snowflake-ml-python 1.22.0__py3-none-any.whl → 1.23.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (32) hide show
  1. snowflake/ml/jobs/__init__.py +2 -0
  2. snowflake/ml/jobs/_utils/constants.py +1 -0
  3. snowflake/ml/jobs/_utils/payload_utils.py +38 -18
  4. snowflake/ml/jobs/_utils/query_helper.py +8 -1
  5. snowflake/ml/jobs/_utils/runtime_env_utils.py +117 -0
  6. snowflake/ml/jobs/_utils/stage_utils.py +2 -2
  7. snowflake/ml/jobs/_utils/types.py +22 -2
  8. snowflake/ml/jobs/job_definition.py +232 -0
  9. snowflake/ml/jobs/manager.py +16 -177
  10. snowflake/ml/model/_client/model/model_version_impl.py +90 -76
  11. snowflake/ml/model/_client/ops/model_ops.py +2 -18
  12. snowflake/ml/model/_client/ops/param_utils.py +124 -0
  13. snowflake/ml/model/_client/ops/service_ops.py +63 -18
  14. snowflake/ml/model/_client/service/model_deployment_spec.py +12 -5
  15. snowflake/ml/model/_client/service/model_deployment_spec_schema.py +1 -0
  16. snowflake/ml/model/_client/sql/service.py +4 -25
  17. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +21 -3
  18. snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template +21 -3
  19. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +21 -3
  20. snowflake/ml/model/_model_composer/model_method/model_method.py +2 -1
  21. snowflake/ml/model/_packager/model_handlers/huggingface.py +54 -10
  22. snowflake/ml/model/_packager/model_handlers/sentence_transformers.py +52 -16
  23. snowflake/ml/model/_signatures/utils.py +55 -0
  24. snowflake/ml/model/openai_signatures.py +97 -0
  25. snowflake/ml/registry/_manager/model_parameter_reconciler.py +1 -1
  26. snowflake/ml/version.py +1 -1
  27. {snowflake_ml_python-1.22.0.dist-info → snowflake_ml_python-1.23.0.dist-info}/METADATA +67 -1
  28. {snowflake_ml_python-1.22.0.dist-info → snowflake_ml_python-1.23.0.dist-info}/RECORD +31 -29
  29. snowflake/ml/experiment/callback/__init__.py +0 -0
  30. {snowflake_ml_python-1.22.0.dist-info → snowflake_ml_python-1.23.0.dist-info}/WHEEL +0 -0
  31. {snowflake_ml_python-1.22.0.dist-info → snowflake_ml_python-1.23.0.dist-info}/licenses/LICENSE.txt +0 -0
  32. {snowflake_ml_python-1.22.0.dist-info → snowflake_ml_python-1.23.0.dist-info}/top_level.txt +0 -0
@@ -1,11 +1,5 @@
1
- import json
2
1
  import logging
3
- import os
4
- import pathlib
5
- import sys
6
- from pathlib import PurePath
7
2
  from typing import Any, Callable, Optional, TypeVar, Union, cast, overload
8
- from uuid import uuid4
9
3
 
10
4
  import pandas as pd
11
5
 
@@ -13,13 +7,8 @@ from snowflake import snowpark
13
7
  from snowflake.ml._internal import telemetry
14
8
  from snowflake.ml._internal.utils import identifier
15
9
  from snowflake.ml.jobs import job as jb
16
- from snowflake.ml.jobs._utils import (
17
- constants,
18
- feature_flags,
19
- payload_utils,
20
- query_helper,
21
- types,
22
- )
10
+ from snowflake.ml.jobs._utils import query_helper
11
+ from snowflake.ml.jobs.job_definition import MLJobDefinition
23
12
  from snowflake.snowpark.context import get_active_session
24
13
  from snowflake.snowpark.exceptions import SnowparkSQLException
25
14
  from snowflake.snowpark.functions import coalesce, col, lit, when
@@ -457,7 +446,6 @@ def _submit_job(
457
446
  An object representing the submitted job.
458
447
 
