snowflake-ml-python 1.3.0__py3-none-any.whl → 1.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (211) hide show
  1. snowflake/ml/_internal/file_utils.py +3 -3
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/telemetry.py +11 -2
  7. snowflake/ml/_internal/utils/formatting.py +1 -1
  8. snowflake/ml/feature_store/feature_store.py +15 -106
  9. snowflake/ml/fileset/sfcfs.py +4 -3
  10. snowflake/ml/fileset/stage_fs.py +18 -0
  11. snowflake/ml/model/_api.py +9 -9
  12. snowflake/ml/model/_client/model/model_version_impl.py +20 -15
  13. snowflake/ml/model/_deploy_client/image_builds/docker_context.py +3 -9
  14. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -5
  15. snowflake/ml/model/_deploy_client/snowservice/deploy.py +7 -6
  16. snowflake/ml/model/_model_composer/model_composer.py +10 -8
  17. snowflake/ml/model/_model_composer/model_method/function_generator.py +1 -1
  18. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +2 -1
  19. snowflake/ml/model/_model_composer/model_method/model_method.py +2 -2
  20. snowflake/ml/model/_model_composer/model_runtime/_runtime_requirements.py +1 -1
  21. snowflake/ml/model/_packager/model_handlers/_base.py +2 -2
  22. snowflake/ml/model/_packager/model_handlers/_utils.py +5 -5
  23. snowflake/ml/model/_packager/model_handlers/custom.py +7 -7
  24. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +2 -2
  25. snowflake/ml/model/_packager/model_handlers/llm.py +1 -1
  26. snowflake/ml/model/_packager/model_handlers/mlflow.py +1 -1
  27. snowflake/ml/model/_packager/model_handlers/pytorch.py +13 -10
  28. snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +214 -0
  29. snowflake/ml/model/_packager/model_handlers/sklearn.py +6 -6
  30. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +15 -3
  31. snowflake/ml/model/_packager/model_handlers/tensorflow.py +8 -8
  32. snowflake/ml/model/_packager/model_handlers/torchscript.py +7 -7
  33. snowflake/ml/model/_packager/model_handlers/xgboost.py +8 -8
  34. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  35. snowflake/ml/model/_packager/model_packager.py +8 -6
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +13 -0
  38. snowflake/ml/modeling/_internal/estimator_utils.py +61 -1
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -43
  40. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +4 -4
  41. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +21 -17
  42. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  43. snowflake/ml/modeling/_internal/model_trainer.py +2 -2
  44. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +547 -1
  45. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +67 -114
  46. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +9 -9
  47. snowflake/ml/modeling/_internal/transformer_protocols.py +2 -3
  48. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +33 -61
  49. snowflake/ml/modeling/cluster/affinity_propagation.py +33 -61
  50. snowflake/ml/modeling/cluster/agglomerative_clustering.py +33 -61
  51. snowflake/ml/modeling/cluster/birch.py +33 -61
  52. snowflake/ml/modeling/cluster/bisecting_k_means.py +33 -61
  53. snowflake/ml/modeling/cluster/dbscan.py +33 -61
  54. snowflake/ml/modeling/cluster/feature_agglomeration.py +33 -61
  55. snowflake/ml/modeling/cluster/k_means.py +33 -61
  56. snowflake/ml/modeling/cluster/mean_shift.py +33 -61
  57. snowflake/ml/modeling/cluster/mini_batch_k_means.py +33 -61
  58. snowflake/ml/modeling/cluster/optics.py +33 -61
  59. snowflake/ml/modeling/cluster/spectral_biclustering.py +33 -61
  60. snowflake/ml/modeling/cluster/spectral_clustering.py +33 -61
  61. snowflake/ml/modeling/cluster/spectral_coclustering.py +33 -61
  62. snowflake/ml/modeling/compose/column_transformer.py +33 -61
  63. snowflake/ml/modeling/compose/transformed_target_regressor.py +33 -61
  64. snowflake/ml/modeling/covariance/elliptic_envelope.py +33 -61
  65. snowflake/ml/modeling/covariance/empirical_covariance.py +33 -61
  66. snowflake/ml/modeling/covariance/graphical_lasso.py +33 -61
  67. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +33 -61
  68. snowflake/ml/modeling/covariance/ledoit_wolf.py +33 -61
  69. snowflake/ml/modeling/covariance/min_cov_det.py +33 -61
  70. snowflake/ml/modeling/covariance/oas.py +33 -61
  71. snowflake/ml/modeling/covariance/shrunk_covariance.py +33 -61
  72. snowflake/ml/modeling/decomposition/dictionary_learning.py +33 -61
  73. snowflake/ml/modeling/decomposition/factor_analysis.py +33 -61
  74. snowflake/ml/modeling/decomposition/fast_ica.py +33 -61
  75. snowflake/ml/modeling/decomposition/incremental_pca.py +33 -61
  76. snowflake/ml/modeling/decomposition/kernel_pca.py +33 -61
  77. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +33 -61
  78. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +33 -61
