snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  2. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  5. snowflake/ml/_internal/utils/formatting.py +1 -1
  6. snowflake/ml/feature_store/feature_store.py +15 -106
  7. snowflake/ml/model/_client/model/model_version_impl.py +20 -15
  8. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  9. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  10. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  11. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  12. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  13. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  14. snowflake/ml/model/custom_model.py +3 -1
  15. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  16. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +546 -0
  17. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +3 -0
  18. snowflake/ml/modeling/framework/base.py +15 -5
  19. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  20. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +3 -2
  21. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +3 -2
  22. snowflake/ml/registry/_manager/model_manager.py +5 -1
  23. snowflake/ml/registry/model_registry.py +99 -26
  24. snowflake/ml/registry/registry.py +2 -1
  25. snowflake/ml/version.py +1 -1
  26. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.0.dist-info}/METADATA +31 -3
  27. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.0.dist-info}/RECORD +30 -26
  28. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.0.dist-info}/LICENSE.txt +0 -0
  29. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.0.dist-info}/WHEEL +0 -0
  30. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.0.dist-info}/top_level.txt +0 -0
@@ -16,6 +16,7 @@ from numpy import typing as npt
16
16
 
17
17
 
18
18
  import numpy
19
+ import sklearn
19
20
  import lightgbm
20
21
  from sklearn.utils.metaestimators import available_if
21
22
 
@@ -160,7 +161,7 @@ class LGBMClassifier(BaseTransformer):
160
161
  self.set_sample_weight_col(sample_weight_col)
161
162
  self._use_external_memory_version = False
162
163
  self._batch_size = -1
163
- deps: Set[str] = set([f'numpy=={np.__version__}', f'lightgbm=={lightgbm.__version__}', f'cloudpickle=={cp.__version__}'])
164
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'lightgbm=={lightgbm.__version__}', f'cloudpickle=={cp.__version__}', f'scikit-learn=={sklearn.__version__}'])
164
165
 
165
166
  self._deps = list(deps)
166
167
 
@@ -841,7 +842,7 @@ class LGBMClassifier(BaseTransformer):
841
842
  transform_kwargs = dict(
842
843
  session=dataset._session,
843
844
  dependencies=["snowflake-snowpark-python"] + self._deps,
844
- score_sproc_imports=['lightgbm'],
845
+ score_sproc_imports=['lightgbm', 'sklearn'],
845
846
  )
846
847
  elif isinstance(dataset, pd.DataFrame):
847
848
  # pandas_handler.score() does not require any extra kwargs.
@@ -16,6 +16,7 @@ from numpy import typing as npt
16
16
 
17
17
 
18
18
  import numpy
19
+ import sklearn
19
20
  import lightgbm
20
21
  from sklearn.utils.metaestimators import available_if
21
22
 
@@ -160,7 +161,7 @@ class LGBMRegressor(BaseTransformer):
160
161
  self.set_sample_weight_col(sample_weight_col)
161
162
  self._use_external_memory_version = False
162
163
  self._batch_size = -1
163
- deps: Set[str] = set([f'numpy=={np.__version__}', f'lightgbm=={lightgbm.__version__}', f'cloudpickle=={cp.__version__}'])
164
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'lightgbm=={lightgbm.__version__}', f'cloudpickle=={cp.__version__}', f'scikit-learn=={sklearn.__version__}'])
164
165
 
165
166
  self._deps = list(deps)
166
167
 
@@ -837,7 +838,7 @@ class LGBMRegressor(BaseTransformer):
837
838
  transform_kwargs = dict(
838
839
  session=dataset._session,
839
840
  dependencies=["snowflake-snowpark-python"] + self._deps,
840
- score_sproc_imports=['lightgbm'],
841
+ score_sproc_imports=['lightgbm', 'sklearn'],
841
842
  )
842
843
  elif isinstance(dataset, pd.DataFrame):
843
844
  # pandas_handler.score() does not require any extra kwargs.
@@ -4,6 +4,7 @@ from typing import Any, Dict, List, Optional
4
4
  import pandas as pd
5
5
  from absl.logging import logging
6
6
 
7
+ from snowflake.ml._internal.human_readable_id import hrid_generator
7
8
  from snowflake.ml._internal.utils import sql_identifier
8
9
  from snowflake.ml.model import model_signature, type_hints as model_types
9
10
  from snowflake.ml.model._client.model import model_impl, model_version_impl
@@ -27,13 +28,14 @@ class ModelManager:
27
28
  self._model_ops = model_ops.ModelOperator(
28
29
  session, database_name=self._database_name, schema_name=self._schema_name
29
30
  )
31
+ self._hrid_generator = hrid_generator.HRID16()
30
32
 
31
33
  def log_model(
32
34
  self,
33
35
  model: model_types.SupportedModelType,
34
36
  *,
35
37
  model_name: str,
36
- version_name: str,
38
+ version_name: Optional[str] = None,
37
39
  comment: Optional[str] = None,
38
40
  metrics: Optional[Dict[str, Any]] = None,
39
41
  conda_dependencies: Optional[List[str]] = None,
@@ -48,6 +50,8 @@ class ModelManager:
48
50
  ) -> model_version_impl.ModelVersion:
49
51
  model_name_id = sql_identifier.SqlIdentifier(model_name)
50
52
 
53
+ if not version_name:
54
+ version_name = self._hrid_generator.generate()[1]
51
55
  version_name_id = sql_identifier.SqlIdentifier(version_name)
52
56
 
53
57
  if self._model_ops.validate_existence(
@@ -103,7 +103,10 @@ def _create_registry_database(
103
103
 
