snowflake-ml-python 1.4.1__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (206) hide show
  1. snowflake/ml/_internal/env_utils.py +66 -31
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/dataset/__init__.py +10 -0
  8. snowflake/ml/dataset/dataset.py +454 -129
  9. snowflake/ml/dataset/dataset_factory.py +53 -0
  10. snowflake/ml/dataset/dataset_metadata.py +103 -0
  11. snowflake/ml/dataset/dataset_reader.py +202 -0
  12. snowflake/ml/feature_store/feature_store.py +408 -282
  13. snowflake/ml/feature_store/feature_view.py +37 -8
  14. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  15. snowflake/ml/fileset/sfcfs.py +0 -4
  16. snowflake/ml/fileset/snowfs.py +159 -0
  17. snowflake/ml/fileset/stage_fs.py +1 -4
  18. snowflake/ml/model/__init__.py +2 -2
  19. snowflake/ml/model/_api.py +16 -1
  20. snowflake/ml/model/_client/model/model_impl.py +27 -0
  21. snowflake/ml/model/_client/model/model_version_impl.py +135 -0
  22. snowflake/ml/model/_client/ops/model_ops.py +137 -67
  23. snowflake/ml/model/_client/sql/model.py +16 -14
  24. snowflake/ml/model/_client/sql/model_version.py +109 -1
  25. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  26. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  27. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  28. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  29. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  30. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  31. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +22 -0
  32. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +11 -0
  33. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  34. snowflake/ml/model/_packager/model_meta/model_meta.py +1 -5
  35. snowflake/ml/model/_packager/model_packager.py +0 -3
  36. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  37. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  38. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  39. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  40. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +24 -2
  41. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  42. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +51 -52
  43. snowflake/ml/modeling/cluster/affinity_propagation.py +51 -52
  44. snowflake/ml/modeling/cluster/agglomerative_clustering.py +51 -52
  45. snowflake/ml/modeling/cluster/birch.py +53 -52
  46. snowflake/ml/modeling/cluster/bisecting_k_means.py +53 -52
  47. snowflake/ml/modeling/cluster/dbscan.py +51 -52
  48. snowflake/ml/modeling/cluster/feature_agglomeration.py +53 -52
  49. snowflake/ml/modeling/cluster/k_means.py +53 -52
  50. snowflake/ml/modeling/cluster/mean_shift.py +51 -52
  51. snowflake/ml/modeling/cluster/mini_batch_k_means.py +53 -52
  52. snowflake/ml/modeling/cluster/optics.py +51 -52
  53. snowflake/ml/modeling/cluster/spectral_biclustering.py +51 -52
  54. snowflake/ml/modeling/cluster/spectral_clustering.py +51 -52
  55. snowflake/ml/modeling/cluster/spectral_coclustering.py +51 -52
  56. snowflake/ml/modeling/compose/column_transformer.py +53 -52
  57. snowflake/ml/modeling/compose/transformed_target_regressor.py +51 -52
  58. snowflake/ml/modeling/covariance/elliptic_envelope.py +51 -52
  59. snowflake/ml/modeling/covariance/empirical_covariance.py +51 -52
  60. snowflake/ml/modeling/covariance/graphical_lasso.py +51 -52
  61. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +51 -52
  62. snowflake/ml/modeling/covariance/ledoit_wolf.py +51 -52
  63. snowflake/ml/modeling/covariance/min_cov_det.py +51 -52
  64. snowflake/ml/modeling/covariance/oas.py +51 -52
  65. snowflake/ml/modeling/covariance/shrunk_covariance.py +51 -52
  66. snowflake/ml/modeling/decomposition/dictionary_learning.py +53 -52
  67. snowflake/ml/modeling/decomposition/factor_analysis.py +53 -52
  68. snowflake/ml/modeling/decomposition/fast_ica.py +53 -52
  69. snowflake/ml/modeling/decomposition/incremental_pca.py +53 -52
  70. snowflake/ml/modeling/decomposition/kernel_pca.py +53 -52
  71. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +53 -52
  72. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +53 -52
  73. snowflake/ml/modeling/decomposition/pca.py +53 -52
  74. snowflake/ml/modeling/decomposition/sparse_pca.py +53 -52
  75. snowflake/ml/modeling/decomposition/truncated_svd.py +53 -52
  76. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +53 -52
  77. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +51 -52
  78. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +51 -52
  79. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +51 -52
  80. snowflake/ml/modeling/ensemble/bagging_classifier.py +51 -52
  81. snowflake/ml/modeling/ensemble/bagging_regressor.py +51 -52
  82. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +51 -52
  83. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +51 -52
  84. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +51 -52
  85. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +51 -52
  86. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +51 -52
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +51 -52
  88. snowflake/ml/modeling/ensemble/isolation_forest.py +51 -52
  89. snowflake/ml/modeling/ensemble/random_forest_classifier.py +51 -52
  90. snowflake/ml/modeling/ensemble/random_forest_regressor.py +51 -52
  91. snowflake/ml/modeling/ensemble/stacking_regressor.py +53 -52
  92. snowflake/ml/modeling/ensemble/voting_classifier.py +53 -52
  93. snowflake/ml/modeling/ensemble/voting_regressor.py +53 -52
  94. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +53 -52
  95. snowflake/ml/modeling/feature_selection/select_fdr.py +53 -52
  96. snowflake/ml/modeling/feature_selection/select_fpr.py +53 -52
  97. snowflake/ml/modeling/feature_selection/select_fwe.py +53 -52
  98. snowflake/ml/modeling/feature_selection/select_k_best.py +53 -52
  99. snowflake/ml/modeling/feature_selection/select_percentile.py +53 -52
  100. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +53 -52
  101. snowflake/ml/modeling/feature_selection/variance_threshold.py +53 -52
  102. snowflake/ml/modeling/framework/base.py +63 -36
  103. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +51 -52
  104. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +51 -52
  105. snowflake/ml/modeling/impute/iterative_imputer.py +53 -52
  106. snowflake/ml/modeling/impute/knn_imputer.py +53 -52
  107. snowflake/ml/modeling/impute/missing_indicator.py +53 -52
  108. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +53 -52
  109. snowflake/ml/modeling/kernel_approximation/nystroem.py +53 -52
  110. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +53 -52
  111. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +53 -52
  112. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +53 -52
  113. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +51 -52
  114. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +51 -52
  115. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +51 -52
  116. snowflake/ml/modeling/linear_model/ard_regression.py +51 -52
  117. snowflake/ml/modeling/linear_model/bayesian_ridge.py +51 -52
  118. snowflake/ml/modeling/linear_model/elastic_net.py +51 -52
  119. snowflake/ml/modeling/linear_model/elastic_net_cv.py +51 -52
  120. snowflake/ml/modeling/linear_model/gamma_regressor.py +51 -52
  121. snowflake/ml/modeling/linear_model/huber_regressor.py +51 -52
  122. snowflake/ml/modeling/linear_model/lars.py +51 -52
  123. snowflake/ml/modeling/linear_model/lars_cv.py +51 -52
  124. snowflake/ml/modeling/linear_model/lasso.py +51 -52
  125. snowflake/ml/modeling/linear_model/lasso_cv.py +51 -52
  126. snowflake/ml/modeling/linear_model/lasso_lars.py +51 -52
  127. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +51 -52
  128. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +51 -52
  129. snowflake/ml/modeling/linear_model/linear_regression.py +51 -52
  130. snowflake/ml/modeling/linear_model/logistic_regression.py +51 -52
  131. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +51 -52
  132. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +51 -52
  133. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +51 -52
  134. snowflake/ml/modeling/linear_model/multi_task_lasso.py +51 -52
  135. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +51 -52
  136. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +51 -52
  137. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +51 -52
  138. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +51 -52
