snowflake-ml-python 1.5.1__py3-none-any.whl → 1.5.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (174) hide show
  1. snowflake/cortex/_sentiment.py +7 -4
  2. snowflake/ml/_internal/utils/temp_file_utils.py +5 -2
  3. snowflake/ml/feature_store/access_manager.py +34 -30
  4. snowflake/ml/feature_store/feature_store.py +1 -1
  5. snowflake/ml/feature_store/feature_view.py +12 -11
  6. snowflake/ml/fileset/snowfs.py +2 -31
  7. snowflake/ml/model/_client/ops/model_ops.py +43 -0
  8. snowflake/ml/model/_client/sql/model_version.py +53 -1
  9. snowflake/ml/model/_model_composer/model_composer.py +6 -2
  10. snowflake/ml/model/_packager/model_meta/model_meta.py +1 -3
  11. snowflake/ml/model/_packager/model_runtime/model_runtime.py +3 -27
  12. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +58 -139
  13. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py +159 -0
  14. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +8 -1
  15. snowflake/ml/modeling/cluster/affinity_propagation.py +8 -1
  16. snowflake/ml/modeling/cluster/agglomerative_clustering.py +8 -1
  17. snowflake/ml/modeling/cluster/birch.py +8 -1
  18. snowflake/ml/modeling/cluster/bisecting_k_means.py +8 -1
  19. snowflake/ml/modeling/cluster/dbscan.py +8 -1
  20. snowflake/ml/modeling/cluster/feature_agglomeration.py +8 -1
  21. snowflake/ml/modeling/cluster/k_means.py +8 -1
  22. snowflake/ml/modeling/cluster/mean_shift.py +8 -1
  23. snowflake/ml/modeling/cluster/mini_batch_k_means.py +8 -1
  24. snowflake/ml/modeling/cluster/optics.py +8 -1
  25. snowflake/ml/modeling/cluster/spectral_biclustering.py +8 -1
  26. snowflake/ml/modeling/cluster/spectral_clustering.py +8 -1
  27. snowflake/ml/modeling/cluster/spectral_coclustering.py +8 -1
  28. snowflake/ml/modeling/compose/column_transformer.py +8 -1
  29. snowflake/ml/modeling/compose/transformed_target_regressor.py +8 -1
  30. snowflake/ml/modeling/covariance/elliptic_envelope.py +8 -1
  31. snowflake/ml/modeling/covariance/empirical_covariance.py +8 -1
  32. snowflake/ml/modeling/covariance/graphical_lasso.py +8 -1
  33. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +8 -1
  34. snowflake/ml/modeling/covariance/ledoit_wolf.py +8 -1
  35. snowflake/ml/modeling/covariance/min_cov_det.py +8 -1
  36. snowflake/ml/modeling/covariance/oas.py +8 -1
  37. snowflake/ml/modeling/covariance/shrunk_covariance.py +8 -1
  38. snowflake/ml/modeling/decomposition/dictionary_learning.py +8 -1
  39. snowflake/ml/modeling/decomposition/factor_analysis.py +8 -1
  40. snowflake/ml/modeling/decomposition/fast_ica.py +8 -1
  41. snowflake/ml/modeling/decomposition/incremental_pca.py +8 -1
  42. snowflake/ml/modeling/decomposition/kernel_pca.py +8 -1
  43. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +8 -1
  44. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +8 -1
  45. snowflake/ml/modeling/decomposition/pca.py +8 -1
  46. snowflake/ml/modeling/decomposition/sparse_pca.py +8 -1
  47. snowflake/ml/modeling/decomposition/truncated_svd.py +8 -1
  48. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +8 -1
  49. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +8 -1
  50. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +8 -1
  51. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +8 -1
  52. snowflake/ml/modeling/ensemble/bagging_classifier.py +8 -1
  53. snowflake/ml/modeling/ensemble/bagging_regressor.py +8 -1
  54. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +8 -1
  55. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +8 -1
  56. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +8 -1
  57. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +8 -1
  58. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +8 -1
  59. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +8 -1
  60. snowflake/ml/modeling/ensemble/isolation_forest.py +8 -1
  61. snowflake/ml/modeling/ensemble/random_forest_classifier.py +8 -1
  62. snowflake/ml/modeling/ensemble/random_forest_regressor.py +8 -1
  63. snowflake/ml/modeling/ensemble/stacking_regressor.py +8 -1
  64. snowflake/ml/modeling/ensemble/voting_classifier.py +8 -1
  65. snowflake/ml/modeling/ensemble/voting_regressor.py +8 -1
  66. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +8 -1
  67. snowflake/ml/modeling/feature_selection/select_fdr.py +8 -1
  68. snowflake/ml/modeling/feature_selection/select_fpr.py +8 -1
  69. snowflake/ml/modeling/feature_selection/select_fwe.py +8 -1
  70. snowflake/ml/modeling/feature_selection/select_k_best.py +8 -1
  71. snowflake/ml/modeling/feature_selection/select_percentile.py +8 -1
  72. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +8 -1
  73. snowflake/ml/modeling/feature_selection/variance_threshold.py +8 -1
  74. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +8 -1
  75. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +8 -1
  76. snowflake/ml/modeling/impute/iterative_imputer.py +8 -1
  77. snowflake/ml/modeling/impute/knn_imputer.py +8 -1
  78. snowflake/ml/modeling/impute/missing_indicator.py +8 -1
  79. snowflake/ml/modeling/impute/simple_imputer.py +21 -2
  80. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +8 -1
  81. snowflake/ml/modeling/kernel_approximation/nystroem.py +8 -1
  82. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +8 -1
  83. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +8 -1
  84. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +8 -1
  85. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +8 -1
  86. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +8 -1
  87. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +8 -1
  88. snowflake/ml/modeling/linear_model/ard_regression.py +8 -1
  89. snowflake/ml/modeling/linear_model/bayesian_ridge.py +8 -1
  90. snowflake/ml/modeling/linear_model/elastic_net.py +8 -1
  91. snowflake/ml/modeling/linear_model/elastic_net_cv.py +8 -1
  92. snowflake/ml/modeling/linear_model/gamma_regressor.py +8 -1
  93. snowflake/ml/modeling/linear_model/huber_regressor.py +8 -1
  94. snowflake/ml/modeling/linear_model/lars.py +8 -1
  95. snowflake/ml/modeling/linear_model/lars_cv.py +8 -1
  96. snowflake/ml/modeling/linear_model/lasso.py +8 -1
  97. snowflake/ml/modeling/linear_model/lasso_cv.py +8 -1
  98. snowflake/ml/modeling/linear_model/lasso_lars.py +8 -1
  99. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +8 -1
  100. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +8 -1
  101. snowflake/ml/modeling/linear_model/linear_regression.py +8 -1
  102. snowflake/ml/modeling/linear_model/logistic_regression.py +8 -1
  103. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +8 -1
  104. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +8 -1
  105. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +8 -1
  106. snowflake/ml/modeling/linear_model/multi_task_lasso.py +8 -1
  107. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +8 -1
  108. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +8 -1
  109. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +8 -1
  110. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +8 -1
  111. snowflake/ml/modeling/linear_model/perceptron.py +8 -1
  112. snowflake/ml/modeling/linear_model/poisson_regressor.py +8 -1
  113. snowflake/ml/modeling/linear_model/ransac_regressor.py +8 -1
  114. snowflake/ml/modeling/linear_model/ridge.py +8 -1