459
448
  Raises:
460
- ValueError: If database or schema value(s) are invalid
461
449
  RuntimeError: If schema is not specified in session context or job submission
462
450
  """
463
451
  session = _ensure_session(session)
@@ -469,94 +457,30 @@ def _submit_job(
469
457
  )
470
458
  target_instances = max(target_instances, kwargs.pop("num_instances"))
471
459
 
472
- imports = None
473
460
  if "additional_payloads" in kwargs:
474
461
  logger.warning(
475
462
  "'additional_payloads' is deprecated and will be removed in a future release. Use 'imports' instead."
476
463
  )
477
- imports = kwargs.pop("additional_payloads")
464
+ if "imports" not in kwargs:
465
+ imports = kwargs.pop("additional_payloads", None)
466
+ kwargs.update({"imports": imports})
478
467
 
479
468
  if "runtime_environment" in kwargs:
480
469
  logger.warning("'runtime_environment' is in private preview since 1.15.0, do not use it in production.")
481
470
 
482
- # Use kwargs for less common optional parameters
483
- database = kwargs.pop("database", None)
484
- schema = kwargs.pop("schema", None)
485
- min_instances = kwargs.pop("min_instances", target_instances)
486
- pip_requirements = kwargs.pop("pip_requirements", None)
487
- external_access_integrations = kwargs.pop("external_access_integrations", None)
488
- env_vars = kwargs.pop("env_vars", None)
489
- spec_overrides = kwargs.pop("spec_overrides", None)
490
- enable_metrics = kwargs.pop("enable_metrics", True)
491
- query_warehouse = kwargs.pop("query_warehouse", session.get_current_warehouse())
492
- imports = kwargs.pop("imports", None) or imports
493
- # if the mljob is submitted from a notebook, we use the same image tag as the notebook
494
- runtime_environment = kwargs.pop("runtime_environment", os.environ.get(constants.RUNTIME_IMAGE_TAG_ENV_VAR, None))
495
-
496
- # Warn if there are unknown kwargs
497
- if kwargs:
498
- logger.warning(f"Ignoring unknown kwargs: {kwargs.keys()}")
499
-
500
- # Validate parameters
501
- if database and not schema:
502
- raise ValueError("Schema must be specified if database is specified.")
503
- if target_instances < 1:
504
- raise ValueError("target_instances must be greater than 0.")
505
- if not (0 < min_instances <= target_instances):
506
- raise ValueError("min_instances must be greater than 0 and less than or equal to target_instances.")
507
- if min_instances > 1:
508
- # Validate min_instances against compute pool max_nodes
509
- pool_info = jb._get_compute_pool_info(session, compute_pool)
510
- max_nodes = int(pool_info["max_nodes"])
511
- if min_instances > max_nodes:
512
- raise ValueError(
513
- f"The requested min_instances ({min_instances}) exceeds the max_nodes ({max_nodes}) "
514
- f"of compute pool '{compute_pool}'. Reduce min_instances or increase max_nodes."
515
- )
516
-
517
- job_name = f"{JOB_ID_PREFIX}{str(uuid4()).replace('-', '_').upper()}"
518
- job_id = identifier.get_schema_level_object_identifier(database, schema, job_name)
519
- stage_path_parts = identifier.parse_snowflake_stage_path(stage_name.lstrip("@"))
520
- stage_name = f"@{'.'.join(filter(None, stage_path_parts[:3]))}"
521
- stage_path = pathlib.PurePosixPath(f"{stage_name}{stage_path_parts[-1].rstrip('/')}/{job_name}")
522
-
523
- try:
524
- # Upload payload
525
- uploaded_payload = payload_utils.JobPayload(
526
- source, entrypoint=entrypoint, pip_requirements=pip_requirements, imports=imports
527
- ).upload(session, stage_path)
528
- except SnowparkSQLException as e:
529
- if e.sql_error_code == 90106:
530
- raise RuntimeError(
531
- "Please specify a schema, either in the session context or as a parameter in the job submission"
532
- )
533
- elif e.sql_error_code == 3001 and "schema" in str(e).lower():
534
- raise RuntimeError(
535
- "please grant privileges on schema before submitting a job, see",
536
- "https://docs.snowflake.com/en/developer-guide/snowflake-ml/ml-jobs/access-control-requirements",
537
- " for more details",
538
- ) from e
539
- raise
540
-
541
- combined_env_vars = {**uploaded_payload.env_vars, **(env_vars or {})}
471
+ job_definition = MLJobDefinition.register(
472
+ source,
473
+ compute_pool,
474
+ stage_name,
475
+ session or get_active_session(),
476
+ entrypoint,
477
+ target_instances,
478
+ generate_suffix=True,
479
+ **kwargs,
480
+ )
542
481
 