104
104
 
105
105
  def _create_registry_schema(
106
- session: snowpark.Session, database_name: str, schema_name: str, statement_params: Dict[str, Any]
106
+ session: snowpark.Session,
107
+ database_name: str,
108
+ schema_name: str,
109
+ statement_params: Dict[str, Any],
107
110
  ) -> None:
108
111
  """Private helper to create the model registry schema.
109
112
 
@@ -161,7 +164,11 @@ def _create_registry_views(
161
164
 
162
165
  # Create a view on active permanent deployments.
163
166
  _create_active_permanent_deployment_view(
164
- session, fully_qualified_schema_name, registry_table_name, deployment_table_name, statement_params
167
+ session,
168
+ fully_qualified_schema_name,
169
+ registry_table_name,
170
+ deployment_table_name,
171
+ statement_params,
165
172
  )
166
173
 
167
174
  # Create views on most recent metadata items.
@@ -437,10 +444,12 @@ fully integrated into the new registry.
437
444
  # Could do a multi-table insert here with some pros and cons:
438
445
  # [PRO] Atomic insert across multiple tables.
439
446
  # [CON] Code logic becomes messy depending on which fields are set.
440
- # [CON] Harder to re-use existing methods like set_model_name.
447
+ # [CON] Harder to reuse existing methods like set_model_name.
441
448
  # Context: https://docs.snowflake.com/en/sql-reference/sql/insert-multi-table.html
442
449
  return table_manager.insert_table_entry(
443
- self._session, table=self._fully_qualified_registry_table_name(), columns=properties
450
+ self._session,
451
+ table=self._fully_qualified_registry_table_name(),
452
+ columns=properties,
444
453
  )
445
454
 
446
455
  def _insert_metadata_entry(self, *, id: str, attribute: str, value: Any, operation: str) -> List[snowpark.Row]:
@@ -471,7 +480,9 @@ fully integrated into the new registry.
471
480
  columns["VALUE"] = value
472
481
 
473
482
  return table_manager.insert_table_entry(
474
- self._session, table=self._fully_qualified_metadata_table_name(), columns=columns
483
+ self._session,
484
+ table=self._fully_qualified_metadata_table_name(),
485
+ columns=columns,
475
486
  )
476
487
 
477
488
  def _insert_deployment_entry(
@@ -484,7 +495,10 @@ fully integrated into the new registry.
484
495
  signature: Dict[str, Any],
485
496
  target_method: str,
486
497
  options: Optional[
487
- Union[model_types.WarehouseDeployOptions, model_types.SnowparkContainerServiceDeployOptions]
498
+ Union[
499
+ model_types.WarehouseDeployOptions,
500
+ model_types.SnowparkContainerServiceDeployOptions,
501
+ ]
488
502
  ] = None,
489
503
  ) -> List[snowpark.Row]:
490
504
  """Insert a new row into the model deployment table.
@@ -521,7 +535,9 @@ fully integrated into the new registry.
521
535
  columns["OPTIONS"] = options
522
536
 
523
537
  return table_manager.insert_table_entry(
524
- self._session, table=self._fully_qualified_deployment_table_name(), columns=columns
538
+ self._session,
539
+ table=self._fully_qualified_deployment_table_name(),
540
+ columns=columns,
525
541
  )
526
542
 
527
543
  def _prepare_deployment_stage(self) -> str:
@@ -596,7 +612,11 @@ fully integrated into the new registry.
596
612
  return identifier.get_schema_level_object_identifier(db, schema, stage)
597
613
 
598
614
  def _list_selected_models(
599
- self, *, id: Optional[str] = None, model_name: Optional[str] = None, model_version: Optional[str] = None
615
+ self,
616
+ *,
617
+ id: Optional[str] = None,
618
+ model_name: Optional[str] = None,
619
+ model_version: Optional[str] = None,
600
620
  ) -> snowpark.DataFrame:
601
621
  """Retrieve the Snowpark dataframe of models matching the specified ID or (name and version).
602
622
 
@@ -724,7 +744,12 @@ fully integrated into the new registry.
724
744
  assert id is not None
725
745
 
726
746
  try:
727
- self._insert_metadata_entry(id=id, attribute=attribute, value={attribute: value}, operation=operation)
747
+ self._insert_metadata_entry(
748
+ id=id,
749
+ attribute=attribute,
750
+ value={attribute: value},
751
+ operation=operation,
752
+ )
728
753
  except connector.DataError:
729
754
  raise connector.DataError(f"Setting {attribute} for mode id {id} failed.")
730
755
 
@@ -760,7 +785,10 @@ fully integrated into the new registry.
760
785
  return str(result)
761
786
 
762
787
  def _get_model_path(
763
- self, id: Optional[str] = None, model_name: Optional[str] = None, model_version: Optional[str] = None
788
+ self,
789
+ id: Optional[str] = None,
790
+ model_name: Optional[str] = None,
791
+ model_version: Optional[str] = None,
764
792
  ) -> str:
765
793
  """Get the stage path for the model with the given (model name + model version) or `id` from the registry.
766
794
 
