snowflake-ml-python 1.5.1__py3-none-any.whl → 1.5.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (207) hide show
  1. snowflake/cortex/_complete.py +26 -5
  2. snowflake/cortex/_sentiment.py +7 -4
  3. snowflake/cortex/_sse_client.py +81 -0
  4. snowflake/cortex/_util.py +105 -8
  5. snowflake/ml/_internal/lineage/lineage_utils.py +34 -25
  6. snowflake/ml/_internal/utils/temp_file_utils.py +5 -2
  7. snowflake/ml/dataset/dataset.py +15 -12
  8. snowflake/ml/dataset/dataset_factory.py +3 -4
  9. snowflake/ml/feature_store/access_manager.py +34 -30
  10. snowflake/ml/feature_store/feature_store.py +3 -3
  11. snowflake/ml/feature_store/feature_view.py +12 -11
  12. snowflake/ml/fileset/snowfs.py +2 -31
  13. snowflake/ml/model/_client/ops/model_ops.py +43 -0
  14. snowflake/ml/model/_client/sql/model_version.py +55 -3
  15. snowflake/ml/model/_model_composer/model_composer.py +7 -3
  16. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +3 -1
  17. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  18. snowflake/ml/model/_packager/model_meta/model_meta.py +1 -3
  19. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -1
  20. snowflake/ml/model/_packager/model_runtime/model_runtime.py +3 -27
  21. snowflake/ml/model/_signatures/builtins_handler.py +2 -1
  22. snowflake/ml/model/_signatures/core.py +13 -1
  23. snowflake/ml/model/_signatures/pandas_handler.py +2 -0
  24. snowflake/ml/model/_signatures/snowpark_handler.py +3 -3
  25. snowflake/ml/model/model_signature.py +2 -0
  26. snowflake/ml/model/type_hints.py +1 -0
  27. snowflake/ml/modeling/_internal/estimator_utils.py +58 -1
  28. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +196 -242
  29. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py +161 -0
  30. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +38 -18
  31. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +82 -134
  32. snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +21 -17
  33. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +9 -2
  34. snowflake/ml/modeling/cluster/affinity_propagation.py +9 -2
  35. snowflake/ml/modeling/cluster/agglomerative_clustering.py +9 -2
  36. snowflake/ml/modeling/cluster/birch.py +9 -2
  37. snowflake/ml/modeling/cluster/bisecting_k_means.py +9 -2
  38. snowflake/ml/modeling/cluster/dbscan.py +9 -2
  39. snowflake/ml/modeling/cluster/feature_agglomeration.py +9 -2
  40. snowflake/ml/modeling/cluster/k_means.py +9 -2
  41. snowflake/ml/modeling/cluster/mean_shift.py +9 -2
  42. snowflake/ml/modeling/cluster/mini_batch_k_means.py +9 -2
  43. snowflake/ml/modeling/cluster/optics.py +9 -2
  44. snowflake/ml/modeling/cluster/spectral_biclustering.py +9 -2
  45. snowflake/ml/modeling/cluster/spectral_clustering.py +9 -2
  46. snowflake/ml/modeling/cluster/spectral_coclustering.py +9 -2
  47. snowflake/ml/modeling/compose/column_transformer.py +9 -2
  48. snowflake/ml/modeling/compose/transformed_target_regressor.py +9 -2
  49. snowflake/ml/modeling/covariance/elliptic_envelope.py +9 -2
  50. snowflake/ml/modeling/covariance/empirical_covariance.py +9 -2
  51. snowflake/ml/modeling/covariance/graphical_lasso.py +9 -2
  52. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +9 -2
  53. snowflake/ml/modeling/covariance/ledoit_wolf.py +9 -2
  54. snowflake/ml/modeling/covariance/min_cov_det.py +9 -2
  55. snowflake/ml/modeling/covariance/oas.py +9 -2
  56. snowflake/ml/modeling/covariance/shrunk_covariance.py +9 -2
  57. snowflake/ml/modeling/decomposition/dictionary_learning.py +9 -2
  58. snowflake/ml/modeling/decomposition/factor_analysis.py +9 -2
  59. snowflake/ml/modeling/decomposition/fast_ica.py +9 -2
  60. snowflake/ml/modeling/decomposition/incremental_pca.py +9 -2
  61. snowflake/ml/modeling/decomposition/kernel_pca.py +9 -2
  62. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +9 -2
  63. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +9 -2
  64. snowflake/ml/modeling/decomposition/pca.py +9 -2
  65. snowflake/ml/modeling/decomposition/sparse_pca.py +9 -2
  66. snowflake/ml/modeling/decomposition/truncated_svd.py +9 -2
  67. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +9 -2
  68. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +9 -2
  69. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +9 -2
  70. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +9 -2
  71. snowflake/ml/modeling/ensemble/bagging_classifier.py +9 -2
  72. snowflake/ml/modeling/ensemble/bagging_regressor.py +9 -2
  73. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +9 -2
  74. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +9 -2
  75. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +9 -2
  76. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +9 -2
  77. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +9 -2
  78. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +9 -2
  79. snowflake/ml/modeling/ensemble/isolation_forest.py +9 -2
  80. snowflake/ml/modeling/ensemble/random_forest_classifier.py +9 -2
  81. snowflake/ml/modeling/ensemble/random_forest_regressor.py +9 -2
  82. snowflake/ml/modeling/ensemble/stacking_regressor.py +9 -2
  83. snowflake/ml/modeling/ensemble/voting_classifier.py +9 -2
  84. snowflake/ml/modeling/ensemble/voting_regressor.py +9 -2
  85. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +9 -2
  86. snowflake/ml/modeling/feature_selection/select_fdr.py +9 -2
  87. snowflake/ml/modeling/feature_selection/select_fpr.py +9 -2
  88. snowflake/ml/modeling/feature_selection/select_fwe.py +9 -2
  89. snowflake/ml/modeling/feature_selection/select_k_best.py +9 -2
  90. snowflake/ml/modeling/feature_selection/select_percentile.py +9 -2
  91. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +9 -2
  92. snowflake/ml/modeling/feature_selection/variance_threshold.py +9 -2
  93. snowflake/ml/modeling/framework/base.py +3 -8
  94. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +9 -2
  95. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +9 -2
  96. snowflake/ml/modeling/impute/iterative_imputer.py +9 -2
  97. snowflake/ml/modeling/impute/knn_imputer.py +9 -2
  98. snowflake/ml/modeling/impute/missing_indicator.py +9 -2
  99. snowflake/ml/modeling/impute/simple_imputer.py +28 -5
  100. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +9 -2
  101. snowflake/ml/modeling/kernel_approximation/nystroem.py +9 -2
  102. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +9 -2
  103. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +9 -2
  104. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +9 -2
  105. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +9 -2
  106. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +9 -2
  107. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +9 -2
  108. snowflake/ml/modeling/linear_model/ard_regression.py +9 -2
  109. snowflake/ml/modeling/linear_model/bayesian_ridge.py +9 -2
  110. snowflake/ml/modeling/linear_model/elastic_net.py +9 -2
  111. snowflake/ml/modeling/linear_model/elastic_net_cv.py +9 -2
  112. snowflake/ml/modeling/linear_model/gamma_regressor.py +9 -2
  113. snowflake/ml/modeling/linear_model/huber_regressor.py +9 -2
  114. snowflake/ml/modeling/linear_model/lars.py +9 -2
  115. snowflake/ml/modeling/linear_model/lars_cv.py +9 -2
  116. snowflake/ml/modeling/linear_model/lasso.py +9 -2
  117. snowflake/ml/modeling/linear_model/lasso_cv.py +9 -2
  118. snowflake/ml/modeling/linear_model/lasso_lars.py +9 -2
  119. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +9 -2
  120. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +9 -2
  121. snowflake/ml/modeling/linear_model/linear_regression.py +9 -2
  122. snowflake/ml/modeling/linear_model/logistic_regression.py +9 -2
  123. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +9 -2
  124. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +9 -2
  125. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +9 -2
  126. snowflake/ml/modeling/linear_model/multi_task_lasso.py +9 -2
  127. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +9 -2
  128. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +9 -2
  129. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +9 -2
  130. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +9 -2
  131. snowflake/ml/modeling/linear_model/perceptron.py +9 -2
  132. snowflake/ml/modeling/linear_model/poisson_regressor.py +9 -2
  133. snowflake/ml/modeling/linear_model/ransac_regressor.py +9 -2
  134. snowflake/ml/modeling/linear_model/ridge.py +9 -2