  115. snowflake/ml/modeling/linear_model/ridge_classifier.py +8 -1
  116. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +8 -1
  117. snowflake/ml/modeling/linear_model/ridge_cv.py +8 -1
  118. snowflake/ml/modeling/linear_model/sgd_classifier.py +8 -1
  119. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +8 -1
  120. snowflake/ml/modeling/linear_model/sgd_regressor.py +8 -1
  121. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +8 -1
  122. snowflake/ml/modeling/linear_model/tweedie_regressor.py +8 -1
  123. snowflake/ml/modeling/manifold/isomap.py +8 -1
  124. snowflake/ml/modeling/manifold/mds.py +8 -1
  125. snowflake/ml/modeling/manifold/spectral_embedding.py +8 -1
  126. snowflake/ml/modeling/manifold/tsne.py +8 -1
  127. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +8 -1
  128. snowflake/ml/modeling/mixture/gaussian_mixture.py +8 -1
  129. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +8 -1
  130. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +8 -1
  131. snowflake/ml/modeling/multiclass/output_code_classifier.py +8 -1
  132. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +8 -1
  133. snowflake/ml/modeling/naive_bayes/categorical_nb.py +8 -1
  134. snowflake/ml/modeling/naive_bayes/complement_nb.py +8 -1
  135. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +8 -1
  136. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +8 -1
  137. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +8 -1
  138. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +8 -1
  139. snowflake/ml/modeling/neighbors/kernel_density.py +8 -1
  140. snowflake/ml/modeling/neighbors/local_outlier_factor.py +8 -1
  141. snowflake/ml/modeling/neighbors/nearest_centroid.py +8 -1
  142. snowflake/ml/modeling/neighbors/nearest_neighbors.py +8 -1
  143. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +8 -1
  144. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +8 -1
  145. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +8 -1
  146. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +8 -1
  147. snowflake/ml/modeling/neural_network/mlp_classifier.py +8 -1
  148. snowflake/ml/modeling/neural_network/mlp_regressor.py +8 -1
  149. snowflake/ml/modeling/parameters/enable_anonymous_sproc.py +5 -0
  150. snowflake/ml/modeling/preprocessing/polynomial_features.py +8 -1
  151. snowflake/ml/modeling/semi_supervised/label_propagation.py +8 -1
  152. snowflake/ml/modeling/semi_supervised/label_spreading.py +8 -1
  153. snowflake/ml/modeling/svm/linear_svc.py +8 -1
  154. snowflake/ml/modeling/svm/linear_svr.py +8 -1
  155. snowflake/ml/modeling/svm/nu_svc.py +8 -1
  156. snowflake/ml/modeling/svm/nu_svr.py +8 -1
  157. snowflake/ml/modeling/svm/svc.py +8 -1
  158. snowflake/ml/modeling/svm/svr.py +8 -1
  159. snowflake/ml/modeling/tree/decision_tree_classifier.py +8 -1
  160. snowflake/ml/modeling/tree/decision_tree_regressor.py +8 -1
  161. snowflake/ml/modeling/tree/extra_tree_classifier.py +8 -1
  162. snowflake/ml/modeling/tree/extra_tree_regressor.py +8 -1
  163. snowflake/ml/modeling/xgboost/xgb_classifier.py +8 -1
  164. snowflake/ml/modeling/xgboost/xgb_regressor.py +8 -1
  165. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +8 -1
  166. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +8 -1
  167. snowflake/ml/registry/_manager/model_manager.py +59 -1
  168. snowflake/ml/registry/registry.py +10 -1
  169. snowflake/ml/version.py +1 -1
  170. {snowflake_ml_python-1.5.1.dist-info → snowflake_ml_python-1.5.2.dist-info}/METADATA +13 -1
  171. {snowflake_ml_python-1.5.1.dist-info → snowflake_ml_python-1.5.2.dist-info}/RECORD +174 -172
  172. {snowflake_ml_python-1.5.1.dist-info → snowflake_ml_python-1.5.2.dist-info}/LICENSE.txt +0 -0
  173. {snowflake_ml_python-1.5.1.dist-info → snowflake_ml_python-1.5.2.dist-info}/WHEEL +0 -0
  174. {snowflake_ml_python-1.5.1.dist-info → snowflake_ml_python-1.5.2.dist-info}/top_level.txt +0 -0
@@ -1,11 +1,11 @@
1
1
  snowflake/cortex/__init__.py,sha256=CAUk94eXmNBXXaiLg-yNodyM2FPHvacErKtdVQYqtRM,360
2
2
  snowflake/cortex/_complete.py,sha256=C2wLk5RMtg-d2bkdbQKou6U8nvR8g3vykpCkH9-gF9g,1226
3
3
  snowflake/cortex/_extract_answer.py,sha256=4tiz4pUisw035ZLmCQDcGuwoT-jFpuo5dzrQYhvYHCA,1358
4
- snowflake/cortex/_sentiment.py,sha256=7X_a8qJNFFgn-Y1tjwMDkyNJHz5yYl0PvnezVCc4TsM,1149
4
+ snowflake/cortex/_sentiment.py,sha256=hY-GVxLnWuRBSG16kMo-I8r-pDiFT6j9ZZhFUECgtFk,1246
5
5
  snowflake/cortex/_summarize.py,sha256=DJRxUrPrTVmtQNgus0ZPF1z8nPmn4Rs5oL3U25CfXxQ,1075
6
6
  snowflake/cortex/_translate.py,sha256=JPMIXxHTgJPfJqT5Hw_WtYM6FZ8NuQufZ4XR-M8wnyo,1420
7
7
  snowflake/cortex/_util.py,sha256=0xDaDSctenhuj59atZenZp5q9zuhji0WQ77KPjqqNoc,1557
8
- snowflake/ml/version.py,sha256=WiE22xydACC6rXf2dqEDDHIINeQkQXbfF2V05DUpD-o,16
8
+ snowflake/ml/version.py,sha256=LIMkbrRMRPbW2Opu4zvrO-XuMaM8ZNoLg3tBYOBlhmU,16
9
9
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
10
10
  snowflake/ml/_internal/env_utils.py,sha256=HK5Ug5-gChiUv_z84BDjAuE9eHImrWRsX4Y7wJFApfk,27758
11
11
  snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
@@ -46,7 +46,7 @@ snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=HPyWxj-SwgvWUrYR
46
46
  snowflake/ml/_internal/utils/spcs_attribution_utils.py,sha256=9XPKe1BDkWhnGuHDXBHE4FP-m3U22lTZnrQLsHGFhWU,4292
47
47
  snowflake/ml/_internal/utils/sql_identifier.py,sha256=ZcRjSfpovsqaY7S8bFB6z44z28XICncHGwOIzs8rLDI,3729
48
48
  snowflake/ml/_internal/utils/table_manager.py,sha256=jHGfl0YSqhFLL7DOOQkjUMzTmLkqFDIM7Gs0LBQw8BM,4384
49
- snowflake/ml/_internal/utils/temp_file_utils.py,sha256=7JNib0DvjxW7Eu3bimwAHibGosf0u8W49HEc49BghF8,1402
49
+ snowflake/ml/_internal/utils/temp_file_utils.py,sha256=0-HTjXdxVt0kE6XcgyvRvY0btflWlmotP2bMXVpFJPA,1553
50
50
  snowflake/ml/_internal/utils/uri.py,sha256=pvskcWoeS0M66DaU2XlJzK9wce55z4J5dn5kTy_-Tqs,2828
51
51
  snowflake/ml/dataset/__init__.py,sha256=nESj7YEI2u90Oxyit_hKCQMWb7N1BlEM3Ho2Fm0MfHo,274
52
52
  snowflake/ml/dataset/dataset.py,sha256=LbiYP2S-dnw8a2ALswSLqZs7AittzSejMC9Hzipkpn0,21013
@@ -54,15 +54,15 @@ snowflake/ml/dataset/dataset_factory.py,sha256=qdS6jX8uiCpW5TIKnZ-_2HRfWN3c_N1bZ
54
54
  snowflake/ml/dataset/dataset_metadata.py,sha256=lvaYd1sNOgWcXD1q_-J7fQZ0ndOC8guR9IgKpChBcFA,3992
55
55
  snowflake/ml/dataset/dataset_reader.py,sha256=TKitOC7YBk3yZ9axL9nI1paSI2ooSqBn4zw5eOYpCGY,8061
56
56
  snowflake/ml/feature_store/__init__.py,sha256=VKBVkS050WNF8rcqNqwFfNXa_B9GZjcUpuibOGsUSls,423
57
- snowflake/ml/feature_store/access_manager.py,sha256=TiMHu5ds4ZsjvGTOPWum7zgb4A-m3LNFDSktBFNezdk,10442
57
+ snowflake/ml/feature_store/access_manager.py,sha256=QqAgOQ2r2JxR4CXuFiCeQ8JWk-YdPCC_QrM1boa5nsU,10607
58
58
  snowflake/ml/feature_store/entity.py,sha256=dCpzLC3jrt5wDHqFYJXbAYkMiZ0zEmiVDMGkks6MXkA,3378
59
- snowflake/ml/feature_store/feature_store.py,sha256=8SH806Dwy89TbKItTdnPi0pAn09pRObgjYSpmBnEjrI,78669
60
- snowflake/ml/feature_store/feature_view.py,sha256=B3oYaRuChQaLo8c8sdUF6McswVUryda5GWMK22b3Ipg,19274
59
+ snowflake/ml/feature_store/feature_store.py,sha256=2RkeJ2ODpRLNboYNqpCPulUNYQ33lGLulu-Oa9QgQrM,78693
60
+ snowflake/ml/feature_store/feature_view.py,sha256=6D4hB0v2jmLLjBlpiIVkSUXdSXxqqozf0XLc8EZ3bys,19332
61
61
  snowflake/ml/fileset/embedded_stage_fs.py,sha256=90nCRvRm2EZpDlx-Hu-NLI5s9fYbEFHdf0ggwjdrkQM,5919
62
62
  snowflake/ml/fileset/fileset.py,sha256=QRhxLeKf1QBqvXO4RyyRd1c8TixhYpHuBEII8Qi3C_M,26201