543
482
  try:
544
- return _do_submit_job(
545
- session=session,
546
- payload=uploaded_payload,
547
- args=args,
548
- env_vars=combined_env_vars,
549
- spec_overrides=spec_overrides,
550
- compute_pool=compute_pool,
551
- job_id=job_id,
552
- external_access_integrations=external_access_integrations,
553
- query_warehouse=query_warehouse,
554
- target_instances=target_instances,
555
- min_instances=min_instances,
556
- enable_metrics=enable_metrics,
557
- use_async=True,
558
- runtime_environment=runtime_environment,
559
- )
483
+ return job_definition(*(args or []))
560
484
  except SnowparkSQLException as e:
561
485
  if e.sql_error_code == 3001 and "schema" in str(e).lower():
562
486
  raise RuntimeError(
@@ -567,91 +491,6 @@ def _submit_job(
567
491
  raise
568
492
 
569
493
 
570
- def _do_submit_job(
571
- session: snowpark.Session,
572
- payload: types.UploadedPayload,
573
- args: Optional[list[str]],
574
- env_vars: dict[str, str],
575
- spec_overrides: dict[str, Any],
576
- compute_pool: str,
577
- job_id: Optional[str] = None,
578
- external_access_integrations: Optional[list[str]] = None,
579
- query_warehouse: Optional[str] = None,
580
- target_instances: int = 1,
581
- min_instances: int = 1,
582
- enable_metrics: bool = True,
583
- use_async: bool = True,
584
- runtime_environment: Optional[str] = None,
585
- ) -> jb.MLJob[Any]:
586
- """
587
- Generate the SQL query for job submission.
588
-
589
- Args:
590
- session: The Snowpark session to use.
591
- payload: The uploaded job payload.
592
- args: Arguments to pass to the entrypoint script.
593
- env_vars: Environment variables to set in the job container.
594
- spec_overrides: Custom service specification overrides.
595
- compute_pool: The compute pool to use for job execution.
596
- job_id: The ID of the job.
597
- external_access_integrations: Optional list of external access integrations.
598
- query_warehouse: Optional query warehouse to use.
599
- target_instances: Number of instances for multi-node job.
600
- min_instances: Minimum number of instances required to start the job.
601
- enable_metrics: Whether to enable platform metrics for the job.
602
- use_async: Whether to run the job asynchronously.
603
- runtime_environment: image tag or full image URL to use for the job.
604
-
605
- Returns:
606
- The job object.
607
- """
608
- args = [(v.as_posix() if isinstance(v, PurePath) else v) for v in payload.entrypoint] + (args or [])
609
- spec_options = {
610
- "STAGE_PATH": payload.stage_path.as_posix(),
611
- "ENTRYPOINT": ["/usr/local/bin/_entrypoint.sh"],
612
- "ARGS": args,
613
- "ENV_VARS": env_vars,
614
- "ENABLE_METRICS": enable_metrics,
615
- "SPEC_OVERRIDES": spec_overrides,
616
- }
617
- if runtime_environment:
618
- # for the image tag or full image URL, we use that directly
619
- spec_options["RUNTIME"] = runtime_environment
620
- elif feature_flags.FeatureFlags.ENABLE_RUNTIME_VERSIONS.is_enabled():
621
- # when feature flag is enabled, we get the local python version and wrap it in a dict
622
- # in system function, we can know whether it is python version or image tag or full image URL through the format
623
- spec_options["RUNTIME"] = json.dumps({"pythonVersion": f"{sys.version_info.major}.{sys.version_info.minor}"})
624
-
625
- job_options = {
626
- "EXTERNAL_ACCESS_INTEGRATIONS": external_access_integrations,
627
- "QUERY_WAREHOUSE": query_warehouse,
628
- "TARGET_INSTANCES": target_instances,
629
- "MIN_INSTANCES": min_instances,
630
- "ASYNC": use_async,
631
- }
632
-
633
- if feature_flags.FeatureFlags.ENABLE_STAGE_MOUNT_V2.is_enabled(default=True):
634
- spec_options["ENABLE_STAGE_MOUNT_V2"] = True
635
- if payload.payload_name:
636
- job_options["GENERATE_SUFFIX"] = True
637
- job_options = {k: v for k, v in job_options.items() if v is not None}
638
-
639
- query_template = "CALL SYSTEM$EXECUTE_ML_JOB(?, ?, ?, ?)"
640
- if job_id:
641
- database, schema, _ = identifier.parse_schema_level_object_identifier(job_id)
642
- params = [
643
- job_id
644
- if payload.payload_name is None
645
- else identifier.get_schema_level_object_identifier(database, schema, payload.payload_name) + "_",
646
- compute_pool,
647
- json.dumps(spec_options),
648
- json.dumps(job_options),
649
- ]
650
- actual_job_id = query_helper.run_query(session, query_template, params=params)[0][0]
651
-
652
- return get_job(actual_job_id, session=session)
653
-
654
-
655
494
  def _ensure_session(session: Optional[snowpark.Session]) -> snowpark.Session:
656
495
  try:
657
496
  session = session or get_active_session()
@@ -1,6 +1,4 @@
1
- import base64
2
1
  import enum
3
- import json
4
2
  import pathlib
5
3
  import tempfile
6
4
  import uuid
@@ -8,7 +6,6 @@ import warnings
8
6
  from typing import Any, Callable, Optional, Union, overload
9
7
 
10
8
  import pandas as pd
11
- from pydantic import TypeAdapter
12
9
 
13
10
  from snowflake import snowpark
14
11
  from snowflake.ml._internal import telemetry
@@ -33,7 +30,10 @@ _TELEMETRY_PROJECT = "MLOps"
33
30
  _TELEMETRY_SUBPROJECT = "ModelManagement"
34
31
  _BATCH_INFERENCE_JOB_ID_PREFIX = "BATCH_INFERENCE_"
35
32
  _BATCH_INFERENCE_TEMPORARY_FOLDER = "_temporary"
36
- _UTF8_ENCODING = "utf-8"
33
+ VLLM_SUPPORTED_TASKS = [
34
+ "text-generation",
35
+ "image-text-to-text",
36
+ ]
37
37
 
38
38
 
39
39
  class ExportMode(enum.Enum):
@@ -649,41 +649,6 @@ class ModelVersion(lineage_node.LineageNode):
649
649
  method_options, target_function_info["name"]
650
650
  )
651
651
 