  135. snowflake/ml/modeling/linear_model/ridge_classifier.py +9 -2
  136. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +9 -2
  137. snowflake/ml/modeling/linear_model/ridge_cv.py +9 -2
  138. snowflake/ml/modeling/linear_model/sgd_classifier.py +9 -2
  139. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +9 -2
  140. snowflake/ml/modeling/linear_model/sgd_regressor.py +9 -2
  141. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +9 -2
  142. snowflake/ml/modeling/linear_model/tweedie_regressor.py +9 -2
  143. snowflake/ml/modeling/manifold/isomap.py +9 -2
  144. snowflake/ml/modeling/manifold/mds.py +9 -2
  145. snowflake/ml/modeling/manifold/spectral_embedding.py +9 -2
  146. snowflake/ml/modeling/manifold/tsne.py +9 -2
  147. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +9 -2
  148. snowflake/ml/modeling/mixture/gaussian_mixture.py +9 -2
  149. snowflake/ml/modeling/model_selection/grid_search_cv.py +1 -5
  150. snowflake/ml/modeling/model_selection/randomized_search_cv.py +1 -5
  151. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +9 -2
  152. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +9 -2
  153. snowflake/ml/modeling/multiclass/output_code_classifier.py +9 -2
  154. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +9 -2
  155. snowflake/ml/modeling/naive_bayes/categorical_nb.py +9 -2
  156. snowflake/ml/modeling/naive_bayes/complement_nb.py +9 -2
  157. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +9 -2
  158. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +9 -2
  159. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +9 -2
  160. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +9 -2
  161. snowflake/ml/modeling/neighbors/kernel_density.py +9 -2
  162. snowflake/ml/modeling/neighbors/local_outlier_factor.py +9 -2
  163. snowflake/ml/modeling/neighbors/nearest_centroid.py +9 -2
  164. snowflake/ml/modeling/neighbors/nearest_neighbors.py +9 -2
  165. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +9 -2
  166. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +9 -2
  167. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +9 -2
  168. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +9 -2
  169. snowflake/ml/modeling/neural_network/mlp_classifier.py +9 -2
  170. snowflake/ml/modeling/neural_network/mlp_regressor.py +9 -2
  171. snowflake/ml/modeling/parameters/enable_anonymous_sproc.py +5 -0
  172. snowflake/ml/modeling/pipeline/pipeline.py +5 -0
  173. snowflake/ml/modeling/preprocessing/binarizer.py +7 -3
  174. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +7 -2
  175. snowflake/ml/modeling/preprocessing/label_encoder.py +8 -7
  176. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +7 -3
  177. snowflake/ml/modeling/preprocessing/min_max_scaler.py +7 -4
  178. snowflake/ml/modeling/preprocessing/normalizer.py +7 -3
  179. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +10 -2
  180. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +8 -5
  181. snowflake/ml/modeling/preprocessing/polynomial_features.py +9 -2
  182. snowflake/ml/modeling/preprocessing/robust_scaler.py +7 -4
  183. snowflake/ml/modeling/preprocessing/standard_scaler.py +7 -3
  184. snowflake/ml/modeling/semi_supervised/label_propagation.py +9 -2
  185. snowflake/ml/modeling/semi_supervised/label_spreading.py +9 -2
  186. snowflake/ml/modeling/svm/linear_svc.py +9 -2
  187. snowflake/ml/modeling/svm/linear_svr.py +9 -2
  188. snowflake/ml/modeling/svm/nu_svc.py +9 -2
  189. snowflake/ml/modeling/svm/nu_svr.py +9 -2
  190. snowflake/ml/modeling/svm/svc.py +9 -2
  191. snowflake/ml/modeling/svm/svr.py +9 -2
  192. snowflake/ml/modeling/tree/decision_tree_classifier.py +9 -2
  193. snowflake/ml/modeling/tree/decision_tree_regressor.py +9 -2
  194. snowflake/ml/modeling/tree/extra_tree_classifier.py +9 -2
  195. snowflake/ml/modeling/tree/extra_tree_regressor.py +9 -2
  196. snowflake/ml/modeling/xgboost/xgb_classifier.py +9 -2
  197. snowflake/ml/modeling/xgboost/xgb_regressor.py +9 -2
  198. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +9 -2
  199. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +9 -2
  200. snowflake/ml/registry/_manager/model_manager.py +59 -1
  201. snowflake/ml/registry/registry.py +10 -1
  202. snowflake/ml/version.py +1 -1
  203. {snowflake_ml_python-1.5.1.dist-info → snowflake_ml_python-1.5.3.dist-info}/METADATA +32 -4
  204. {snowflake_ml_python-1.5.1.dist-info → snowflake_ml_python-1.5.3.dist-info}/RECORD +207 -204
  205. {snowflake_ml_python-1.5.1.dist-info → snowflake_ml_python-1.5.3.dist-info}/LICENSE.txt +0 -0
  206. {snowflake_ml_python-1.5.1.dist-info → snowflake_ml_python-1.5.3.dist-info}/WHEEL +0 -0
  207. {snowflake_ml_python-1.5.1.dist-info → snowflake_ml_python-1.5.3.dist-info}/top_level.txt +0 -0
@@ -1,11 +1,12 @@
1
1
  snowflake/cortex/__init__.py,sha256=CAUk94eXmNBXXaiLg-yNodyM2FPHvacErKtdVQYqtRM,360
2
- snowflake/cortex/_complete.py,sha256=C2wLk5RMtg-d2bkdbQKou6U8nvR8g3vykpCkH9-gF9g,1226
2
+ snowflake/cortex/_complete.py,sha256=Hg5JXtFGYqStCi6BDvgaIPJfDWhX9GDNs2iGTrscJBc,2361
3
3
  snowflake/cortex/_extract_answer.py,sha256=4tiz4pUisw035ZLmCQDcGuwoT-jFpuo5dzrQYhvYHCA,1358
4
- snowflake/cortex/_sentiment.py,sha256=7X_a8qJNFFgn-Y1tjwMDkyNJHz5yYl0PvnezVCc4TsM,1149
4
+ snowflake/cortex/_sentiment.py,sha256=hY-GVxLnWuRBSG16kMo-I8r-pDiFT6j9ZZhFUECgtFk,1246
5
+ snowflake/cortex/_sse_client.py,sha256=_GGmxskEQPVJ2bE3LHySnPFl29CP4YGM4_xmR_Kk-WA,2485
5
6
  snowflake/cortex/_summarize.py,sha256=DJRxUrPrTVmtQNgus0ZPF1z8nPmn4Rs5oL3U25CfXxQ,1075
6
7
  snowflake/cortex/_translate.py,sha256=JPMIXxHTgJPfJqT5Hw_WtYM6FZ8NuQufZ4XR-M8wnyo,1420
7
- snowflake/cortex/_util.py,sha256=0xDaDSctenhuj59atZenZp5q9zuhji0WQ77KPjqqNoc,1557
8
- snowflake/ml/version.py,sha256=WiE22xydACC6rXf2dqEDDHIINeQkQXbfF2V05DUpD-o,16
8
+ snowflake/cortex/_util.py,sha256=6KVmrFZQrY1myI8VxtbDPBjqz39jVbFdQx8UbVVtpJg,4644
9
+ snowflake/ml/version.py,sha256=bfI2NojWQ0mSVWuSsEep7KAW_E2qdiO7VDpCL3cN5Bs,16
9
10
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
10
11
  snowflake/ml/_internal/env_utils.py,sha256=HK5Ug5-gChiUv_z84BDjAuE9eHImrWRsX4Y7wJFApfk,27758
11
12
  snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
@@ -30,7 +31,7 @@ snowflake/ml/_internal/human_readable_id/animals.txt,sha256=GDLzMwzxiL07PhIMxw4t
30
31
  snowflake/ml/_internal/human_readable_id/hrid_generator.py,sha256=LYWB86qZgsVBvnc6Q5VjfDOmnGSQU3cTRKfId_nJSPY,1341
31
32
  snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=D1yoVG1vmAFUhWQ5xCRRU6HCCBPbXHpOXagFd0jK0O8,4519
32
33
  snowflake/ml/_internal/lineage/data_source.py,sha256=D24FdR6Wq_PdUuCsBDvSMCr5CfHqpMamrc8-F5iZVJ0,214
33
- snowflake/ml/_internal/lineage/lineage_utils.py,sha256=4BNoyg3GFeUY5tDNdjDvN129rc6JymOt6PUdWP_Vhj4,3007
34
+ snowflake/ml/_internal/lineage/lineage_utils.py,sha256=-eO01yjER2qGYvaS-2SD9oxmWN52vrk3VEWlduHZO78,3415
34
35
  snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
35
36
  snowflake/ml/_internal/utils/identifier.py,sha256=7dV6dN_KAoupT-xJS8f19K69GVWa4069RmKVWMuWH9k,10926
36
37
  snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
@@ -46,23 +47,23 @@ snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=HPyWxj-SwgvWUrYR
46
47
  snowflake/ml/_internal/utils/spcs_attribution_utils.py,sha256=9XPKe1BDkWhnGuHDXBHE4FP-m3U22lTZnrQLsHGFhWU,4292
47
48
  snowflake/ml/_internal/utils/sql_identifier.py,sha256=ZcRjSfpovsqaY7S8bFB6z44z28XICncHGwOIzs8rLDI,3729
48
49
  snowflake/ml/_internal/utils/table_manager.py,sha256=jHGfl0YSqhFLL7DOOQkjUMzTmLkqFDIM7Gs0LBQw8BM,4384
49
- snowflake/ml/_internal/utils/temp_file_utils.py,sha256=7JNib0DvjxW7Eu3bimwAHibGosf0u8W49HEc49BghF8,1402
50
+ snowflake/ml/_internal/utils/temp_file_utils.py,sha256=0-HTjXdxVt0kE6XcgyvRvY0btflWlmotP2bMXVpFJPA,1553
50
51
  snowflake/ml/_internal/utils/uri.py,sha256=pvskcWoeS0M66DaU2XlJzK9wce55z4J5dn5kTy_-Tqs,2828
51
52
  snowflake/ml/dataset/__init__.py,sha256=nESj7YEI2u90Oxyit_hKCQMWb7N1BlEM3Ho2Fm0MfHo,274
52
- snowflake/ml/dataset/dataset.py,sha256=LbiYP2S-dnw8a2ALswSLqZs7AittzSejMC9Hzipkpn0,21013
53
- snowflake/ml/dataset/dataset_factory.py,sha256=qdS6jX8uiCpW5TIKnZ-_2HRfWN3c_N1bZ6lBC1bLy5g,1712
53
+ snowflake/ml/dataset/dataset.py,sha256=6_4WPEw0SxU0O_2ock3UmcYjLU51Drmu7VRQQ8vU1gg,21117
54
+ snowflake/ml/dataset/dataset_factory.py,sha256=Fym4ICK-B1j6Om4ENwWxEvryq3ZKoCslBSZDBenmjOo,1615
54
55
  snowflake/ml/dataset/dataset_metadata.py,sha256=lvaYd1sNOgWcXD1q_-J7fQZ0ndOC8guR9IgKpChBcFA,3992
55
56
  snowflake/ml/dataset/dataset_reader.py,sha256=TKitOC7YBk3yZ9axL9nI1paSI2ooSqBn4zw5eOYpCGY,8061
56