@@ -889,10 +917,17 @@ fully integrated into the new registry.
889
917
  value=new_model,
890
918
  )
891
919
  if description:
892
- self.set_model_description(model_name=model_name, model_version=model_version, description=description)
920
+ self.set_model_description(
921
+ model_name=model_name,
922
+ model_version=model_version,
923
+ description=description,
924
+ )
893
925
  if tags:
894
926
  self._set_metadata_attribute(
895
- _METADATA_ATTRIBUTE_TAGS, value=tags, model_name=model_name, model_version=model_version
927
+ _METADATA_ATTRIBUTE_TAGS,
928
+ value=tags,
929
+ model_name=model_name,
930
+ model_version=model_version,
896
931
  )
897
932
  else:
898
933
  raise connector.DatabaseError("Failed to insert the model properties to the registry table.")
@@ -961,7 +996,10 @@ fully integrated into the new registry.
961
996
  model_tags = self.get_tags(model_name=model_name, model_version=model_version)
962
997
  model_tags[tag_name] = tag_value
963
998
  self._set_metadata_attribute(
964
- _METADATA_ATTRIBUTE_TAGS, model_tags, model_name=model_name, model_version=model_version
999
+ _METADATA_ATTRIBUTE_TAGS,
1000
+ model_tags,
1001
+ model_name=model_name,
1002
+ model_version=model_version,
965
1003
  )
966
1004
 
967
1005
  @telemetry.send_api_usage_telemetry(
@@ -991,7 +1029,10 @@ fully integrated into the new registry.
991
1029
  )
992
1030
 
993
1031
  self._set_metadata_attribute(
994
- _METADATA_ATTRIBUTE_TAGS, model_tags, model_name=model_name, model_version=model_version
1032
+ _METADATA_ATTRIBUTE_TAGS,
1033
+ model_tags,
1034
+ model_name=model_name,
1035
+ model_version=model_version,
995
1036
  )
996
1037
 
997
1038
  @telemetry.send_api_usage_telemetry(
@@ -1089,7 +1130,9 @@ fully integrated into the new registry.
1089
1130
  Description of the model or None.
1090
1131
  """
1091
1132
  result = self._get_metadata_attribute(
1092
- _METADATA_ATTRIBUTE_DESCRIPTION, model_name=model_name, model_version=model_version
1133
+ _METADATA_ATTRIBUTE_DESCRIPTION,
1134
+ model_name=model_name,
1135
+ model_version=model_version,
1093
1136
  )
1094
1137
  return None if result is None else json.loads(result)
1095
1138
 
@@ -1112,7 +1155,10 @@ fully integrated into the new registry.
1112
1155
  description: Desired new model description.
1113
1156
  """
1114
1157
  self._set_metadata_attribute(
1115
- _METADATA_ATTRIBUTE_DESCRIPTION, description, model_name=model_name, model_version=model_version
1158
+ _METADATA_ATTRIBUTE_DESCRIPTION,
1159
+ description,
1160
+ model_name=model_name,
1161
+ model_version=model_version,
1116
1162
  )
1117
1163
 
1118
1164
  @telemetry.send_api_usage_telemetry(
@@ -1165,7 +1211,10 @@ fully integrated into the new registry.
1165
1211
  snowpark.DataFrame with the history of the model.
1166
1212
  """
1167
1213
  id = self._get_model_id(model_name=model_name, model_version=model_version)
1168
- return cast(snowpark.DataFrame, self.get_history().filter(snowpark.Column("MODEL_ID") == id))
1214
+ return cast(
1215
+ snowpark.DataFrame,
1216
+ self.get_history().filter(snowpark.Column("MODEL_ID") == id),
1217
+ )
1169
1218
 
1170
1219
  @telemetry.send_api_usage_telemetry(
1171
1220
  project=_TELEMETRY_PROJECT,
@@ -1194,7 +1243,10 @@ fully integrated into the new registry.
1194
1243
  model_metrics = self.get_metrics(model_name=model_name, model_version=model_version)
1195
1244
  model_metrics[metric_name] = metric_value
1196
1245
  self._set_metadata_attribute(
1197
- _METADATA_ATTRIBUTE_METRICS, model_metrics, model_name=model_name, model_version=model_version
1246
+ _METADATA_ATTRIBUTE_METRICS,
1247
+ model_metrics,
1248
+ model_name=model_name,
1249
+ model_version=model_version,
1198
1250
  )
1199
1251
 
1200
1252
  @telemetry.send_api_usage_telemetry(
@@ -1230,7 +1282,10 @@ fully integrated into the new registry.
1230
1282
  )
1231
1283
 
1232
1284
  self._set_metadata_attribute(
1233
- _METADATA_ATTRIBUTE_METRICS, model_metrics, model_name=model_name, model_version=model_version
1285
+ _METADATA_ATTRIBUTE_METRICS,
1286
+ model_metrics,
1287
+ model_name=model_name,
1288
+ model_version=model_version,
1234
1289
  )
1235
1290
 
1236
1291
  @telemetry.send_api_usage_telemetry(
@@ -1290,7 +1345,9 @@ fully integrated into the new registry.
1290
1345
  # Snowpark snowpark.dataframe returns dictionary objects as strings. We need to convert it back to a dictionary
1291
1346
  # here.
1292
1347
  result = self._get_metadata_attribute(
1293
- _METADATA_ATTRIBUTE_METRICS, model_name=model_name, model_version=model_version
1348
+ _METADATA_ATTRIBUTE_METRICS,
1349
+ model_name=model_name,
1350
+ model_version=model_version,
1294
1351
  )
1295
1352
 
1296
1353
  if result:
@@ -1507,7 +1564,10 @@ fully integrated into the new registry.
1507
1564
  permanent: bool = False,
1508
1565
  platform: deploy_platforms.TargetPlatform = deploy_platforms.TargetPlatform.WAREHOUSE,
1509
1566
  options: Optional[
1510
- Union[model_types.WarehouseDeployOptions, model_types.SnowparkContainerServiceDeployOptions]
1567
+ Union[
1568
+ model_types.WarehouseDeployOptions,
1569
+ model_types.SnowparkContainerServiceDeployOptions,
1570
+ ]
1511
1571
  ] = None,
1512
1572
  ) -> model_types.Deployment:
1513
1573
  """Deploy the model with the given deployment name.
@@ -1772,7 +1832,9 @@ fully integrated into the new registry.
1772
1832
 