  139. snowflake/ml/modeling/linear_model/perceptron.py +51 -52
  140. snowflake/ml/modeling/linear_model/poisson_regressor.py +51 -52
  141. snowflake/ml/modeling/linear_model/ransac_regressor.py +51 -52
  142. snowflake/ml/modeling/linear_model/ridge.py +51 -52
  143. snowflake/ml/modeling/linear_model/ridge_classifier.py +51 -52
  144. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +51 -52
  145. snowflake/ml/modeling/linear_model/ridge_cv.py +51 -52
  146. snowflake/ml/modeling/linear_model/sgd_classifier.py +51 -52
  147. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +51 -52
  148. snowflake/ml/modeling/linear_model/sgd_regressor.py +51 -52
  149. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +51 -52
  150. snowflake/ml/modeling/linear_model/tweedie_regressor.py +51 -52
  151. snowflake/ml/modeling/manifold/isomap.py +53 -52
  152. snowflake/ml/modeling/manifold/mds.py +53 -52
  153. snowflake/ml/modeling/manifold/spectral_embedding.py +53 -52
  154. snowflake/ml/modeling/manifold/tsne.py +53 -52
  155. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +51 -52
  156. snowflake/ml/modeling/mixture/gaussian_mixture.py +51 -52
  157. snowflake/ml/modeling/model_selection/grid_search_cv.py +21 -23
  158. snowflake/ml/modeling/model_selection/randomized_search_cv.py +38 -20
  159. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +51 -52
  160. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +51 -52
  161. snowflake/ml/modeling/multiclass/output_code_classifier.py +51 -52
  162. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +51 -52
  163. snowflake/ml/modeling/naive_bayes/categorical_nb.py +51 -52
  164. snowflake/ml/modeling/naive_bayes/complement_nb.py +51 -52
  165. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +51 -52
  166. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +51 -52
  167. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +51 -52
  168. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +51 -52
  169. snowflake/ml/modeling/neighbors/kernel_density.py +51 -52
  170. snowflake/ml/modeling/neighbors/local_outlier_factor.py +51 -52
  171. snowflake/ml/modeling/neighbors/nearest_centroid.py +51 -52
  172. snowflake/ml/modeling/neighbors/nearest_neighbors.py +51 -52
  173. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +53 -52
  174. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +51 -52
  175. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +51 -52
  176. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +53 -52
  177. snowflake/ml/modeling/neural_network/mlp_classifier.py +51 -52
  178. snowflake/ml/modeling/neural_network/mlp_regressor.py +51 -52
  179. snowflake/ml/modeling/pipeline/pipeline.py +514 -32
  180. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +12 -0
  181. snowflake/ml/modeling/preprocessing/polynomial_features.py +53 -52
  182. snowflake/ml/modeling/semi_supervised/label_propagation.py +51 -52
  183. snowflake/ml/modeling/semi_supervised/label_spreading.py +51 -52
  184. snowflake/ml/modeling/svm/linear_svc.py +51 -52
  185. snowflake/ml/modeling/svm/linear_svr.py +51 -52
  186. snowflake/ml/modeling/svm/nu_svc.py +51 -52
  187. snowflake/ml/modeling/svm/nu_svr.py +51 -52
  188. snowflake/ml/modeling/svm/svc.py +51 -52
  189. snowflake/ml/modeling/svm/svr.py +51 -52
  190. snowflake/ml/modeling/tree/decision_tree_classifier.py +51 -52
  191. snowflake/ml/modeling/tree/decision_tree_regressor.py +51 -52
  192. snowflake/ml/modeling/tree/extra_tree_classifier.py +51 -52
  193. snowflake/ml/modeling/tree/extra_tree_regressor.py +51 -52
  194. snowflake/ml/modeling/xgboost/xgb_classifier.py +51 -52
  195. snowflake/ml/modeling/xgboost/xgb_regressor.py +51 -52
  196. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +51 -52
  197. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +51 -52
  198. snowflake/ml/registry/model_registry.py +3 -149
  199. snowflake/ml/version.py +1 -1
  200. {snowflake_ml_python-1.4.1.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +63 -2
  201. {snowflake_ml_python-1.4.1.dist-info → snowflake_ml_python-1.5.0.dist-info}/RECORD +204 -196
  202. snowflake/ml/registry/_artifact_manager.py +0 -156
  203. snowflake/ml/registry/artifact.py +0 -46
  204. {snowflake_ml_python-1.4.1.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  205. {snowflake_ml_python-1.4.1.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  206. {snowflake_ml_python-1.4.1.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -5,9 +5,9 @@ snowflake/cortex/_sentiment.py,sha256=7X_a8qJNFFgn-Y1tjwMDkyNJHz5yYl0PvnezVCc4Ts
5
5
  snowflake/cortex/_summarize.py,sha256=DJRxUrPrTVmtQNgus0ZPF1z8nPmn4Rs5oL3U25CfXxQ,1075
6
6
  snowflake/cortex/_translate.py,sha256=JPMIXxHTgJPfJqT5Hw_WtYM6FZ8NuQufZ4XR-M8wnyo,1420
7
7
  snowflake/cortex/_util.py,sha256=0xDaDSctenhuj59atZenZp5q9zuhji0WQ77KPjqqNoc,1557
8
- snowflake/ml/version.py,sha256=PhS7XK3XWIDp2SwZaZV976hFEG5kMWzFvOxTAICredA,16
8
+ snowflake/ml/version.py,sha256=3R9EThHATDpTgUWWErtoGeHWTDLDz1F9kgtQ7lMuM80,16
9
9
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
10
- snowflake/ml/_internal/env_utils.py,sha256=Kntfp8gqF4BvaaWQuLpwMtRuPXjlx_EuJY6SZAO0rEw,26212
10
+ snowflake/ml/_internal/env_utils.py,sha256=aqaF-bXPUvXxONfMRxIuH-JKyu3oWkRqyC_1jDEmK4Y,27629
11
11
  snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
12
12
  snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
13
13
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
@@ -17,7 +17,9 @@ snowflake/ml/_internal/container_services/image_registry/credential.py,sha256=nS
17
17
  snowflake/ml/_internal/container_services/image_registry/http_client.py,sha256=_zqPPp76Vk0jQ8eVK0OJ4mJgcWsdY4suUd1P7Orqmm8,5214
18
18
  snowflake/ml/_internal/container_services/image_registry/imagelib.py,sha256=Vh684uUZfwGGnxO-BZ4tRGa50l2uGM-4WfTg6QftlMY,14537
19
19
  snowflake/ml/_internal/container_services/image_registry/registry_client.py,sha256=Zic4bF67DMqEZbQMHffyeNoa83-FhswpZx02iBMjyrc,9115
20
- snowflake/ml/_internal/exceptions/error_codes.py,sha256=bgoTb5DRSIt_JfI0VcaslgiexSul7-LMrWsXjBns8BE,5317
20
+ snowflake/ml/_internal/exceptions/dataset_error_messages.py,sha256=h7uGJbxBM6se-TW_64LKGGGdBCbwflzbBnmijWKX3Gc,285
21
+ snowflake/ml/_internal/exceptions/dataset_errors.py,sha256=wZTPKZRJSYsfeTs0vDL8r4bFFSP_9ob8XinMgPi63RM,762
22
+ snowflake/ml/_internal/exceptions/error_codes.py,sha256=eMgsEfIYFQesK_pqLIsyxRZojz8Ke9DTlA5ni60RLv4,5453
21
23
  snowflake/ml/_internal/exceptions/error_messages.py,sha256=vF9XOWJoBuKvFxBkGcDelhXK1dipzTt-AdK4NkCbwTo,47
22
24
  snowflake/ml/_internal/exceptions/exceptions.py,sha256=ub0fthrNTVoKhpj1pXnKRfO1Gqnmbe7wY51vaoEOp5M,1653
23
25
  snowflake/ml/_internal/exceptions/fileset_error_messages.py,sha256=dqPpRu0cKyQA_0gahvbizgQBTwNhnwveN286JrJLvi8,419
@@ -27,6 +29,8 @@ snowflake/ml/_internal/human_readable_id/adjectives.txt,sha256=5o4MbVeHoELAqyLpy
27
29
  snowflake/ml/_internal/human_readable_id/animals.txt,sha256=GDLzMwzxiL07PhIMxw4t89bhYqqg0bQfPiuQT8VNeME,837
28
30
  snowflake/ml/_internal/human_readable_id/hrid_generator.py,sha256=LYWB86qZgsVBvnc6Q5VjfDOmnGSQU3cTRKfId_nJSPY,1341
29
31
  snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=D1yoVG1vmAFUhWQ5xCRRU6HCCBPbXHpOXagFd0jK0O8,4519
32
+ snowflake/ml/_internal/lineage/data_source.py,sha256=D24FdR6Wq_PdUuCsBDvSMCr5CfHqpMamrc8-F5iZVJ0,214
33
+ snowflake/ml/_internal/lineage/dataset_dataframe.py,sha256=qbEXgkHxzx6zZzJCGpIhFV7-OdAuA_qrO9AixxyxHSk,1712
30
34
  snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
31
35
  snowflake/ml/_internal/utils/identifier.py,sha256=eokEDF7JIML2gm_3FfknPdPR9aBT3woweA5S4z_46-E,10925
32
36
  snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
@@ -44,59 +48,65 @@ snowflake/ml/_internal/utils/sql_identifier.py,sha256=CHTxr3qtc1ygNkA5oOQQa-XEoo
44
48
  snowflake/ml/_internal/utils/table_manager.py,sha256=jHGfl0YSqhFLL7DOOQkjUMzTmLkqFDIM7Gs0LBQw8BM,4384
45
49
  snowflake/ml/_internal/utils/temp_file_utils.py,sha256=7JNib0DvjxW7Eu3bimwAHibGosf0u8W49HEc49BghF8,1402
46
50
  snowflake/ml/_internal/utils/uri.py,sha256=pvskcWoeS0M66DaU2XlJzK9wce55z4J5dn5kTy_-Tqs,2828
47
- snowflake/ml/dataset/dataset.py,sha256=OG_RonPgj86mRKRgN-xhJV0uZfa78ohVBpxsoYYnceY,6078
51
+ snowflake/ml/dataset/__init__.py,sha256=jyoLosJL9mTWTULTqJB3WaDS77-zsPcdoWDTNxyN-rY,236
52
+ snowflake/ml/dataset/dataset.py,sha256=V6QeEN8WatRnpoXRss950ISKiE0hKrJg7PCFkHKmfYo,20863
53
+ snowflake/ml/dataset/dataset_factory.py,sha256=qdS6jX8uiCpW5TIKnZ-_2HRfWN3c_N1bZ6lBC1bLy5g,1712
54