63
63
  snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
64
64
  snowflake/ml/fileset/sfcfs.py,sha256=a77UJFz5Ve9s_26QpcOOoFNOBIKN91KmhYVTQkafn0c,15344
65
- snowflake/ml/fileset/snowfs.py,sha256=RXCtZ43_e_Kq_vc-1tJABNo0stpwmHQI2MSCLeFhGfI,6948
65
+ snowflake/ml/fileset/snowfs.py,sha256=AGP0Uj-59T6B40dQQHhnc_46gpmugz6Xkxp505SyMkw,5392
66
66
  snowflake/ml/fileset/stage_fs.py,sha256=IebRjgPlJdwdAlpg_99DGbgIBD3XJb2p9N36O0tU3wI,19532
67
67
  snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx52jX8I,3849
68
68
  snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPbt9WKYiBp0,2386
@@ -75,10 +75,10 @@ snowflake/ml/model/type_hints.py,sha256=aUg_1xNtzdH2_kH48v918jbpEnHPNIn6MmfrwdvY
75
75
  snowflake/ml/model/_client/model/model_impl.py,sha256=hVtAHejB2pTDquWs4XNS7E7XZS1DI7nH7EILbd0btbc,13655
76
76
  snowflake/ml/model/_client/model/model_version_impl.py,sha256=Li9JtKwZvNqKjpAQM4qA52-F0fu-HASt0RWPDEJGFPE,17994
77
77
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=7cGx8zYzye2_cvZnyGxoukPtT6Q-Kexd-s4yeZmpmj8,4890
78
- snowflake/ml/model/_client/ops/model_ops.py,sha256=bn2dB9N_OHP1yMNoFwR4OFxID2_pFQytpWnfZ_195is,28714
78
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=YWhR_MVvp8bCFJ_yvSHp0fRe9ZCWSAmFCvZUNLqs7Ko,30615
79
79
  snowflake/ml/model/_client/sql/_base.py,sha256=pN5hxyC0gGzEJgZh2FBHLU0Y6iIoLcebHoE7wTpoUZQ,1252
80
80
  snowflake/ml/model/_client/sql/model.py,sha256=dKgrkYKuuAIaOcAC1K7_wxWgrtGF1r89sItcP00hUzY,5736
81
- snowflake/ml/model/_client/sql/model_version.py,sha256=eQsvfub4Vduy0t3NY4PTHzxwwgKl16nRVhzY7lq-ehk,15685
81
+ snowflake/ml/model/_client/sql/model_version.py,sha256=_bZw0-gsrIvfpXqsQsd5cVzVLyBBD27FRDaNGPPNHkU,18168
82
82
  snowflake/ml/model/_client/sql/stage.py,sha256=hrCh9P9F4l5R0hLr2r-wLDIEc4XYHMFdX1wNRveMVt0,819
83
83
  snowflake/ml/model/_client/sql/tag.py,sha256=pwwrcyPtSnkUfDzL3M8kqM0KSx7CaTtgty3HDhVC9vg,4345
84
84
  snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py,sha256=clCaoO0DZam4X79UtQV1ZuMQtTezAJkhLu9ViAX18Xk,302
@@ -99,7 +99,7 @@ snowflake/ml/model/_deploy_client/utils/constants.py,sha256=Ip_2GgsCYRXj_mD4MUdk
99
99
  snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=k0SulzWdttRvJkyuXM59aluEVgQg8Qd7XZUUpEBKuO4,11671
100
100
  snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=yZR9M76oh6JbPQJHb6t3wGO3wuD04w0zLEXiEyZW_tg,8358
101
101
  snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
102
- snowflake/ml/model/_model_composer/model_composer.py,sha256=Ld11EWtryUMM0QhbLZmZEgNtyysEtxP1aG1Vfk-oSNk,7356
102
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=rIyiI-VWS7KR1Kyp-UfvOf7_aML7ZFkkiSyMiI9n3Ns,7612
103
103
  snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=5tMz0d7t9f0oJAEAOXC4BDDpMNAV4atKoK9C66ZHgvU,5667
104
104
  snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=PsRVrOt15Zr-t2K64_GK5aHjTWN4yLgixRqaYchY2rA,2530
105
105
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2B-fykyanYlGWA4Ie2nOwXx2N5D2qZEvTbbPuSSreeI,1837
@@ -128,13 +128,13 @@ snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo
128
128
  snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=zObSLyhu56hMnIfdv7PMkzHJrTP3-FAroNZ6-Rji7J4,274
129
129
  snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
130
130
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=qwgBneEA9xu34FBKDDhxM1igRiviUsuQSGUfKatu_Ro,1818
131
- snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=0bzons03s0cF2RxbtxS7rPGeZG_Z8BouehqJPd3pfH8,17203
131
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=lmztlpzedTtJ2PNyLm5vYATGoMPVPXluu2qppmvEVJ8,17137
132
132
  snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=8eutgCBiL8IFjFIya0NyHLekPhtAsuMhyMA8MCA9VOQ,2380
133
133
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
134
134
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
135
135
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
136
136
  snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=urdG-zCiGWnVBYrvPzeEeaISjBDQwBCft6QJXBmVHWY,248
137
- snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=Hnu0ND3fEmuI29-ommNJdJRzII3tekHrU4z8mUEUqTk,5872
137
+ snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=5Wo_MW_ub00t_TNi438tcjHY7Fi_8NI6gmrDzVxO45I,4723
138
138
  snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
139
139
  snowflake/ml/model/_signatures/builtins_handler.py,sha256=0kAnTZ_-gCK0j5AiWHQhzBZsCweP_87tClsCTUJb3jE,2706
140
140
  snowflake/ml/model/_signatures/core.py,sha256=VfOjMsCOKuZwFAXc_FSs2TeFjM-2MSHxQzB_LXc-gLk,17972
@@ -157,140 +157,141 @@ snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=
157
157
  snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=MyTRkBV3zbDeO7HJaWrKYT3KkVqW51Q0AX2BbUtN4og,5737
158
158
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py,sha256=fgm1DpBBO0qUo2fXFwuN2uFAyTFhcIhT5_bC326VTVw,5544
159
159
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py,sha256=lM1vYwpJ1jgTh8vnuyMp4tnFibM6UFf50W1IpPWwUWE,2535
160
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=zBCEXRbO3w8BqL2ASpq09z9R_DXRTogOoml2Cdbggt0,55706
160
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=kElGLMbmyIXlyhQRh4eDo2Cy-yBRRId6-DhPob4xrcs,51783
161
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=tlxvDDRpN-sSuikL236__bLW0ElE6lRTl4MBfewN7Ik,6144
161
162
  snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=AgNupOLqXJytkbdQ1p5Nj1L5QShwi8PSUSYj506SxhM,14539
162
163
  snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=WiRekLxqcnnEJV3dHyjyU797tnKsgxj_g-ZAjmIVWVk,35283
163
164
  snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=VBYWGTy6ajQ-u2aiEvVU6NnKobEqJyz65oaHJS-ZjBs,17208
164
165
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
165
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=AGQub8A5L_xTB1gEJsbzTSZdsISnhdsAp3OmbEwRutw,51278
166
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=dHfJa3HbyjQUttE6OJBEX9wUt_sVtPHLk468tztvjR0,51604
166
167
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
167
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=YeMtuQvE5f2InBc7CyAnlFf0hGy0Okz5X09AQ9C64bI,49107
168
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=g_-psPSkpQt05ryMQFeS_GndA9hB8Dkg12ao2s7VNoQ,51144
169
- snowflake/ml/modeling/cluster/birch.py,sha256=0zAT_k-ZgnaGFfcZu5XGll7kAH8BZ8lFCTajWFYmV2o,49034
170
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=l9nxeYVGqf11msu1i6iG12i8YiWD2uZiVtH4WXDDzjI,51793
171
- snowflake/ml/modeling/cluster/dbscan.py,sha256=qAtH_LxcmVg7B8NerncUsfBoKiUJwb2N1FYiBM8olxk,49194
172
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=uPo3I-ROixH6SsWknj7f6AaEYLybpxHs1M4LKTkouRU,51909
173
- snowflake/ml/modeling/cluster/k_means.py,sha256=fiFQSvRRwPbQp8b9UhOeZ97hRTn-HZN4aRGXlehnGyU,51322
174
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=4H7iQtz-tqhUZVjecoWIk7Z5dtYuWJVD3sy1R_xL2DI,49404
175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=DUM05k_RNIeBenVXtssGnqEerp0OAI0z11k-GO9n7P0,52711
176
- snowflake/ml/modeling/cluster/optics.py,sha256=-j_q6rcEEzkO9m6owloMRBWUnrCCZK1QUgBUo7mlYYo,52508
177
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=kWW9zsBhQH6KpLFuw2htgEYolhy8fpQZXdggWx33hAg,49403
178
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=CCZrM9Z_5BJEl3pywVOvCO8vOGGdfPLc7qtP4sdVkoQ,52595
179
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=nUrqHjI3pDC21OhHsaFoJ9jrCa5nY_a-EdHDW_XWb8U,48536