  79. snowflake/ml/modeling/decomposition/pca.py +33 -61
  80. snowflake/ml/modeling/decomposition/sparse_pca.py +33 -61
  81. snowflake/ml/modeling/decomposition/truncated_svd.py +33 -61
  82. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +33 -61
  83. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +33 -61
  84. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +33 -61
  85. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +33 -61
  86. snowflake/ml/modeling/ensemble/bagging_classifier.py +33 -61
  87. snowflake/ml/modeling/ensemble/bagging_regressor.py +33 -61
  88. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +33 -61
  89. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +33 -61
  90. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +33 -61
  91. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +33 -61
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +33 -61
  93. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +33 -61
  94. snowflake/ml/modeling/ensemble/isolation_forest.py +33 -61
  95. snowflake/ml/modeling/ensemble/random_forest_classifier.py +33 -61
  96. snowflake/ml/modeling/ensemble/random_forest_regressor.py +33 -61
  97. snowflake/ml/modeling/ensemble/stacking_regressor.py +33 -61
  98. snowflake/ml/modeling/ensemble/voting_classifier.py +33 -61
  99. snowflake/ml/modeling/ensemble/voting_regressor.py +33 -61
  100. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +33 -61
  101. snowflake/ml/modeling/feature_selection/select_fdr.py +33 -61
  102. snowflake/ml/modeling/feature_selection/select_fpr.py +33 -61
  103. snowflake/ml/modeling/feature_selection/select_fwe.py +33 -61
  104. snowflake/ml/modeling/feature_selection/select_k_best.py +33 -61
  105. snowflake/ml/modeling/feature_selection/select_percentile.py +33 -61
  106. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +33 -61
  107. snowflake/ml/modeling/feature_selection/variance_threshold.py +33 -61
  108. snowflake/ml/modeling/framework/base.py +55 -5
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +33 -61
  110. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +33 -61
  111. snowflake/ml/modeling/impute/iterative_imputer.py +33 -61
  112. snowflake/ml/modeling/impute/knn_imputer.py +33 -61
  113. snowflake/ml/modeling/impute/missing_indicator.py +33 -61
  114. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  115. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +33 -61
  116. snowflake/ml/modeling/kernel_approximation/nystroem.py +33 -61
  117. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +33 -61
  118. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +33 -61
  119. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +33 -61
  120. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +33 -61
  121. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +36 -63
  122. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +36 -63
  123. snowflake/ml/modeling/linear_model/ard_regression.py +33 -61
  124. snowflake/ml/modeling/linear_model/bayesian_ridge.py +33 -61
  125. snowflake/ml/modeling/linear_model/elastic_net.py +33 -61
  126. snowflake/ml/modeling/linear_model/elastic_net_cv.py +33 -61
  127. snowflake/ml/modeling/linear_model/gamma_regressor.py +33 -61
  128. snowflake/ml/modeling/linear_model/huber_regressor.py +33 -61
  129. snowflake/ml/modeling/linear_model/lars.py +33 -61
  130. snowflake/ml/modeling/linear_model/lars_cv.py +33 -61
  131. snowflake/ml/modeling/linear_model/lasso.py +33 -61
  132. snowflake/ml/modeling/linear_model/lasso_cv.py +33 -61
  133. snowflake/ml/modeling/linear_model/lasso_lars.py +33 -61
  134. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +33 -61
  135. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +33 -61
  136. snowflake/ml/modeling/linear_model/linear_regression.py +33 -61
  137. snowflake/ml/modeling/linear_model/logistic_regression.py +33 -61
  138. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +33 -61
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +33 -61
  140. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +33 -61
  141. snowflake/ml/modeling/linear_model/multi_task_lasso.py +33 -61
  142. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +33 -61
  143. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +33 -61
  144. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +33 -61
  145. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +33 -61
  146. snowflake/ml/modeling/linear_model/perceptron.py +33 -61
  147. snowflake/ml/modeling/linear_model/poisson_regressor.py +33 -61
  148. snowflake/ml/modeling/linear_model/ransac_regressor.py +33 -61
  149. snowflake/ml/modeling/linear_model/ridge.py +33 -61
  150. snowflake/ml/modeling/linear_model/ridge_classifier.py +33 -61
  151. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +33 -61