+ snowflake/ml/dataset/dataset_metadata.py,sha256=lvaYd1sNOgWcXD1q_-J7fQZ0ndOC8guR9IgKpChBcFA,3992
55
+ snowflake/ml/dataset/dataset_reader.py,sha256=0Vgr_xV4YIBewPeymGNpaSCA7AVZcCgyq8pSuSwc2Ys,8205
48
56
  snowflake/ml/feature_store/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
49
57
  snowflake/ml/feature_store/entity.py,sha256=dCpzLC3jrt5wDHqFYJXbAYkMiZ0zEmiVDMGkks6MXkA,3378
50
- snowflake/ml/feature_store/feature_store.py,sha256=TyLzlsVkPb0Vh-jyCA0prX5vMi6Q8DtxbU2uFElRnVM,71962
51
- snowflake/ml/feature_store/feature_view.py,sha256=2WtcqcHcvh51ojbf8K7a16GSiY5WbMDDwTMQmj_AQT8,17544
58
+ snowflake/ml/feature_store/feature_store.py,sha256=SrJkB_9Y6clbw6jCWmKvjGoZ78PU2hzUSnHTVnTfDKo,76062
59
+ snowflake/ml/feature_store/feature_view.py,sha256=Epqmm5QiK6jdgrgE-x54Lq1B6VBocFLAVk5bt13eyYg,18624
60
+ snowflake/ml/fileset/embedded_stage_fs.py,sha256=gzMX6RbU_K9jCy1zEfF0YZ7nZSVHW4b3UTVAuAn-etY,5740
52
61
  snowflake/ml/fileset/fileset.py,sha256=QRhxLeKf1QBqvXO4RyyRd1c8TixhYpHuBEII8Qi3C_M,26201
53
62
  snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
54
- snowflake/ml/fileset/sfcfs.py,sha256=aRhGMLnFLRQcvhN3epScTLUoOFNM9UQJwVpF8reZ-Yo,15596
55
- snowflake/ml/fileset/stage_fs.py,sha256=Lzt5qglRE6p27MYBlb2CO2KdqvTlzuOGXoVmJ1Xfnec,18595
63
+ snowflake/ml/fileset/sfcfs.py,sha256=a77UJFz5Ve9s_26QpcOOoFNOBIKN91KmhYVTQkafn0c,15344
64
+ snowflake/ml/fileset/snowfs.py,sha256=qwBbmMh5mGneO3scriERbdWJ8e717NfkUMXAz2Y4Dhg,6914
65
+ snowflake/ml/fileset/stage_fs.py,sha256=yKMbPlc4chLG2svHKYy7tlefq6hy7kvnefHGunE7DPA,18408
56
66
  snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx52jX8I,3849
57
67
  snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPbt9WKYiBp0,2386
58
- snowflake/ml/model/__init__.py,sha256=fk8OMvOyrSIkAhX0EcrgBBvdz1VGRsdMmfYFV2GCf14,367
59
- snowflake/ml/model/_api.py,sha256=Y3r-Rm1-TJ0rnuydcWs6ENGdNp86T57PbmCWJlB0o0U,21595
68
+ snowflake/ml/model/__init__.py,sha256=KgZmgLHXmkmEU5Q7pzYQlpfvIll4SRTSiT9s4RjeleI,393
69
+ snowflake/ml/model/_api.py,sha256=u2VUcZ0OK4b8DtlqB_IMaT8EWt_onRVaw3VaWAm4OA4,22329
60
70
  snowflake/ml/model/custom_model.py,sha256=xvu7WZ1YmOdvuPePyAj6qMwKq-HNeVV9bNfkOT09CRI,8267
61
71
  snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
62
72
  snowflake/ml/model/model_signature.py,sha256=UQSGieGJcnmC02V4feCYMdhMXnGoOUa9KBuDrbeivBM,29342
63
73
  snowflake/ml/model/type_hints.py,sha256=aUg_1xNtzdH2_kH48v918jbpEnHPNIn6MmfrwdvYvdg,12705
64
- snowflake/ml/model/_client/model/model_impl.py,sha256=QmTJr1JLdqBHWrFFpR2xARfbx0INYPzbfKWJn--3yX4,12525
65
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=OQJab7XkFGBenuKw5_xqUibXhTU6ZUWTAjCghBooLTY,11160
74
+ snowflake/ml/model/_client/model/model_impl.py,sha256=vyjPVoiEUFLW_XGz2tMXHBOk0_yDI5DgnDq3RTmQuW0,13623
75
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=92uLtim0rZAngg1D0GSFNhPH1QDwZaT6jxOg_rRKcL4,17320
66
76
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=XFNolmueu0nC3nAjb2Lj3v1NffDAhAq0JWMek9JVO38,4094
67
- snowflake/ml/model/_client/ops/model_ops.py,sha256=Rc0jRRkTbJpymlKLOc1iK7xDoKwnP80sB6NjK1XhhLQ,20264
68
- snowflake/ml/model/_client/sql/model.py,sha256=bIw606G3GP0OQRwYKDywWEpZOIisQP3JjEoWVdTUvpo,5386
69
- snowflake/ml/model/_client/sql/model_version.py,sha256=YNngtSVrr9-RHlDMpF1RdxjHRNZPfQX14-KywPER2hU,10172
77
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=J96RRYHOxtO3ScQZYS176Mr4B1BDuWh7UwH-2cSIgng,23490
78
+ snowflake/ml/model/_client/sql/model.py,sha256=dem_jSDQb16bW0U0PvtNbR48XEiceo-sKn86dNFoXBs,5687
79
+ snowflake/ml/model/_client/sql/model_version.py,sha256=HKAiIWvqWtcADUSMXUtAISGj-z8AJFbxGSBackuo3N0,14290
70
80
  snowflake/ml/model/_client/sql/stage.py,sha256=4zP8aO6cv0IDrZEqhkheNWwy4qBuv1qyGLwMFSW-7EI,1497
71
81
  snowflake/ml/model/_client/sql/tag.py,sha256=RYvblBfQmK4xmLF0pz0BNUd9wddqlfHtEK1JRRpJGPE,4646
72
82
  snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py,sha256=clCaoO0DZam4X79UtQV1ZuMQtTezAJkhLu9ViAX18Xk,302
73
83
  snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py,sha256=G74D9lV2B3d544YzFN-YrjPkaST7tbQeh-rM17dtoJc,10681
74
84
  snowflake/ml/model/_deploy_client/image_builds/docker_context.py,sha256=7uhAJsHsk7LbiZv_w3xOCE2O88rTUVnS3_B6OAz-JG4,6129
75
85
  snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh,sha256=1pntXgqFthW4gdomqlyWx9CJF-Wqv8VMoLkgSiTHEJ0,1578
76
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=HnTaj0v27R9PCRuXpcP1nWv5tGBsXGSq6Xwep1m0bb0,9947
86
+ snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=SNXqUBkI_tPAgdnLrQW10smG_7O_DGwAuK3dLFE-wJA,10095
77
87
  snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=Ltk7KrYsp-nrghMhbMWKqi3snU8inbqmKLHFFyBCeBY,11148
78
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template,sha256=WAqYQaaY5AFywg9yNLKRw350c2fpM4vxgdjYJ50VJJA,1752
88
+ snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template,sha256=8jYNmQfGw7bJgHCEd3iK9Tj68ne_x5U0hWhgKqPxEXw,1783
79
89
  snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template,sha256=g8mEvpJmwQ9OnAkZomeErPQ6h4OJ5NdtRCoylyIp7f4,1225
80
90
  snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template,sha256=nEK7fqo_XHJEVKLNe--EkES4oiDm7M5E9CacxGItFU0,3633
81
- snowflake/ml/model/_deploy_client/snowservice/deploy.py,sha256=U0axqxy9YdJTsGz0bXSRSM2f7nziRnB83mvK6Rz9tlI,29141
91
+ snowflake/ml/model/_deploy_client/snowservice/deploy.py,sha256=3Jn--iC5_dP_lJLWVShPvivH7EccT9AUWBX2tOavjYU,29286
82
92
  snowflake/ml/model/_deploy_client/snowservice/deploy_options.py,sha256=X4ncWgcgS9DKaNDiauOR9aVC6D27yb3DNouXDEHEjMQ,5989
83
93
  snowflake/ml/model/_deploy_client/snowservice/instance_types.py,sha256=YHI5D7UXNlEbV_Bzk0Nq6nrzfv2VUJfxwchLe7hY-lA,232
84
94
  snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template,sha256=hZX8XYPAlEU2R6JhZLj46js91g7XSfe2pysflCYH4HM,734
85
95
  snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template_with_model,sha256=2SUfeKVOSuZJgY6HZLi0m80ZrOzofjABbnusUl_JT1U,540
86
- snowflake/ml/model/_deploy_client/utils/constants.py,sha256=ysEBrEs0sBCGHnk9uBX-IPZ_JA3ReRyyrDTFO_FNDPw,1841
87
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=R_ilt8SGwQR6qh_roaUvst0YrnjbJbAyxYIPn4efo4E,13284
96
+ snowflake/ml/model/_deploy_client/utils/constants.py,sha256=Ip_2GgsCYRXj_mD4MUdktQRlYGkqOXoznE49oignd7Y,1696
97
+ snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=k0SulzWdttRvJkyuXM59aluEVgQg8Qd7XZUUpEBKuO4,11671
88
98
  snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=yZR9M76oh6JbPQJHb6t3wGO3wuD04w0zLEXiEyZW_tg,8358
89
99
  snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
90
- snowflake/ml/model/_model_composer/model_composer.py,sha256=ShoSp74xImfdXuIMTVJKt09sIBS8uxz-0rCbYBxLX9o,6337
91
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=kvNMuL8L2Yvtbgf9wr_nly6DmL8wAkwT976rgdqRQPE,4722
92
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=SCXyYZ2-UN_wcLZRM6wf2N4zy6ObpLsUwOxJBxhHXYI,2291
100
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=QSliEFs-wr9LguSTkQWIA9Nbw_9mOsHpUnanVsgV3Qs,7325
101
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=5tMz0d7t9f0oJAEAOXC4BDDpMNAV4atKoK9C66ZHgvU,5667
102
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=PsRVrOt15Zr-t2K64_GK5aHjTWN4yLgixRqaYchY2rA,2530
93
103
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2B-fykyanYlGWA4Ie2nOwXx2N5D2qZEvTbbPuSSreeI,1837
94
104
  snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=QpQXAIKDs9cotLOL0JdI6xLet1QJU7KtaF7O10nDQcs,2291
95
105
  snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=gex5if17PZ6t6fPcr2i_LO_3IRY03Ykcv_XAyKJt8pg,2170
96
106
  snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=cr5soVDesBm19tjDG6lHLN6xrxj_uwPv1lKt8FgpM-c,6682
97
107
  snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
98
- snowflake/ml/model/_packager/model_packager.py,sha256=WwF54Qu5Q-p6qGRcY7BzXNBFCRJRjUWFLpXiYnK7Uf0,5958
99
- snowflake/ml/model/_packager/model_env/model_env.py,sha256=MHajuZ7LnMadPImXESeEQDocgKh2E3QiKqC-fqmDKio,16640
108
+ snowflake/ml/model/_packager/model_packager.py,sha256=6YQkmE5LCYIni7bKLMc9yDyS_ozdWuvExh5Wt7Ez2uY,5836
109
+ snowflake/ml/model/_packager/model_env/model_env.py,sha256=3FTftb2OMqCjushFLBISbF6E4z2CQ8G_rNewf-ahVGQ,18312
100
110
  snowflake/ml/model/_packager/model_handlers/_base.py,sha256=-FfoDfULcfFRizya5ZHOjx48_w04Zy4eLEqOOrQIDHM,6033
101
111
  snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=KKwS93yZnrUr2JERuRGWpzxCWwD6LOCCvR3ZfjZTnyQ,2622
102
112
  snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=FC0Yw2QDknaR9jdzncTI4QckozT-y87hWSHsqQYHLTs,8142
@@ -116,7 +126,7 @@ snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo
116
126
  snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=zObSLyhu56hMnIfdv7PMkzHJrTP3-FAroNZ6-Rji7J4,274
117
127
  snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
118
128
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=qwgBneEA9xu34FBKDDhxM1igRiviUsuQSGUfKatu_Ro,1818
119
- snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=UnmTBsWDbvW0iJCkXNYJG2J7qEehrvS3Ds_3G-P7VRM,17266
129
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=0bzons03s0cF2RxbtxS7rPGeZG_Z8BouehqJPd3pfH8,17203
120
130
  snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=8eutgCBiL8IFjFIya0NyHLekPhtAsuMhyMA8MCA9VOQ,2380
121
131
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
122
132
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
@@ -137,148 +147,148 @@ snowflake/ml/model/models/llm.py,sha256=ofrdHH4LQEQmnxYAGwmHV2sWLPenf0WcgBLg9MPw
137
147
  snowflake/ml/modeling/_internal/constants.py,sha256=xI4ofa3ATQ2UszRPpkfUAxghV_gXmvxleqOew4UI1PM,45
138
148
  snowflake/ml/modeling/_internal/estimator_utils.py,sha256=ajRlCHvb4a-rGzMAVvtKhEE5ijObzW7YA_Ox5u2Orr4,9215
139
149
  snowflake/ml/modeling/_internal/model_specifications.py,sha256=nAqgw7i1LcYMKRQq9mg2I50Kl0tsayh2_do5UMDXdT0,4801
140
- snowflake/ml/modeling/_internal/model_trainer.py,sha256=AlnTRnIowaF39Qjy2Zv4U3JsMydzCxfcBB2pgLIzNpk,694
141
- snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=0zazMgVNmBly7jKLGEwwjirb6VUsmA5bnplCzWxfTP8,7269
150
+ snowflake/ml/modeling/_internal/model_trainer.py,sha256=wLAfgWjwWXj3dqhyzZLCJVYSSgujq6zrYBa4q0pw_II,923
151
+ snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=11cpEaxU1D7R7m79nVLcCA9dryUPsElS7YdlKZh850U,8422
142
152
  snowflake/ml/modeling/_internal/model_transformer_builder.py,sha256=Y6Y8XSr7X7xAy1FvjPuHTb9Opy7tnGoCuOUBc5WEBJ4,3364
143
153
  snowflake/ml/modeling/_internal/transformer_protocols.py,sha256=adbJH9BcD52Z1VbqoCE_9IexjIxERTXE8932Hz-gw3E,6482
144
154
  snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=xrayZRLP8_qrnfLJE4uPZ1uz0z3xy4Y5HrJqM3c7MA4,7831
145
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=QuXUeeFzktfxStkXFlFSzB7QAuaTG2mPQJVBlRkb0WI,3169
146
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py,sha256=y9PZ3xgPGDHPBcNHY0f2Fk0nMZMRsPcLWy2cIDTALT4,4850
155
+ snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=MyTRkBV3zbDeO7HJaWrKYT3KkVqW51Q0AX2BbUtN4og,5737
156
+ snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py,sha256=fgm1DpBBO0qUo2fXFwuN2uFAyTFhcIhT5_bC326VTVw,5544
147
157
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py,sha256=lM1vYwpJ1jgTh8vnuyMp4tnFibM6UFf50W1IpPWwUWE,2535
148
158
  snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=baETLCVGDcaaGXwiOx6QyhaMX_zQ1Kt7xGjotd_MSKo,54368
149
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=8rVe366RSYYYAwGSqhKyxZYhW3nAqC7MiTucnFLvNQM,13616
150
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=w3zCrv-TwDB1o9eFppMaiXWmMeEPz_EAn_vl_2_6GL8,21699
159
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=AgNupOLqXJytkbdQ1p5Nj1L5QShwi8PSUSYj506SxhM,14539
160
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=MYLvpNscLKI0AOuJIdKprtw3VinO0MtSVPj376k-ILo,31819
151
161
  snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=VBYWGTy6ajQ-u2aiEvVU6NnKobEqJyz65oaHJS-ZjBs,17208
152
162
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
153
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=jUlsmletPjnV8KYLJIoRkd8JrDO33F7VlEf-xpxXZ2s,51017
163
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=AGQub8A5L_xTB1gEJsbzTSZdsISnhdsAp3OmbEwRutw,51278
154
164
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
155
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=afp4K6VIXjph1oDxEDHbG_fHBlGo0qwM2ZXjl9Pe_90,48846
156
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=rmExcHQw4rkNruTRclVNfiGrcqqURsiYk3x9TO-IAqA,50883
157
- snowflake/ml/modeling/cluster/birch.py,sha256=DCK5o2TSPwmBxxxZYgQsGuwIOErYu9jUAFnhHdTKJqY,48571
158
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=731dOd6cvOVDL2IFmY3yoPvUe-GvU7qdUdolCiZDhg0,51270
159
- snowflake/ml/modeling/cluster/dbscan.py,sha256=A9C_8_BB-KPvlvNtdVcHuMhga6pPG_IW-r8VwKdu3lE,48933
160
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=Q5gMSa-W-j9WMhYLcQDQVnI6ErcKYla_yavs9I9GTxs,51401
161
- snowflake/ml/modeling/cluster/k_means.py,sha256=g2H5DwxAcmBfzs3dyHgNmkLLMqYNuerR-o0QWFTcQyc,50826
162
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=ycVAbdL14g_lR3gUlgaj0v1Lt8_eoJcrsXLySav1Vq4,49143
163
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=OOhW2gMlljzJWtI_61psJ2LOx95YSms2IDKnsVIHS0A,52188
164
- snowflake/ml/modeling/cluster/optics.py,sha256=EngSMXX1eTLKJCmDZ8KjtBZElpnln_rnGyLnyHyaZ6k,52247
165
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=bk2PMHOMnJG6h0zSLyJplUKwGxmBjxdGNSHQBIXTpVU,49142
166
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=VZXmEOcb-E1o894iBhnFqqjMkShBEql5U2lb1OFkhTs,52334
167
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=rKhNgIitjXGupWfFqYjimk49nCXYS_j3I57m-OHpcso,48275
165
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=YeMtuQvE5f2InBc7CyAnlFf0hGy0Okz5X09AQ9C64bI,49107
166
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=g_-psPSkpQt05ryMQFeS_GndA9hB8Dkg12ao2s7VNoQ,51144
167
+ snowflake/ml/modeling/cluster/birch.py,sha256=0zAT_k-ZgnaGFfcZu5XGll7kAH8BZ8lFCTajWFYmV2o,49034
168
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=l9nxeYVGqf11msu1i6iG12i8YiWD2uZiVtH4WXDDzjI,51793
169
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=qAtH_LxcmVg7B8NerncUsfBoKiUJwb2N1FYiBM8olxk,49194
170
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=uPo3I-ROixH6SsWknj7f6AaEYLybpxHs1M4LKTkouRU,51909
171
+ snowflake/ml/modeling/cluster/k_means.py,sha256=fiFQSvRRwPbQp8b9UhOeZ97hRTn-HZN4aRGXlehnGyU,51322
172
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=4H7iQtz-tqhUZVjecoWIk7Z5dtYuWJVD3sy1R_xL2DI,49404
173
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=DUM05k_RNIeBenVXtssGnqEerp0OAI0z11k-GO9n7P0,52711
174
+ snowflake/ml/modeling/cluster/optics.py,sha256=-j_q6rcEEzkO9m6owloMRBWUnrCCZK1QUgBUo7mlYYo,52508
175
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=kWW9zsBhQH6KpLFuw2htgEYolhy8fpQZXdggWx33hAg,49403
176
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=CCZrM9Z_5BJEl3pywVOvCO8vOGGdfPLc7qtP4sdVkoQ,52595
177
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=nUrqHjI3pDC21OhHsaFoJ9jrCa5nY_a-EdHDW_XWb8U,48536
168
178
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
169
- snowflake/ml/modeling/compose/column_transformer.py,sha256=JM95YHKS1l7SPWIGjtkCfQefMo31X5idL7-RhFAiD8A,50841
170
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=9dwmnkydmJogcBcxn5ChMvYMQ9iaEySthbbwACg0sns,48829
179
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=Js74mW_UUGrT0W7ZmBtiF-4a3dLvppgSmMxB7AeitgI,51374
180
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=eCLZdS6zYgyPUQy_9wnA13s1rPE_9U4oX3qNY8VF6tM,49090
171
181
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
172
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=4FesJyaTg4p7QEDA146Yah6qa6pITAydu3bjrWXpR9s,49167
173
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=MnAbsL383FamDGP-w75j0XNyKyWGZJVeiFox1IrnN18,46975
174
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=Wsx7XXEbk2mLihAGLD0-8JlDUt1PzU5ScNibIaPBYo4,48839
175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=tpaXIOw2rcbn7PhTRLXPjYNZ8w0_YHOkZ44AYLApp-E,50004
176
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=1DjNUC6vyafLkS-FBByGJX2daB8GwV-nx_gp2MPoSTc,47113
177
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=4LRTnoNaQ8QMvLZ7rfV00oujVKKY9CqmfRBaX88Rw_g,47868
178
- snowflake/ml/modeling/covariance/oas.py,sha256=b5aPAfCQZIW4VwRLIj06OcVPOABFx7wHwYxX89-bVdo,46754
179
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=t2faZLN_pr6tqN48gQvkaVBNuxq1PwIVroeE07CG-ws,47130
182
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=awX5rRrXDb-o4CPl2JFXO7BWt4LBLlYEwW3Wo9TLeFQ,49428
183
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=hIRqpixvv2XPwkoDohmjKnGzXaEnFaEx6M-08CJJlYQ,47236
184
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=-GssWNHzC2DMZuMChEGUzHP8cvOTQr1RYXr4r0rBFPo,49100
185
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=7zobpOYlEn45h4JymakbzRgxOeqUpeZdFqKy3bdZmJQ,50265
186
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=Ns4vqx2OD2Y9pgs1tithBwej1E0E_6wVlXIRS85mTqw,47374
187
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=6hK8ePqINpDEEqUi5bM6FPOLWGhk-9ePVJaG82huQIA,48129
188
+ snowflake/ml/modeling/covariance/oas.py,sha256=P64GRhbVHGhZ1Od-n238do_tZQ5cO3SXRqVoqclLcl4,47015
189