652
- @staticmethod
653
- def _encode_column_handling(
654
- column_handling: Optional[dict[str, batch_inference_specs.ColumnHandlingOptions]],
655
- ) -> Optional[str]:
656
- """Validate and encode column_handling to a base64 string.
657
-
658
- Args:
659
- column_handling: Optional dictionary mapping column names to file encoding options.
660
-
661
- Returns:
662
- Base64 encoded JSON string of the column handling options, or None if input is None.
663
- """
664
- # TODO: validation for column names
665
- if column_handling is None:
666
- return None
667
- adapter = TypeAdapter(dict[str, batch_inference_specs.ColumnHandlingOptions])
668
- # TODO: throw error if the validate_python function fails
669
- validated_input = adapter.validate_python(column_handling)
670
- return base64.b64encode(adapter.dump_json(validated_input)).decode(_UTF8_ENCODING)
671
-
672
- @staticmethod
673
- def _encode_params(params: Optional[dict[str, Any]]) -> Optional[str]:
674
- """Encode params dictionary to a base64 string.
675
-
676
- Args:
677
- params: Optional dictionary of model inference parameters.
678
-
679
- Returns:
680
- Base64 encoded JSON string of the params, or None if input is None.
681
- """
682
- if params is None:
683
- return None
684
- # TODO: validation for param names, types
685
- return base64.b64encode(json.dumps(params).encode(_UTF8_ENCODING)).decode(_UTF8_ENCODING)
686
-
687
652
  @telemetry.send_api_usage_telemetry(
688
653
  project=_TELEMETRY_PROJECT,
689
654
  subproject=_TELEMETRY_SUBPROJECT,
@@ -703,6 +668,7 @@ class ModelVersion(lineage_node.LineageNode):
703
668
  job_spec: Optional[batch_inference_specs.JobSpec] = None,
704
669
  params: Optional[dict[str, Any]] = None,
705
670
  column_handling: Optional[dict[str, batch_inference_specs.ColumnHandlingOptions]] = None,
671
+ inference_engine_options: Optional[dict[str, Any]] = None,
706
672
  ) -> job.MLJob[Any]:
707
673
  """Execute batch inference on datasets as an SPCS job.
708
674
 
@@ -722,6 +688,10 @@ class ModelVersion(lineage_node.LineageNode):
722
688
  column_handling (Optional[dict[str, batch_inference_specs.FileEncoding]]): Optional dictionary
723
689
  specifying how to handle specific columns during file I/O. Maps column names to their
724
690
  file encoding configuration.
691
+ inference_engine_options: Options for the service creation with custom inference engine.
692
+ Supports `engine` and `engine_args_override`.
693
+ `engine` is the type of the inference engine to use.
694
+ `engine_args_override` is a list of string arguments to pass to the inference engine.
725
695
 
726
696
  Returns:
727
697
  job.MLJob[Any]: A batch inference job object that can be used to monitor progress and manage the job
@@ -777,12 +747,18 @@ class ModelVersion(lineage_node.LineageNode):
777
747
  subproject=_TELEMETRY_SUBPROJECT,
778
748
  )
779
749
 
780
- column_handling_as_string = self._encode_column_handling(column_handling)
781
- params_as_string = self._encode_params(params)
782
-
783
750
  if job_spec is None:
784
751
  job_spec = batch_inference_specs.JobSpec()
785
752
 
753
+ # Validate GPU support if GPU resources are requested
754
+ self._throw_error_if_gpu_is_not_supported(job_spec.gpu_requests, statement_params)
755
+
756
+ inference_engine_args = self._prepare_inference_engine_args(
757
+ inference_engine_options,
758
+ job_spec.gpu_requests,
759
+ statement_params,
760
+ )
761
+
786
762
  warehouse = job_spec.warehouse or self._service_ops._session.get_current_warehouse()
787
763
  if warehouse is None:
788
764
  raise ValueError("Warehouse is not set. Please set the warehouse field in the JobSpec.")
@@ -807,12 +783,14 @@ class ModelVersion(lineage_node.LineageNode):
807
783
  else:
808
784
  job_name = job_spec.job_name
809
785
 