57
  snowflake/ml/feature_store/__init__.py,sha256=VKBVkS050WNF8rcqNqwFfNXa_B9GZjcUpuibOGsUSls,423
57
- snowflake/ml/feature_store/access_manager.py,sha256=TiMHu5ds4ZsjvGTOPWum7zgb4A-m3LNFDSktBFNezdk,10442
58
+ snowflake/ml/feature_store/access_manager.py,sha256=QqAgOQ2r2JxR4CXuFiCeQ8JWk-YdPCC_QrM1boa5nsU,10607
58
59
  snowflake/ml/feature_store/entity.py,sha256=dCpzLC3jrt5wDHqFYJXbAYkMiZ0zEmiVDMGkks6MXkA,3378
59
- snowflake/ml/feature_store/feature_store.py,sha256=8SH806Dwy89TbKItTdnPi0pAn09pRObgjYSpmBnEjrI,78669
60
- snowflake/ml/feature_store/feature_view.py,sha256=B3oYaRuChQaLo8c8sdUF6McswVUryda5GWMK22b3Ipg,19274
60
+ snowflake/ml/feature_store/feature_store.py,sha256=Xy5wnUanl1AsfBXyIoPGPlwugE6h-Vf9QmeYqyPYH84,78694
61
+ snowflake/ml/feature_store/feature_view.py,sha256=6D4hB0v2jmLLjBlpiIVkSUXdSXxqqozf0XLc8EZ3bys,19332
61
62
  snowflake/ml/fileset/embedded_stage_fs.py,sha256=90nCRvRm2EZpDlx-Hu-NLI5s9fYbEFHdf0ggwjdrkQM,5919
62
63
  snowflake/ml/fileset/fileset.py,sha256=QRhxLeKf1QBqvXO4RyyRd1c8TixhYpHuBEII8Qi3C_M,26201
63
64
  snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
64
65
  snowflake/ml/fileset/sfcfs.py,sha256=a77UJFz5Ve9s_26QpcOOoFNOBIKN91KmhYVTQkafn0c,15344
65
- snowflake/ml/fileset/snowfs.py,sha256=RXCtZ43_e_Kq_vc-1tJABNo0stpwmHQI2MSCLeFhGfI,6948
66
+ snowflake/ml/fileset/snowfs.py,sha256=AGP0Uj-59T6B40dQQHhnc_46gpmugz6Xkxp505SyMkw,5392
66
67
  snowflake/ml/fileset/stage_fs.py,sha256=IebRjgPlJdwdAlpg_99DGbgIBD3XJb2p9N36O0tU3wI,19532
67
68
  snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx52jX8I,3849
68
69
  snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPbt9WKYiBp0,2386
@@ -70,15 +71,15 @@ snowflake/ml/model/__init__.py,sha256=KgZmgLHXmkmEU5Q7pzYQlpfvIll4SRTSiT9s4Rjele
70
71
  snowflake/ml/model/_api.py,sha256=u2VUcZ0OK4b8DtlqB_IMaT8EWt_onRVaw3VaWAm4OA4,22329
71
72
  snowflake/ml/model/custom_model.py,sha256=xvu7WZ1YmOdvuPePyAj6qMwKq-HNeVV9bNfkOT09CRI,8267
72
73
  snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
73
- snowflake/ml/model/model_signature.py,sha256=UQSGieGJcnmC02V4feCYMdhMXnGoOUa9KBuDrbeivBM,29342
74
- snowflake/ml/model/type_hints.py,sha256=aUg_1xNtzdH2_kH48v918jbpEnHPNIn6MmfrwdvYvdg,12705
74
+ snowflake/ml/model/model_signature.py,sha256=ZnkgY-6BL7gNGRPXJTgK0EbZ6RQ7hDJjiDxsPNXHKi4,29453
75
+ snowflake/ml/model/type_hints.py,sha256=ZHnhoAV_oAAPz3QmXtzrrpstVyame48-KgTpyIHGM6k,12726
75
76
  snowflake/ml/model/_client/model/model_impl.py,sha256=hVtAHejB2pTDquWs4XNS7E7XZS1DI7nH7EILbd0btbc,13655
76
77
  snowflake/ml/model/_client/model/model_version_impl.py,sha256=Li9JtKwZvNqKjpAQM4qA52-F0fu-HASt0RWPDEJGFPE,17994
77
78
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=7cGx8zYzye2_cvZnyGxoukPtT6Q-Kexd-s4yeZmpmj8,4890
78
- snowflake/ml/model/_client/ops/model_ops.py,sha256=bn2dB9N_OHP1yMNoFwR4OFxID2_pFQytpWnfZ_195is,28714
79
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=YWhR_MVvp8bCFJ_yvSHp0fRe9ZCWSAmFCvZUNLqs7Ko,30615
79
80
  snowflake/ml/model/_client/sql/_base.py,sha256=pN5hxyC0gGzEJgZh2FBHLU0Y6iIoLcebHoE7wTpoUZQ,1252
80
81
  snowflake/ml/model/_client/sql/model.py,sha256=dKgrkYKuuAIaOcAC1K7_wxWgrtGF1r89sItcP00hUzY,5736
81
- snowflake/ml/model/_client/sql/model_version.py,sha256=eQsvfub4Vduy0t3NY4PTHzxwwgKl16nRVhzY7lq-ehk,15685
82
+ snowflake/ml/model/_client/sql/model_version.py,sha256=aLNXLKqDAEG1LjxdLdSc05E_3hK9i-Ry6MwSTWGS1kg,18106
82
83
  snowflake/ml/model/_client/sql/stage.py,sha256=hrCh9P9F4l5R0hLr2r-wLDIEc4XYHMFdX1wNRveMVt0,819
83
84
  snowflake/ml/model/_client/sql/tag.py,sha256=pwwrcyPtSnkUfDzL3M8kqM0KSx7CaTtgty3HDhVC9vg,4345
84
85
  snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py,sha256=clCaoO0DZam4X79UtQV1ZuMQtTezAJkhLu9ViAX18Xk,302
@@ -99,12 +100,12 @@ snowflake/ml/model/_deploy_client/utils/constants.py,sha256=Ip_2GgsCYRXj_mD4MUdk
99
100
  snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=k0SulzWdttRvJkyuXM59aluEVgQg8Qd7XZUUpEBKuO4,11671
100
101
  snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=yZR9M76oh6JbPQJHb6t3wGO3wuD04w0zLEXiEyZW_tg,8358
101
102
  snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
102
- snowflake/ml/model/_model_composer/model_composer.py,sha256=Ld11EWtryUMM0QhbLZmZEgNtyysEtxP1aG1Vfk-oSNk,7356
103
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=DPTI_-krAIzlYgs5-ojSpoBP-OQ_vamcI1uim3s9n08,7580
103
104
  snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=5tMz0d7t9f0oJAEAOXC4BDDpMNAV4atKoK9C66ZHgvU,5667
104
105
  snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=PsRVrOt15Zr-t2K64_GK5aHjTWN4yLgixRqaYchY2rA,2530
105
106
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2B-fykyanYlGWA4Ie2nOwXx2N5D2qZEvTbbPuSSreeI,1837
106
107
  snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=QpQXAIKDs9cotLOL0JdI6xLet1QJU7KtaF7O10nDQcs,2291
107
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=gex5if17PZ6t6fPcr2i_LO_3IRY03Ykcv_XAyKJt8pg,2170
108
+ snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=4m-nOYWr35tHw4FdjSLlJL7Qr-cr4xdZiUlRnXFNDLk,2266
108
109
  snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=cr5soVDesBm19tjDG6lHLN6xrxj_uwPv1lKt8FgpM-c,6682
109
110
  snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
110
111
  snowflake/ml/model/_packager/model_packager.py,sha256=6YQkmE5LCYIni7bKLMc9yDyS_ozdWuvExh5Wt7Ez2uY,5836
@@ -125,29 +126,29 @@ snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=ujBcbJ1-Ymv7ZeL
125
126
  snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=8s8sMWQ9ydJpK1Nk2uPQ-FVeB-xclfX5qzRDr9G1bdk,8104
126
127
  snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=x5bXz5DRzb3O7DMDOF535LBPGnydCa78JHP_7-vsnjY,8874
127
128
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
128
- snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=zObSLyhu56hMnIfdv7PMkzHJrTP3-FAroNZ6-Rji7J4,274
129
+ snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=QaB-eiwoyIl5BT5HSI_Jrb-FxqGJ6LgvsNRrPiI8UQc,265
129
130
  snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
130
131
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=qwgBneEA9xu34FBKDDhxM1igRiviUsuQSGUfKatu_Ro,1818
131
- snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=0bzons03s0cF2RxbtxS7rPGeZG_Z8BouehqJPd3pfH8,17203
132
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=lmztlpzedTtJ2PNyLm5vYATGoMPVPXluu2qppmvEVJ8,17137
132
133
  snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=8eutgCBiL8IFjFIya0NyHLekPhtAsuMhyMA8MCA9VOQ,2380
133
134
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
134
135
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
135
136
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
136
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=urdG-zCiGWnVBYrvPzeEeaISjBDQwBCft6QJXBmVHWY,248
137
- snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=Hnu0ND3fEmuI29-ommNJdJRzII3tekHrU4z8mUEUqTk,5872
137
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=ZGtLo1foiSMGE3KyAmyCcNoeYHeyQgeRIMMSgwuQBW4,239
138
+ snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=5Wo_MW_ub00t_TNi438tcjHY7Fi_8NI6gmrDzVxO45I,4723
138
139
  snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
139
- snowflake/ml/model/_signatures/builtins_handler.py,sha256=0kAnTZ_-gCK0j5AiWHQhzBZsCweP_87tClsCTUJb3jE,2706
140
- snowflake/ml/model/_signatures/core.py,sha256=VfOjMsCOKuZwFAXc_FSs2TeFjM-2MSHxQzB_LXc-gLk,17972
140
+ snowflake/ml/model/_signatures/builtins_handler.py,sha256=nF-2ptQjeu7ikO72_d14jk1N6BVbmy-mjtZ9I1c7-Qg,2741
141
+ snowflake/ml/model/_signatures/core.py,sha256=xj4QwfVixzpUjVMfN1-d2l8LMi7b6qH7QvnvD3oMxSw,18480
141
142
  snowflake/ml/model/_signatures/numpy_handler.py,sha256=wE9GNuNNmC-0jLmz8lI_UhyETNkKUvftIABAuNsSe94,5858
142
- snowflake/ml/model/_signatures/pandas_handler.py,sha256=qKDzRQ3bFa1pLo6-1ReMUOZANMkjW32-B8AqgEIx7nc,8057
143
+ snowflake/ml/model/_signatures/pandas_handler.py,sha256=E1Z7nkFX2toMxUOLx595Vv_7bMLK70IFdU9HZp7Z2-g,8219
143
144
  snowflake/ml/model/_signatures/pytorch_handler.py,sha256=QkSiWCBSRRCnsOaONvRPOyMIi4BfUv0zrirXMPmzUD4,4568
144
- snowflake/ml/model/_signatures/snowpark_handler.py,sha256=ZlXJJIoCUMV99E5ToD3cteQ5VBcs1ekpy8l6dGU0WJM,6036
145
+ snowflake/ml/model/_signatures/snowpark_handler.py,sha256=3WjPhkyUFuIQ8x8cgQMOMrjlqOhifn_g5amPoHM7FVk,6033
145
146
  snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=VZcws6svwupulhDodRYTn6GmlWZRqY9fW_gLkT8slxA,6082
146
147
  snowflake/ml/model/_signatures/utils.py,sha256=aP5lkxiT4lY5gtN6vnupAJhXwRXFSlWFumIYNVH7AtU,12687
147
148
  snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
148
149
  snowflake/ml/model/models/llm.py,sha256=ofrdHH4LQEQmnxYAGwmHV2sWLPenf0WcgBLg9MPwSmY,3616
149
150
  snowflake/ml/modeling/_internal/constants.py,sha256=xI4ofa3ATQ2UszRPpkfUAxghV_gXmvxleqOew4UI1PM,45
150
- snowflake/ml/modeling/_internal/estimator_utils.py,sha256=ajRlCHvb4a-rGzMAVvtKhEE5ijObzW7YA_Ox5u2Orr4,9215
151
+ snowflake/ml/modeling/_internal/estimator_utils.py,sha256=XYwOcmhSc053mtItkymKiXk3a_Znxo9AjTep3tSTVzw,11323
151
152
  snowflake/ml/modeling/_internal/model_specifications.py,sha256=nAqgw7i1LcYMKRQq9mg2I50Kl0tsayh2_do5UMDXdT0,4801
152
153
  snowflake/ml/modeling/_internal/model_trainer.py,sha256=wLAfgWjwWXj3dqhyzZLCJVYSSgujq6zrYBa4q0pw_II,923
153
154
  snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=11cpEaxU1D7R7m79nVLcCA9dryUPsElS7YdlKZh850U,8422
@@ -157,140 +158,141 @@ snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=
157
158
  snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=MyTRkBV3zbDeO7HJaWrKYT3KkVqW51Q0AX2BbUtN4og,5737
158
159
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py,sha256=fgm1DpBBO0qUo2fXFwuN2uFAyTFhcIhT5_bC326VTVw,5544
159
160
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py,sha256=lM1vYwpJ1jgTh8vnuyMp4tnFibM6UFf50W1IpPWwUWE,2535
160
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=zBCEXRbO3w8BqL2ASpq09z9R_DXRTogOoml2Cdbggt0,55706
161
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=AgNupOLqXJytkbdQ1p5Nj1L5QShwi8PSUSYj506SxhM,14539
162
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=WiRekLxqcnnEJV3dHyjyU797tnKsgxj_g-ZAjmIVWVk,35283
163
- snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=VBYWGTy6ajQ-u2aiEvVU6NnKobEqJyz65oaHJS-ZjBs,17208
161
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=ueX0rtJSn3x9cJL9w1j_AiAG1ud6iykHOgkhSyjcAFQ,54585
162
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=YN8I_U_7_hL42o5_7NnEYY05aiuwgdO4Q2Iw__7Qa_w,6180
163
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=rt3xsJg0q82EbBgV1GF6OQjwGSYRbNMPr5a3mOn8iY0,15483
164
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=C2-_fJxOSre3mDhn9SAWLZThKj11BT42mecB4xppgKA,33390
165
+ snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=4WP1QVqfSVvziVlQ7k9nWQNCM0GN5kTk4Xnd-9jWTXc,17300
164
166
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
165
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=AGQub8A5L_xTB1gEJsbzTSZdsISnhdsAp3OmbEwRutw,51278
167
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=K9_iTZRo_XU7THcR6t51OcmHQxHj07CxdBkKHi-4FSY,51596
166
168
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
167
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=YeMtuQvE5f2InBc7CyAnlFf0hGy0Okz5X09AQ9C64bI,49107
168
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=g_-psPSkpQt05ryMQFeS_GndA9hB8Dkg12ao2s7VNoQ,51144
169
- snowflake/ml/modeling/cluster/birch.py,sha256=0zAT_k-ZgnaGFfcZu5XGll7kAH8BZ8lFCTajWFYmV2o,49034
170
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=l9nxeYVGqf11msu1i6iG12i8YiWD2uZiVtH4WXDDzjI,51793
171
- snowflake/ml/modeling/cluster/dbscan.py,sha256=qAtH_LxcmVg7B8NerncUsfBoKiUJwb2N1FYiBM8olxk,49194
172
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=uPo3I-ROixH6SsWknj7f6AaEYLybpxHs1M4LKTkouRU,51909
173
- snowflake/ml/modeling/cluster/k_means.py,sha256=fiFQSvRRwPbQp8b9UhOeZ97hRTn-HZN4aRGXlehnGyU,51322
174
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=4H7iQtz-tqhUZVjecoWIk7Z5dtYuWJVD3sy1R_xL2DI,49404
175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=DUM05k_RNIeBenVXtssGnqEerp0OAI0z11k-GO9n7P0,52711
176
- snowflake/ml/modeling/cluster/optics.py,sha256=-j_q6rcEEzkO9m6owloMRBWUnrCCZK1QUgBUo7mlYYo,52508
177
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=kWW9zsBhQH6KpLFuw2htgEYolhy8fpQZXdggWx33hAg,49403
178
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=CCZrM9Z_5BJEl3pywVOvCO8vOGGdfPLc7qtP4sdVkoQ,52595
179
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=nUrqHjI3pDC21OhHsaFoJ9jrCa5nY_a-EdHDW_XWb8U,48536
169
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=uW6rQmBiarz-6kw_F6Qmdma4oaL4QAscifZI56PRMhQ,49425
170
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=cs1FQycRGsXdRUEpKl_OC7Hyfg14bQSDv7eU11e7Kss,51462
171
+ snowflake/ml/modeling/cluster/birch.py,sha256=CA4yNF5eVMx7IOsUAXmIRevtEZN_6ufzBorY8ZOeK5w,49352
172
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=w19X53Mk9pdkmr0sjU8wRyVNTIycPrum1P3Z3MBXSSo,52111
173
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=71SaDPql_w2PKnge8-CQRa1zR5m9fwvUJkWB9AAfEYk,49512
174
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=AszdjTzVfmlnhzlB4HEqNJ0fTjBvlRVSAqibjWVwgOY,52227
175
+ snowflake/ml/modeling/cluster/k_means.py,sha256=Nj8XpH64T39A-KrTHkkdT5Aghhsz4O37mltb59DgUXs,51640
176
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=pLLZ7SO-m8PmJ7EwDn0j3m_fZ01FzO7BsI0KfJzdwe0,49722
177
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=HBadAGegSP1RDMBUcdai5cqlOOofDiN01Le4jxYBYnI,53029
178
+ snowflake/ml/modeling/cluster/optics.py,sha256=Urt2e02Ilhg5CNaSajX86x-5OIzh_YORI8PzZnyNyUA,52826
179
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=YfxvYnLw55ntCeaqAVdwNo27YYp4YAF7gUQm9InF62M,49721
180
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=rrHwdYx6qKQyBAd3R38YtWl2CVKJwwxLoXNsYRd8mJk,52913
181
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=OU4L3Ib_do0TYp8kfyfuZu7JjsYih53tPrCzbOx1ms0,48854
180
182
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
181
- snowflake/ml/modeling/compose/column_transformer.py,sha256=Js74mW_UUGrT0W7ZmBtiF-4a3dLvppgSmMxB7AeitgI,51374
182
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=eCLZdS6zYgyPUQy_9wnA13s1rPE_9U4oX3qNY8VF6tM,49090
183
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=cG78wvFzaWF2dNYhiNv_PDqSiWn4TQz2LvZnhyvLCmQ,51692
184
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=1NwaWTVABvYhApdXJHSb7BLrOOnmGc2u-v0n_4Hv4IU,49408
183
185
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
184
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=awX5rRrXDb-o4CPl2JFXO7BWt4LBLlYEwW3Wo9TLeFQ,49428
185
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=hIRqpixvv2XPwkoDohmjKnGzXaEnFaEx6M-08CJJlYQ,47236
186
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=-GssWNHzC2DMZuMChEGUzHP8cvOTQr1RYXr4r0rBFPo,49100
187
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=7zobpOYlEn45h4JymakbzRgxOeqUpeZdFqKy3bdZmJQ,50265
188
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=Ns4vqx2OD2Y9pgs1tithBwej1E0E_6wVlXIRS85mTqw,47374
189
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=6hK8ePqINpDEEqUi5bM6FPOLWGhk-9ePVJaG82huQIA,48129
190
- snowflake/ml/modeling/covariance/oas.py,sha256=P64GRhbVHGhZ1Od-n238do_tZQ5cO3SXRqVoqclLcl4,47015
191
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=yPwbsZ7_Tlj-Sj6CiayG9ic3J6G_yuGZtu9C2V0x1aw,47391
186
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=H5jLT_yDAwiFYi2JcsgRCihKRpy9GWWrBMtHvceExQ0,49746
187
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=9vFnH0oRwbY7wfHDexO3xf9vlw6seqbu1pO_7Jc9svg,47554
188
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=EvxbRLYslQyDjhHqje5yx6VoJLmPiQX0rkoyP09Hk_A,49418
189
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=sNUEFH-e4BerMZ0zSOeL3VBDP0p8q_k1w5mujKK4Tkw,50583
190
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=Bl1nx4pdWzp-yqOFOO9TCO2U5BM_p3T6947YxswKFl4,47692
191
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=3RMyEMkYV7CpapjcLZ__p4pOnPpOsZHQzrMr_G9ySn8,48447
192
+ snowflake/ml/modeling/covariance/oas.py,sha256=atSOn1SSJ2mXwB0Ym_A4gZPcXWJwvIxoqE6LbtqZDfM,47333
193
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=CWAEhnyz3rxDgrEaoCqmwVLGbf7SKe_MOmPqcr2-DUA,47709
192
194
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
193
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=Glb9UBBcuweG4bzgYK8r0kb4VQqk795L58C4J8JnoQM,52388
194
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=-ip83Gh3nKzkFGceq602ACdK0Fbo2989_Qr2UEGsSDQ,50051
195
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=RxhD4aZFNN-Y4_wNnSYS-Mxle--_XWvTxMMAZV5SLJI,49985
196
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=-sbUNsBgn6NoLgmBME-cfoiwfaNx6unDN6Tr_tQi5sw,48345
197
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=KWSFgSYQJS6hZcUksKuSuxE_L31NAPbHvEmQNCajcHY,52343
198
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=xHYcxU8q5q7JirOlR9duL7cxQ7j0P41LhJTnJs6X6Fc,53429
199
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=Zf0ZWiUDu6UsmWWaNrvi1X87QIPpJddGOvuNDV-FtMo,50694
200
- snowflake/ml/modeling/decomposition/pca.py,sha256=-m6Fh_6Sldf-70_B_d8J7FAlXG-FLvEnIgsk63sTu6E,51612
201
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=FTaRx6CbM5WYYGQbCvccR514uzIWsBZYIX5Ql_ofNkM,49499
202
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=RiOmwnQpNx2MU0Z6wZ0pIUzsKfjDzJeWrY9zid8n6Bk,49122
195
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=TC9EW-abr5-s2Si6q3RzBoTwDSDPoB0SEuWGvbm4_c8,52706
196
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=DpZT0nesVDJJjsi267IY9eJHCmUideN_DEl6tQnUj0U,50369
197
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=ENQYsxckx7NrsghQMRaLwBn5pyzL4mbZ90ptH39j8yU,50303
198
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=HaqFYKoXLzpvuXbyMRKCHJOTxVH485Yhp55-sM_MhPY,48663
199
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=MCrYz74F1eM_9EklxwA-QYleSUcDQmcUVx71ubQMus0,52661
200
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=GTNS6j-LaorTq-VnmrYHxIWHBDyT3HSVmMBMZSe0WHE,53747
201
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=p5_gbVDBkImMwiuUsoquFSzuaRFFF_EYKlOvf9Cdr6c,51012
202
+ snowflake/ml/modeling/decomposition/pca.py,sha256=ECUXv2XWoQy5SZpD9OcBZhcGX0h23C__BDUioMVeJM4,51930
203
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=vDbHgJYAQGa3mc7wsZWxmHC1774ubTlL-EC5nnFqzbQ,49817
204
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=8JKkBGV46Ltf54HSsBgdwLpZQS9ui6j642DBH00bnsU,49440
203
205
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
204
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=p68gHC7ur53Qp7MMnPyc2FSgWBjDmo10guNtbo0MARc,51877
205
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=C8T-Ol8s20nx-IeZMs7KXH-BjGRyNtG3exXQn-cbNMc,49659
206
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=aD4eyWhCJ0dtHnuiRdiMROYGa5pk1Ww5PSFtKZGcsTM,52195
207
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=I4zI7ebh8m4WbtTo5HIjQGY20RLeW4Yd-bwTTvRVhHg,49977
206
208
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
207
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=2pfHIBCvqZSw3p1b_KqqQPkZ9s-JfndDDS-s3l2lnww,50477
208
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=wu_4FpEKU-bVZDx5OPjDcQDR190dcS_farXa3kMWGTE,49368
209
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=L7bVu-soVZJIOV9qm6IPbh3sYLNj-R_bYmPCEiz_qAE,51388
210
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=uQ2ibCiPCdQUS-h51H-TPM5KP9UzMsrUWfDrGQ4pdlA,50624
211
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=-fZBhcMXhcld8ZckIlee_N4GVd84ojcOze3hIPHXdlU,56308
212
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=KVGJbZVHdNFvXy0-H3-_hqLj8BVZM0kUSJ8Ssrm7Cr8,54912
213
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=Ra4pfsXH2qniulcS4oOC1HGI8yu043vaEwawisuAn5o,57763
214
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=SXGVyiFEpOHcAMzyxlOqUcsmGFQ-iqMi_Vj7m-m_r1g,57356
215
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=77kepZu2p40ZEJe-Hlwwr1YWl9vJccFoz07CzkWZY_Q,57597
216
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=ze6-uVYgAMJueZXMADb6n9AYRXYxUU5Bealob8IZ2oA,56082
217
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=GTQF6U-Z84a5ojKdwviEv_ewtCK2wbL6-YXZwxfrLPc,50576
218
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=y5zD_vjuZ4Yw_fDoBtEMVTN8m6lSLiOSlfWOI1x816k,56291
219
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=0uH82Fs1n75hfU3uX6ggCZsDFx94_DtURqbsm3z-8lw,54883
220
- snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=dP6WDh0_YYZeGZVBvUQWN-hjKMqDSwVVc98xE8pg88U,50602
221
- snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=I6t3h-qId9TykuvTgwfTNR2Q3T_NhZN_4KakmjadUG4,50155
222
- snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=PDoRDW8vBXPDX73WjUtW-xXNnn8BG8omJhrEr9t1PHY,48681
209
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=QSROCmhdBdQXL35Qo_58mgzklGFAFoMREBSlFSDKHRg,50795
210
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=sru0E3Jluo-xblOsiQu2i7uVq5Ii3NJy5qVOuYuphgE,49686
211
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=dfzXRYNMgFPRtKiHZJ2-sV7GnfuuYC5dXaxip4hooaU,51706
212
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=3Y9DXqe5CCRbpkAWFNdEshCHSfTr5b473kcPzHNpCI8,50942
213
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=4vwYcR0Gxm4dWlsLLxrDZIkb7yd5rBII3ICzVYAvdT8,56626
214
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=OY7vVz9GnevpLL6_vP_tj9uTYnRAU_VRfDLt-eBzV68,55230
215
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=jyjuwXiI-o_08lz1FEwbMo4Qvx8WFuYQJvfxEIh6NLk,58081
216
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=kzDj-tzK1Zh3hG8nslnZk-V6Yeudwi8TUe9_w0rJmgY,57674
217
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=jFK9JOyTZq4VDRNuhYXJguqkHogM-mshxQhA-EYV5KQ,57915
218
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=jlzEtA-Il_zcgrN2AsypiiUsbekGHKE90FNq2igIhIg,56400
219
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=EAojT9PzpKJVnWJ3rxJQzmAqG7bvYHdCWPHa_fHsrJE,50894
220
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=iI_pjip7zCA70IBVZmIUX1wM84aw1BA0GfC6ATldGSg,56609
221
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=XSb3MwsB4esvoZHx_XAPahF8ABjdeJNCdTOAKImT9y0,55201
222
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=cVydbNy2f7a2NBxvUCw9E46whcv7NMnfA-p7D0-FT5s,50920
223
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=0uWv7Z5iOU5g24MhtxFYb-F6NzWcsE0Ef7IsV47SJZo,50473
224
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=IFYsFGYI1tFa21MArt03HrX5JvddyRNm4hEzoEUlEXM,48999
223
225
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
224
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=VtYpm0z7tvr-ksYHgk6LZWDjN7UFqHLqtEsnG51O_W8,48018
225
- snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=MxADr7gOnVj5V3YRQytXmieXpOzybZK6r37QdRpxOoA,47619
226
- snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=QSF8zO9qzVv7auA4yBz1jkTqEA1mL_C3tSx93xUufMU,47613
227
- snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=9gpQbytZwQjPBREld8r-p_bG7sZm3h7nQz4bgH7UL7k,47621
228
- snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=wZyd-94tGP-FzK85b4dFPzncx0BpfbLME9Mjr5vw2ns,47712
229
- snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=hnTQ5DtNot9OJah20V-tpkXAzLSbRfJjWhv2gxH11gc,47767
230
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=-0ZEZboABCnbfguy1YmopbjVZ0-eut24E9XaPol97Sk,50387
231
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=KwTTDc1WLWz6SiXWz3Bks7u-zP53kdqPRLB3RHtvodw,47323
226
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=eS-igVAnxLlhBpn3GVTB9kzxOE9aSDom8tCI8kuxLnk,48336
227
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=XQlFrwBMCt-2DrRNzGj7bJiWxlcyYRpAPXzzfMJ87LE,47937
228
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=1OkuVewZQZg2qthlIOASK8XPZaeaJMyRK5Jwj4tDF7g,47931
229
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=OyPeCIcUFypzdEhl3NRFBB7dDkSGQGlipV-UacRVeXU,47939
230
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=zO_JGWE0U5iF_ruiJOS1xWbbJLKTDzlheEy3bHbR2rg,48030
231
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=Uh_WEWjInPmaRCSh0JXuqSj3Ai2fVE1xRoaAtv3p0vc,48085
232
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=XwdAvIRvEkB6X7Ge-RhoQctiuXoRqE_BDpsoyea32i4,50705
233
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=IioNNW_h6c2ChsWrmDmCUmNOR9kRhQqeF0hC9Z9DFPk,47641
232
234
  snowflake/ml/modeling/framework/_utils.py,sha256=7k9iU5zAWa4ZpMZlg8KfSMi4vH3o69w5aAh5RTRNdZ4,10203
233
- snowflake/ml/modeling/framework/base.py,sha256=ifv9wAOhPtd8kQT2TleIV0y3Ftw3xlULyvxGolyWn7w,31439
235
+ snowflake/ml/modeling/framework/base.py,sha256=gGsQLJJQcFvtRn_6uhiB5UB3bV0HFiijJpkBvvDyFUU,31156
234
236
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
235
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=1nDZ_nda4WBHqi4tW4avY2b0fNwV5ZF-DI1-BwQjtNg,53029
236
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=zkHptpQKCEGJspDnZtNTBswzn-0wVDrOJRJ34ach8dM,52094
237
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=04H5iTImclnaG3QYJRSfnRQfBl2EfNnheJXlhzeuu-c,53347
238
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=I33qYg_R8NDieFBJvd12mpCpe6jxy-fNhqwelw8e5uQ,52412
237
239
  snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
238
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=Y3yPVO6EFqK-ZBxe_55Gp7To2jIt0N01HTyAyBkpVkI,53847
239
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=0-YnL5I2aX9BlLDe0BcyUnYdZbbmNX4_Kxj-rcJ61DA,49563
240
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=gWz2h46qVp7wVqpKa2pyQtO7Mw8bKzEy4M4gWOubiXc,48420
241
- snowflake/ml/modeling/impute/simple_imputer.py,sha256=awM33HugS5jGs3JXud1U8eEMm2VLdIAf7z_eVXAzKD0,18499
240
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=fce1UrFCL9fHpaBQ4-3eJ-icZQeinARojCAOGB3wxg0,54165
241
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=mNBzoaOomnP7ptuwZhMfgA2DuqJl5Aus5com4VPe5Wk,49881
242
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=L214K6TSNLifdZyqWEBBJpIhmehdjGGvNj95li9B5Lw,48738
243
+ snowflake/ml/modeling/impute/simple_imputer.py,sha256=Y-oSvi8CXOyBJSCkLoNZNjdZ_NVwjvQhaOmxvgo2HAY,19847
242
244
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
243
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=pFXnaevash3T9li0RrHqvOceWZZ0TdgyZ20ftfwe6Vc,47451
244
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=JyMxxr-2uyOnimXM8UzNnT9lV3rGgTiOczp-7cy8uP8,49222
245
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=H1nXaQ-jmyh5UID2MrZMiJugkGZu4l33qgrYk8PtXJU,48470
246
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=daDnxgESQqUWC1ZfzguTK9x715n24hWfC4DtwP3ddQw,47824
247
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=9_3V5uZ7hR1wgsg4LXPnhofTr7urOoMIOYznEcwziXs,47872
245
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=jzkCrzcsW9Bza1tEm_oXO71ax1Rt4jBEocs2HYKVDnY,47769
246
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=U2Eumczi05eTUZCiSpUQsk7ka5Z7pV9ZVjiFlA20_Ys,49540
247
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=Eb6RD5A-imt-R1uGjabMlOQDA0ufAIjuIHN422X6jXM,48788
248
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=fMT9l5l-zfs0RVNKYh9J7QqRJ1g5bWHCpFML8O0hlHg,48142
249
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=woUxmEBQGk3xCXuaJ5fTNS2q34xasrEUof6k4qK2iVI,48190
248
250
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
249
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=j6ZRziTOvZK2IlHKC9a8HAdnGJnLUtg4WEbpoZzW6Dk,49408
251
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=NBdl_aCcc78yYNSf31N-oeHycA_l-WTW0xluEgUMooA,49726
250
252
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
251
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=O05uhJd9w8VJzmJdSVesTxVjvnqXO0FPxid7HtWgJPo,48976
252
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=BgRHeYkUHa3eLDfyTjVAV7aG-munFAzU1t2IVMnVu18,48479
253
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=L9Bih5uStC-Ta8oyjJR0jv9Q7k5yiEKCArjaySHCid0,49294
254
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=YU2A2Ewo99AL0oOqK5nYSKwA6hjaGYLo4DPBH9--Qm8,48797
253
255
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
254
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=HaPbHZuQI173f0M2hgFsoJDUVwJAKtgRC5z7hTgzIc0,49353
255
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=WczXSOPGws4hmCKO93TRv7a16Gxls9IW6D4Ifpy4md8,49769
256
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=MjqqWIBdaK2BDYc1RAza1RW2PUSAKNF6_SNhh3EJJWI,50341
257
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=vK51acP5WZcaf1jEVvrrsJt-Brr69wnm7OvWz4Ummsk,51609
258
- snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=eYsPDEsnpJvaB3Jz3irw0uhTTawNK6T_ujtesphqt6Q,49421
259
- snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=wh8U5NwrwDG21h8FlX148Y31RWNS53RgjH2d5neNdJc,48618
260
- snowflake/ml/modeling/linear_model/lars.py,sha256=i9EhEs0SB5n41chcDB7uavlUiwsPAvqK8PRG1l-A2vc,49841
261
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=Rz6jD0PCc45fTqzv3gqSehWIMKyPJO3ByMWrOpbOYoA,50062
262
- snowflake/ml/modeling/linear_model/lasso.py,sha256=MyNEp2q5IxmCTqoL-j_o67kAkY8X5QYBTIgh7XMwWO8,49947
263
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=Aqi9VlF0Az_wIB_m6LUnoB2x8uO9GamPeBAphAMbVoI,50732
264
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=aoyGqoQLslpeta9PdDHr0ZEnJLhR19qMh4c7nOv27BI,50977
265
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=D10l4jKKNAfjio8sZCtDt7fKqa1NCWRyCaBHe55Lgys,50938
266
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=9Mkmzw5mRGJX146stdHRSxxHvzHTaG0odEvnFhqpeFM,50284
267
- snowflake/ml/modeling/linear_model/linear_regression.py,sha256=uZyGyOrdy6lu6Esp6V_kLgha8sBPPommm5AKyF6G0J0,48160
268
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=cbJz4vOHmQGQblfeQ_m0Szh0ScoFTQHm1uEoQGznSCQ,54415
269
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=8t5ndapP8JF2hOMHnUWAP_CDSrZniKlXHo57cujjnFs,55455
270
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=kTPTxp12BmVhGuKYY009l6jr7cULbpRm9Dp7qW8-Hqs,49632
271
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=LMh9nyld0bndsDmIIlahhxq9TIbDEFSArlfoMildflw,51270
272
- snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=eC7AD7AlgXBXnGwP2WNUSJsiYIl69XkpXGArtdj0s5M,49180
273
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=7HYneCH5xNlMLcqDSBLiAjbztkLZcVfZlxkJIaOZP9Y,50442
274
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=YhfJfMXvRBDOQl5EOmIDJ7xJAvbhWzhmIh2LyA46L6I,48787
275
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=FRu7zp4m4EvTDxVYZeV_-Vknrz2hrVFNSkd2YFXepjY,52143
276
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=inz27nO6hjKG4DEcLXc-XfYdUc7xy3x62R9Y6SVrv3A,51210
277
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=Q2yzFRQ-s_RJGUCsCbBT50SX35MnJGzPLGRiLzc07ys,51527
278
- snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=w1BXkGQxmGQj-Lysn7tlEQF_Obg00G7v-310JYUjeiE,49466
279
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=e7UGWQ743I-g1bYSKKnGefGvq-M0AjJ3jDZ7B2kdxL4,52585
280
- snowflake/ml/modeling/linear_model/ridge.py,sha256=P6AzZbnl60I_425tdOQepJCXN9Edg00GPE0iiLaGBBk,51491
281
- snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=bN0EPKU4pOPoQJF9ZQe0j0dPayWl_Up32NbIh2eoRLY,51879
282
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=ryDxqt-DH0jOZBap8YGBJPWbv-UGFcNRY4iQIe2-xRw,49874
283
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=ywQjvUjnymlVZwpzAN38rgLxl1pFkSyl5yZyW6DxMk8,50575
284
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=pG5dEakeR1v8W1Acd2yRlHgQHxQAmA0aHqsjRhWOiJ8,56952
285
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=xFkcwEL9cHCWDQrt8MMzc9JoAGli_mS7pujbrWL6IYE,51750
286
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=Ke7nGiusplQDF9F1OjUI0Q9Sz-HKjDasAU7hFQVSXEc,54423
287
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=MpNQb9Q_EA1IleQZiP92U1_FXuwA9-zJmVmPZnHP3lA,49901
288
- snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=OYT3gshbB2vxNseTpmVKtDVfeKhbK48Fe6utSlK47Ro,50857
256
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=XEYZvnaJJlElbUFJP_Zt6WBCbADd8tYYPDyoD_uAV8g,49671
257
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=iZjGFwKoGVoMK7_KBFC3EoPVNnSeNQgv4pUz4Yt_AfQ,50087
258
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=EIAn_BBDDbpRq5GNhH3xLeernz3eXufnKZrK7ydWk_Q,50659
259
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=OQrwzyFAhJCJS4kYDTXMYD3U0sLQt1QPNT_Svtd9JMk,51927
260
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=XNPXohb_s8-ZE04r3QmN3XS5z645M8EcZtWG7cqo5gE,49739
261
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=hPdF84DJGnarFa3RD6pdiapqKTZ6jP6texhqMRHVtPc,48936
262
+ snowflake/ml/modeling/linear_model/lars.py,sha256=7CQlfXJIc7Xz_97nKaD38LLydFEp3g4EurTudDPgvBY,50159
263
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=f4QPrnc2s5_olqNIauFLyBJJPnjCMiiBYl2lP2QPea0,50380
264
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=_LNtPWVKs5Ijqi5Vbyp9BBbJcbGCS30cXhHN0dkEQyI,50265
265
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=mBoCFXehOaQM4jXZupM0BMAT6pZUbe6we90LV0sFN68,51050
266
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=Cw049plEqVJA868QR47vHuTDive1sEExoQ3P6uBwncM,51295
267
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=_PO0Y4iZCwAOz7tJG2XbGUns5avUvQrilr-INJ9Ewv8,51256
268
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=gd1TJhxGctmsPmnxpL_jsvUNeL0WOygibM-OsRkfF8Q,50602
269
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=j5Xh-HAb_rIcQMfewhspu5w4M3eQLBrDHTDxaAw1fCA,48478
270
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=JjeIgmCQjD5ScyfYFl42cag6jBI15n1XS37WvtNn5Ec,54733
271
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=2CzGvL-O0REYKTDalFrHuzDXjFvUX8oeB3KPyK2oMxc,55773
272
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=ppjO4PZiZANuD9Aq9IkCmWG4HeQ-1KiHmnS3GGL_H0o,49950
273
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=-GnfKXcdfV2aL1JImYUhbdBmKJUrauo4K9m_hrB61QU,51588
274
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=Hz2olnylyEZBsHjyoB1c1JtN7daGg_u3WavDt-vZDfI,49498
275
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=y20mLXkHbSWjtOaus5tXKrGlHazmWHg6GBExCEzI85s,50760
276
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=mZiCfvcu-c_d7aoyqrIKA0gBbsH6VKW8CZgem2mBrkQ,49105
277
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=2h6NzmbiDCYKq-oToc9sj425h_yUWuIdJHmfx3o96pQ,52461
278
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=C5O73iGAiAeWgS6_OvI0Y7yznCAfVNio7T_3maoU9nM,51528
279
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=0txxyIYrP_TCFFtHCLT7ZZQY-KX2fsRyopSt1PaoJa8,51845
280
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=LUGDYcOJhj5J2w6LUvWdLRJW6ocjRhSqYAxewr-02W4,49784
281
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=XCa_uSPa-ufmlu-Cjxk7RC2vdbmXorZDNRKVIAgK2XM,52903
282
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=7PxOQSaNP_WoGWhyruKX0yaqJCkHd8nocJCs_pihfYU,51809
283
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=mphwSuzmQdfhmNyVMijXFifDLVLEkLDdhax1YnI5IO8,52197
284
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=NLp1ih9pmk71OHWHdIvuOUnF8vr7tCTZtmrJCBpObjU,50192
285
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=BlJLP44TG4M8Fd1ygQ6DTKpR6zzipvn10KzzafijSzE,50893
286
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=NSqWxj693EefNlIjH1NGjN0hITDzPOtBcGhIw2vTSu8,57270
287
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=5nxTy3XsaafbNJG1fi1UUCDEHJrx4aMLIktcB6Uk8HQ,52068
288
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=LxbXjd-ZukPmvZ7dsOXp3XNIkxf02ESWrvbRC52DeEc,54741
289
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=RoupM8uJLO8Wei3a1Vtbz6LJv9UkYWyovjzQKkOPDeQ,50219
290
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=j3WY7u3mxWQYIjBjh-8NeBFbUNF_OIWpQTrN8771iqg,51175
289
291
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
290
- snowflake/ml/modeling/manifold/isomap.py,sha256=ztBEcsRoyM0v9ckQJoYEUTsj5HwRGGXQOjMY3e-_UWQ,50084
291
- snowflake/ml/modeling/manifold/mds.py,sha256=NlDzOMhCzHAU9cueoJzMT6qKyC_UV_PS_YnlIam58CI,49304
292
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=ojQQ9Pt_bUvRzPSBuLgd2BhjWPdPjAz80XtDJi4vlT8,50155
293
- snowflake/ml/modeling/manifold/tsne.py,sha256=CpP4qv_V_ibyucBzTIsGq6N7BOPDtzFQ46C5HpJJSCE,53094
292
+ snowflake/ml/modeling/manifold/isomap.py,sha256=dIN5V-okxAsLPhtst0fbY-QPT38gUTSWHJrWNSshC60,50402
293
+ snowflake/ml/modeling/manifold/mds.py,sha256=JmriGgVE5DfxVxsHJhLIbDiSGcBnFVThxqB6kqWv6ys,49622
294
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=UqS8Ezqtkwmr3OSGQjYu8USsnol0nPJen2lE8ROCkrs,50473
295
+ snowflake/ml/modeling/manifold/tsne.py,sha256=Zbppt5E9AWb7PPdA94IYxFiyXntc5wBK64it-lkaCmw,53412
294
296
  snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
295
297
  snowflake/ml/modeling/metrics/classification.py,sha256=5XbbpxYu9HXB7FUbBJfT7wVNMKBfzxwcaVzlMSyHAWg,66499
296
298
  snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
@@ -299,70 +301,71 @@ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=NETSOkhP9m_GZSywiDydCQXKuX
299
301
  snowflake/ml/modeling/metrics/ranking.py,sha256=gA1R1x1jUXA9bRrYn8IfJPM5BDY4DK1JCtoPQVsz5z4,17569
300
302
  snowflake/ml/modeling/metrics/regression.py,sha256=OEawjdiMZHYlycQFXM_h2czIZmmGe5GKciEQD9MSWx4,25845
301
303
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
302
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=UV7nEG1H493qFZecZ0uI9JUh-ooeesZLcCPlH_UdDdQ,54657
303
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=PPCRLAnDcLdMP190UjV6VGhU28rIHg7wkliaV8EARBI,52558
304
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=j66bYxt5nAgQxDasNa8gJN3qY__s1JZUf1xuzhwyNm4,54975
305
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=_Yympzyu4CcCm5vEi2Yp0y0faaAqUbzgzR_bbVAxapU,52876
304
306
  snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
305
- snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=B18rb0gh4TK9z2G5XVCx5nav_a9jWDH7q7XdLzAkRwI,38125
306
- snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=ipnRe8z3G09wTy1I2s33CzRsit8pIBfGaZGy4IZfjdM,38867
307
+ snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=K8edz_VVGTWezSxeq5EeReKSrFkgZfmw-5fg5LuD_Bo,38021
308
+ snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=gPnJ3_YL_QasD6dx2YSDBltDErylZjYSKNKXBus448c,38763
307
309
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
308
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=h9PDQMMXD9w1GF9nYrAzhOzlo9Tu9gqgm2euvBcmwyA,48160
309
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=RX7kdJmEdb_JUUfsie7Q44CFWaRate7N23kKyreT49k,49094
310
- snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=dGQLuw7i7IXXv3VQnKxDSQaU8yUpphsVcwPxbpb3uf8,48430
310
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=5_m8RqzkhdZh3-4N8SvgnmWwgXA1JkRUMSt2BDdsdlQ,48478
311
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=Q_wLk-JijO1IQt1gikXFctSSLLd8f1I9sGXqAJECHqU,49412
312
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=GYokPhI3RO_iwdgcYvp9eLRge8VygB4J8G-x4hQ1HpQ,48748
311
313
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
312
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=lrWiVXGFQpqbeF0g8va1cMhPyKxxqvgHddaBJLe_J5Y,48699
313
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=agWXHZNNV5AzhCH8g0HJFdCpg7qOF0CjRSejcknYwbs,49034
314
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=dJ9hB8CjM9wOlax4i0yH82LnOeb6dUQRXvPhQX2zYzw,48714
315
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=d-QpjpNF2QUVQQBt2sg-SF_WsidfZ8rQZmiXs-OE2T8,47843
316
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=O36O12tu80hJLag6s34dmZpmf7VojUeuaVe6ceCtgts,48479
314
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=m-sdAtV2kmpepve-JugFRDgcWBROvcIpk36oFO6MO04,49017
315
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=z4HV6tyWp76OLO3OIsNYjzbkWbl7eZXYzF8ZiIPFlcc,49352
316
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=ZGwz9bjMxSEiHz5eawTh2gvwp6Iq_rzK4DBJHYhPQ74,49032
317
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=7J-AVaTK-z3iRgWLdSyWUGCJEyc5O8JZlOBv11cqaYU,48161
318
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=1t7DdWZXdHfbBJWukvyVf3KMAyQLpQ1ZZ9Oj6NIYLZY,48797
317
319
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
318
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=5WC1on082prjxYQczW9wz1pK9EUmwAoNmGl1eWjZ_4w,51548
319
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=aYMLol69mzwGZLsT3rrVMSY8qauNPuNCBkwi5kFyKac,51019
320
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=SqV1AsKmPWxSbob7EGiBu7c_xfk9DCIMU9e4_rto1dU,49377
321
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=7s3UKO1UCCVJ_14Kd8nH0kKpkK8BUJwaMT8f8ONSXoI,51955
322
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=4CP51Ze9kXA7Ipd5z1ZMN-3l77hMjdpLFoll5jLoeYc,48037
323
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=QQMbsZGRge2dj0i-zXu7GwX1SYqxSuC90Alt4QppiW0,49846
324
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=-R2ifpMaDhOCcxL_ugnlC1Sp6iHxBqxJAmpVwPPpHU0,51509
325
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=oyejLj_noQhKnXnTLrThpAdSVfe7F6WnfrL8enAEKKs,51961
326
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=WS5xaHj91Ne6_jBDX8i79lRd4Xr0t_2YW7-c3PMd6xc,50842
320
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=Za3lXdpV1yltloLN1CjtU383s4Yz0kmUfWwSzxh5cSU,51866
321
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=1QJLPrEGqCfbk5QyPzH3jMvWo1ds-is6qPXDRBMfXp4,51337
322
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=3sBEG5wP1TyDC5t59XDBgbQfRtbmeZJYBy3PDSb0bhY,49695
323
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=vfACYYYe5jx9tYZoWrOnLCbUfnTCQ2KSeNdWqL1NoP0,52273
324
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=KPD4psFrwMu_2KaDV6zZiY_I8WxRRO62yv8VpykgREE,48355
325
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=c_wURNmsJA7Xjbnl0jPzzJronVxzvYjT2kO-MH08rDQ,50164
326
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=ZRsEVMYQM3KzXKNkKz4wmCAj3Km4CBo-aEDzddZtoOo,51827
327
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=-ebpHawA51N0FZ_YWXDK5PquKZl8cu72b1dIlCQ8p1M,52279
328
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=LxkVr2eaPZzYM1FgUnnky8UYLb3Fw_JTv82kh4ZouSk,51160
327
329
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
328
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=sM6PA51sYbvJABIw8UiN7QrkcWIU9ajx7biKeswbIJU,48585
329
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=XYFnxnnEmMa3jlUfKbjDU6U5rTjYMRjfL3-BHmr5Bbs,55921
330
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=JYb6MziLoTHJvUvnInszDG9RlK17Nxw0SglJqydaP-k,55190
330
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=wDjO7pffyY1Wp14h5NMo1glIBCNK3J09AYHz5UL4ZFc,48903
331
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=tfNfjBo2I5-l9hzN3qLTiZ3pAL89JTquebp_KLKLxM8,56239
332
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=gUa_VVRgGUhEhRTNHoDgmgFN8nI19SyjmxG4MC8SIjI,55508
331
333
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
334
+ snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
332
335
  snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
333
- snowflake/ml/modeling/pipeline/pipeline.py,sha256=c-TbJKNlLJ7JSmFEmnVRkmrisqfvrVDhB62xHbgLEH0,46223
336
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=531nAtKEoOBz_j25upGvWuvWz7vDmG9LePCksHWsS_c,46484
334
337
  snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
335
- snowflake/ml/modeling/preprocessing/binarizer.py,sha256=noHrlTqpI7RRzYbCSuCjKHxhL8NUCDKNw-kDNTwyY_U,6999
336
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=g7kY0LHjnCaBzkslCkjdPV06eL2KRYwZuYKRmDef3ew,20970
337
- snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=C35I9biWxefltNmXzqaJoqVgOP8eOnTNP7NIsnfR2xE,7405
338
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=xpuybHsjrL68u0qNe9DTrQOJsqzb8GOvHT0-_tIBzvM,8768
339
- snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=agZt9B37PsVhmS8AkH8ix0bZFsf-EGapeTp6-OD1pwI,12200
340
- snowflake/ml/modeling/preprocessing/normalizer.py,sha256=iv3MgJZ4B9-X1fAlC0pWsrYuQvRz1iJrM0_f4XfZKc0,6584
341
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=5kj3V48bYmXnorf0xnp5AqRbAiJtgswepgUicyNdFHM,72322
342
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=3c6XnwnMpbHbAITzo5YoJoI86YI-Q_BBFajoEa-7q80,33276
343
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=VTapvnHDxiUyNw48F0OwGY4xsPFWjst0t70Rm560WN4,48511
344
- snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=iBwCP10CljdGmjEo-JEZMsHsk_3tccSXYbxN4xVq5Do,12398
345
- snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=LxvcZ4a5xuHJLtIvkLafNjv0HsZd7mqzp_cdI378kkM,11395
338
+ snowflake/ml/modeling/preprocessing/binarizer.py,sha256=MrgSVTw9RpajyYe0dzai-qnpdOb3Zq0SfJRpHJjpnoY,7383
339
+ snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=FdIy8mpjsiMqWsUL07S27T-JNDVgE2bvNUJf4HcBik4,21533
340
+ snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=jQV2UgA-qtzxNxHzgyhfJtWYIT_8L81miwcQy4dxHIA,7802
341
+ snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=P03PP907SbofOFv1cJhTe1R2_-lnFYHfGsvYsVFofWY,9146
342
+ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=leLeIrVsXn08agPqL-N50ohrWlC9FVuztMleQ043H5o,12467
343
+ snowflake/ml/modeling/preprocessing/normalizer.py,sha256=0VmTIwldr3F3KQC--6RsYkybWjWuiqtxn4PuWinH0ME,6997
344
+ snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=vSRMBFSYK_KRToPecMeBHXsJi45ySruSn7-dbGFF7xM,73145
345
+ snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=MvIqNHzC5Ts2ItIyjkcGNOhin4NH2rG8Y0XEjlKZ_Fg,33558
346
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=gSwdmWWAaoufqEs9mLNh5UFn-7uE-eI2h3NzLn_J7jw,48829
347
+ snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=Dp58jHxBdGdiFQAYmFW39JUdaPHO7dKfMy3KREtKAy0,12653
348
+ snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=ui5pWnt2dL2VTTzCWikY8siG3fh_R9J1Wk_VZCHU-rA,11773
346
349
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
347
- snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=ZAwWHQa2A24z9uLIXSucVFj1C7S0LhYT8eQwdLk3g9s,48936
348
- snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=yMRrAJG80sM4l48DMqzpIYwQacvuRvDrxc-AflWAt-E,49285
350
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=JNqyn8_mBpFd2KNFw3yV73nf2OPCzzdc_2MiRS7vlkI,49254
351
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=xpqYChOh09EkR4JYoQHYAjQZCciayBwy10YfQLND-Ic,49603
349
352
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
350
- snowflake/ml/modeling/svm/linear_svc.py,sha256=zcfbzUtusA-a0b0dRTSbGfj8X5rrZ3W2LfoHj7IFqNQ,51746
351
- snowflake/ml/modeling/svm/linear_svr.py,sha256=P8151xjFlLYj3YhQEbJKiOJEQHKAfrPntv2ufTJl5y4,50099
352
- snowflake/ml/modeling/svm/nu_svc.py,sha256=me_YR4WL1sW8dRrIrO929p7vc8Ow7_jSftWf9YUHqhY,52058
353
- snowflake/ml/modeling/svm/nu_svr.py,sha256=Nqyvvt_OsoVe_py602HtsaXnTmykhdQy0fb8YdHFB9s,49137
354
- snowflake/ml/modeling/svm/svc.py,sha256=6efrAzY2u-5qPKMQb9__L5XNPf33rRFzzMHi4QJnYVA,52207
355
- snowflake/ml/modeling/svm/svr.py,sha256=WSrWS4uPAVGfPAPiqB-FphSPuNVF43kYk9kyW1ACfx0,49326
353
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=V_TjCNEWxcYsVRH54BzTYQxXO_uZPS4guyNW4oKL9Zw,52064
354
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=WNUOPuV44w3a0DrocdTl5cmblyuMjMG1gHryqMY4k9Y,50417
355
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=2v328m5Hma68-BFyrn9-U0kH2fAyJJCxTTBhhW9yWSU,52376
356
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=WCR-dZGzFAXI_uU1H6zjvbDgPzQYQzlOd-hnH8cRqUw,49455
357
+ snowflake/ml/modeling/svm/svc.py,sha256=zViOG2YXKJeigjfay0hUHcOOBK-Hsf5fJrkMlh1xI6g,52525
358
+ snowflake/ml/modeling/svm/svr.py,sha256=WeJVanTur3gixpYQE1R4IEvHRdh1MG6_ukdw_euxmqA,49644
356
359
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
357
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=4D2m5Xg1DNd12WF2-aPxCIdeIAkdO90psJOa5fy1Cc0,54483
358
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=t5DOqtWJaDV1pSkjXHC66zSQcBFnXIlhrKSYriS38ec,53182
359
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=Vvg7e0tBbJzjd7mxrNZoX_0xdlZcPVLSPb7-XTrVLnM,53825
360
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=hJP9mnMF_B63Gj4XI87YgAXEH8KRGxzSTlgvA9gsBvk,52533
360
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=NKlBReihnRitvNcHWF_lnCawd1XjGYSEh4oMKnOT9lY,54801
361
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=XjZU24CGl4sw_FKGofqE8lR-gao-9x_bLfVeEbHdmZo,53500
362
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=IGCdc76GRioanYSBFfwr3-qRtJdrPje_E-EeGuNyn3k,54143
363
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=fveGEGkR__qFajfH0ULWb06c6vKoE4bLmd5wpn5DisA,52851
361
364
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
362
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=ntJc0lzSLuJHCTv9LhWrwLsj7_aKNK3uwaQNu5dedbA,59481
363
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=BjwTmEJ0rhVWVnBoUw_i3A4cAKmXzzIxnsy80MHYzp4,58980
364
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=47owolJMSu3veYvPIYwGyzrZpBXboJAJTMnidHFqYJo,59657
365
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=oeZM8KLqILuM_uzPH8HGR3KtMpcHGTPz2VjVyAndn-c,59183
365
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=_seC-DVsdqi7Q5tk-xjT_zqluT7xfiyCdzkjmrHV8nU,59799
366
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=wAuZ__0CBwOznAWEXNCt4QrVTw9ZiG430xeObePwk9I,59298
367
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=52378Wq21gp7LXfZbFYhM8UxwBC0z6xY953p9yNWnS8,59975
368
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=EUwkEFWgeFWqNssI2eBrIJLKyqDe7RZoLYkEMGc9Z8I,59501
366
369
  snowflake/ml/monitoring/monitor.py,sha256=M9IRk6bnVwKNEvCexEJ5Rf95zEFap4O5qjbwfwdXGS0,7135
367
370
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
368
371
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
@@ -371,12 +374,12 @@ snowflake/ml/registry/_schema.py,sha256=GOA427_mVKkq9RWRENHuqDimRS0SmmP4EWThNCu1
371
374
  snowflake/ml/registry/_schema_upgrade_plans.py,sha256=LxZNXYGjGG-NmB7w7_SxgaJpZuXUO66XVMuh04oL6SI,4209
372
375
  snowflake/ml/registry/_schema_version_manager.py,sha256=-9wGH-7ELSZxp7-fW7hXTMqkJSIebXdSpwwgzdvnoYs,6922
373
376
  snowflake/ml/registry/model_registry.py,sha256=x42wR2lEyW99NnG8auNPOowg34bF87ksXQqrjMFd7Pw,84795
374
- snowflake/ml/registry/registry.py,sha256=RxEM0xLWdF3kIPf5upJffaPPP9liNMMZOnVeSyYNIb8,10949
375
- snowflake/ml/registry/_manager/model_manager.py,sha256=OOXPAOL8XZGWY0YiKD8vFfJHxJl1DXjk-oISig-bxmQ,7126
377
+ snowflake/ml/registry/registry.py,sha256=2Ud9MWTFKFE-VO3ByGwiml8kTBu2GcjnceK93PyM2Uw,11210
378
+ snowflake/ml/registry/_manager/model_manager.py,sha256=9JL_pmSu-R7IWq6sTj-XkMLLW_BDFZbMwUlmf2AlB3o,9664
376
379
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
377
380
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
378
- snowflake_ml_python-1.5.1.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
379
- snowflake_ml_python-1.5.1.dist-info/METADATA,sha256=R4CXn-UPNIGbbSaVg1CXioUMX9yIXVNeLII-aGVEzuE,52106
380
- snowflake_ml_python-1.5.1.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
381
- snowflake_ml_python-1.5.1.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
382
- snowflake_ml_python-1.5.1.dist-info/RECORD,,
381
+ snowflake_ml_python-1.5.3.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
382
+ snowflake_ml_python-1.5.3.dist-info/METADATA,sha256=QA_B6mf84du8scBIHopk8Lfi_q2AzdD-8Z7YCwL69r0,53001
383
+ snowflake_ml_python-1.5.3.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
384
+ snowflake_ml_python-1.5.3.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
385
+ snowflake_ml_python-1.5.3.dist-info/RECORD,,