  152. snowflake/ml/modeling/linear_model/ridge_cv.py +33 -61
  153. snowflake/ml/modeling/linear_model/sgd_classifier.py +33 -61
  154. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +33 -61
  155. snowflake/ml/modeling/linear_model/sgd_regressor.py +33 -61
  156. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +33 -61
  157. snowflake/ml/modeling/linear_model/tweedie_regressor.py +33 -61
  158. snowflake/ml/modeling/manifold/isomap.py +33 -61
  159. snowflake/ml/modeling/manifold/mds.py +33 -61
  160. snowflake/ml/modeling/manifold/spectral_embedding.py +33 -61
  161. snowflake/ml/modeling/manifold/tsne.py +33 -61
  162. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +33 -61
  163. snowflake/ml/modeling/mixture/gaussian_mixture.py +33 -61
  164. snowflake/ml/modeling/model_selection/grid_search_cv.py +39 -57
  165. snowflake/ml/modeling/model_selection/randomized_search_cv.py +26 -57
  166. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +33 -61
  167. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +33 -61
  168. snowflake/ml/modeling/multiclass/output_code_classifier.py +33 -61
  169. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +33 -61
  170. snowflake/ml/modeling/naive_bayes/categorical_nb.py +33 -61
  171. snowflake/ml/modeling/naive_bayes/complement_nb.py +33 -61
  172. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +33 -61
  173. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +33 -61
  174. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +33 -61
  175. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +33 -61
  176. snowflake/ml/modeling/neighbors/kernel_density.py +33 -61
  177. snowflake/ml/modeling/neighbors/local_outlier_factor.py +33 -61
  178. snowflake/ml/modeling/neighbors/nearest_centroid.py +33 -61
  179. snowflake/ml/modeling/neighbors/nearest_neighbors.py +33 -61
  180. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +33 -61
  181. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +33 -61
  182. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +33 -61
  183. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +33 -61
  184. snowflake/ml/modeling/neural_network/mlp_classifier.py +33 -61
  185. snowflake/ml/modeling/neural_network/mlp_regressor.py +33 -61
  186. snowflake/ml/modeling/preprocessing/polynomial_features.py +33 -61
  187. snowflake/ml/modeling/semi_supervised/label_propagation.py +33 -61
  188. snowflake/ml/modeling/semi_supervised/label_spreading.py +33 -61
  189. snowflake/ml/modeling/svm/linear_svc.py +33 -61
  190. snowflake/ml/modeling/svm/linear_svr.py +33 -61
  191. snowflake/ml/modeling/svm/nu_svc.py +33 -61
  192. snowflake/ml/modeling/svm/nu_svr.py +33 -61
  193. snowflake/ml/modeling/svm/svc.py +33 -61
  194. snowflake/ml/modeling/svm/svr.py +33 -61
  195. snowflake/ml/modeling/tree/decision_tree_classifier.py +33 -61
  196. snowflake/ml/modeling/tree/decision_tree_regressor.py +33 -61
  197. snowflake/ml/modeling/tree/extra_tree_classifier.py +33 -61
  198. snowflake/ml/modeling/tree/extra_tree_regressor.py +33 -61
  199. snowflake/ml/modeling/xgboost/xgb_classifier.py +33 -61
  200. snowflake/ml/modeling/xgboost/xgb_regressor.py +33 -61
  201. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +33 -61
  202. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +33 -61
  203. snowflake/ml/registry/_manager/model_manager.py +6 -2
  204. snowflake/ml/registry/model_registry.py +100 -27
  205. snowflake/ml/registry/registry.py +6 -2
  206. snowflake/ml/version.py +1 -1
  207. {snowflake_ml_python-1.3.0.dist-info → snowflake_ml_python-1.4.0.dist-info}/METADATA +43 -7
  208. {snowflake_ml_python-1.3.0.dist-info → snowflake_ml_python-1.4.0.dist-info}/RECORD +211 -206
  209. {snowflake_ml_python-1.3.0.dist-info → snowflake_ml_python-1.4.0.dist-info}/LICENSE.txt +0 -0
  210. {snowflake_ml_python-1.3.0.dist-info → snowflake_ml_python-1.4.0.dist-info}/WHEEL +0 -0
  211. {snowflake_ml_python-1.3.0.dist-info → snowflake_ml_python-1.4.0.dist-info}/top_level.txt +0 -0
@@ -157,14 +157,14 @@ def zip_python_package(zipfile_path: str, package_name: str, ignore_generated_py
157
157
  arcname = base_arcname / path_info.name
158
158
  if not _able_ascii_encode(str(arcname)):
159
159
  raise ValueError(f"File name {arcname} cannot be encoded using ASCII. Please rename.")
160
- zf.writestr(str(arcname), path_info.read_bytes()) # type: ignore[no-untyped-call]
160
+ zf.writestr(str(arcname), path_info.read_bytes())
161
161
  elif path_info.is_dir():
162
162
  arcname = base_arcname / path_info.name
163
163
  zf.writestr(str(arcname) + "/", "")
164
- for sub_path_info in path_info.iterdir(): # type: ignore[no-untyped-call]
164
+ for sub_path_info in path_info.iterdir():
165
165
  _add_to_zip(zf, sub_path_info, arcname)
166
166
 