786
+ target_function_info = self._get_function_info(function_name=job_spec.function_name)
787
+
810
788
  return self._service_ops.invoke_batch_job_method(
811
789
  # model version info
812
790
  model_name=self._model_name,
813
791
  version_name=self._version_name,
814
792
  # job spec
815
- function_name=self._get_function_info(function_name=job_spec.function_name)["target_method"],
793
+ function_name=target_function_info["target_method"],
816
794
  compute_pool_name=sql_identifier.SqlIdentifier(compute_pool),
817
795
  force_rebuild=job_spec.force_rebuild,
818
796
  image_repo_name=job_spec.image_repo,
@@ -827,12 +805,14 @@ class ModelVersion(lineage_node.LineageNode):
827
805
  # input and output
828
806
  input_stage_location=input_stage_location,
829
807
  input_file_pattern="*",
830
- column_handling=column_handling_as_string,
831
- params=params_as_string,
808
+ column_handling=column_handling,
809
+ params=params,
810
+ signature_params=target_function_info["signature"].params,
832
811
  output_stage_location=output_stage_location,
833
812
  completion_filename="_SUCCESS",
834
813
  # misc
835
814
  statement_params=statement_params,
815
+ inference_engine_args=inference_engine_args,
836
816
  )
837
817
 
838
818
  def _get_function_info(self, function_name: Optional[str]) -> model_manifest_schema.ModelFunctionInfo:
@@ -1048,20 +1028,55 @@ class ModelVersion(lineage_node.LineageNode):
1048
1028
  " the `log_model` function."
1049
1029
  )
1050
1030
 
1051
- def _check_huggingface_text_generation_model(
1031
+ def _prepare_inference_engine_args(
1032
+ self,
1033
+ inference_engine_options: Optional[dict[str, Any]],
1034
+ gpu_requests: Optional[Union[str, int]],
1035
+ statement_params: Optional[dict[str, Any]] = None,
1036
+ ) -> Optional[service_ops.InferenceEngineArgs]:
1037
+ """Prepare and validate inference engine arguments.
1038
+
1039
+ This method handles the common logic for processing inference engine options:
1040
+ 1. Parse inference engine options into InferenceEngineArgs
1041
+ 2. Validate that the model is a HuggingFace text-generation model (if inference engine is specified)
1042
+ 3. Enrich inference engine args
1043
+
1044
+ Args:
1045
+ inference_engine_options: Optional dictionary containing inference engine configuration.
1046
+ gpu_requests: GPU resource request string (e.g., "4").
1047
+ statement_params: Optional dictionary of statement parameters for SQL commands.
1048
+
1049
+ Returns:
1050
+ Prepared InferenceEngineArgs or None if no inference engine is specified.
1051
+ """
1052
+ inference_engine_args = inference_engine_utils._get_inference_engine_args(inference_engine_options)
1053
+
1054
+ if inference_engine_args is not None:
1055
+ # Validate that model is HuggingFace vLLM supported model and is logged with
1056
+ # OpenAI compatible signature.
1057
+ self._check_huggingface_vllm_supported_model(statement_params)
1058
+ # Enrich with GPU configuration
1059
+ inference_engine_args = inference_engine_utils._enrich_inference_engine_args(
1060
+ inference_engine_args,
1061
+ gpu_requests,
1062
+ )
1063
+
1064
+ return inference_engine_args
1065
+
1066
+ def _check_huggingface_vllm_supported_model(
1052
1067
  self,
1053
1068
  statement_params: Optional[dict[str, Any]] = None,
1054
1069
  ) -> None:
1055
- """Check if the model is a HuggingFace pipeline with text-generation task
1056
- and is logged with OPENAI_CHAT_SIGNATURE.
1070
+ """Check if the model is a HuggingFace pipeline with vLLM supported task
1071
+ and is logged with OpenAI compatible signature.
1057
1072
 