168
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=VxQcJhUI_aU-cR68fvCwL-pmWIaUT94cudrCYJmM6Xs,49433
169
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=9uThl49ukTTXCsewRfh1oQ2MlOuhbDOuo5komZH3HDE,51470
170
+ snowflake/ml/modeling/cluster/birch.py,sha256=ukUwlYGsw_fTlF_cMxsXEdC_vvjdxpBdJzGws4LIA-M,49360
171
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=wTJBefSFhNVev9xA-b7G1BjVkLh9ZdOwrXz2GnAACkc,52119
172
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=jBQipt3eDQfg-FnVHkhJx_wlclwSUi8f9Kts-yWfutE,49520
173
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=lyEYhw5-2NDviOQDFMZJU8SN1g_fm3e_w8c8l1CQbpw,52235
174
+ snowflake/ml/modeling/cluster/k_means.py,sha256=wA0IE7lrLuGeq0XZA-iHdXySHyt3ygFWeSMeTrNjqO0,51648
175
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=Q_9r_6LazbcUHr4Tg03TUxr0zwk9PibxLlKOw-cx5CU,49730
176
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=0tBuFtMvnuaWU8A6TzNFZMXrnc6TCrXlIYaxF5BNGg4,53037
177
+ snowflake/ml/modeling/cluster/optics.py,sha256=INjDv06ZKYaJtObTvfMf6DYZO17xVaMw7earK1sLPa0,52834
178
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=OdOm8Lwqc1XKBCX8wlbCWaPuUVW3XZ1uAP1hV7w-eEs,49729
179
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=3xwuuMZgpLh4U1QkIiKiRYpkRDsR_eGd1Y15PvZcI8M,52921
180
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=N6nl9TIfRc0ExU8u7-oRYf0DUb3R3RKhyzkP1lWrljY,48862
180
181
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
181
- snowflake/ml/modeling/compose/column_transformer.py,sha256=Js74mW_UUGrT0W7ZmBtiF-4a3dLvppgSmMxB7AeitgI,51374
182
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=eCLZdS6zYgyPUQy_9wnA13s1rPE_9U4oX3qNY8VF6tM,49090
182
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=aWcT2THY80c1D-pECI2NiOWmfngWFF2euieEA1MP6Nw,51700
183
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=hTSsIrAAeUmIaZLA8B55KyxCR746YtbVmN1hkqmnFEY,49416
183
184
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
184
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=awX5rRrXDb-o4CPl2JFXO7BWt4LBLlYEwW3Wo9TLeFQ,49428
185
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=hIRqpixvv2XPwkoDohmjKnGzXaEnFaEx6M-08CJJlYQ,47236
186
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=-GssWNHzC2DMZuMChEGUzHP8cvOTQr1RYXr4r0rBFPo,49100
187
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=7zobpOYlEn45h4JymakbzRgxOeqUpeZdFqKy3bdZmJQ,50265
188
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=Ns4vqx2OD2Y9pgs1tithBwej1E0E_6wVlXIRS85mTqw,47374
189
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=6hK8ePqINpDEEqUi5bM6FPOLWGhk-9ePVJaG82huQIA,48129
190
- snowflake/ml/modeling/covariance/oas.py,sha256=P64GRhbVHGhZ1Od-n238do_tZQ5cO3SXRqVoqclLcl4,47015
191
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=yPwbsZ7_Tlj-Sj6CiayG9ic3J6G_yuGZtu9C2V0x1aw,47391
185
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=Csj9_5DVN1wjfLQjmdVhbY28tiu9CnlO1Z-_0QDWqZ4,49754
186
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=RjEAsE_ByR74uer0Rbn3Yp0nst4oFVyJUhXBz_WFZ0w,47562
187
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=hnWAjnAfBHf39k2frnKRvZyNtNMSqJQE-iPmx9XB_KA,49426
188
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=kF_f6MRI0XdAxzsaagfxP7e97EMoinr6NfhTZ02tiHg,50591
189
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=bygsEjJ_Vt5zUPqN-b1XsPfK97TAp6F_HrzcLPbiYDQ,47700
190
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=p2rsj4yeNd-IEjoECegpGAkMftKB6vkRLTYFtgaRJK8,48455
191
+ snowflake/ml/modeling/covariance/oas.py,sha256=rGIO3yXd8gMsETaYrcKUJ3WzncdlQET6EgVqOcHmcBo,47341
192
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=sRF7BTA-C_o3-C9ZaL50WOHmjShselrO2AHVO8xfJIE,47717
192
193
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
193
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=Glb9UBBcuweG4bzgYK8r0kb4VQqk795L58C4J8JnoQM,52388
194
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=-ip83Gh3nKzkFGceq602ACdK0Fbo2989_Qr2UEGsSDQ,50051
195
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=RxhD4aZFNN-Y4_wNnSYS-Mxle--_XWvTxMMAZV5SLJI,49985
196
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=-sbUNsBgn6NoLgmBME-cfoiwfaNx6unDN6Tr_tQi5sw,48345
197
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=KWSFgSYQJS6hZcUksKuSuxE_L31NAPbHvEmQNCajcHY,52343
198
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=xHYcxU8q5q7JirOlR9duL7cxQ7j0P41LhJTnJs6X6Fc,53429
199
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=Zf0ZWiUDu6UsmWWaNrvi1X87QIPpJddGOvuNDV-FtMo,50694
200
- snowflake/ml/modeling/decomposition/pca.py,sha256=-m6Fh_6Sldf-70_B_d8J7FAlXG-FLvEnIgsk63sTu6E,51612
201
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=FTaRx6CbM5WYYGQbCvccR514uzIWsBZYIX5Ql_ofNkM,49499
202
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=RiOmwnQpNx2MU0Z6wZ0pIUzsKfjDzJeWrY9zid8n6Bk,49122
194
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=vT61ZfOhKg5zHDkZ6yKpPdDYDKyR5IPzsxXklpAXVbA,52714
195
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=qd1H_q8EiDoJjulFoYWyqfU1cRkK813BVmtEK1O9tf0,50377
196
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=zRh7xNj4JMzt7mIbXGujLXiBF8vkXTvUj1GFYLhygoc,50311
197
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=9ZaPxS1sOKVA2iEoFKllkFcYKG3gd8qi3vBhks5vOB4,48671
198
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=T4z6PCk4zZrMG4j5NaBDEXEgUywEQKE1EgF6aB920OQ,52669
199
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=hcco5pEnmCYTxKlGkoDqB23hA3dtJ7zl0YMegbuhcL4,53755
200
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=ScdDGBrRifWIvu4REAsqNNIzrg_09D_3Qnfx9QXOKd8,51020
201
+ snowflake/ml/modeling/decomposition/pca.py,sha256=Jo4SpVRxmU5ufdKNc6mQXUyjkjddyPADXBX05g_Id8Y,51938
202
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=hqms5AHQ5fpVWpWWKB7Mg3E0UxCx1jNscLLevpL43TM,49825
203
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=C3wg7LT0ZuBZS11c96BL4UIGc83D4xCz9JGCN0AAtMw,49448
203
204
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
204
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=p68gHC7ur53Qp7MMnPyc2FSgWBjDmo10guNtbo0MARc,51877
205
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=C8T-Ol8s20nx-IeZMs7KXH-BjGRyNtG3exXQn-cbNMc,49659
205
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=y6CwF_IVn4gkpGb83AnLpk04IbxzI3ABXOFhJ03NZWc,52203
206
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=Jiar3qrWe9chANseNIwpjnvKtQggeJLGp5x22aozPT4,49985
206
207
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
207
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=2pfHIBCvqZSw3p1b_KqqQPkZ9s-JfndDDS-s3l2lnww,50477
208
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=wu_4FpEKU-bVZDx5OPjDcQDR190dcS_farXa3kMWGTE,49368
209
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=L7bVu-soVZJIOV9qm6IPbh3sYLNj-R_bYmPCEiz_qAE,51388
210
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=uQ2ibCiPCdQUS-h51H-TPM5KP9UzMsrUWfDrGQ4pdlA,50624
211
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=-fZBhcMXhcld8ZckIlee_N4GVd84ojcOze3hIPHXdlU,56308
212
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=KVGJbZVHdNFvXy0-H3-_hqLj8BVZM0kUSJ8Ssrm7Cr8,54912
213
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=Ra4pfsXH2qniulcS4oOC1HGI8yu043vaEwawisuAn5o,57763
214
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=SXGVyiFEpOHcAMzyxlOqUcsmGFQ-iqMi_Vj7m-m_r1g,57356
215
