIHN422X6jXM,48788
248
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=fMT9l5l-zfs0RVNKYh9J7QqRJ1g5bWHCpFML8O0hlHg,48142
249
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=woUxmEBQGk3xCXuaJ5fTNS2q34xasrEUof6k4qK2iVI,48190
271
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=iYAZ8PxMQ4yurlSYdk5v0daPSyo_bXBZBbbatm721jY,47853
272
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=ghFz9Tt3S4qSb2V7yG5Idzgf4leJNvovQO7JscUUSRQ,49624
273
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=KV-nopNzaNO5hY085EL2b1IGToCMYiAAkcfkLdIjDsI,48872
274
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=CkfxVDFXH0g0bBHtj4YqqizleB5g-XQbvQbVkkaYeB4,48226
275
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=V103IK-LVZV_GnNRKHRvf8SqtZzRf2z-humuv3Px-c4,48274
250
276
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
251
277
  snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=NBdl_aCcc78yYNSf31N-oeHycA_l-WTW0xluEgUMooA,49726
252
278
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
@@ -284,25 +310,25 @@ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=mphwSuzmQdfhmNyVMi
284
310
  snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=NLp1ih9pmk71OHWHdIvuOUnF8vr7tCTZtmrJCBpObjU,50192
285
311
  snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=BlJLP44TG4M8Fd1ygQ6DTKpR6zzipvn10KzzafijSzE,50893
286
312
  snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=NSqWxj693EefNlIjH1NGjN0hITDzPOtBcGhIw2vTSu8,57270
287
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=5nxTy3XsaafbNJG1fi1UUCDEHJrx4aMLIktcB6Uk8HQ,52068
313
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=s46-agva7istln4N96cCt_iOEft-5ZAAdrcAY7zvq48,52152
288
314
  snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=LxbXjd-ZukPmvZ7dsOXp3XNIkxf02ESWrvbRC52DeEc,54741
289
315
  snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=RoupM8uJLO8Wei3a1Vtbz6LJv9UkYWyovjzQKkOPDeQ,50219
290
316
  snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=j3WY7u3mxWQYIjBjh-8NeBFbUNF_OIWpQTrN8771iqg,51175
291
317
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
292
- snowflake/ml/modeling/manifold/isomap.py,sha256=dIN5V-okxAsLPhtst0fbY-QPT38gUTSWHJrWNSshC60,50402
293
- snowflake/ml/modeling/manifold/mds.py,sha256=JmriGgVE5DfxVxsHJhLIbDiSGcBnFVThxqB6kqWv6ys,49622
294
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=UqS8Ezqtkwmr3OSGQjYu8USsnol0nPJen2lE8ROCkrs,50473
295
- snowflake/ml/modeling/manifold/tsne.py,sha256=Zbppt5E9AWb7PPdA94IYxFiyXntc5wBK64it-lkaCmw,53412
318
+ snowflake/ml/modeling/manifold/isomap.py,sha256=X78nMPqC7lRkgXr_QOESTmZVL3ofekECR2UqDiLX7O0,50486
319
+ snowflake/ml/modeling/manifold/mds.py,sha256=eiouIDYVXFAUG0oiA-epAzwOiiJf2o-6jWwIyjuoldM,49706
320
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=b-uNomRv_TZlIdGlITeaayUzYHagWgr5l4cs4yTvTsE,50557
321
+ snowflake/ml/modeling/manifold/tsne.py,sha256=-PSot6jXJpnycXj_4TH6w2W5x9i-yiavmIz-9gd5BxM,53496
296
322
  snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
297
323
  snowflake/ml/modeling/metrics/classification.py,sha256=5XbbpxYu9HXB7FUbBJfT7wVNMKBfzxwcaVzlMSyHAWg,66499
298
324
  snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
299
325
  snowflake/ml/modeling/metrics/covariance.py,sha256=HxJK1mwyt6lMSg8yonHFQ8IxAEa62MHeb1M3eHEtqlk,4672
300
326
  snowflake/ml/modeling/metrics/metrics_utils.py,sha256=NETSOkhP9m_GZSywiDydCQXKuXOp3qltNgbabROtJAw,13114
301
- snowflake/ml/modeling/metrics/ranking.py,sha256=gA1R1x1jUXA9bRrYn8IfJPM5BDY4DK1JCtoPQVsz5z4,17569
302
- snowflake/ml/modeling/metrics/regression.py,sha256=OEawjdiMZHYlycQFXM_h2czIZmmGe5GKciEQD9MSWx4,25845
327