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=yPwbsZ7_Tlj-Sj6CiayG9ic3J6G_yuGZtu9C2V0x1aw,47391
180
190
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
181
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=LY-6TJJ9_m822mCAzkH-FqyI2LtGpOKg-pwfz_UViUQ,51838
182
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=J-c6ya1twEGf9oZnGWOruCZwMrDVG23sFesbdK2Thpo,49543
183
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=x6wJ-wKbLFAfwHgiacDbbyJZj82zz3LVfFDRUaYVAt0,49484
184
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=Isda0dKytZ4sWkj276Sfk7u4obj1ViRWmINfMDu1-8Y,47837
185
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=de5vTOkvpQebwJBGFzKWN3e4eDANiHcvYtNwUAsjxWc,51836
186
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=rceFeLfNzMkZJ7ZNM_D8rI6Z3Af6-4aBXYAZpY5-8Qg,52882
187
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=9uvLahexV7VCH6KD3i6DchRoulOOtK9IBpebB-NEZVE,50174
188
- snowflake/ml/modeling/decomposition/pca.py,sha256=xOWvnQt7EFWjxB5HLc_61-k8t_d33fFTaD64NhCXais,51103
189
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=U52ueZYP3dsrGY8EgAiCWwXyHb7ZDGlx_YEBx6Sg9yI,49006
190
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=UOsph316mxYS6SsiVsM1hMkWF_X_jz2q4rYfkHQ6Wi4,48594
191
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=Glb9UBBcuweG4bzgYK8r0kb4VQqk795L58C4J8JnoQM,52388
192
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=-ip83Gh3nKzkFGceq602ACdK0Fbo2989_Qr2UEGsSDQ,50051
193
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=RxhD4aZFNN-Y4_wNnSYS-Mxle--_XWvTxMMAZV5SLJI,49985
194
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=-sbUNsBgn6NoLgmBME-cfoiwfaNx6unDN6Tr_tQi5sw,48345
195
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=KWSFgSYQJS6hZcUksKuSuxE_L31NAPbHvEmQNCajcHY,52343
196
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=xHYcxU8q5q7JirOlR9duL7cxQ7j0P41LhJTnJs6X6Fc,53429
197
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=Zf0ZWiUDu6UsmWWaNrvi1X87QIPpJddGOvuNDV-FtMo,50694
198
+ snowflake/ml/modeling/decomposition/pca.py,sha256=-m6Fh_6Sldf-70_B_d8J7FAlXG-FLvEnIgsk63sTu6E,51612
199
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=FTaRx6CbM5WYYGQbCvccR514uzIWsBZYIX5Ql_ofNkM,49499
200
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=RiOmwnQpNx2MU0Z6wZ0pIUzsKfjDzJeWrY9zid8n6Bk,49122
191
201
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
192
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=2j10IY2v_XN-Couke3gXHuKYYxBfaGan9Td3dPv9cfQ,51309
193
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=0p1j-2tHGF63iNRH9Cu7Bpvx3F_Wnu7xZvSbGgixz3w,49398
202
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=p68gHC7ur53Qp7MMnPyc2FSgWBjDmo10guNtbo0MARc,51877
203
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=C8T-Ol8s20nx-IeZMs7KXH-BjGRyNtG3exXQn-cbNMc,49659
194
204
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
195
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=VgxneH2u795BnWhSibz0WsFx6CrS9HNa5G3vDXLb1HA,50216
196
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=3ZD9rt4_BIb5UY5627iw2sAQ9nclCrr0gAERdJ-FUUY,49107
197
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=n-w6SXU9GAyiRzvVQzf41JTFuhMZTiNA2gfMAQdIwY8,51127
198
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=ba0Qk0sq6LkjyIMMYj4imuX3OGvoQVOZQ4HbSNq1JoE,50363
199
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=ao2055ldja5mNCArNlQiI7y5-EUrWNXpZs3oJ6DA5Lw,56047
200
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=wJ87KI6Zrcg1i8AULKYPJVwrrejrdZ5nSJp9G0-rnzk,54651
201
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=zwoNi8NL6kmAd5HuYmbKUC6cTr2q_5YX-eVf1xLyReg,57502
202
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=GNHEy6qKoj_LvbBXQHi9XWmroyvA037leP88ZWgYaKk,57095
203
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=fWpMe1KGXkgTyTtGZHCsy_CdIxUXYt5qcfqM-LrRHb0,57336
204
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=CevblPb_gRICCWI_-9-WX0bUU8xfHfzcOaNMgLcP2dE,55821
205
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=VxAodKDVI2zlGlDguAjcttkUIsCjbFMuv3buUkIIYTw,50315
206
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=cQPdeI3Z3pxFnEjy9qkOG3JTp--B1jogDZ22tlmDKgk,56030
207
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=gmDcsGH4Nfo1y-b5ISwBT9yfS1Qr6nImy4OYhlflkuo,54622
208
- snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=uvy-Lvv-JMKJB5-FBNSabuAKD5B--QFknm2GhLt0e8M,50060
209
- snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=hLDRXzIg3Ub-xWU5gTK2Qgyx2ojDS3sBGLy8mtORCd0,49631
210
- snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=0FFUoxzg0hcGjDlrU4wxFJZ3RWcoPulziiwT0WI43xQ,48160
205
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=2pfHIBCvqZSw3p1b_KqqQPkZ9s-JfndDDS-s3l2lnww,50477
206
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=wu_4FpEKU-bVZDx5OPjDcQDR190dcS_farXa3kMWGTE,49368
207
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=L7bVu-soVZJIOV9qm6IPbh3sYLNj-R_bYmPCEiz_qAE,51388
208
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=uQ2ibCiPCdQUS-h51H-TPM5KP9UzMsrUWfDrGQ4pdlA,50624
209
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=-fZBhcMXhcld8ZckIlee_N4GVd84ojcOze3hIPHXdlU,56308
210
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=KVGJbZVHdNFvXy0-H3-_hqLj8BVZM0kUSJ8Ssrm7Cr8,54912
211
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=Ra4pfsXH2qniulcS4oOC1HGI8yu043vaEwawisuAn5o,57763
212
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=SXGVyiFEpOHcAMzyxlOqUcsmGFQ-iqMi_Vj7m-m_r1g,57356
213
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=77kepZu2p40ZEJe-Hlwwr1YWl9vJccFoz07CzkWZY_Q,57597
214
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=ze6-uVYgAMJueZXMADb6n9AYRXYxUU5Bealob8IZ2oA,56082
215
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=GTQF6U-Z84a5ojKdwviEv_ewtCK2wbL6-YXZwxfrLPc,50576
216
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=y5zD_vjuZ4Yw_fDoBtEMVTN8m6lSLiOSlfWOI1x816k,56291
217
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=0uH82Fs1n75hfU3uX6ggCZsDFx94_DtURqbsm3z-8lw,54883
218
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=dP6WDh0_YYZeGZVBvUQWN-hjKMqDSwVVc98xE8pg88U,50602
219
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=I6t3h-qId9TykuvTgwfTNR2Q3T_NhZN_4KakmjadUG4,50155
220
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=PDoRDW8vBXPDX73WjUtW-xXNnn8BG8omJhrEr9t1PHY,48681
211
221
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
212
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=iEI1NAJRAYWbvV7W0JxCzHHxfTS4wHra7K4bas7lMYg,47471
213
- snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=s12RZaRVjthJPtF4gKTADmrAdUxmlDsoyy-SOhEDosY,47114
214
- snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=2yugXuswa1eryGuj5cEFTnLh78l4igRrX3QqqFRJ52c,47108
215
- snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=mBxNLyPeu6EC2YxELsAllAHAoDMw7g9phh-Jdo_qWC8,47116
216
- snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=ArGC7MVPil3_l-WEcFofOespzYuzqzAIjKpSJ6BOamE,47201
217
- snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=sodp-xs8NoBuveCiUlpOt6AW0cwFSQlA0SCqnIQqOwo,47241
218
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=3a9I2j7_EHTXnL4IuIYpIqzgeUtaHp__rfO5chONW_8,49834
219
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=H_S5UhsRwYRedSSx1c0fJnKcxeRmKLT5EU6kWJ8rDm0,46794
222
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=VtYpm0z7tvr-ksYHgk6LZWDjN7UFqHLqtEsnG51O_W8,48018
223
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=MxADr7gOnVj5V3YRQytXmieXpOzybZK6r37QdRpxOoA,47619
224
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=QSF8zO9qzVv7auA4yBz1jkTqEA1mL_C3tSx93xUufMU,47613
225
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=9gpQbytZwQjPBREld8r-p_bG7sZm3h7nQz4bgH7UL7k,47621
226
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=wZyd-94tGP-FzK85b4dFPzncx0BpfbLME9Mjr5vw2ns,47712
227
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=hnTQ5DtNot9OJah20V-tpkXAzLSbRfJjWhv2gxH11gc,47767
228
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=-0ZEZboABCnbfguy1YmopbjVZ0-eut24E9XaPol97Sk,50387
229
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=KwTTDc1WLWz6SiXWz3Bks7u-zP53kdqPRLB3RHtvodw,47323
220
230
  snowflake/ml/modeling/framework/_utils.py,sha256=7k9iU5zAWa4ZpMZlg8KfSMi4vH3o69w5aAh5RTRNdZ4,10203
221
- snowflake/ml/modeling/framework/base.py,sha256=6ebxZIkUfDsLcEufokyN7XVKyvfvjhys3pFsUyQtfQ4,30470
231
+ snowflake/ml/modeling/framework/base.py,sha256=K6qW43lGX99a5v9qIhOTJptPrkMSzzZDa5sVgqii0dM,31359
222
232
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
223