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=77kepZu2p40ZEJe-Hlwwr1YWl9vJccFoz07CzkWZY_Q,57597
216
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=ze6-uVYgAMJueZXMADb6n9AYRXYxUU5Bealob8IZ2oA,56082
217
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=GTQF6U-Z84a5ojKdwviEv_ewtCK2wbL6-YXZwxfrLPc,50576
218
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=y5zD_vjuZ4Yw_fDoBtEMVTN8m6lSLiOSlfWOI1x816k,56291
219
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=0uH82Fs1n75hfU3uX6ggCZsDFx94_DtURqbsm3z-8lw,54883
220
- snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=dP6WDh0_YYZeGZVBvUQWN-hjKMqDSwVVc98xE8pg88U,50602
221
- snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=I6t3h-qId9TykuvTgwfTNR2Q3T_NhZN_4KakmjadUG4,50155
222
- snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=PDoRDW8vBXPDX73WjUtW-xXNnn8BG8omJhrEr9t1PHY,48681
208
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=DvUBDdyb1HJUKMVLevVIupznugu26Z4boqA-KvoaUVg,50803
209
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=iu6i3_gXx9d1MJusf4dZFFicD_61rWAsruZFFWOvLh0,49694
210
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=YgEc79O-DaicQ1qj3oCk7igOHXEY9jduWDGp1VPv4gk,51714
211
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=vgUxNHIuwJcgx1zSkjzYW5WgYYtf6VZJMuOeK13vtWs,50950
212
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=C84z_NxGfET40FAhLazDIx-RFxeZ_rWlnhn9FiWk5ek,56634
213
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=2KkcPPYQ9SYQWYR7nwM-mIZgCJ03rYKVfjqeDzsV8jo,55238
214
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=Yz6c9m_2h2_S_YspTZdrSKiMwwU35mIsPqqgO5mvJy8,58089
215
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=2xObD2kaSZOnsXzqAAHQHg1nkzb6qqKK3I85AINGIFE,57682
216
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=O4Kggm0DMgSlYkziBII0qxpGSPLC8g7NLCRu9mV3o8E,57923
217
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=Sj75Q8c8Gt6-ymbdArPYskv_mEHYMjXYKCJMbqxYsOI,56408
218
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=wWwiBJlF36L7bjy46QWZMBmk82ATqpEoKwxfa0srAuM,50902
219
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=rDjwe-zXWK_aNhYMHT9NMx68pmcEpcU3ekOGMtOTIts,56617
220
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=WQ7qBTIJbW82w5J59Alx5uVqTlGf2JvEOVkQhIFQZ74,55209
221
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=8pI6DqYmyZhC5cZ5Zvm628oKHOmPzaRnJ5b3EpzLBYI,50928
222
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=toP_OjkrbOrs0g2iv1JfWBy6P5rh0EXostCawzr4XmI,50481
223
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=F0j4ws5LrpD5jVqN4j4P-pkyENZ5CWE5HmKdqJyGmlA,49007
223
224
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
224
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=VtYpm0z7tvr-ksYHgk6LZWDjN7UFqHLqtEsnG51O_W8,48018
225
- snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=MxADr7gOnVj5V3YRQytXmieXpOzybZK6r37QdRpxOoA,47619
226
- snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=QSF8zO9qzVv7auA4yBz1jkTqEA1mL_C3tSx93xUufMU,47613
227
- snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=9gpQbytZwQjPBREld8r-p_bG7sZm3h7nQz4bgH7UL7k,47621
228
- snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=wZyd-94tGP-FzK85b4dFPzncx0BpfbLME9Mjr5vw2ns,47712
229
- snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=hnTQ5DtNot9OJah20V-tpkXAzLSbRfJjWhv2gxH11gc,47767
230
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=-0ZEZboABCnbfguy1YmopbjVZ0-eut24E9XaPol97Sk,50387
231
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=KwTTDc1WLWz6SiXWz3Bks7u-zP53kdqPRLB3RHtvodw,47323
225
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=z8GaU72Aq1OHbY4ACZb88yCyVS4swFr-wDxokg8T0Z0,48344
226
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=Kxb4qBhob9PLRp0V1EVXIRgwY4IKQarZKKATcyo6y5c,47945
227
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=fXyEr4x4OlHGpXHxP80RwSWn5mb1WwFV4-QbsWpnhO8,47939
228
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=lJPaGFoy87pFm9XANtMShy1zPtAnbktDp4NVtkeH_uc,47947
229
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=MzD5KR2_rBqLmg8mSbo26ael_MX6OloBJA8jpdLsB0E,48038
230
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=QpSF6PV36w2d9GFM3qnKkg1KO2MDI39K7HFRUeatjwA,48093
231
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=GaaucJ3KrXFg_Mic2FI6moPd2l1nB3TkmM9DFtwAMCE,50713
232
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=wNXD495HPasIUej_f0yUpKi3vEgkZuV6SA9VjQgoTFs,47649
232
233
  snowflake/ml/modeling/framework/_utils.py,sha256=7k9iU5zAWa4ZpMZlg8KfSMi4vH3o69w5aAh5RTRNdZ4,10203
233
234
  snowflake/ml/modeling/framework/base.py,sha256=ifv9wAOhPtd8kQT2TleIV0y3Ftw3xlULyvxGolyWn7w,31439
234
235
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
235
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=1nDZ_nda4WBHqi4tW4avY2b0fNwV5ZF-DI1-BwQjtNg,53029
236
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=zkHptpQKCEGJspDnZtNTBswzn-0wVDrOJRJ34ach8dM,52094
236
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=oyx19uV9XsQKvd2I7FOlefus2vVNjeChNx-sHW8B_NA,53355
237
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=oedZ49f0AQkQLNJL-U54a7QUQ3PmlseiMCv_vK6PDZg,52420
237
238
  snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
238
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=Y3yPVO6EFqK-ZBxe_55Gp7To2jIt0N01HTyAyBkpVkI,53847
239
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=0-YnL5I2aX9BlLDe0BcyUnYdZbbmNX4_Kxj-rcJ61DA,49563
240
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=gWz2h46qVp7wVqpKa2pyQtO7Mw8bKzEy4M4gWOubiXc,48420
241
- snowflake/ml/modeling/impute/simple_imputer.py,sha256=awM33HugS5jGs3JXud1U8eEMm2VLdIAf7z_eVXAzKD0,18499
239
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=yqv9EX5GKEnPK4OUN-aHIWE6xyW33fOlhpPH4LLhr6g,54173
240
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=wZJE2xA4_a_Dz95sAkWwNWWTJCAZe6a-LccGtemMuPY,49889
241
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=nu6EorbQw9mn4GRAvSIrkA9oW63tFVazBKBIq8WiXUs,48746
242
+ snowflake/ml/modeling/impute/simple_imputer.py,sha256=Q3zmBeEOY1IkKVVeOnIXILnkX8p8DJu2jPWoTm-Mb3o,19443
242
243
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
243
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=pFXnaevash3T9li0RrHqvOceWZZ0TdgyZ20ftfwe6Vc,47451
244
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=JyMxxr-2uyOnimXM8UzNnT9lV3rGgTiOczp-7cy8uP8,49222
245
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=H1nXaQ-jmyh5UID2MrZMiJugkGZu4l33qgrYk8PtXJU,48470
246
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=daDnxgESQqUWC1ZfzguTK9x715n24hWfC4DtwP3ddQw,47824
247
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=9_3V5uZ7hR1wgsg4LXPnhofTr7urOoMIOYznEcwziXs,47872
244
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=hKvRjCO-jPwyCBafqDZD_fnv9vFU0-QNF0rronb9ay4,47777
245
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=OruOvgR4OCmHUwSMjPcnqZC74kBpD0LOLLc6beDrubM,49548
246
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=DVfW2ALj6-pPPEgI9tcB97xKvnu8-EhCJKfXxUXk8CQ,48796
247
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=vif_xPwlKArdHwdixrnGY3TsWHEZWz-L1ifTO-1VbEo,48150
248
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=MDbqGqi3UCpUvo87eE9Id3kFkSrDkbknOwu_vJAQ_Vc,48198
248
249
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
249
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=j6ZRziTOvZK2IlHKC9a8HAdnGJnLUtg4WEbpoZzW6Dk,49408