+ snowflake/ml/modeling/metrics/ranking.py,sha256=J2o8cDhS2JmcwF8zTA6AclmIgOb4P3qRNSqTb0FWZuI,17656
328
+ snowflake/ml/modeling/metrics/regression.py,sha256=FEr48UddRq5ToD4J9fiwZlo0NDB82oi_iaAtnBxJ56A,25932
303
329
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
304
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=j66bYxt5nAgQxDasNa8gJN3qY__s1JZUf1xuzhwyNm4,54975
305
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=_Yympzyu4CcCm5vEi2Yp0y0faaAqUbzgzR_bbVAxapU,52876
330
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=t26TTCmcTbZ33uRpytCZofh9CHavg95qkhpl-4yW_kQ,55059
331
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=nwQ4O0rJtP2C4Iqtp36x8k6_kJ70-xM3umhbOgETowM,52960
306
332
  snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
307
333
  snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=K8edz_VVGTWezSxeq5EeReKSrFkgZfmw-5fg5LuD_Bo,38021
308
334
  snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=gPnJ3_YL_QasD6dx2YSDBltDErylZjYSKNKXBus448c,38763
@@ -319,21 +345,21 @@ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=1t7DdWZXdHfbBJWukvyVf
319
345
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
320
346
  snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=Za3lXdpV1yltloLN1CjtU383s4Yz0kmUfWwSzxh5cSU,51866
321
347
  snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=1QJLPrEGqCfbk5QyPzH3jMvWo1ds-is6qPXDRBMfXp4,51337
322
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=3sBEG5wP1TyDC5t59XDBgbQfRtbmeZJYBy3PDSb0bhY,49695
323
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=vfACYYYe5jx9tYZoWrOnLCbUfnTCQ2KSeNdWqL1NoP0,52273
348
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=I_gVXJreNpuLVgT6I_ASgyxDcLjm-czpz6-eBOi80Dg,49779
349
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=kKcBCH7K59OECYWrgsSWUu4qDbpkmtry14B_Ngso80s,52357
324
350
  snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=KPD4psFrwMu_2KaDV6zZiY_I8WxRRO62yv8VpykgREE,48355
325
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=c_wURNmsJA7Xjbnl0jPzzJronVxzvYjT2kO-MH08rDQ,50164
351
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=2bpzr1CbixQ_mrfZfn6YCSpWk20nkkjSMvAJlcCKir4,50248
326
352
  snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=ZRsEVMYQM3KzXKNkKz4wmCAj3Km4CBo-aEDzddZtoOo,51827
327
353
  snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=-ebpHawA51N0FZ_YWXDK5PquKZl8cu72b1dIlCQ8p1M,52279
328
354
  snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=LxkVr2eaPZzYM1FgUnnky8UYLb3Fw_JTv82kh4ZouSk,51160
329
355
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
330
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=wDjO7pffyY1Wp14h5NMo1glIBCNK3J09AYHz5UL4ZFc,48903
356
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=HtRiANwEwCjpgbhj4klsCOUw6HHMRkXUBeSfz4ZboQA,48987
331
357
  snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=tfNfjBo2I5-l9hzN3qLTiZ3pAL89JTquebp_KLKLxM8,56239
332
358
  snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=gUa_VVRgGUhEhRTNHoDgmgFN8nI19SyjmxG4MC8SIjI,55508
333
359
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
334
360
  snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
335
361
  snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
336
- snowflake/ml/modeling/pipeline/pipeline.py,sha256=531nAtKEoOBz_j25upGvWuvWz7vDmG9LePCksHWsS_c,46484
362
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=XXP-km2B6AqPGMREyjaiYxLYqCSdsJIf66ZMc1vRvYo,46517
337
363
  snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
338
364
  snowflake/ml/modeling/preprocessing/binarizer.py,sha256=MrgSVTw9RpajyYe0dzai-qnpdOb3Zq0SfJRpHJjpnoY,7383
339
365
  snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=FdIy8mpjsiMqWsUL07S27T-JNDVgE2bvNUJf4HcBik4,21533