1773
1833
  """
1774
1834
  deployment = self._get_deployment(
1775
- model_name=model_name, model_version=model_version, deployment_name=deployment_name
1835
+ model_name=model_name,
1836
+ model_version=model_version,
1837
+ deployment_name=deployment_name,
1776
1838
  )
1777
1839
 
1778
1840
  # TODO(SNOW-759526): The following sequence should be a transaction.
@@ -1845,7 +1907,8 @@ fully integrated into the new registry.
1845
1907
 
1846
1908
  # Step 1/3: Delete the registry entry.
1847
1909
  query_result_checker.SqlResultValidator(
1848
- self._session, f"DELETE FROM {self._fully_qualified_registry_table_name()} WHERE ID='{id}'"
1910
+ self._session,
1911
+ f"DELETE FROM {self._fully_qualified_registry_table_name()} WHERE ID='{id}'",
1849
1912
  ).deletion_success(expected_num_rows=1).validate()
1850
1913
 
1851
1914
  # Step 2/3: Delete the artifact (if desired).
@@ -1966,7 +2029,11 @@ class ModelReference:
1966
2029
 
1967
2030
  def build_method(m: Callable[..., Any]) -> Callable[..., Any]:
1968
2031
  return lambda self, *args, **kwargs: m(
1969
- self._registry, self._model_name, self._model_version, *args, **kwargs
2032
+ self._registry,
2033
+ self._model_name,
2034
+ self._model_version,
2035
+ *args,
2036
+ **kwargs,
1970
2037
  )
1971
2038
 
1972
2039
  method = build_method(m=obj)
@@ -2027,7 +2094,10 @@ class ModelReference:
2027
2094
 
2028
2095
  if di:
2029
2096
  return model_api.predict(
2030
- session=self._registry._session, deployment=di, X=data, statement_params=statement_params
2097
+ session=self._registry._session,
2098
+ deployment=di,
2099
+ X=data,
2100
+ statement_params=statement_params,
2031
2101
  )
2032
2102
 
2033
2103
  # Mypy enforce to refer to the registry for calling the function
@@ -2059,7 +2129,10 @@ class ModelReference:
2059
2129
  options=options,
2060
2130
  )
2061
2131
  return model_api.predict(
2062
- session=self._registry._session, deployment=di, X=data, statement_params=statement_params
2132
+ session=self._registry._session,
2133
+ deployment=di,
2134
+ X=data,
2135
+ statement_params=statement_params,
2063
2136
  )
2064
2137
 
2065
2138
 
@@ -77,7 +77,7 @@ class Registry:
77
77
  model: model_types.SupportedModelType,
78
78
  *,
79
79
  model_name: str,
80
- version_name: str,
80
+ version_name: Optional[str] = None,
81
81
  comment: Optional[str] = None,
82
82
  metrics: Optional[Dict[str, Any]] = None,
83
83
  conda_dependencies: Optional[List[str]] = None,
@@ -98,6 +98,7 @@ class Registry:
98
98
  Sentence Transformers, Peft-finetuned LLM, or Custom Model.
99
99
  model_name: Name to identify the model.
100
100
  version_name: Version identifier for the model. Combination of model_name and version_name must be unique.
101
+ If not specified, a random name will be generated.
101
102
  comment: Comment associated with the model version. Defaults to None.
102
103
  metrics: A JSON serializable dictionary containing metrics linked to the model version. Defaults to None.
103
104
  signatures: Model data signatures for inputs and outputs for various target methods. If it is None,
snowflake/ml/version.py CHANGED
@@ -1 +1 @@
1
- VERSION="1.3.1"
1
+ VERSION="1.4.0"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: snowflake-ml-python
3
- Version: 1.3.1
3
+ Version: 1.4.0
4
4
  Summary: The machine learning client library that is used for interacting with Snowflake to build machine learning solutions.
5
5
  Author-email: "Snowflake, Inc" <support@snowflake.com>
6
6
  License:
@@ -370,13 +370,41 @@ be compatibility issues. Server-side functionality that `snowflake-ml-python` de
370
370
 
371
371
  # Release History
372
372
 
373
- ## 1.3.1
373
+ ## 1.4.0
374
+
375
+ ### Bug Fixes
376
+
377
+ - Registry: Fix a bug when multiple models are being called from the same query, models other than the first one will
378
+ have incorrect result. This fix only works for newly logged model.
379
+ - Modeling: When registering a model, only method(s) that is mentioned in `save_model` would be added to model signature
380
+ in SnowML models.
381
+ - Modeling: Fix a bug that when n_jobs is not 1, model cannot execute methods such as
382
+ predict, predict_log_proba, and other batch inference methods. The n_jobs would automatically
383
+ set to 1 because vectorized udf currently doesn't support joblib parallel backend.
384
+ - Modeling: Fix a bug that batch inference methods cannot infer the datatype when the first row of data contains NULL.
385
+ - Modeling: Matches Distributed HPO output column names with the snowflake identifier.
386
+ - Modeling: Relax package versions for all Distributed HPO methods if the installed version
387
+ is not available in the Snowflake conda channel
388
+ - Modeling: Add sklearn as required dependency for LightGBM package.
389
+
390
+ ### Behavior Changes
391
+
392
+ - Registry: `apply` method is no longer by default logged when logging a xgboost model. If that is required, it could
393
+ be specified manually when logging the model by `log_model(..., options={"target_methods": ["apply", ...]})`.
394
+
395
+ ### New Features
396
+
397
+ - Registry: Add support for `sentence-transformers` model (`sentence_transformers.SentenceTransformer`).
398
+ - Registry: Now version name is no longer required when logging a model. If not provided, a random human readable ID
399
+ will be generated.
400
+
401
+ ## 1.3.1 (2024-03-21)
374
402
 