250
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=1BNUFkCCU3pZhkjcXVgLjgmaaqll1M-gb1c0-8nISOk,49734
250
251
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
251
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=O05uhJd9w8VJzmJdSVesTxVjvnqXO0FPxid7HtWgJPo,48976
252
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=BgRHeYkUHa3eLDfyTjVAV7aG-munFAzU1t2IVMnVu18,48479
252
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=970IRbgnoKDFoJ5EG9ZfD4roHwNa_SRbXwkwmcVoe78,49302
253
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=MXSltWa9Sn5JPnQRC8pkzMpieoEJbkgWyLcivchZUiM,48805
253
254
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
254
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=HaPbHZuQI173f0M2hgFsoJDUVwJAKtgRC5z7hTgzIc0,49353
255
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=WczXSOPGws4hmCKO93TRv7a16Gxls9IW6D4Ifpy4md8,49769
256
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=MjqqWIBdaK2BDYc1RAza1RW2PUSAKNF6_SNhh3EJJWI,50341
257
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=vK51acP5WZcaf1jEVvrrsJt-Brr69wnm7OvWz4Ummsk,51609
258
- snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=eYsPDEsnpJvaB3Jz3irw0uhTTawNK6T_ujtesphqt6Q,49421
259
- snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=wh8U5NwrwDG21h8FlX148Y31RWNS53RgjH2d5neNdJc,48618
260
- snowflake/ml/modeling/linear_model/lars.py,sha256=i9EhEs0SB5n41chcDB7uavlUiwsPAvqK8PRG1l-A2vc,49841
261
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=Rz6jD0PCc45fTqzv3gqSehWIMKyPJO3ByMWrOpbOYoA,50062
262
- snowflake/ml/modeling/linear_model/lasso.py,sha256=MyNEp2q5IxmCTqoL-j_o67kAkY8X5QYBTIgh7XMwWO8,49947
263
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=Aqi9VlF0Az_wIB_m6LUnoB2x8uO9GamPeBAphAMbVoI,50732
264
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=aoyGqoQLslpeta9PdDHr0ZEnJLhR19qMh4c7nOv27BI,50977
265
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=D10l4jKKNAfjio8sZCtDt7fKqa1NCWRyCaBHe55Lgys,50938
266
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=9Mkmzw5mRGJX146stdHRSxxHvzHTaG0odEvnFhqpeFM,50284
267
- snowflake/ml/modeling/linear_model/linear_regression.py,sha256=uZyGyOrdy6lu6Esp6V_kLgha8sBPPommm5AKyF6G0J0,48160
268
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=cbJz4vOHmQGQblfeQ_m0Szh0ScoFTQHm1uEoQGznSCQ,54415
269
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=8t5ndapP8JF2hOMHnUWAP_CDSrZniKlXHo57cujjnFs,55455
270
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=kTPTxp12BmVhGuKYY009l6jr7cULbpRm9Dp7qW8-Hqs,49632
271
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=LMh9nyld0bndsDmIIlahhxq9TIbDEFSArlfoMildflw,51270
272
- snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=eC7AD7AlgXBXnGwP2WNUSJsiYIl69XkpXGArtdj0s5M,49180
273
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=7HYneCH5xNlMLcqDSBLiAjbztkLZcVfZlxkJIaOZP9Y,50442
274
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=YhfJfMXvRBDOQl5EOmIDJ7xJAvbhWzhmIh2LyA46L6I,48787
275
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=FRu7zp4m4EvTDxVYZeV_-Vknrz2hrVFNSkd2YFXepjY,52143
276
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=inz27nO6hjKG4DEcLXc-XfYdUc7xy3x62R9Y6SVrv3A,51210
277
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=Q2yzFRQ-s_RJGUCsCbBT50SX35MnJGzPLGRiLzc07ys,51527
278
- snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=w1BXkGQxmGQj-Lysn7tlEQF_Obg00G7v-310JYUjeiE,49466
279
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=e7UGWQ743I-g1bYSKKnGefGvq-M0AjJ3jDZ7B2kdxL4,52585
280
- snowflake/ml/modeling/linear_model/ridge.py,sha256=P6AzZbnl60I_425tdOQepJCXN9Edg00GPE0iiLaGBBk,51491
281
- snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=bN0EPKU4pOPoQJF9ZQe0j0dPayWl_Up32NbIh2eoRLY,51879
282
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=ryDxqt-DH0jOZBap8YGBJPWbv-UGFcNRY4iQIe2-xRw,49874
283
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=ywQjvUjnymlVZwpzAN38rgLxl1pFkSyl5yZyW6DxMk8,50575
284
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=pG5dEakeR1v8W1Acd2yRlHgQHxQAmA0aHqsjRhWOiJ8,56952
285
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=xFkcwEL9cHCWDQrt8MMzc9JoAGli_mS7pujbrWL6IYE,51750
286
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=Ke7nGiusplQDF9F1OjUI0Q9Sz-HKjDasAU7hFQVSXEc,54423
287
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=MpNQb9Q_EA1IleQZiP92U1_FXuwA9-zJmVmPZnHP3lA,49901
288
- snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=OYT3gshbB2vxNseTpmVKtDVfeKhbK48Fe6utSlK47Ro,50857
255
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=DR_AsOlu1UvuCvPVblRMXPB5MurIlEO9gD5xyHul0CY,49679
256
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=qE8LOyrPERxOoXn3xWANuWbmx4v2pIDgJq2qJxSwCcM,50095
257
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=oODXwBq8axiO6tBK2IvS-A1QntzcCdO6MumQ9OzVD4g,50667
258
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=I5lcZHZLr3OAuwN4ehRjQDRNZ0SImhS3MxKws-xTJ3k,51935
259
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=iQHd_9vgIdFzIrtIOREiRyWN4Zvh1y5kBoBifkL7oJw,49747
260
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=fTmJig6UiKJtd1BUL2AvUsTj6Yd1rOiKkdXFXYVbVRg,48944
261
+ snowflake/ml/modeling/linear_model/lars.py,sha256=pyV1z0jIcxNcNicq-gjyRYrz5ENHX4dsnLmCVG9cBHY,50167
262
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=TZGa7GZ2O-BNvFqYiX7MCK2SnKTO00ky5TCFoXjZ-L8,50388
263
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=W-bmWUmYdbSgAsNVKUrtoaq-SG8e0bQfb4rNXIO7WsE,50273
264
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=YSP8x2j7T3BCBZay8yxbeuQzEi7IeFYknW91g2adL0E,51058
265
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=k636mH0TAKN6lceGQUPn31B_S84Zn9Drd1NqyfE7KzY,51303
266
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=9gj6rDG2yaB7upnlFInh8cfiX_X-M8m2NQU5ARfmMvA,51264
267
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=yU4OSReXul3wSXdqglAViBsW4cReo1XoznsvmjXjDyY,50610
268
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=G9C4M2ynXGRh-B9ERwj-vdobuWxShS8TWmVgCIBkDm8,48486
269
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=84A7Edxc3_RNz7S2Vx4AyEBpv-GdgrAhxPr7VMfLZb0,54741
270
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=EOBTQN4GgPd31fDYb5vQtuK8HSbK9SvKVoYHYXZE6Uk,55781
271
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=3PWQaSlJmAy1Il2Ed-TDQs1YRQ9n6rxVWvPrM_kHPFg,49958
272
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=b7auXuWoaELZXsNn0Lqqa90aB_oE_m4FNmnnQnrDRkg,51596
273
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=EQyyEcUohi__Gvr9KkODA5ZQcpmMlpTV1PsDlpfD1MU,49506
274
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=SldwsglXckF-PA369-mMPd2JsYkE4rBLhGQpb8I2DXs,50768
275
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=7m0e7PYJQF4QwAdiNI0KHIjk84AXk_Jv55tiiBh_f6M,49113
276
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=AM5KM4zb5TjITL4LSKYUi1FaqmBecdpNW1A0DmIJSs0,52469
277
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=T1hnz95OfYBDS8G45ci75IjjRcTa5fdnd82gHpvH8PI,51536
278
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=4VX2hgQ5NYYEv5lS6-BJ2n7fv4vxAgXgR0RneVYl-7k,51853
279
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=GCXphn2NKSQrudWEcaAOSifplWaPh8w5zXT749EmLAU,49792
280
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=N8mAxFnjRaZKiifEq97xd6mHWnXhQ8Zvq3H2I8JUxjY,52911
281