@@ -341,9 +367,9 @@ snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=jQV2UgA-qtzxNxHzgyhf
341
367
  snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=P03PP907SbofOFv1cJhTe1R2_-lnFYHfGsvYsVFofWY,9146
342
368
  snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=leLeIrVsXn08agPqL-N50ohrWlC9FVuztMleQ043H5o,12467
343
369
  snowflake/ml/modeling/preprocessing/normalizer.py,sha256=0VmTIwldr3F3KQC--6RsYkybWjWuiqtxn4PuWinH0ME,6997
344
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=vSRMBFSYK_KRToPecMeBHXsJi45ySruSn7-dbGFF7xM,73145
345
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=MvIqNHzC5Ts2ItIyjkcGNOhin4NH2rG8Y0XEjlKZ_Fg,33558
346
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=gSwdmWWAaoufqEs9mLNh5UFn-7uE-eI2h3NzLn_J7jw,48829
370
+ snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=DgV6eF4a-d4LtRqoYxC5H9ASx8EBlBVp6nZ2YaqqPQA,75081
371
+ snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=ngdmbJiGXtiePfh_6TUM9LCxu22MJPzRXv3yQJXzSwA,35272
372
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=8m9zXUihjZdWp6Y0aiCA10-QNt16vOqP2WQ9dbUHdFg,48913
347
373
  snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=Dp58jHxBdGdiFQAYmFW39JUdaPHO7dKfMy3KREtKAy0,12653
348
374
  snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=ui5pWnt2dL2VTTzCWikY8siG3fh_R9J1Wk_VZCHU-rA,11773
349
375
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
@@ -374,12 +400,12 @@ snowflake/ml/registry/_schema.py,sha256=GOA427_mVKkq9RWRENHuqDimRS0SmmP4EWThNCu1
374
400
  snowflake/ml/registry/_schema_upgrade_plans.py,sha256=LxZNXYGjGG-NmB7w7_SxgaJpZuXUO66XVMuh04oL6SI,4209
375
401
  snowflake/ml/registry/_schema_version_manager.py,sha256=-9wGH-7ELSZxp7-fW7hXTMqkJSIebXdSpwwgzdvnoYs,6922
376
402
  snowflake/ml/registry/model_registry.py,sha256=x42wR2lEyW99NnG8auNPOowg34bF87ksXQqrjMFd7Pw,84795
377
- snowflake/ml/registry/registry.py,sha256=2Ud9MWTFKFE-VO3ByGwiml8kTBu2GcjnceK93PyM2Uw,11210
378
- snowflake/ml/registry/_manager/model_manager.py,sha256=9JL_pmSu-R7IWq6sTj-XkMLLW_BDFZbMwUlmf2AlB3o,9664
403
+ snowflake/ml/registry/registry.py,sha256=cU-LLTkQuCz9iwaTEj6-oxDzn8f7_CRcrmbg5SX62i8,16812
404
+ snowflake/ml/registry/_manager/model_manager.py,sha256=grUa1d55mFbvvG5J32JZWEIvcj4nKhX30xx1Yt1V6Ys,10274
379
405
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
380
406
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
381
- snowflake_ml_python-1.5.3.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
382
- snowflake_ml_python-1.5.3.dist-info/METADATA,sha256=QA_B6mf84du8scBIHopk8Lfi_q2AzdD-8Z7YCwL69r0,53001
383
- snowflake_ml_python-1.5.3.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
384
- snowflake_ml_python-1.5.3.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
385
- snowflake_ml_python-1.5.3.dist-info/RECORD,,
407
+ snowflake_ml_python-1.6.0.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
408
+ snowflake_ml_python-1.6.0.dist-info/METADATA,sha256=ouIH5DVdvopseueYG7anO6BjJSEzHZGh6Sed-GtOB50,57370
409
+ snowflake_ml_python-1.6.0.dist-info/WHEEL,sha256=R0nc6qTxuoLk7ShA2_Y-UWkN8ZdfDBG2B6Eqpz2WXbs,91
410
+ snowflake_ml_python-1.6.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
411
+ snowflake_ml_python-1.6.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.43.0)
2
+ Generator: setuptools (72.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,10 +0,0 @@
1
- import dataclasses
2
- from typing import List, Optional
3
-
4
-
5
- @dataclasses.dataclass(frozen=True)
6
- class DataSource:
7
- fully_qualified_name: str
8
- version: str
9
- url: str
10
- exclude_cols: Optional[List[str]] = None