375
403
  ### New Features
376
404
 
377
405
  - FileSet: `snowflake.ml.fileset.sfcfs.SFFileSystem` can now be used in UDFs and stored procedures.
378
406
 
379
- ## 1.3.0
407
+ ## 1.3.0 (2024-03-12)
380
408
 
381
409
  ### Bug Fixes
382
410
 
@@ -5,7 +5,7 @@ snowflake/cortex/_sentiment.py,sha256=7X_a8qJNFFgn-Y1tjwMDkyNJHz5yYl0PvnezVCc4Ts
5
5
  snowflake/cortex/_summarize.py,sha256=DJRxUrPrTVmtQNgus0ZPF1z8nPmn4Rs5oL3U25CfXxQ,1075
6
6
  snowflake/cortex/_translate.py,sha256=JPMIXxHTgJPfJqT5Hw_WtYM6FZ8NuQufZ4XR-M8wnyo,1420
7
7
  snowflake/cortex/_util.py,sha256=0xDaDSctenhuj59atZenZp5q9zuhji0WQ77KPjqqNoc,1557
8
- snowflake/ml/version.py,sha256=TPzBy2mBfZlYdDDim4fBFJhFtPDF4tRr8Te3p6dI8rs,16
8
+ snowflake/ml/version.py,sha256=X9n40H72i_qUrqdGO45MIHs_PUCysRlD1xrJRZ97KiU,16
9
9
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
10
10
  snowflake/ml/_internal/env_utils.py,sha256=nkBk8bDDKi5zIK9ZD8hBlKd3krccNZ4XC2pt6bgb4L4,25797
11
11
  snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
@@ -23,7 +23,11 @@ snowflake/ml/_internal/exceptions/exceptions.py,sha256=ub0fthrNTVoKhpj1pXnKRfO1G
23
23
  snowflake/ml/_internal/exceptions/fileset_error_messages.py,sha256=dqPpRu0cKyQA_0gahvbizgQBTwNhnwveN286JrJLvi8,419
24
24
  snowflake/ml/_internal/exceptions/fileset_errors.py,sha256=ZJfkpeDgRIw3qA876fk9FIzxIrm-yZ8I9RXUbzaeM84,1040
25
25
  snowflake/ml/_internal/exceptions/modeling_error_messages.py,sha256=q1Nh7KvnUebdKCwwAPmotdAVS578CgAXcfDOfKoweVw,665
26
- snowflake/ml/_internal/utils/formatting.py,sha256=udoXzwbgeZ6NTUeU7ywgSA4pASv3xtxm-IslW1l6ZqM,3677
26
+ snowflake/ml/_internal/human_readable_id/adjectives.txt,sha256=5o4MbVeHoELAqyLpyuKleOKR47jPjC_nKoziOIZMwT0,804
27
+ snowflake/ml/_internal/human_readable_id/animals.txt,sha256=GDLzMwzxiL07PhIMxw4t89bhYqqg0bQfPiuQT8VNeME,837
28
+ snowflake/ml/_internal/human_readable_id/hrid_generator.py,sha256=LYWB86qZgsVBvnc6Q5VjfDOmnGSQU3cTRKfId_nJSPY,1341
29
+ snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=D1yoVG1vmAFUhWQ5xCRRU6HCCBPbXHpOXagFd0jK0O8,4519
30
+ snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
27
31
  snowflake/ml/_internal/utils/identifier.py,sha256=_NAW00FGtQsQESxF2b30_T4kkmzQITsdfykvJ2PqPUo,10870
28
32
  snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
29
33
  snowflake/ml/_internal/utils/log_stream_processor.py,sha256=pBf8ycEamhHjEzUT55Rx_tFqSkYRpD5Dt71Mx9ZdaS8,1001
@@ -43,7 +47,7 @@ snowflake/ml/_internal/utils/uri.py,sha256=pvskcWoeS0M66DaU2XlJzK9wce55z4J5dn5kT
43
47
  snowflake/ml/dataset/dataset.py,sha256=OG_RonPgj86mRKRgN-xhJV0uZfa78ohVBpxsoYYnceY,6078
44
48
  snowflake/ml/feature_store/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
45
49
  snowflake/ml/feature_store/entity.py,sha256=dCpzLC3jrt5wDHqFYJXbAYkMiZ0zEmiVDMGkks6MXkA,3378
46
- snowflake/ml/feature_store/feature_store.py,sha256=s5TavQVlSnQo4n4N6aupnB4NufQ6EvJBpj9XtWU1yN0,73363
50
+ snowflake/ml/feature_store/feature_store.py,sha256=aNcbXHwpq9qja3785kpvgvahGtooY2KGjqspLM26W1o,69115
47
51
  snowflake/ml/feature_store/feature_view.py,sha256=APSn-xqm1Yv_iIKCckPdsvAqFb7D0-3BUW6URjSNut8,17806
48
52
  snowflake/ml/fileset/fileset.py,sha256=QRhxLeKf1QBqvXO4RyyRd1c8TixhYpHuBEII8Qi3C_M,26201
49
53
  snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
@@ -53,12 +57,12 @@ snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx5
53
57
  snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPbt9WKYiBp0,2386
54
58
  snowflake/ml/model/__init__.py,sha256=fk8OMvOyrSIkAhX0EcrgBBvdz1VGRsdMmfYFV2GCf14,367
55
59
  snowflake/ml/model/_api.py,sha256=Y3r-Rm1-TJ0rnuydcWs6ENGdNp86T57PbmCWJlB0o0U,21595
56
- snowflake/ml/model/custom_model.py,sha256=x1RczFD4cwlHwnQmRan5M6gN-71LNWXuiEk7nMici8Y,8185
60
+ snowflake/ml/model/custom_model.py,sha256=xvu7WZ1YmOdvuPePyAj6qMwKq-HNeVV9bNfkOT09CRI,8267
57
61
  snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
58
62
  snowflake/ml/model/model_signature.py,sha256=UQSGieGJcnmC02V4feCYMdhMXnGoOUa9KBuDrbeivBM,29342
59
63
  snowflake/ml/model/type_hints.py,sha256=qe9U01Br4zYN0Uo0Pm7OC8eyjIuAoVwzweSvEe9SMzQ,12195
60
64
  snowflake/ml/model/_client/model/model_impl.py,sha256=QmTJr1JLdqBHWrFFpR2xARfbx0INYPzbfKWJn--3yX4,12525
61
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=KZNN_Jq2x69XwELEiVaAXkAGTMS1ZmjCFko8Ale9rBo,13333
65
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=A9d4ipgiymX35Hsk7j4GkO908u0aVUAf95kUWybTT9M,13548
62
66
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=XFNolmueu0nC3nAjb2Lj3v1NffDAhAq0JWMek9JVO38,4094
63
67
  snowflake/ml/model/_client/ops/model_ops.py,sha256=cL791mSAr4fJvPco6PtMdpwqicHhSTc8nsn4jdcEuEA,17767
64
68
  snowflake/ml/model/_client/sql/model.py,sha256=diuyGfFtLu1Z9yBThP-SjGOG9Zy4gflRKh6JoyUBDHk,4525
@@ -69,12 +73,12 @@ snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py,sha256=clCa
69
73
  snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py,sha256=G74D9lV2B3d544YzFN-YrjPkaST7tbQeh-rM17dtoJc,10681
70
74
  snowflake/ml/model/_deploy_client/image_builds/docker_context.py,sha256=7uhAJsHsk7LbiZv_w3xOCE2O88rTUVnS3_B6OAz-JG4,6129
71
75
  snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh,sha256=1pntXgqFthW4gdomqlyWx9CJF-Wqv8VMoLkgSiTHEJ0,1578
72
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=dvmK6ILhGc3z-oJDHDCPHxtIV8hfDpshRtawHZ7Wm-A,9986
76
+ snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=HnTaj0v27R9PCRuXpcP1nWv5tGBsXGSq6Xwep1m0bb0,9947
73
77
  snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=Ltk7KrYsp-nrghMhbMWKqi3snU8inbqmKLHFFyBCeBY,11148
74
78
  snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template,sha256=WAqYQaaY5AFywg9yNLKRw350c2fpM4vxgdjYJ50VJJA,1752
75
79
  snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template,sha256=g8mEvpJmwQ9OnAkZomeErPQ6h4OJ5NdtRCoylyIp7f4,1225
76
80
  snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template,sha256=nEK7fqo_XHJEVKLNe--EkES4oiDm7M5E9CacxGItFU0,3633
77
- snowflake/ml/model/_deploy_client/snowservice/deploy.py,sha256=yOnYfKNxv3cFoi6w65i4GFYB8ul1YnMQdLymO6skqAU,28961
81
+ snowflake/ml/model/_deploy_client/snowservice/deploy.py,sha256=U0axqxy9YdJTsGz0bXSRSM2f7nziRnB83mvK6Rz9tlI,29141
78
82
  snowflake/ml/model/_deploy_client/snowservice/deploy_options.py,sha256=X4ncWgcgS9DKaNDiauOR9aVC6D27yb3DNouXDEHEjMQ,5989
79
83
  snowflake/ml/model/_deploy_client/snowservice/instance_types.py,sha256=YHI5D7UXNlEbV_Bzk0Nq6nrzfv2VUJfxwchLe7hY-lA,232
80
84
  snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template,sha256=hZX8XYPAlEU2R6JhZLj46js91g7XSfe2pysflCYH4HM,734
@@ -83,12 +87,12 @@ snowflake/ml/model/_deploy_client/utils/constants.py,sha256=ysEBrEs0sBCGHnk9uBX-
83
87
  snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=R_ilt8SGwQR6qh_roaUvst0YrnjbJbAyxYIPn4efo4E,13284
84
88
  snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=yZR9M76oh6JbPQJHb6t3wGO3wuD04w0zLEXiEyZW_tg,8358
85
89
  snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
86
- snowflake/ml/model/_model_composer/model_composer.py,sha256=KqZvrpxOzgHtxxCcLhBwCTXsmorGItLwagZb7rDY9Qk,6331
90
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=ShoSp74xImfdXuIMTVJKt09sIBS8uxz-0rCbYBxLX9o,6337
87
91
  snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=wdMTFH8St31mr88Fj8lQLTj_gvskHQu8fQOxAPQoXuQ,6677
88
92
  snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=R4oX50Rlpr0C6zTYJRPuuZqImzYcBSTCQJfuSGutULI,2029
89
93
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2B-fykyanYlGWA4Ie2nOwXx2N5D2qZEvTbbPuSSreeI,1837
90
94
  snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=QpQXAIKDs9cotLOL0JdI6xLet1QJU7KtaF7O10nDQcs,2291
91
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=8G2bHRCw1SB00HOHSkGh0SpUaPK7r7z5FGBmsfgWCRg,2164
95
+ snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=gex5if17PZ6t6fPcr2i_LO_3IRY03Ykcv_XAyKJt8pg,2170
92
96
  snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=Lk32tVHAN_oMRuKx_9hiFKuk7gqCDcJe-D0fN56BzvM,6693
93
97
  snowflake/ml/model/_model_composer/model_runtime/_runtime_requirements.py,sha256=z3V7mRgdP-TYpZSX7TrW2k_4hNQ3ZsR4YO4ZQ0YSm8s,248
94
98
  snowflake/ml/model/_model_composer/model_runtime/model_runtime.py,sha256=y6gZURScuGFZK6-n_YEdzDIzJHCiHXctKuSGv_ObRwc,4307
@@ -104,10 +108,10 @@ snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=Itw1fPiBdU2euOmjLU3
104
108
  snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=dSxKO530_IlF1OK3t9_UYpVntdPiszKy-x_7XGk0bzQ,8033
105
109
  snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=JRPargMNEJaDFQIpzqEVvOml62G_UVVvJdqBH8Lhu_Y,9051
106
110
  snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=bb-3AkK5T5HlFLSzviGKKRjhVcGvKIClDU7OP1OsNHg,8065
107
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=0Ea4Jf5gpbDWt9p6IWtsDRkohQUZMLf4UHc0ewaTmcE,7262
111
+ snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=le4Y_dbiPlcjhiFpK1shla3pVgQ5UASdx2g7a70tYYY,7967
108
112
  snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=ujBcbJ1-Ymv7ZeLfuxuDBe7QZ7KNU7x1p2k6OM_yi-0,8179
109
113
  snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=8s8sMWQ9ydJpK1Nk2uPQ-FVeB-xclfX5qzRDr9G1bdk,8104
110
- snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=ZiHJ9nHwqFRpye6MZP-9wT6XlYZ4QDhh7WFkmTy0G0s,8883
114
+ snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=x5bXz5DRzb3O7DMDOF535LBPGnydCa78JHP_7-vsnjY,8874
111
115
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
112
116
  snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=BE-T6xd48OmUIthNAapbI6w7cmUsJwd32I7c1slaXpE,274
113
117
  snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
@@ -130,7 +134,7 @@ snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE
130
134
  snowflake/ml/model/models/llm.py,sha256=ofrdHH4LQEQmnxYAGwmHV2sWLPenf0WcgBLg9MPwSmY,3616
131
135
  snowflake/ml/modeling/_internal/constants.py,sha256=xI4ofa3ATQ2UszRPpkfUAxghV_gXmvxleqOew4UI1PM,45
132
136
  snowflake/ml/modeling/_internal/estimator_utils.py,sha256=Szhpip5g7ddmT1-nfRg8WFRRCBx9QIjsSW9ey7jkTLo,8855
133
- snowflake/ml/modeling/_internal/model_specifications.py,sha256=-0PWh4cy-XjbejGb00RiFTnBSWiYMTNFQntXTMADgko,4725
137
+ snowflake/ml/modeling/_internal/model_specifications.py,sha256=nAqgw7i1LcYMKRQq9mg2I50Kl0tsayh2_do5UMDXdT0,4801
134
138
  snowflake/ml/modeling/_internal/model_trainer.py,sha256=AlnTRnIowaF39Qjy2Zv4U3JsMydzCxfcBB2pgLIzNpk,694
135
139
  snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=0zazMgVNmBly7jKLGEwwjirb6VUsmA5bnplCzWxfTP8,7269
136
140
  snowflake/ml/modeling/_internal/model_transformer_builder.py,sha256=Y6Y8XSr7X7xAy1FvjPuHTb9Opy7tnGoCuOUBc5WEBJ4,3364
@@ -139,8 +143,8 @@ snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=
139
143
  snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=QuXUeeFzktfxStkXFlFSzB7QAuaTG2mPQJVBlRkb0WI,3169
140
144
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py,sha256=y9PZ3xgPGDHPBcNHY0f2Fk0nMZMRsPcLWy2cIDTALT4,4850
141
145
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py,sha256=lM1vYwpJ1jgTh8vnuyMp4tnFibM6UFf50W1IpPWwUWE,2535
142
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=cXJ9ixStjzyMRMr4vEldYT8YzcmHjTqilYE_FphXuX4,29384
143
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=cxW8dW39fJQwt-y9OvysjYXW0nfkMJO7hwxE7lI338c,13405
146
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=1kfwnUzaBFcxrN_YjWdlbT6ZR_vqcBjUwscwDzTsQyQ,54431
147
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=qtizLi4azYYCPL0BzuxohK81BpxRPidQQGhwVgp2bAQ,13590
144
148
  snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=w3zCrv-TwDB1o9eFppMaiXWmMeEPz_EAn_vl_2_6GL8,21699
145
149
  snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=VBYWGTy6ajQ-u2aiEvVU6NnKobEqJyz65oaHJS-ZjBs,17208
146
150
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
@@ -212,7 +216,7 @@ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=10-R2ijOsTVR
212
216
  snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=kRZ4HPQgzawll6ZGZ76ZseVA3qhLYtNRFmq4d_9u0gc,46442
213
217
  snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=8i6_ALx-0XY2FxRGnBeOY2Jd29PYz6ALFDAouC6ysoQ,43402
214
218
  snowflake/ml/modeling/framework/_utils.py,sha256=85q83_QVwAQmnzMYefSE5FaxiGMYnOpRatyvdpemU6w,9974
215
- snowflake/ml/modeling/framework/base.py,sha256=TlAfli0RzDYr6SWxVfFcfkK6T9Up4XXZ0nnAYj9tMFg,29962
219
+ snowflake/ml/modeling/framework/base.py,sha256=PteCPFStrGyeH1HP3oQLkY7AaNoWj8abHYwZuLoHfso,30157
216
220
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
217
221
  snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=igmWhHpuU27OtYDAHbduJHNltCTKwakCu5ch3Q0brew,49376
218
222
  snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=VXIWTMMM80zqzBBdwQLeEAdzf67jZ0pXhJ50O_do2UQ,48441
@@ -220,7 +224,7 @@ snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_K
220
224
  snowflake/ml/modeling/impute/iterative_imputer.py,sha256=jF_H8WvECHavwzaOKYqsR0ijM3VnyWzBC3Gl70Qd4zc,49939
221
225
  snowflake/ml/modeling/impute/knn_imputer.py,sha256=49U_EkD-kQ6uSIxC8BOKqc9IxS1IHuvW1gfOeGeEFCA,45696
222
226
  snowflake/ml/modeling/impute/missing_indicator.py,sha256=sdwF5ip-u7g3ioeK7ImdEmvCZE-D6xigAbiXP4kkduc,44524
223
- snowflake/ml/modeling/impute/simple_imputer.py,sha256=eC9CRhHMmsylm7oi5LGiukRlP6HIN6r3IP1DVpYrwmg,19258
227
+ snowflake/ml/modeling/impute/simple_imputer.py,sha256=awM33HugS5jGs3JXud1U8eEMm2VLdIAf7z_eVXAzKD0,18499
224
228
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
225
229
  snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=McvxnMNfyv3O2fNXsIMmGFFWfbKnEulj11Z0D4X8bDo,43515
226
230
  snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=fMANo2btM_MaJRID8RrF7Ni66uwcsvmyUlOXPEgo_4w,45319
@@ -230,8 +234,8 @@ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=0kB3UCP
230
234
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
231
235
  snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=Hm9RoSJqOvd6xQrNByvKU3NAjGktUF__Txsj5HrO66s,45755
232
236
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
233
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=7iSIXWRBMmB8rzDtiMXzm43adHvtZAmBK4wv49fnljs,45257
234
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=eXxl0o7WYUAq9ToqOT5OKZg1YBCVvQ5_trlLgzVZusc,44760
237
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=tQWAMmWECo7i7q6L-RhzJZPTJ-EW90_U7VM0w7JCk5g,45323
238
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=llkP12nu04eOcC8DfeKyYx2YRLspxGXRP75V47YajSY,44826
235
239
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
236
240
  snowflake/ml/modeling/linear_model/ard_regression.py,sha256=BE0Mp7qtXFltlRrh25dytZla50nuyLeIvcE19wDsxDU,45700
237
241
  snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=qU5_D_0H34X14gZa4EAdlxluPXqQIe5tRPPRctiZzOY,46116
@@ -354,13 +358,13 @@ snowflake/ml/registry/_schema.py,sha256=GOA427_mVKkq9RWRENHuqDimRS0SmmP4EWThNCu1
354
358
  snowflake/ml/registry/_schema_upgrade_plans.py,sha256=LxZNXYGjGG-NmB7w7_SxgaJpZuXUO66XVMuh04oL6SI,4209
355
359
  snowflake/ml/registry/_schema_version_manager.py,sha256=-9wGH-7ELSZxp7-fW7hXTMqkJSIebXdSpwwgzdvnoYs,6922
356
360
  snowflake/ml/registry/artifact.py,sha256=9JDcr4aaR0d4cp4YSRnGMFRIdu-k0tABbs6jDH4VDGQ,1263
357
- snowflake/ml/registry/model_registry.py,sha256=a3PqbATHNOG3oO3rY9zuoWMHd5jKKTl_or-HLU1PcgY,90041
358
- snowflake/ml/registry/registry.py,sha256=Hx-pjrnkwYSAftDaSLIXSgoivkXzXDrQxf-4-nzZ13E,10855
359
- snowflake/ml/registry/_manager/model_manager.py,sha256=67QHJi_ufloYmZikBALD_3MEdudeJDFtO0grRIimMkI,5578
361
+ snowflake/ml/registry/model_registry.py,sha256=MgI4Dj9kvxfNd3kQ3tWY6ygmxUd6kzb430-GKkn4BA0,91007
362
+ snowflake/ml/registry/registry.py,sha256=LIwExLFPMOvbJbB7nRToDkMk93wl1ZMhGiN1Mo5HRGk,10939
363
+ snowflake/ml/registry/_manager/model_manager.py,sha256=LYX_nS_egwum7F_LCbz_a3hibIHOTDK8LO1DPOWxPrE,5809
360
364
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
361
365
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
362
- snowflake_ml_python-1.3.1.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
363
- snowflake_ml_python-1.3.1.dist-info/METADATA,sha256=-h4LtktBD-3xkHOsGOgt4842Fz5l8gx7pAZL3U60rjw,45077
364
- snowflake_ml_python-1.3.1.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
365
- snowflake_ml_python-1.3.1.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
366
- snowflake_ml_python-1.3.1.dist-info/RECORD,,
366
+ snowflake_ml_python-1.4.0.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
367
+ snowflake_ml_python-1.4.0.dist-info/METADATA,sha256=g26kO8pTVbH7coUpl7H3P4ceLOBSnilZNkT6U5ZTxGA,46650
368
+ snowflake_ml_python-1.4.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
369
+ snowflake_ml_python-1.4.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
370
+ snowflake_ml_python-1.4.0.dist-info/RECORD,,