167
- for sub_path_info in importlib_resources.files(package_name).iterdir(): # type: ignore[no-untyped-call]
167
+ for sub_path_info in importlib_resources.files(package_name).iterdir():
168
168
  _add_to_zip(zf, sub_path_info, base_arcname)
169
169
 
170
170
 
@@ -0,0 +1,128 @@
1
+ afraid
2
+ ancient
3
+ angry
4
+ average
5
+ bad
6
+ big
7
+ bitter
8
+ black
9
+ blue
10
+ brave
11
+ breezy
12
+ bright
13
+ brown
14
+ calm
15
+ chatty
16
+ chilly
17
+ clever
18
+ cold
19
+ cowardly
20
+ cuddly
21
+ curly
22
+ curvy
23
+ dangerous
24
+ dry
25
+ dull
26
+ empty
27
+ evil
28
+ fast
29
+ fat
30
+ fluffy
31
+ foolish
32
+ fresh
33
+ friendly
34
+ funny
35
+ gentle
36
+ giant
37
+ good
38
+ great
39
+ green
40
+ grumpy
41
+ happy
42
+ hard
43
+ heavy
44
+ helpless
45
+ honest
46
+ horrible
47
+ hot
48
+ hungry
49
+ itchy
50
+ jolly
51
+ kind
52
+ lazy
53
+ light
54
+ little
55
+ loud
56
+ lovely
57
+ lucky
58
+ massive
59
+ mean
60
+ mighty
61
+ modern
62
+ moody
63
+ nasty
64
+ neat
65
+ nervous
66
+ new
67
+ nice
68
+ odd
69
+ old
70
+ orange
71
+ ordinary
72
+ perfect
73
+ pink
74
+ plastic
75
+ polite
76
+ popular
77
+ pretty
78
+ proud
79
+ purple
80
+ quick
81
+ quiet
82
+ rare
83
+ red
84
+ rotten
85
+ rude
86
+ selfish
87
+ serious
88
+ shaggy
89
+ sharp
90
+ short
91
+ shy
92
+ silent
93
+ silly
94
+ slimy
95
+ slippery
96
+ smart
97
+ smooth
98
+ soft
99
+ sour
100
+ spicy
101
+ splendid
102
+ spotty
103
+ stale
104
+ strange
105
+ strong
106
+ stupid
107
+ sweet
108
+ swift
109
+ tall
110
+ tame
111
+ tasty
112
+ tender
113
+ terrible
114
+ thin
115
+ tidy
116
+ tiny
117
+ tough
118
+ tricky
119
+ ugly
120
+ warm
121
+ weak
122
+ wet
123
+ wicked
124
+ wise
125
+ witty
126
+ wonderful
127
+ yellow
128
+ young
@@ -0,0 +1,128 @@
1
+ anaconda
2
+ ant
3
+ ape
4
+ baboon
5
+ badger
6
+ bat
7
+ bear
8
+ bird
9
+ bobcat
10
+ bulldog
11
+ bullfrog
12
+ camel
13
+ canary
14
+ capybara
15
+ cat
16
+ catfish
17
+ cheetah
18
+ chicken
19
+ chipmunk
20
+ cobra
21
+ cougar
22
+ cow
23
+ crab
24
+ deer
25
+ dingo
26
+ dodo
27
+ dog
28
+ dolphin
29
+ donkey
30
+ dragon
31
+ dragonfly
32
+ duck
33
+ eagle
34
+ earwig
35
+ eel
36
+ egret
37
+ elephant
38
+ emu
39
+ falcon
40
+ fireant
41
+ firefox
42
+ fish
43
+ fly
44
+ fox
45
+ frog
46
+ gazelle
47
+ gecko
48
+ gibbon
49
+ giraffe
50
+ goat
51
+ goose
52
+ gorilla
53
+ grasshopper
54
+ horse
55
+ hound
56
+ husky
57
+ impala
58
+ insect
59
+ jackal
60
+ jaguar
61
+ jellyfish
62
+ kangaroo
63
+ kiwi
64
+ ladybug
65
+ leech
66
+ leopard
67
+ llama
68
+ liger
69
+ lion
70
+ lionfish
71
+ lizard
72
+ lobster
73
+ mayfly
74
+ mamba
75
+ mole
76
+ monkey
77
+ moose
78
+ moth
79
+ mouse
80
+ mule
81
+ newt
82
+ octopus
83
+ otter
84
+ owl
85
+ panda
86
+ panther
87
+ parrot
88
+ penguin
89
+ pig
90
+ puma
91
+ pug
92
+ python
93
+ quail
94
+ rabbit
95
+ ram
96
+ rat
97
+ ray
98
+ rattlesnake
99
+ robin
100
+ salmon
101
+ seahorse
102
+ seal
103
+ shark
104
+ sheep
105
+ shrimp
106
+ skunk
107
+ sloth
108
+ snail
109
+ snake
110
+ squid
111
+ starfish
112
+ stingray
113
+ swan
114
+ termite
115
+ tiger
116
+ treefrog
117
+ turkey
118
+ turtle
119
+ vampirebat
120
+ walrus
121
+ warthog
122
+ wasp
123
+ wolverine
124
+ wombat
125
+ worm
126
+ yak
127
+ yeti
128
+ zebra
@@ -0,0 +1,40 @@
1
+ """Implement a generator for human readable ID (HRID).
2
+
3
+ The original idea for this comes from Asana where it is documented on their
4
+ blog:
5
+ http://blog.asana.com/2011/09/6-sad-squid-snuggle-softly/
6
+
7
+ There are other partial implementations of this and can be found here:
8
+ Node.js: https://github.com/linus/greg
9
+ Java: https://github.com/PerWiklander/IdentifierSentence
10
+
11
+ In this module you will find:
12
+
13
+ HRID16: An implementation of HRIDBase for 16 bit integers.
14
+
15
+ The list used here is coming from:
16
+ https://git.coolaj86.com/coolaj86/human-readable-ids.js
17
+ """
18
+
19
+ import random
20
+
21
+ import importlib_resources
22
+
23
+ from snowflake.ml._internal import human_readable_id
24
+ from snowflake.ml._internal.human_readable_id import hrid_generator_base
25
+
26
+
27
+ class HRID16(hrid_generator_base.HRIDBase):
28
+ """An implementation of HRIDBase for 16 bit integers."""
29
+
30
+ def __id_generator__(self) -> int:
31
+ return int(random.getrandbits(16))
32
+
33
+ __hrid_structure__ = ("adjective", "animal", "number")
34
+ __hrid_words__ = dict(
35
+ number=tuple(str(x) for x in range(1, 5)),
36
+ adjective=tuple(
37
+ importlib_resources.files(human_readable_id).joinpath("adjectives.txt").read_text("utf-8").split()
38
+ ),
39