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=xoaQud9cg8-qNG65Zf1KkJdbcuBp8lR9uYxU7M5yhrE,52768
224
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=t_UPbZ9uR9mIYgoNlcBR9JEpcCBY_h3EzpmWgQV_nSg,51833
233
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=1nDZ_nda4WBHqi4tW4avY2b0fNwV5ZF-DI1-BwQjtNg,53029
234
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=zkHptpQKCEGJspDnZtNTBswzn-0wVDrOJRJ34ach8dM,52094
225
235
  snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
226
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=ShzrWrfRHN7U5OsWWpRnB_-yRe6i5pKCZWIOdCIVwJs,53331
227
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=oTwdqdnsDfdLcx9nb6Jqe9H71B-VutU0vaZrj8UrxaQ,49088
228
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=v0fSUO9hoQ9zk7121ZZhr8i1bo483IlHPcyZdMwkATo,47916
236
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=Y3yPVO6EFqK-ZBxe_55Gp7To2jIt0N01HTyAyBkpVkI,53847
237
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=0-YnL5I2aX9BlLDe0BcyUnYdZbbmNX4_Kxj-rcJ61DA,49563
238
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=gWz2h46qVp7wVqpKa2pyQtO7Mw8bKzEy4M4gWOubiXc,48420
229
239
  snowflake/ml/modeling/impute/simple_imputer.py,sha256=awM33HugS5jGs3JXud1U8eEMm2VLdIAf7z_eVXAzKD0,18499
230
240
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
231
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=SqtQEX4ez9km91JDYN2NcIHEAKT8lxKkEWlZX8HM9M4,46907
232
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=SZRx5NieE2Skj_6FvqiBXNQ3neaB3F3U874Avk7P3Zs,48711
233
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=eO2fS91GkcHfWTyxFNRQVdtPhNd21AuV1myUpks_Uiw,47920
234
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=c87jMzeIguq_CPsXN05hX5pKhU0WDLxEgOk3dsEJcR0,47307
235
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=BpOYKneZk8jwklR2hopITgnA3WVKBk5fgunzO1aonEw,47334
241
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=pFXnaevash3T9li0RrHqvOceWZZ0TdgyZ20ftfwe6Vc,47451
242
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=JyMxxr-2uyOnimXM8UzNnT9lV3rGgTiOczp-7cy8uP8,49222
243
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=H1nXaQ-jmyh5UID2MrZMiJugkGZu4l33qgrYk8PtXJU,48470
244
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=daDnxgESQqUWC1ZfzguTK9x715n24hWfC4DtwP3ddQw,47824
245
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=9_3V5uZ7hR1wgsg4LXPnhofTr7urOoMIOYznEcwziXs,47872
236
246
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
237
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=bvaF-kDn4wWUhijpH-J2IYhvdVjKWqJ3rSt4SQtO-tc,49147
247
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=j6ZRziTOvZK2IlHKC9a8HAdnGJnLUtg4WEbpoZzW6Dk,49408
238
248
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
239
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=DTK5Ja5jNtZueOCt_9_-tPWJCH7K9LS8qIG6Olpq8I0,48715
240
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=LgVfIPNhWLkvpwYcNmcSoh438EtfxMyc2rqf5nxQiK0,48218
249
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=O05uhJd9w8VJzmJdSVesTxVjvnqXO0FPxid7HtWgJPo,48976
250
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=BgRHeYkUHa3eLDfyTjVAV7aG-munFAzU1t2IVMnVu18,48479
241
251
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
242
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=MBbPZEbrVKJFgVa4X_JWK7gOY5oyqJUJkA40uRHTA68,49092
243
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=-bMiotMYqoLRAd9qVkFFDPJKjJqKHoH5vDX1-rrpAMY,49508
244
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=gqv2mrTmcWrcxF2XDDoHEq3WQv2P5FwDLXz82hwseRE,50080
245
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=5ZtqlSMQTLP_DyUMPdrvPzgR40RvGW5iLnC2WP4qlyM,51348
246
- snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=p4oOBdWGqtoqrHxzhi793ST-MTs95IjW1k7gvwTWOX4,49160
247
- snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=pnkGNWrHDphyan52lFo7qfqDLqktq5QM7i7kd8Lz0SA,48357
248
- snowflake/ml/modeling/linear_model/lars.py,sha256=Dg43PU2uhy-Z0TneRgc1EpaKGOKMc7BVHdJGEaYvVNQ,49580
249
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=Vt_ll0a0Tgjf3ZZAHzssb-YN8iTti0CeX4JEmtjGAm8,49801
250
- snowflake/ml/modeling/linear_model/lasso.py,sha256=9789pUfQLG66ox4EaM4-W3-ay801yz4w8HxduGyRKi8,49686
251
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=TlzF3JRIdBqO1SZbmLvEe5GE_f2KaIiQBbw1ypar70E,50471
252
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=te8RfcaK3Fd493Vw4P7rh0Cq62Ow6GqePgEcePE7I58,50716
253
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=nVCYsE3kFLkeDov521rmusmdbqJtADFczI3DgciazIE,50677
254
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=ZAX7IbjPYwYNg8TO7Vwf7_rc-JZxqtAHOCNwqvXbFxg,50023
255
- snowflake/ml/modeling/linear_model/linear_regression.py,sha256=rjiPOnQrpzbBpH4v5z5lPDA9Q_M_zI9bGaX30iNwD30,47899
256
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=MiJcM0p2SZEv73NgCIym71ljk5F5rckyNSKXrdyKZQ0,54154
257
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=CNnWwT6pKuVKLVkiuYTMKDeVpYlz4sg4JOJv6mlEEng,55194
258
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=fg7lgy8vwQCaubDnxFB97Vgj0i_Jt9T2XG7q9eWRdwY,49371
259
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=qBdIWIkpZ7IKjimbx05Uj72Inh3Gwu_Wbv8vnctNGKk,51009
260
- snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=lIBHh_XaHP9DuJEOslATxa2VseaE47WI--Eo_5XBf0M,48919
261
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=Ki_CLjIKUzSHavZDwpmkoeRmIUmRHvp_Rz1fqYpFZk4,50181
262
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=jBRIMM96qihVhRkz4WqYSXQIhKvDGblwSN0pZSMh3XM,48526
263
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=TmKUYInBA5K8hURL7fjGKwGZ45LhiKUllyQzqlth1ps,51882
264
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=_H9FFj9TS8JrOfgF2g6TH_YBwxUirQMv5MW9LayfKgc,50949
265
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=r_iWf0r1H0uUWwJuVL1ln3-1odN8LLBnzrd4LEhQNTs,51266
266
- snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=CKXD2gLEsz8V5Xi7sKyAftiS352LpLYXyFu08Oinw08,49205
267
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=mYRyQgBTp45Wb4BeNSl6rTK_SzYvQVvzx8hpgOh57_M,52324
268
- snowflake/ml/modeling/linear_model/ridge.py,sha256=Mmhb3rQQgs2Nc5GYU88_lE_DGBUlKEQqr2z4TAa7cgE,51230
269
- snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=5wCXK6g-BlMUTc_PVuH44PMH6tzYC-KeUCnK7XS9pNE,51618
270
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=8RAc3tcTNjQ86kI9AOuwpheRqr0q76HA-o5DoRiQZOM,49613
271
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=PfIfSR3zKgdxGlkeTGFgbYAITtYkk0s6Q8Nz3QopVW0,50314
272
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=8TGJqBTXs0b_BVn7p2qRPAfMxenMQhGW914P_h7ThPs,56691
273
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=9seurHoZp5Ycd2qjNFmyyX5ijuY536h907WM3FL2iQ4,51489
274
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=BqnU5tr04mi2Kr0prb1bs0dArI8-2ZfQAEfAGkcEX-k,54162
275
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=oD3OXFHyiHqnVfzYgKRN9S9t1BmonmcZkSdvs8_yd0Y,49640
276
- snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=bhBMLULBc_sEdaKX7tAsdoyn_1FuK11X2oiXucb1_V8,50596
252
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=HaPbHZuQI173f0M2hgFsoJDUVwJAKtgRC5z7hTgzIc0,49353
253
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=WczXSOPGws4hmCKO93TRv7a16Gxls9IW6D4Ifpy4md8,49769
254
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=MjqqWIBdaK2BDYc1RAza1RW2PUSAKNF6_SNhh3EJJWI,50341
255
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=vK51acP5WZcaf1jEVvrrsJt-Brr69wnm7OvWz4Ummsk,51609
256
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=eYsPDEsnpJvaB3Jz3irw0uhTTawNK6T_ujtesphqt6Q,49421
257
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=wh8U5NwrwDG21h8FlX148Y31RWNS53RgjH2d5neNdJc,48618
258
+ snowflake/ml/modeling/linear_model/lars.py,sha256=i9EhEs0SB5n41chcDB7uavlUiwsPAvqK8PRG1l-A2vc,49841
259
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=Rz6jD0PCc45fTqzv3gqSehWIMKyPJO3ByMWrOpbOYoA,50062
260
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=MyNEp2q5IxmCTqoL-j_o67kAkY8X5QYBTIgh7XMwWO8,49947
261
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=Aqi9VlF0Az_wIB_m6LUnoB2x8uO9GamPeBAphAMbVoI,50732
262
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=aoyGqoQLslpeta9PdDHr0ZEnJLhR19qMh4c7nOv27BI,50977
263
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=D10l4jKKNAfjio8sZCtDt7fKqa1NCWRyCaBHe55Lgys,50938
264
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=9Mkmzw5mRGJX146stdHRSxxHvzHTaG0odEvnFhqpeFM,50284
265
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=uZyGyOrdy6lu6Esp6V_kLgha8sBPPommm5AKyF6G0J0,48160
266
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=cbJz4vOHmQGQblfeQ_m0Szh0ScoFTQHm1uEoQGznSCQ,54415
267
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=8t5ndapP8JF2hOMHnUWAP_CDSrZniKlXHo57cujjnFs,55455
268
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=kTPTxp12BmVhGuKYY009l6jr7cULbpRm9Dp7qW8-Hqs,49632
269
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=LMh9nyld0bndsDmIIlahhxq9TIbDEFSArlfoMildflw,51270
270
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=eC7AD7AlgXBXnGwP2WNUSJsiYIl69XkpXGArtdj0s5M,49180
271
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=7HYneCH5xNlMLcqDSBLiAjbztkLZcVfZlxkJIaOZP9Y,50442
272
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=YhfJfMXvRBDOQl5EOmIDJ7xJAvbhWzhmIh2LyA46L6I,48787
273
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=FRu7zp4m4EvTDxVYZeV_-Vknrz2hrVFNSkd2YFXepjY,52143
274
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=inz27nO6hjKG4DEcLXc-XfYdUc7xy3x62R9Y6SVrv3A,51210
275
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=Q2yzFRQ-s_RJGUCsCbBT50SX35MnJGzPLGRiLzc07ys,51527
276
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=w1BXkGQxmGQj-Lysn7tlEQF_Obg00G7v-310JYUjeiE,49466
277
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=e7UGWQ743I-g1bYSKKnGefGvq-M0AjJ3jDZ7B2kdxL4,52585
278
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=P6AzZbnl60I_425tdOQepJCXN9Edg00GPE0iiLaGBBk,51491
279
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=bN0EPKU4pOPoQJF9ZQe0j0dPayWl_Up32NbIh2eoRLY,51879
280
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=ryDxqt-DH0jOZBap8YGBJPWbv-UGFcNRY4iQIe2-xRw,49874
281
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=ywQjvUjnymlVZwpzAN38rgLxl1pFkSyl5yZyW6DxMk8,50575
282
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=pG5dEakeR1v8W1Acd2yRlHgQHxQAmA0aHqsjRhWOiJ8,56952
283
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=xFkcwEL9cHCWDQrt8MMzc9JoAGli_mS7pujbrWL6IYE,51750
284
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=Ke7nGiusplQDF9F1OjUI0Q9Sz-HKjDasAU7hFQVSXEc,54423
285
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=MpNQb9Q_EA1IleQZiP92U1_FXuwA9-zJmVmPZnHP3lA,49901
286
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=OYT3gshbB2vxNseTpmVKtDVfeKhbK48Fe6utSlK47Ro,50857
277
287
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
278
- snowflake/ml/modeling/manifold/isomap.py,sha256=60ASOONodAkjyhXRdFOy2APjUvCuMmrtT7KuMWXJXcY,49600
279
- snowflake/ml/modeling/manifold/mds.py,sha256=VxHFQJc9JW-cUA35pxPmPXJwK0936HI95fp2Rb_gHNI,48814
280
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=L8OYTKQwqEWybCKyLnwWq7zPES7AtlWQIufDM076wZE,49638
281
- snowflake/ml/modeling/manifold/tsne.py,sha256=wipO5HnzUQhfBC-6reP_JalRmrP9mNwdfhv0apss1nU,52597
288
+ snowflake/ml/modeling/manifold/isomap.py,sha256=ztBEcsRoyM0v9ckQJoYEUTsj5HwRGGXQOjMY3e-_UWQ,50084
289
+ snowflake/ml/modeling/manifold/mds.py,sha256=NlDzOMhCzHAU9cueoJzMT6qKyC_UV_PS_YnlIam58CI,49304
290
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=ojQQ9Pt_bUvRzPSBuLgd2BhjWPdPjAz80XtDJi4vlT8,50155
291
+ snowflake/ml/modeling/manifold/tsne.py,sha256=CpP4qv_V_ibyucBzTIsGq6N7BOPDtzFQ46C5HpJJSCE,53094
282
292
  snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
283
293
  snowflake/ml/modeling/metrics/classification.py,sha256=5XbbpxYu9HXB7FUbBJfT7wVNMKBfzxwcaVzlMSyHAWg,66499
284
294
  snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
@@ -287,38 +297,38 @@ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=NETSOkhP9m_GZSywiDydCQXKuX
287
297
  snowflake/ml/modeling/metrics/ranking.py,sha256=gA1R1x1jUXA9bRrYn8IfJPM5BDY4DK1JCtoPQVsz5z4,17569
288
298
  snowflake/ml/modeling/metrics/regression.py,sha256=OEawjdiMZHYlycQFXM_h2czIZmmGe5GKciEQD9MSWx4,25845
289
299
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
290
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=2TogPi_LioMVhi5Daldlvze_o-hD1WQpNnkTf5AkFxE,54396
291
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=Eh1N2aYsRnuFBxV2QTaVwrtlNRE1Cap3G0Aa-p2kYdU,52297
300
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=UV7nEG1H493qFZecZ0uI9JUh-ooeesZLcCPlH_UdDdQ,54657
301
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=PPCRLAnDcLdMP190UjV6VGhU28rIHg7wkliaV8EARBI,52558
292
302
  snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
293
- snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=JyE8MHM0tiSdRFFzcTswhLk--n5yt-4yj6znx5EyoaQ,38453
294
- snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=3BmQQe23wvnHWN3-BfG7zzKiG-6X-FfVu0_2A9yhqdU,38692
303
+ snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=B18rb0gh4TK9z2G5XVCx5nav_a9jWDH7q7XdLzAkRwI,38125
304
+ snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=ipnRe8z3G09wTy1I2s33CzRsit8pIBfGaZGy4IZfjdM,38867
295
305
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
296
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=YV9-vVxIkQzcjAVauatxfoGx4mP7OvWUTD-pzh-oXt8,47899
297
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=Cc6v9n1bdIyFzqGSPnqFiHWZbofqDxAEiPCsW2zJ4hk,48833
298
- snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=6QtdMlV8VNGXgHzd-Lo3eszCRhFCz96PWurlbukifeU,48169
306
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=h9PDQMMXD9w1GF9nYrAzhOzlo9Tu9gqgm2euvBcmwyA,48160
307
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=RX7kdJmEdb_JUUfsie7Q44CFWaRate7N23kKyreT49k,49094
308
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=dGQLuw7i7IXXv3VQnKxDSQaU8yUpphsVcwPxbpb3uf8,48430
299
309
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
300
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=xus3Of6nKtPCJYsnWZf3gL42pdvfGnkEkq2yPj49mE0,48438
301
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=3JoeKRyn0CoAjA8Gk_2Uhk1wtj2FvbtXk2wNyaLnKlM,48773
302
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=BiegAGRFG92DLesOBTvbPZZZGovTC6_mHtksSraSxB8,48453
303
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=ebY5aK-nHoM9NKVlEO207JijRO2aI33cjqwO8qgOox4,47582
304
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=q_Q20vfh4OdUQ9U1XW9PNQt8XyB-mzYAAELhZTek28s,48218
310
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=lrWiVXGFQpqbeF0g8va1cMhPyKxxqvgHddaBJLe_J5Y,48699
311
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=agWXHZNNV5AzhCH8g0HJFdCpg7qOF0CjRSejcknYwbs,49034
312
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=dJ9hB8CjM9wOlax4i0yH82LnOeb6dUQRXvPhQX2zYzw,48714
313
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=d-QpjpNF2QUVQQBt2sg-SF_WsidfZ8rQZmiXs-OE2T8,47843
314
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=O36O12tu80hJLag6s34dmZpmf7VojUeuaVe6ceCtgts,48479
305
315
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
306
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=EgOxWl3hJlhBGUh_ERzLgUpvbfSaEa9fmG9NwCvl-WU,51287
307
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=AnFJpXgQQyJqtJdHImbCsVBO9U6IEw4zsexvCYYayh8,50758
308
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=QSgpGXXEyrgjubKeophBMEppyfSEHjj0CFn-iHI6VHY,49116
309
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=PUR1R-jEc65iKofDnoPdwy3-RRNGPKJDY2akwKJHRuY,51694
310
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=DbntjDRekGwuGYq77BON-TX_1_oEFwPgcVpo00jrymk,47776
311
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=ncPlfTMY426L82uU7RRGivV-IBVc1BL61VDh91TY5E0,49585
312
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=VuIWZD8dy0C2SzSgTzA_lx-F_hQdWvAyXrkLSl1E0wU,50965
313
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=oHWTW1aGLHPqZMK7OGou5DeZEaIIXsW3nh-ep0nBquY,51700
314
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=z7aYidP3kmDJG61Jmv_x9QVHM5fNavqsEBy8KBsDJEo,50581
316
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=5WC1on082prjxYQczW9wz1pK9EUmwAoNmGl1eWjZ_4w,51548
317
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=aYMLol69mzwGZLsT3rrVMSY8qauNPuNCBkwi5kFyKac,51019
318
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=SqV1AsKmPWxSbob7EGiBu7c_xfk9DCIMU9e4_rto1dU,49377
319
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=7s3UKO1UCCVJ_14Kd8nH0kKpkK8BUJwaMT8f8ONSXoI,51955
320
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=4CP51Ze9kXA7Ipd5z1ZMN-3l77hMjdpLFoll5jLoeYc,48037
321
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=QQMbsZGRge2dj0i-zXu7GwX1SYqxSuC90Alt4QppiW0,49846
322
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=-R2ifpMaDhOCcxL_ugnlC1Sp6iHxBqxJAmpVwPPpHU0,51509
323
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=oyejLj_noQhKnXnTLrThpAdSVfe7F6WnfrL8enAEKKs,51961
324
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=WS5xaHj91Ne6_jBDX8i79lRd4Xr0t_2YW7-c3PMd6xc,50842
315
325
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
316
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=JDjwNsPZJcNjHgUkbNGM3LnQgFAQdbE5v_TJIcOGSdA,48080
317
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=etjW75x8b4iCFIM8lnuaZPLC5UakLzVDE8_LDr-EN3Q,55660
318
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=JheiwTgmArE_VX6OcXNvPFt0V2H_R-5rKcsHcZXuaHs,54929
326
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=sM6PA51sYbvJABIw8UiN7QrkcWIU9ajx7biKeswbIJU,48585
327
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=XYFnxnnEmMa3jlUfKbjDU6U5rTjYMRjfL3-BHmr5Bbs,55921
328
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=JYb6MziLoTHJvUvnInszDG9RlK17Nxw0SglJqydaP-k,55190
319
329
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
320
330
  snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
321
- snowflake/ml/modeling/pipeline/pipeline.py,sha256=R5F0jVmKyVZWXHE64UQnBa2dVjSFZFQCYXlA_s1x5qg,25456
331
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=KyA9a7CTTWYaONuB-BAn7dJ1PfXFKReNBKeM398qvi4,45360
322
332
  snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
323
333
  snowflake/ml/modeling/preprocessing/binarizer.py,sha256=noHrlTqpI7RRzYbCSuCjKHxhL8NUCDKNw-kDNTwyY_U,6999
324
334
  snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=g7kY0LHjnCaBzkslCkjdPV06eL2KRYwZuYKRmDef3ew,20970
@@ -326,47 +336,45 @@ snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=C35I9biWxefltNmXzqaJ
326
336
  snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=xpuybHsjrL68u0qNe9DTrQOJsqzb8GOvHT0-_tIBzvM,8768
327
337
  snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=agZt9B37PsVhmS8AkH8ix0bZFsf-EGapeTp6-OD1pwI,12200
328
338
  snowflake/ml/modeling/preprocessing/normalizer.py,sha256=iv3MgJZ4B9-X1fAlC0pWsrYuQvRz1iJrM0_f4XfZKc0,6584
329
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=Ro8Rjg4cqdGZgkyIbb4X75qEExVVztIzuIM6ndslZnQ,71579
339
+ snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=5kj3V48bYmXnorf0xnp5AqRbAiJtgswepgUicyNdFHM,72322
330
340
  snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=3c6XnwnMpbHbAITzo5YoJoI86YI-Q_BBFajoEa-7q80,33276
331
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=nq4e1QC8R9-5m3UFNr4PBlo-HF7R7dbjIqIWe-RC2ro,47991
341
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=VTapvnHDxiUyNw48F0OwGY4xsPFWjst0t70Rm560WN4,48511
332
342
  snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=iBwCP10CljdGmjEo-JEZMsHsk_3tccSXYbxN4xVq5Do,12398
333
343
  snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=LxvcZ4a5xuHJLtIvkLafNjv0HsZd7mqzp_cdI378kkM,11395
334
344
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
335
- snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=-PiLSdnYJUXbMuOGTZCxfI23MUtKZIrNCI8CkXefUqU,48675
336
- snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=RqwGkGNabLUdOZ_xT_o-JeoOpzCWD49MacGYf42sb7o,49024
345
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=ZAwWHQa2A24z9uLIXSucVFj1C7S0LhYT8eQwdLk3g9s,48936
346
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=yMRrAJG80sM4l48DMqzpIYwQacvuRvDrxc-AflWAt-E,49285
337
347
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
338
- snowflake/ml/modeling/svm/linear_svc.py,sha256=cg8XdIXUgCb2hqH6lUV_8SznsSYM_4Rv-Us6y_e_Uw4,51485
339
- snowflake/ml/modeling/svm/linear_svr.py,sha256=jsOCsb2YXGHjp5IvnHBLdXKL7LizM2YH6eTQydTDn_w,49838
340
- snowflake/ml/modeling/svm/nu_svc.py,sha256=edjqwhcv8H2NiK5QQds85D0fFXw54i53L6aF7fTLJKE,51797
341
- snowflake/ml/modeling/svm/nu_svr.py,sha256=A2DDWc8GO-M-2kKfbZbCM5g11UJUPoW_MVFHh7dFhak,48876
342
- snowflake/ml/modeling/svm/svc.py,sha256=jJ7DwlXwmN0M0Jr3MN-ERrUsJzvX9IcTtSjGr_7z8wg,51946
343
- snowflake/ml/modeling/svm/svr.py,sha256=Nhs16EL09Fpmciqj6h_U1CeVf4WV5fU5cJ_3PT8LFIM,49065
348
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=zcfbzUtusA-a0b0dRTSbGfj8X5rrZ3W2LfoHj7IFqNQ,51746
349
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=P8151xjFlLYj3YhQEbJKiOJEQHKAfrPntv2ufTJl5y4,50099
350
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=me_YR4WL1sW8dRrIrO929p7vc8Ow7_jSftWf9YUHqhY,52058
351
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=Nqyvvt_OsoVe_py602HtsaXnTmykhdQy0fb8YdHFB9s,49137
352
+ snowflake/ml/modeling/svm/svc.py,sha256=6efrAzY2u-5qPKMQb9__L5XNPf33rRFzzMHi4QJnYVA,52207
353
+ snowflake/ml/modeling/svm/svr.py,sha256=WSrWS4uPAVGfPAPiqB-FphSPuNVF43kYk9kyW1ACfx0,49326
344
354
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
345
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=bWkIi4j8PzPTP2djteY4rllrjiFdvIdpcyNdk9DULxM,54222
346
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=5NYUDCTEvQEg99b2CSBZjieh2Nqn5EyUwVH_Ybs5q74,52921
347
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=PzKYyjJod6_712C3cYg83kYXlXupnhq37mQasn_dgC0,53564
348
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=oh1D5gSzt9G4HwLX6KXniWh9Ur25Gc-XpagE8NJcg6k,52272
355
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=4D2m5Xg1DNd12WF2-aPxCIdeIAkdO90psJOa5fy1Cc0,54483
356
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=t5DOqtWJaDV1pSkjXHC66zSQcBFnXIlhrKSYriS38ec,53182
357
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=Vvg7e0tBbJzjd7mxrNZoX_0xdlZcPVLSPb7-XTrVLnM,53825
358
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=hJP9mnMF_B63Gj4XI87YgAXEH8KRGxzSTlgvA9gsBvk,52533
349
359
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
350
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=GH12HzpDhIlyUf9goywmywndTczaPUyYIpsMveyGUC8,59220
351
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=ddmYxpexJsodWT6bTI8LG6wxGWpry1YdvfFUj76t_fA,58719
352
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=4gMA2jD7yi11YrR160FBfGDz4x2s-SSdvHaXXlTLE6E,59396
353
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=nXnnK26ORSy2exd0pTB4DmJJCeED5_vNQND0loagXI4,58922
360
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=ntJc0lzSLuJHCTv9LhWrwLsj7_aKNK3uwaQNu5dedbA,59481
361
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=BjwTmEJ0rhVWVnBoUw_i3A4cAKmXzzIxnsy80MHYzp4,58980
362
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=47owolJMSu3veYvPIYwGyzrZpBXboJAJTMnidHFqYJo,59657
363
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=oeZM8KLqILuM_uzPH8HGR3KtMpcHGTPz2VjVyAndn-c,59183
354
364
  snowflake/ml/monitoring/monitor.py,sha256=M9IRk6bnVwKNEvCexEJ5Rf95zEFap4O5qjbwfwdXGS0,7135
355
365
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
356
366
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
357
- snowflake/ml/registry/_artifact_manager.py,sha256=Q-6cRfU-pQBNVroh1_YIhd8hQtk8lC0y9vRBCDVizGQ,5544
358
367
  snowflake/ml/registry/_initial_schema.py,sha256=KusBbu0vpgCh-dPHgC90xRSfP6Z79qC-eXTqT8GXpFI,5316
359
368
  snowflake/ml/registry/_schema.py,sha256=GOA427_mVKkq9RWRENHuqDimRS0SmmP4EWThNCu1Kz4,3166
360
369
  snowflake/ml/registry/_schema_upgrade_plans.py,sha256=LxZNXYGjGG-NmB7w7_SxgaJpZuXUO66XVMuh04oL6SI,4209
361
370
  snowflake/ml/registry/_schema_version_manager.py,sha256=-9wGH-7ELSZxp7-fW7hXTMqkJSIebXdSpwwgzdvnoYs,6922
362
- snowflake/ml/registry/artifact.py,sha256=9JDcr4aaR0d4cp4YSRnGMFRIdu-k0tABbs6jDH4VDGQ,1263
363
- snowflake/ml/registry/model_registry.py,sha256=MgI4Dj9kvxfNd3kQ3tWY6ygmxUd6kzb430-GKkn4BA0,91007
371
+ snowflake/ml/registry/model_registry.py,sha256=x42wR2lEyW99NnG8auNPOowg34bF87ksXQqrjMFd7Pw,84795
364
372
  snowflake/ml/registry/registry.py,sha256=RxEM0xLWdF3kIPf5upJffaPPP9liNMMZOnVeSyYNIb8,10949
365
373
  snowflake/ml/registry/_manager/model_manager.py,sha256=LYX_nS_egwum7F_LCbz_a3hibIHOTDK8LO1DPOWxPrE,5809
366
374
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
367
375
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
368
- snowflake_ml_python-1.4.1.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
369
- snowflake_ml_python-1.4.1.dist-info/METADATA,sha256=dz4Jp2I7bs8n4X7l5EzuXLqsZq8F9fzZ8IyImn2SFII,47072
370
- snowflake_ml_python-1.4.1.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
371
- snowflake_ml_python-1.4.1.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
372
- snowflake_ml_python-1.4.1.dist-info/RECORD,,
376
+ snowflake_ml_python-1.5.0.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
377
+ snowflake_ml_python-1.5.0.dist-info/METADATA,sha256=4_GHqJoiNYXF-WBWL6qwV6wA13ZlB6ySiGQZBLCPwRY,50050
378
+ snowflake_ml_python-1.5.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
379
+ snowflake_ml_python-1.5.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
380
+ snowflake_ml_python-1.5.0.dist-info/RECORD,,