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=TuDJpHL3D9d_YXtcg2e7pBZjAPrTVpI-FCPb3yzjFaQ,51817
282
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=lX55F3eY1H1WHJPpQWxvJ96FBc8bQv_sF1GEuqjTrwo,52205
283
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=NO9LKsrynA3oF4LtHBv8HL-ZAhc_JwQiVByCq94AK5w,50200
284
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=oqcG1xafx5ixvkdzNt3ATWj4rT9UechfZqkcsn_uJk4,50901
285
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=LwIEUD6yU_onvgFg9z0xpsCpIWIJNFjYLktf1dop4FQ,57278
286
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=Om4HlWJ-4GZJ-KErAHVC6Lqsr2t9w4IqpqxYvruZVJE,52076
287
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=nKg8WpAIyh9Ks62V8EIBcy_PFOjh3JGPcHQd2uojiJ8,54749
288
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=C2k1WHgz7Z5fbub18hqswdDk_VaK-cTRGwRRYy22VWU,50227
289
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=4BHEZXjlRs1YDEATXcdQFiI38YE2bNeFPCNL1JuWDn0,51183
289
290
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
290
- snowflake/ml/modeling/manifold/isomap.py,sha256=ztBEcsRoyM0v9ckQJoYEUTsj5HwRGGXQOjMY3e-_UWQ,50084
291
- snowflake/ml/modeling/manifold/mds.py,sha256=NlDzOMhCzHAU9cueoJzMT6qKyC_UV_PS_YnlIam58CI,49304
292
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=ojQQ9Pt_bUvRzPSBuLgd2BhjWPdPjAz80XtDJi4vlT8,50155
293
- snowflake/ml/modeling/manifold/tsne.py,sha256=CpP4qv_V_ibyucBzTIsGq6N7BOPDtzFQ46C5HpJJSCE,53094
291
+ snowflake/ml/modeling/manifold/isomap.py,sha256=nQ9ow3km6fjbtm8uGZtMUs2qcISUaGNEMzNzRFy78eA,50410
292
+ snowflake/ml/modeling/manifold/mds.py,sha256=j5bsW0pERjd2TRcJER8D1b9UW_DWL-KMrp-hj41P2LY,49630
293
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=_TajsfSK2K9dHp3qgXt1l6X2aDIQTMTDd1M1J43FpqA,50481
294
+ snowflake/ml/modeling/manifold/tsne.py,sha256=3XSEao-by9N7BipCnzuUUhdUJg4OFCmRrcedin_dxpQ,53420
294
295
  snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
295
296
  snowflake/ml/modeling/metrics/classification.py,sha256=5XbbpxYu9HXB7FUbBJfT7wVNMKBfzxwcaVzlMSyHAWg,66499
296
297
  snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
@@ -299,36 +300,37 @@ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=NETSOkhP9m_GZSywiDydCQXKuX
299
300
  snowflake/ml/modeling/metrics/ranking.py,sha256=gA1R1x1jUXA9bRrYn8IfJPM5BDY4DK1JCtoPQVsz5z4,17569
300
301
  snowflake/ml/modeling/metrics/regression.py,sha256=OEawjdiMZHYlycQFXM_h2czIZmmGe5GKciEQD9MSWx4,25845
301
302
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
302
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=UV7nEG1H493qFZecZ0uI9JUh-ooeesZLcCPlH_UdDdQ,54657
303
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=PPCRLAnDcLdMP190UjV6VGhU28rIHg7wkliaV8EARBI,52558
303
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=FvzlATlhCHeCn3lEhophrFk-RVO3FbUAXgDLCAaRcAE,54983
304
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=bnnRg-AoLdbnNsBLaOqgxxQYIy1vNUUM-vheK43w5Gg,52884
304
305
  snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
305
306
  snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=B18rb0gh4TK9z2G5XVCx5nav_a9jWDH7q7XdLzAkRwI,38125
306
307
  snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=ipnRe8z3G09wTy1I2s33CzRsit8pIBfGaZGy4IZfjdM,38867
307
308
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
308
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=h9PDQMMXD9w1GF9nYrAzhOzlo9Tu9gqgm2euvBcmwyA,48160
309
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=RX7kdJmEdb_JUUfsie7Q44CFWaRate7N23kKyreT49k,49094
310
- snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=dGQLuw7i7IXXv3VQnKxDSQaU8yUpphsVcwPxbpb3uf8,48430
309
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=pZSg4iexRREq8HqlSGStXeG5d0M22V5I7YAKxFTEftc,48486
310
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=CDmXMppKIToQ7QvekH1aED6ZTRW6kEMLgcYSNeagw7w,49420
311
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=gZ71bSYS6H3wnCZbSmBb8ojz8bapy9qFqDWjEUYRCEs,48756
311
312
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
312
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=lrWiVXGFQpqbeF0g8va1cMhPyKxxqvgHddaBJLe_J5Y,48699
313
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=agWXHZNNV5AzhCH8g0HJFdCpg7qOF0CjRSejcknYwbs,49034
314
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=dJ9hB8CjM9wOlax4i0yH82LnOeb6dUQRXvPhQX2zYzw,48714
315
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=d-QpjpNF2QUVQQBt2sg-SF_WsidfZ8rQZmiXs-OE2T8,47843
316
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=O36O12tu80hJLag6s34dmZpmf7VojUeuaVe6ceCtgts,48479
313
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=_2nfXAsX9U3G6ahkBiEkc_ArehsDGvh910S0Zj49JY8,49025
314
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=Mk46O1BbqbyVcQ9C8VyfZA6GJ8VWdafBP-OlyChDtA8,49360
315
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=w5cxPBnCsW02kbWqz4_bw3nEQNQSGM_ufTZy2DYpIK8,49040
316
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=y1jXxTH_hYbzD7JPPWy4WW2S6OkRRXRTb5JQM6iBv4U,48169
317
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=27ifnJSjGnFsTGLUajeTO_XO02tx_ASPGXevmNI3d1w,48805
317
318
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
318
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=5WC1on082prjxYQczW9wz1pK9EUmwAoNmGl1eWjZ_4w,51548
319
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=aYMLol69mzwGZLsT3rrVMSY8qauNPuNCBkwi5kFyKac,51019
320
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=SqV1AsKmPWxSbob7EGiBu7c_xfk9DCIMU9e4_rto1dU,49377
321
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=7s3UKO1UCCVJ_14Kd8nH0kKpkK8BUJwaMT8f8ONSXoI,51955
322
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=4CP51Ze9kXA7Ipd5z1ZMN-3l77hMjdpLFoll5jLoeYc,48037
323
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=QQMbsZGRge2dj0i-zXu7GwX1SYqxSuC90Alt4QppiW0,49846
324
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=-R2ifpMaDhOCcxL_ugnlC1Sp6iHxBqxJAmpVwPPpHU0,51509
325
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=oyejLj_noQhKnXnTLrThpAdSVfe7F6WnfrL8enAEKKs,51961
326
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=WS5xaHj91Ne6_jBDX8i79lRd4Xr0t_2YW7-c3PMd6xc,50842
319
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=JQKT6s76Ku9awBz-USk5bYmuglCw2_x_j4O1AaX9KWg,51874
320
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=mXM9Ih2Kuw7s_hYJrl3HOC4jTR3E2i9mvaKaD1uAU3Y,51345
321
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=eYNLIBWt-IhZDxH_v5fqiDt5-U6skoFbFXYBPiZa_tI,49703
322
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=WqK2x1p_Bg-V4fJ_rg_6r_iY-0bQI3qmEA_HW4iQpjc,52281
323
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=t7FcI9w6L0sv55G-HzrZ0OjtJnXO1vIP4DdyitxHC0Y,48363
324
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=kYUB5qtiNOR1HHxgVRDlSfyXlC1rkM8TimeZPxPYwU8,50172
325
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=nFZ3X4kwtcJopQvAkYrp6hM_Pc9Gtrctw3tCzlH09sI,51835
326
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=-inPtmu1PZrXmjkf2e5BBmEGo_x7TwiQ5mqSmhdsefg,52287
327
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=98I3UFWaDR1BYd8NB45eoapdaLAykeQ-NdMn4A4y440,51168
327
328
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
328
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=sM6PA51sYbvJABIw8UiN7QrkcWIU9ajx7biKeswbIJU,48585
329
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=XYFnxnnEmMa3jlUfKbjDU6U5rTjYMRjfL3-BHmr5Bbs,55921
330