+ animal=tuple(importlib_resources.files(human_readable_id).joinpath("animals.txt").read_text("utf-8").split()),
40
+ )
@@ -0,0 +1,135 @@
1
+ """Implement a generator for human readable ID (HRID).
2
+
3
+ The original idea for this comes from Asana where it is documented on their
4
+ blog:
5
+ http://blog.asana.com/2011/09/6-sad-squid-snuggle-softly/
6
+
7
+ There are other partial implementations of this and can be found here:
8
+ Node.js: https://github.com/linus/greg
9
+ Java: https://github.com/PerWiklander/IdentifierSentence
10
+
11
+ In this module you will find:
12
+
13
+ HRIDBase: The base class for all human readable id.
14
+ """
15
+
16
+ import math
17
+ from abc import ABC, abstractmethod
18
+ from typing import Dict, List, Tuple
19
+
20
+
21
+ class HRIDBase(ABC):
22
+ """The base class for all all human readable id.
23
+
24
+ This provides all of the necessary helper functionality to turn IDs into
25
+ HRIDs and HRIDs into IDs. ID typically is a random int, while HRID is a corresponding short string.
26
+ """
27
+
28
+ @abstractmethod
29
+ def __id_generator__(self) -> int:
30
+ """The generator to use to generate new IDs. The implementer needs to provide this."""
31
+ pass
32
+
33
+ __hrid_structure__: Tuple[str, ...]
34
+ """The HRID structure to be generated. The implementer needs to provide this."""
35
+
36
+ __hrid_words__: Dict[str, Tuple[str, ...]]
37
+ """The mapping between the HRID parts and the words to use. The implementer needs to provide this."""
38
+
39
+ __separator__ = "_"
40
+
41
+ def __init__(self) -> None:
42
+ self._part_n_words = dict()
43
+ self._part_bits = dict()
44
+ for part in self.__hrid_structure__:
45
+ n_words = len(self.__hrid_words__[part])
46
+ self._part_n_words[part] = n_words
47
+ if not (n_words > 0 and ((n_words & (n_words - 1)) == 0)):
48
+ raise ValueError(f"{part} part has {n_words} words, which is not a power of 2")
49
+ self._part_bits[part] = int(math.log(self._part_n_words[part], 2))
50
+ self.__total_bits__ = sum(v for v in self._part_bits.values())
51
+
52
+ def hrid_to_id(self, hrid: str) -> int:
53
+ """Take the HRID and convert it the ID.
54
+
55
+ Args:
56
+ hrid: The HRID to convert into an ID
57
+
58
+ Returns:
59
+ The ID represented by the HRID
60
+ """
61
+ idxs = self._hrid_to_idxs(hrid)
62
+ id = 0
63
+ for i in range(len(idxs)):
64
+ part = self.__hrid_structure__[i]
65
+ id = (id << self._part_bits[part]) + idxs[i]
66
+ return id
67
+
68
+ def id_to_hrid(self, id: int) -> str:
69
+ """Take the ID and convert it a HRID.
70
+
71
+ Args:
72
+ id: The ID to convert into a HRID
73
+
74
+ Returns:
75
+ The HRID represented by the ID
76
+ """
77
+ idxs = self._id_to_idxs(id)
78
+ hrid = []
79
+ for i in range(len(self.__hrid_structure__)):
80
+ part = self.__hrid_structure__[i]
81
+ values = self.__hrid_words__[part]
82
+ hrid.append(str(values[idxs[i]]))
83
+ return self.__separator__.join(hrid)
84
+
85
+ def generate(self) -> Tuple[int, str]:
86
+ """Generate an ID and the corresponding HRID.
87
+
88
+ Returns:
89
+ A tuple containing the id and the HRID
90
+ """
91
+ id = self.__id_generator__()
92
+ hrid = self.id_to_hrid(id)
93
+ return (id, hrid)
94
+
95
+ def _id_to_idxs(self, id: int) -> List[int]:
96
+ """Take the ID and convert it to indices into the HRID words.
97
+
98
+ Args:
99
+ id: The ID to convert into indices
100
+
101
+ Returns:
102
+ A list of indices into the HRID words
103
+ """
104
+ shift = self.__total_bits__
105
+ idxs = []
106
+ for part in self.__hrid_structure__:
107
+ shift -= self._part_bits[part]
108
+ mask = (self._part_n_words[part] - 1) << shift
109
+ idxs.append((id & mask) >> shift)
110
+ return idxs
111
+
112
+ def _hrid_to_idxs(self, hrid: str) -> List[int]:
113
+ """Take the HRID and convert it to indices into the HRID words.
114
+
115
+ Args:
116
+ hrid: The HRID to convert into indices
117
+
118
+ Raises:
119
+ ValueError: Raised when the input does not meet the structure.
120
+
121
+ Returns:
122
+ A list of indices into the HRID words
123
+ """
124
+ split_hrid = hrid.split(self.__separator__)
125
+ if len(split_hrid) != len(self.__hrid_structure__):
126
+ raise ValueError(
127
+ ("The hrid must have {} parts and be of the form {}").format(
128
+ len(self.__hrid_structure__), self.__hrid_structure__
129
+ )
130
+ )
131
+ idxs = []
132
+ for i in range(len(self.__hrid_structure__)):
133
+ part = self.__hrid_structure__[i]
134
+ idxs.append(self.__hrid_words__[part].index(split_hrid[i]))
135
+ return idxs
@@ -32,6 +32,13 @@ from snowflake.snowpark._internal import utils
32
32
  _log_counter = 0
33
33
  _FLUSH_SIZE = 10
34
34
 
35
+ # Prepopulate allowed connection types for type checking later since getattr is slow on large modules
36
+ _CONNECTION_TYPES = {
37
+ conn_type: getattr(connector, conn_type)
38
+ for conn_type in ["SnowflakeConnection", "StoredProcConnection"]
39
+ if hasattr(connector, conn_type)
40
+ }
41
+
35
42
  _Args = ParamSpec("_Args")
36
43
  _ReturnValue = TypeVar("_ReturnValue")
37
44
 
@@ -321,8 +328,10 @@ def send_api_usage_telemetry(
321
328
  if conn_attr_name:
322
329
  # raise AttributeError if conn attribute does not exist in `self`
323
330
  conn = operator.attrgetter(conn_attr_name)(args[0])
324
- if not isinstance(conn, connector.SnowflakeConnection):
325
- raise TypeError(f"Expected a conn object of type SnowflakeConnection, but got {type(conn)}")
331
+ if not isinstance(conn, _CONNECTION_TYPES.get(type(conn).__name__, connector.SnowflakeConnection)):
332
+ raise TypeError(
333
+ f"Expected a conn object of type {' or '.join(_CONNECTION_TYPES.keys())} but got {type(conn)}"
334
+ )
326
335
  # get an active session
327
336
  else:
328
337
  try:
@@ -1,7 +1,7 @@
1
1
  """String formatting utilities for general use in the SnowML Reposiory.
2
2
 
3
3
  This file contains a collection of utilities that help with formatting strings. Functionality is not limited to tests
4
- only. Anything that is re-usable across different modules and related to string formatting should go here.
4
+ only. Anything that is reusable across different modules and related to string formatting should go here.
5
5
  """
6
6
 
7
7
  import re
@@ -233,13 +233,16 @@ class FeatureStore:
233
233
  self._default_warehouse = warehouse
234
234
 
235
235
  @dispatch_decorator(prpr_version="1.0.8")
236
- def register_entity(self, entity: Entity) -> None:
236
+ def register_entity(self, entity: Entity) -> Entity:
237
237
  """
238
238
  Register Entity in the FeatureStore.
239
239
 