1058
1073
  Args:
1059
1074
  statement_params: Optional dictionary of statement parameters to include
1060
1075
  in the SQL command to fetch model spec.
1061
1076
 
1062
1077
  Raises:
1063
- ValueError: If the model is not a HuggingFace text-generation model or
1064
- if the model is not logged with OPENAI_CHAT_SIGNATURE.
1078
+ ValueError: If the model is not a HuggingFace vLLM supported model or
1079
+ if the model is not logged with OpenAI compatible signature.
1065
1080
  """
1066
1081
  # Fetch model spec
1067
1082
  model_spec = self._get_model_spec(statement_params)
@@ -1070,34 +1085,37 @@ class ModelVersion(lineage_node.LineageNode):
1070
1085
  model_type = model_spec.get("model_type")
1071
1086
  if model_type != "huggingface_pipeline":
1072
1087
  raise ValueError(
1073
- f"Inference engine is only supported for HuggingFace text-generation models. "
1088
+ f"Inference engine is only supported for HuggingFace vLLM supported models. "
1074
1089
  f"Found model_type: {model_type}"
1075
1090
  )
1076
1091
 
1077
- # Check if model supports text-generation task
1092
+ # Check if model supports vLLM supported task
1078
1093
  # There should only be one model in the list because we don't support multiple models in a single model spec
1079
1094
  models = model_spec.get("models", {})
1080
- is_text_generation = False
1095
+ is_vllm_supported_task = False
1081
1096
  found_tasks: list[str] = []
1082
1097
 
1083
- # As long as the model supports text-generation task, we can use it
1098
+ # As long as the model supports vLLM supported task, we can use it
1084
1099
  for _, model_info in models.items():
1085
1100
  options = model_info.get("options", {})
1086
1101
  task = options.get("task")
1087
1102
  if task:
1088
1103
  found_tasks.append(str(task))
1089
- if task == "text-generation":
1090
- is_text_generation = True
1104
+ if task in VLLM_SUPPORTED_TASKS:
1105
+ is_vllm_supported_task = True
1091
1106
  break
1092
1107
 
1093
- if not is_text_generation:
1108
+ if not is_vllm_supported_task:
1094
1109
  tasks_str = ", ".join(found_tasks)
1095
1110
  found_tasks_str = (
1096
1111
  f"Found task(s): {tasks_str} in model spec." if found_tasks else "No task found in model spec."
1097
1112
  )
1098
- raise ValueError(f"Inference engine is only supported for task 'text-generation'. {found_tasks_str}")
1113
+ supported_tasks_str = ", ".join(VLLM_SUPPORTED_TASKS)
1114
+ raise ValueError(
1115
+ f"Inference engine is only supported for vLLM supported tasks. {supported_tasks_str}. {found_tasks_str}"
1116
+ )
1099
1117
 
1100
- # Check if the model is logged with OPENAI_CHAT_SIGNATURE
1118
+ # Check if the model is logged with OpenAI compatible signature.
1101
1119
  signatures_dict = model_spec.get("signatures", {})
1102
1120
 
1103
1121
  # Deserialize signatures from model spec to ModelSignature objects for proper semantic comparison.
@@ -1105,11 +1123,16 @@ class ModelVersion(lineage_node.LineageNode):
1105
1123
  func_name: core.ModelSignature.from_dict(sig_dict) for func_name, sig_dict in signatures_dict.items()
1106
1124
  }
1107
1125
 