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=JYb6MziLoTHJvUvnInszDG9RlK17Nxw0SglJqydaP-k,55190
329
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=OAvp3GI_8u-TbbO7524C7xzD1fwbpHEa5auHQRf0s2k,48911
330
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=boP0eDlfMdAwY0WGgt9sm5hYPvnWLYpS2nLCyF5Lx6A,56247
331
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=LIw6ShXGJJbjdzto_FsMv_PE0zI2cosMxXOdUlTM7m8,55516
331
332
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
333
+ snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
332
334
  snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
333
335
  snowflake/ml/modeling/pipeline/pipeline.py,sha256=c-TbJKNlLJ7JSmFEmnVRkmrisqfvrVDhB62xHbgLEH0,46223
334
336
  snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
@@ -340,29 +342,29 @@ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=agZt9B37PsVhmS8AkH8
340
342
  snowflake/ml/modeling/preprocessing/normalizer.py,sha256=iv3MgJZ4B9-X1fAlC0pWsrYuQvRz1iJrM0_f4XfZKc0,6584
341
343
  snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=5kj3V48bYmXnorf0xnp5AqRbAiJtgswepgUicyNdFHM,72322
342
344
  snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=3c6XnwnMpbHbAITzo5YoJoI86YI-Q_BBFajoEa-7q80,33276
343
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=VTapvnHDxiUyNw48F0OwGY4xsPFWjst0t70Rm560WN4,48511
345
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=zO4ts-sk6nvacvofj9f2ZfEjvRUbU1q8d2Cpu60vkrU,48837
344
346
  snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=iBwCP10CljdGmjEo-JEZMsHsk_3tccSXYbxN4xVq5Do,12398
345
347
  snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=LxvcZ4a5xuHJLtIvkLafNjv0HsZd7mqzp_cdI378kkM,11395
346
348
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
347
- snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=ZAwWHQa2A24z9uLIXSucVFj1C7S0LhYT8eQwdLk3g9s,48936
348
- snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=yMRrAJG80sM4l48DMqzpIYwQacvuRvDrxc-AflWAt-E,49285
349
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=vPZpcNzAz6OHZ2lg-C7XzmcSL4gtixB-msDXYfDXErk,49262
350
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=IgxW3IPDcvQIxxS4uT3eMsPug04eupol9D8WEzySwvY,49611
349
351
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
350
- snowflake/ml/modeling/svm/linear_svc.py,sha256=zcfbzUtusA-a0b0dRTSbGfj8X5rrZ3W2LfoHj7IFqNQ,51746
351
- snowflake/ml/modeling/svm/linear_svr.py,sha256=P8151xjFlLYj3YhQEbJKiOJEQHKAfrPntv2ufTJl5y4,50099
352
- snowflake/ml/modeling/svm/nu_svc.py,sha256=me_YR4WL1sW8dRrIrO929p7vc8Ow7_jSftWf9YUHqhY,52058
353
- snowflake/ml/modeling/svm/nu_svr.py,sha256=Nqyvvt_OsoVe_py602HtsaXnTmykhdQy0fb8YdHFB9s,49137
354
- snowflake/ml/modeling/svm/svc.py,sha256=6efrAzY2u-5qPKMQb9__L5XNPf33rRFzzMHi4QJnYVA,52207
355
- snowflake/ml/modeling/svm/svr.py,sha256=WSrWS4uPAVGfPAPiqB-FphSPuNVF43kYk9kyW1ACfx0,49326
352
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=i_znmcHZrkckFsS0kHk0a45No7P9HDwdmjLfQtHQJpg,52072
353
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=382GKS7wsJuBc53HwAz1C1HkrVEzOVU3csd42ejbTgU,50425
354
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=WTDL1Lda1kPngX0LQZs71c1rCcaaod1_N7xfqbq1Yys,52384
355
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=PHNEZab30oT_dJC0rcvp0p02oYAq9VqF1ldb6Yuw6Dc,49463
356
+ snowflake/ml/modeling/svm/svc.py,sha256=F97dqp0qbaN3Z3TtQlp_TeiArKt4FquLQvYYZi6u_vY,52533
357
+ snowflake/ml/modeling/svm/svr.py,sha256=_qtdYsHXzWT0plErs4OmplD0czneD4yRzMuDQLAcI5I,49652
356
358
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
357
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=4D2m5Xg1DNd12WF2-aPxCIdeIAkdO90psJOa5fy1Cc0,54483
358
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=t5DOqtWJaDV1pSkjXHC66zSQcBFnXIlhrKSYriS38ec,53182
359
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=Vvg7e0tBbJzjd7mxrNZoX_0xdlZcPVLSPb7-XTrVLnM,53825
360
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=hJP9mnMF_B63Gj4XI87YgAXEH8KRGxzSTlgvA9gsBvk,52533
359
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=xa_Yejarir39_NCXeX2SG0T4RYP7kPepoTiuyqGFfRM,54809
360
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=cM5jUf2ss4H0VXWta3qpHiLcgV7M8oPlMNdyzYNd48E,53508
361
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=6Up4VeZFdLDNz9gtZ9g13huOygyqMIf3gDYAEBmjOts,54151
362
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=jLgNO9cARnC28SIpNE08kFKT3LIbIkxCiBu0KKmnE7U,52859
361
363
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
362
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=ntJc0lzSLuJHCTv9LhWrwLsj7_aKNK3uwaQNu5dedbA,59481
363
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=BjwTmEJ0rhVWVnBoUw_i3A4cAKmXzzIxnsy80MHYzp4,58980
364
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=47owolJMSu3veYvPIYwGyzrZpBXboJAJTMnidHFqYJo,59657
365
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=oeZM8KLqILuM_uzPH8HGR3KtMpcHGTPz2VjVyAndn-c,59183
364
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=ks13HZjSW932bqwXsAJpq5XKwzD5T2r186N1wBCZcBY,59807
365
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=I7A6EgOQEEqv6HX319WScpFXGTl0uG8KUFe1qlTRzyk,59306
366
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=kOpNKFdmJMBk2BkNs2IllIjpMffiAuduO0ykUny1FO4,59983
367
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=0p-DOClBejaVS2iIrpQqAUzhxO4YUVtKl5BMqKjTdaw,59509
366
368
  snowflake/ml/monitoring/monitor.py,sha256=M9IRk6bnVwKNEvCexEJ5Rf95zEFap4O5qjbwfwdXGS0,7135
367
369
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
368
370
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
@@ -371,12 +373,12 @@ snowflake/ml/registry/_schema.py,sha256=GOA427_mVKkq9RWRENHuqDimRS0SmmP4EWThNCu1
371
373
  snowflake/ml/registry/_schema_upgrade_plans.py,sha256=LxZNXYGjGG-NmB7w7_SxgaJpZuXUO66XVMuh04oL6SI,4209
372
374
  snowflake/ml/registry/_schema_version_manager.py,sha256=-9wGH-7ELSZxp7-fW7hXTMqkJSIebXdSpwwgzdvnoYs,6922
373
375
  snowflake/ml/registry/model_registry.py,sha256=x42wR2lEyW99NnG8auNPOowg34bF87ksXQqrjMFd7Pw,84795
374
- snowflake/ml/registry/registry.py,sha256=RxEM0xLWdF3kIPf5upJffaPPP9liNMMZOnVeSyYNIb8,10949
375
- snowflake/ml/registry/_manager/model_manager.py,sha256=OOXPAOL8XZGWY0YiKD8vFfJHxJl1DXjk-oISig-bxmQ,7126
376
+ snowflake/ml/registry/registry.py,sha256=2Ud9MWTFKFE-VO3ByGwiml8kTBu2GcjnceK93PyM2Uw,11210
377
+ snowflake/ml/registry/_manager/model_manager.py,sha256=9JL_pmSu-R7IWq6sTj-XkMLLW_BDFZbMwUlmf2AlB3o,9664
376
378
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
377
379
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
378
- snowflake_ml_python-1.5.1.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
379
- snowflake_ml_python-1.5.1.dist-info/METADATA,sha256=R4CXn-UPNIGbbSaVg1CXioUMX9yIXVNeLII-aGVEzuE,52106
380
- snowflake_ml_python-1.5.1.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
381
- snowflake_ml_python-1.5.1.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
382
- snowflake_ml_python-1.5.1.dist-info/RECORD,,
380
+ snowflake_ml_python-1.5.2.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
381
+ snowflake_ml_python-1.5.2.dist-info/METADATA,sha256=2uurYHIZr8w4_zzZgT0Y8ZhC9_JwmaUQy2UGJNZuYEo,52392
382
+ snowflake_ml_python-1.5.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
383
+ snowflake_ml_python-1.5.2.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
384
+ snowflake_ml_python-1.5.2.dist-info/RECORD,,