240
240
  Args:
241
241
  entity: Entity object to register.
242
242
 
243
+ Returns:
244
+ A registered entity object.
245
+
243
246
  Raises:
244
247
  SnowflakeMLException: [ValueError] Entity with same name is already registered.
245
248
  SnowflakeMLException: [RuntimeError] Failed to find resources.
@@ -269,15 +272,18 @@ class FeatureStore:
269
272
  error_code=error_codes.INTERNAL_SNOWPARK_ERROR,
270
273
  original_exception=RuntimeError(f"Failed to register entity `{entity.name}`: {e}."),
271
274
  ) from e
275
+
272
276
  logger.info(f"Registered Entity {entity}.")
273
277
 
278
+ return self.get_entity(entity.name)
279
+
274
280
  # TODO: add support to update column desc once SNOW-894249 is fixed
275
281
  @dispatch_decorator(prpr_version="1.0.8")
276
282
  def register_feature_view(
277
283
  self,
278
284
  feature_view: FeatureView,
279
285
  version: str,
280
- block: bool = False,
286
+ block: bool = True,
281
287
  override: bool = False,
282
288
  ) -> FeatureView:
283
289
  """
@@ -297,7 +303,7 @@ class FeatureStore:
297
303
  version: version of the registered FeatureView.
298
304
  NOTE: Version only accepts letters, numbers and underscore. Also version will be capitalized.
299
305
  block: Specify whether the FeatureView backend materialization should be blocking or not. If blocking then
300
- the API will wait until the initial FeatureView data is generated.
306
+ the API will wait until the initial FeatureView data is generated. Default to true.
301
307
  override: Override the existing FeatureView with same version. This is the same as dropping the FeatureView
302
308
  first then recreate. NOTE: there will be backfill cost associated if the FeatureView is being
303
309
  continuously maintained.
@@ -525,104 +531,6 @@ class FeatureStore:
525
531
 
526
532
  return self._compose_feature_view(results[0], self.list_entities().collect())
527
533
 
528
- @dispatch_decorator(prpr_version="1.0.8")
529
- def merge_features(
530
- self,
531
- features: List[Union[FeatureView, FeatureViewSlice]],
532
- name: str,
533
- desc: str = "",
534
- ) -> FeatureView:
535
- """
536
- Merge multiple registered FeatureView or FeatureViewSlice to form a new FeatureView.
537
- This is typically used to add new features to existing FeatureViews since registered FeatureView is immutable.
538
- The FeatureViews or FeatureViewSlices to merge should have same Entity and timestamp column setup.
539
-
540
- Args:
541
- features: List of FeatureViews or FeatureViewSlices to merge
542
- name: name of the new constructed FeatureView
543
- desc: description of the new constructed FeatureView
544
-
545
- Returns:
546
- a new FeatureView with features merged.
547
-
548
- Raises:
549
- SnowflakeMLException: [ValueError] Features length is not valid or if Entitis and timestamp_col is
550
- inconsistent.
551
- SnowflakeMLException: [ValueError] FeatureView has not been registered.
552
- SnowflakeMLException: [ValueError] FeatureView merge failed.
553
- """
554
- name = SqlIdentifier(name)
555
-
556
- if len(features) < 2:
557
- raise snowml_exceptions.SnowflakeMLException(
558
- error_code=error_codes.INVALID_ARGUMENT,
559
- original_exception=ValueError("features should have at least two entries"),
560
- )
561
-
562
- left = features[0]
563
- left_columns = None
564
- if isinstance(left, FeatureViewSlice):
565
- left_columns = ", ".join(left.names)
566
- left = left.feature_view_ref
567
-
568
- if left.status == FeatureViewStatus.DRAFT:
569
- raise snowml_exceptions.SnowflakeMLException(
570
- error_code=error_codes.NOT_FOUND,
571
- original_exception=ValueError(f"FeatureView {left.name} has not been registered."),
572
- )
573
-
574
- join_keys = [k for e in left.entities for k in e.join_keys]
575
-
576
- ts_col_expr = "" if left.timestamp_col is None else f" , {left.timestamp_col}"
577
- left_columns = "*" if left_columns is None else f"{', '.join(join_keys)}, {left_columns}{ts_col_expr}"
578
- left_df = self._session.sql(f"SELECT {left_columns} FROM {left.fully_qualified_name()}")
579
-
580
- for right in features[1:]:
581
- right_columns = None
582
- if isinstance(right, FeatureViewSlice):
583
- right_columns = ", ".join(right.names)
584
- right = right.feature_view_ref
585
-
586
- if left.entities != right.entities:
587
- raise snowml_exceptions.SnowflakeMLException(
588
- error_code=error_codes.INVALID_ARGUMENT,
589
- original_exception=ValueError(
590
- f"Cannot merge FeatureView {left.name} and {right.name} with different Entities: "
591
- f"{left.entities} vs {right.entities}" # noqa: E501
592
- ),
593
- )
594
- if left.timestamp_col != right.timestamp_col:
595
- raise snowml_exceptions.SnowflakeMLException(
596
- error_code=error_codes.INVALID_ARGUMENT,
597
- original_exception=ValueError(
598
- f"Cannot merge FeatureView {left.name} and {right.name} with different timestamp_col: "
599
- f"{left.timestamp_col} vs {right.timestamp_col}" # noqa: E501
600
- ),
601
- )
602
- if right.status == FeatureViewStatus.DRAFT:
603
- raise snowml_exceptions.SnowflakeMLException(
604
- error_code=error_codes.NOT_FOUND,
605
- original_exception=ValueError(f"FeatureView {right.name} has not been registered."),
606
- )
607
-
608
- right_columns = "*" if right_columns is None else f"{', '.join(join_keys)}, {right_columns}"
609
- exclude_ts_expr = (
610
- "" if right.timestamp_col is None or right_columns != "*" else f"EXCLUDE {right.timestamp_col}"
611
- )
612
- right_df = self._session.sql(
613
- f"SELECT {right_columns} {exclude_ts_expr} FROM {right.fully_qualified_name()}"
614
- )
615
-
616
- left_df = left_df.join(right=right_df, on=join_keys)
617
-
618
- return FeatureView(
619
- name=name,
620
- entities=left.entities,
621
- feature_df=left_df,
622
- timestamp_col=left.timestamp_col,
623
- desc=desc,
624
- )
625
-
626
534
  @dispatch_decorator(prpr_version="1.0.8")
627
535
  def resume_feature_view(self, feature_view: FeatureView) -> FeatureView:
628
536
  """
@@ -1056,10 +964,7 @@ class FeatureStore:
1056
964
  WAREHOUSE = {warehouse}
1057
965
  AS {feature_view.query}
1058
966
  """
1059
- self._session.sql(query).collect(statement_params=self._telemetry_stmp)
1060
- self._session.sql(f"ALTER DYNAMIC TABLE {fully_qualified_name} REFRESH").collect(
1061
- block=block, statement_params=self._telemetry_stmp
1062
- )
967
+ self._session.sql(query).collect(block=block, statement_params=self._telemetry_stmp)
1063
968
 
1064
969
  if schedule_task:
1065
970
  try:
@@ -1092,6 +997,10 @@ class FeatureStore:
1092
997
  ),
1093
998
  ) from e
1094
999
 
1000
+ if block:
1001
+ self._check_dynamic_table_refresh_mode(feature_view_name)
1002
+
1003
+ def _check_dynamic_table_refresh_mode(self, feature_view_name: SqlIdentifier) -> None:
1095
1004
  found_dts = self._find_object("DYNAMIC TABLES", feature_view_name)
1096
1005
  if len(found_dts) != 1:
1097
1006
  raise snowml_exceptions.SnowflakeMLException(
@@ -1161,7 +1070,7 @@ class FeatureStore:
1161
1070
  def _validate_entity_exists(self, name: SqlIdentifier) -> bool:
1162
1071
  full_entity_tag_name = self._get_entity_name(name)
1163
1072
  found_rows = self._find_object("TAGS", full_entity_tag_name)
1164
- return len(found_rows) > 0
1073
+ return len(found_rows) == 1
1165
1074
 
1166
1075
  def _join_features(
1167
1076
  self,
@@ -90,11 +90,12 @@ class SFFileSystem(fsspec.AbstractFileSystem):
90
90
  ) from e
91
91
 
92
92
  if sf_connection:
93
- self._conn = sf_connection
93
+ self._session = snowpark.Session.builder.config("connection", sf_connection).create()
94
94
  elif snowpark_session:
95
- self._conn = snowpark_session._conn._conn
95
+ self._session = snowpark_session
96
96
  else:
97
97
  raise ValueError("Either sf_connection or snowpark_session has to be non-empty!")
98
+ self._conn = self._session._conn._conn # Telemetry wrappers expect connection under `conn_attr_name="_conn"``
98
99
  self._kwargs = kwargs
99
100
  self._stage_fs_set: Dict[Tuple[str, str, str], stage_fs.SFStageFileSystem] = {}
100
101
 
@@ -168,7 +169,7 @@ class SFFileSystem(fsspec.AbstractFileSystem):
168
169
  stage_fs_key = (sf_file_path.database, sf_file_path.schema, sf_file_path.stage)
169
170
  if stage_fs_key not in self._stage_fs_set:
170
171
  cnt_stage_fs = stage_fs.SFStageFileSystem(
171
- sf_connection=self._conn,
172
+ snowpark_session=self._session,
172
173
  db=sf_file_path.database,
173
174
  schema=sf_file_path.schema,
174
175
  stage=sf_file_path.stage,