1108
- if deserialized_signatures != openai_signatures.OPENAI_CHAT_SIGNATURE:
1126
+ if deserialized_signatures not in [
1127
+ openai_signatures.OPENAI_CHAT_SIGNATURE,
1128
+ openai_signatures.OPENAI_CHAT_SIGNATURE_WITH_CONTENT_FORMAT_STRING,
1129
+ ]:
1109
1130
  raise ValueError(
1110
- "Inference engine requires the model to be logged with OPENAI_CHAT_SIGNATURE. "
1131
+ "Inference engine requires the model to be logged with openai_signatures.OPENAI_CHAT_SIGNATURE or "
1132
+ "openai_signatures.OPENAI_CHAT_SIGNATURE_WITH_CONTENT_FORMAT_STRING. "
1111
1133
  f"Found signatures: {signatures_dict}. "
1112
- "Please log the model with: signatures=openai_signatures.OPENAI_CHAT_SIGNATURE"
1134
+ "Please log the model again with: signatures=openai_signatures.OPENAI_CHAT_SIGNATURE or "
1135
+ "signatures=openai_signatures.OPENAI_CHAT_SIGNATURE_WITH_CONTENT_FORMAT_STRING"
1113
1136
  )
1114
1137
 
1115
1138
  @overload
@@ -1350,20 +1373,11 @@ class ModelVersion(lineage_node.LineageNode):
1350
1373
  # Validate GPU support if GPU resources are requested
1351
1374
  self._throw_error_if_gpu_is_not_supported(gpu_requests, statement_params)
1352
1375
 
1353
- inference_engine_args = inference_engine_utils._get_inference_engine_args(inference_engine_options)
1354
-
1355
- # Check if model is HuggingFace text-generation and is logged with
1356
- # OPENAI_CHAT_SIGNATURE before doing inference engine checks
1357
- # Only validate if inference engine is actually specified
1358
- if inference_engine_args is not None:
1359
- self._check_huggingface_text_generation_model(statement_params)
1360
-
1361
- # Enrich inference engine args if inference engine is specified
1362
- if inference_engine_args is not None:
1363
- inference_engine_args = inference_engine_utils._enrich_inference_engine_args(
1364
- inference_engine_args,
1365
- gpu_requests,
1366
- )
1376
+ inference_engine_args = self._prepare_inference_engine_args(
1377
+ inference_engine_options,
1378
+ gpu_requests,
1379
+ statement_params,
1380
+ )
1367
1381
 
1368
1382
  from snowflake.ml.model import event_handler
1369
1383
  from snowflake.snowpark import exceptions
@@ -14,7 +14,7 @@ from snowflake.ml._internal import platform_capabilities
14
14
  from snowflake.ml._internal.exceptions import error_codes, exceptions
15
15
  from snowflake.ml._internal.utils import formatting, identifier, sql_identifier, url
16
16
  from snowflake.ml.model import model_signature, type_hints
17
- from snowflake.ml.model._client.ops import deployment_step, metadata_ops
17
+ from snowflake.ml.model._client.ops import deployment_step, metadata_ops, param_utils
18
18
  from snowflake.ml.model._client.sql import (
19
19
  model as model_sql,
20
20
  model_version as model_version_sql,
@@ -1063,23 +1063,7 @@ class ModelOperator:
1063
1063
  col_name = sql_identifier.SqlIdentifier(input_feature.name.upper(), case_sensitive=True)
1064
1064
  input_args.append(col_name)
1065
1065
 
1066
- method_parameters: Optional[list[tuple[sql_identifier.SqlIdentifier, Any]]] = None
1067
- if signature.params:
1068
- # Start with defaults from signature
1069
- final_params = {}
1070
- for param_spec in signature.params:
1071
- if hasattr(param_spec, "default_value"):
1072
- final_params[param_spec.name] = param_spec.default_value
1073
-
1074
- # Override with provided runtime parameters
1075
- if params:
1076
- final_params.update(params)
1077
-
1078
- # Convert to list of tuples with SqlIdentifier for parameter names
1079
- method_parameters = [
1080
- (sql_identifier.SqlIdentifier(param_name), param_value)
1081
- for param_name, param_value in final_params.items()
1082
- ]
1066
+ method_parameters = param_utils.validate_and_resolve_params(params, signature.params)
1083
1067
 
1084
1068
  returns = []
1085
1069
  for output_feature in signature.outputs: