snowflake-ml-python 1.2.0__py3-none-any.whl → 1.2.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (194) hide show
  1. snowflake/ml/_internal/env_utils.py +16 -13
  2. snowflake/ml/_internal/exceptions/modeling_error_messages.py +5 -1
  3. snowflake/ml/_internal/telemetry.py +19 -0
  4. snowflake/ml/feature_store/__init__.py +9 -0
  5. snowflake/ml/feature_store/entity.py +73 -0
  6. snowflake/ml/feature_store/feature_store.py +1657 -0
  7. snowflake/ml/feature_store/feature_view.py +459 -0
  8. snowflake/ml/model/_client/ops/model_ops.py +16 -38
  9. snowflake/ml/model/_client/sql/model.py +1 -7
  10. snowflake/ml/model/_client/sql/model_version.py +20 -15
  11. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +9 -1
  12. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  13. snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +12 -2
  14. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +7 -3
  15. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +1 -6
  16. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +0 -2
  17. snowflake/ml/model/_model_composer/model_runtime/_runtime_requirements.py +10 -1
  18. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -2
  19. snowflake/ml/model/_packager/model_meta/_core_requirements.py +11 -1
  20. snowflake/ml/model/_packager/model_meta/_packaging_requirements.py +3 -0
  21. snowflake/ml/model/_packager/model_meta/model_meta.py +17 -3
  22. snowflake/ml/model/model_signature.py +72 -16
  23. snowflake/ml/model/type_hints.py +12 -0
  24. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -41
  25. snowflake/ml/modeling/_internal/model_trainer_builder.py +13 -9
  26. snowflake/ml/modeling/_internal/{distributed_hpo_trainer.py → snowpark_implementations/distributed_hpo_trainer.py} +66 -96
  27. snowflake/ml/modeling/_internal/{snowpark_handlers.py → snowpark_implementations/snowpark_handlers.py} +9 -6
  28. snowflake/ml/modeling/_internal/{xgboost_external_memory_trainer.py → snowpark_implementations/xgboost_external_memory_trainer.py} +3 -1
  29. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +19 -3
  30. snowflake/ml/modeling/cluster/affinity_propagation.py +19 -3
  31. snowflake/ml/modeling/cluster/agglomerative_clustering.py +19 -3
  32. snowflake/ml/modeling/cluster/birch.py +19 -3
  33. snowflake/ml/modeling/cluster/bisecting_k_means.py +19 -3
  34. snowflake/ml/modeling/cluster/dbscan.py +19 -3
  35. snowflake/ml/modeling/cluster/feature_agglomeration.py +19 -3
  36. snowflake/ml/modeling/cluster/k_means.py +19 -3
  37. snowflake/ml/modeling/cluster/mean_shift.py +19 -3
  38. snowflake/ml/modeling/cluster/mini_batch_k_means.py +19 -3
  39. snowflake/ml/modeling/cluster/optics.py +19 -3
  40. snowflake/ml/modeling/cluster/spectral_biclustering.py +19 -3
  41. snowflake/ml/modeling/cluster/spectral_clustering.py +19 -3
  42. snowflake/ml/modeling/cluster/spectral_coclustering.py +19 -3
  43. snowflake/ml/modeling/compose/column_transformer.py +19 -3
  44. snowflake/ml/modeling/compose/transformed_target_regressor.py +19 -3
  45. snowflake/ml/modeling/covariance/elliptic_envelope.py +19 -3
  46. snowflake/ml/modeling/covariance/empirical_covariance.py +19 -3
  47. snowflake/ml/modeling/covariance/graphical_lasso.py +19 -3
  48. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +19 -3
  49. snowflake/ml/modeling/covariance/ledoit_wolf.py +19 -3
  50. snowflake/ml/modeling/covariance/min_cov_det.py +19 -3
  51. snowflake/ml/modeling/covariance/oas.py +19 -3
  52. snowflake/ml/modeling/covariance/shrunk_covariance.py +19 -3
  53. snowflake/ml/modeling/decomposition/dictionary_learning.py +19 -3
  54. snowflake/ml/modeling/decomposition/factor_analysis.py +19 -3
  55. snowflake/ml/modeling/decomposition/fast_ica.py +19 -3
  56. snowflake/ml/modeling/decomposition/incremental_pca.py +19 -3
  57. snowflake/ml/modeling/decomposition/kernel_pca.py +19 -3
  58. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +19 -3
  59. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +19 -3
  60. snowflake/ml/modeling/decomposition/pca.py +19 -3
  61. snowflake/ml/modeling/decomposition/sparse_pca.py +19 -3
  62. snowflake/ml/modeling/decomposition/truncated_svd.py +19 -3
  63. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +19 -3
  64. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +19 -3
  65. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +19 -3
  66. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +19 -3
  67. snowflake/ml/modeling/ensemble/bagging_classifier.py +19 -3
  68. snowflake/ml/modeling/ensemble/bagging_regressor.py +19 -3
  69. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +19 -3
  70. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +19 -3
  71. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +19 -3
  72. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +19 -3
  73. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +19 -3
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +19 -3
  75. snowflake/ml/modeling/ensemble/isolation_forest.py +19 -3
  76. snowflake/ml/modeling/ensemble/random_forest_classifier.py +19 -3
  77. snowflake/ml/modeling/ensemble/random_forest_regressor.py +19 -3
  78. snowflake/ml/modeling/ensemble/stacking_regressor.py +19 -3
  79. snowflake/ml/modeling/ensemble/voting_classifier.py +19 -3
  80. snowflake/ml/modeling/ensemble/voting_regressor.py +19 -3
  81. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +19 -3
  82. snowflake/ml/modeling/feature_selection/select_fdr.py +19 -3
  83. snowflake/ml/modeling/feature_selection/select_fpr.py +19 -3
  84. snowflake/ml/modeling/feature_selection/select_fwe.py +19 -3
  85. snowflake/ml/modeling/feature_selection/select_k_best.py +19 -3
  86. snowflake/ml/modeling/feature_selection/select_percentile.py +19 -3
  87. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +19 -3
  88. snowflake/ml/modeling/feature_selection/variance_threshold.py +19 -3
  89. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +19 -3
  90. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +19 -3
  91. snowflake/ml/modeling/impute/iterative_imputer.py +19 -3
  92. snowflake/ml/modeling/impute/knn_imputer.py +19 -3
  93. snowflake/ml/modeling/impute/missing_indicator.py +19 -3
  94. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +19 -3
  95. snowflake/ml/modeling/kernel_approximation/nystroem.py +19 -3
  96. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +19 -3
  97. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +19 -3
  98. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +19 -3
  99. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +19 -3
  100. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +19 -3
  101. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +19 -3
  102. snowflake/ml/modeling/linear_model/ard_regression.py +19 -3
  103. snowflake/ml/modeling/linear_model/bayesian_ridge.py +19 -3
  104. snowflake/ml/modeling/linear_model/elastic_net.py +19 -3
  105. snowflake/ml/modeling/linear_model/elastic_net_cv.py +19 -3
  106. snowflake/ml/modeling/linear_model/gamma_regressor.py +19 -3
  107. snowflake/ml/modeling/linear_model/huber_regressor.py +19 -3
  108. snowflake/ml/modeling/linear_model/lars.py +19 -3
  109. snowflake/ml/modeling/linear_model/lars_cv.py +19 -3
  110. snowflake/ml/modeling/linear_model/lasso.py +19 -3
  111. snowflake/ml/modeling/linear_model/lasso_cv.py +19 -3
  112. snowflake/ml/modeling/linear_model/lasso_lars.py +19 -3
  113. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +19 -3
  114. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +19 -3
  115. snowflake/ml/modeling/linear_model/linear_regression.py +19 -3
  116. snowflake/ml/modeling/linear_model/logistic_regression.py +19 -3
  117. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +19 -3
  118. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +19 -3
  119. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +19 -3
  120. snowflake/ml/modeling/linear_model/multi_task_lasso.py +19 -3
  121. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +19 -3
  122. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +19 -3
  123. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +19 -3
  124. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +19 -3
  125. snowflake/ml/modeling/linear_model/perceptron.py +19 -3
  126. snowflake/ml/modeling/linear_model/poisson_regressor.py +19 -3
  127. snowflake/ml/modeling/linear_model/ransac_regressor.py +19 -3
  128. snowflake/ml/modeling/linear_model/ridge.py +19 -3
  129. snowflake/ml/modeling/linear_model/ridge_classifier.py +19 -3
  130. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +19 -3
  131. snowflake/ml/modeling/linear_model/ridge_cv.py +19 -3
  132. snowflake/ml/modeling/linear_model/sgd_classifier.py +19 -3
  133. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +19 -3
  134. snowflake/ml/modeling/linear_model/sgd_regressor.py +19 -3
  135. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +19 -3
  136. snowflake/ml/modeling/linear_model/tweedie_regressor.py +19 -3
  137. snowflake/ml/modeling/manifold/isomap.py +19 -3
  138. snowflake/ml/modeling/manifold/mds.py +19 -3
  139. snowflake/ml/modeling/manifold/spectral_embedding.py +19 -3
  140. snowflake/ml/modeling/manifold/tsne.py +19 -3
  141. snowflake/ml/modeling/metrics/classification.py +5 -6
  142. snowflake/ml/modeling/metrics/metrics_utils.py +5 -3
  143. snowflake/ml/modeling/metrics/ranking.py +7 -3
  144. snowflake/ml/modeling/metrics/regression.py +6 -3
  145. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +19 -3
  146. snowflake/ml/modeling/mixture/gaussian_mixture.py +19 -3
  147. snowflake/ml/modeling/model_selection/grid_search_cv.py +3 -13
  148. snowflake/ml/modeling/model_selection/randomized_search_cv.py +3 -13
  149. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +19 -3
  150. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +19 -3
  151. snowflake/ml/modeling/multiclass/output_code_classifier.py +19 -3
  152. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +19 -3
  153. snowflake/ml/modeling/naive_bayes/categorical_nb.py +19 -3
  154. snowflake/ml/modeling/naive_bayes/complement_nb.py +19 -3
  155. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +19 -3
  156. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +19 -3
  157. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +19 -3
  158. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +19 -3
  159. snowflake/ml/modeling/neighbors/kernel_density.py +19 -3
  160. snowflake/ml/modeling/neighbors/local_outlier_factor.py +19 -3
  161. snowflake/ml/modeling/neighbors/nearest_centroid.py +19 -3
  162. snowflake/ml/modeling/neighbors/nearest_neighbors.py +19 -3
  163. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +19 -3
  164. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +19 -3
  165. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +19 -3
  166. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +19 -3
  167. snowflake/ml/modeling/neural_network/mlp_classifier.py +19 -3
  168. snowflake/ml/modeling/neural_network/mlp_regressor.py +19 -3
  169. snowflake/ml/modeling/preprocessing/polynomial_features.py +19 -3
  170. snowflake/ml/modeling/semi_supervised/label_propagation.py +19 -3
  171. snowflake/ml/modeling/semi_supervised/label_spreading.py +19 -3
  172. snowflake/ml/modeling/svm/linear_svc.py +19 -3
  173. snowflake/ml/modeling/svm/linear_svr.py +19 -3
  174. snowflake/ml/modeling/svm/nu_svc.py +19 -3
  175. snowflake/ml/modeling/svm/nu_svr.py +19 -3
  176. snowflake/ml/modeling/svm/svc.py +19 -3
  177. snowflake/ml/modeling/svm/svr.py +19 -3
  178. snowflake/ml/modeling/tree/decision_tree_classifier.py +19 -3
  179. snowflake/ml/modeling/tree/decision_tree_regressor.py +19 -3
  180. snowflake/ml/modeling/tree/extra_tree_classifier.py +19 -3
  181. snowflake/ml/modeling/tree/extra_tree_regressor.py +19 -3
  182. snowflake/ml/modeling/xgboost/xgb_classifier.py +19 -3
  183. snowflake/ml/modeling/xgboost/xgb_regressor.py +19 -3
  184. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +19 -3
  185. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +19 -3
  186. snowflake/ml/registry/registry.py +2 -0
  187. snowflake/ml/version.py +1 -1
  188. snowflake_ml_python-1.2.2.dist-info/LICENSE.txt +202 -0
  189. {snowflake_ml_python-1.2.0.dist-info → snowflake_ml_python-1.2.2.dist-info}/METADATA +276 -50
  190. {snowflake_ml_python-1.2.0.dist-info → snowflake_ml_python-1.2.2.dist-info}/RECORD +204 -197
  191. {snowflake_ml_python-1.2.0.dist-info → snowflake_ml_python-1.2.2.dist-info}/WHEEL +2 -1
  192. snowflake_ml_python-1.2.2.dist-info/top_level.txt +1 -0
  193. /snowflake/ml/modeling/_internal/{pandas_trainer.py → local_implementations/pandas_trainer.py} +0 -0
  194. /snowflake/ml/modeling/_internal/{snowpark_trainer.py → snowpark_implementations/snowpark_trainer.py} +0 -0
@@ -5,23 +5,24 @@ snowflake/cortex/_sentiment.py,sha256=7X_a8qJNFFgn-Y1tjwMDkyNJHz5yYl0PvnezVCc4Ts
5
5
  snowflake/cortex/_summarize.py,sha256=DJRxUrPrTVmtQNgus0ZPF1z8nPmn4Rs5oL3U25CfXxQ,1075
6
6
  snowflake/cortex/_translate.py,sha256=JPMIXxHTgJPfJqT5Hw_WtYM6FZ8NuQufZ4XR-M8wnyo,1420
7
7
  snowflake/cortex/_util.py,sha256=0xDaDSctenhuj59atZenZp5q9zuhji0WQ77KPjqqNoc,1557
8
+ snowflake/ml/version.py,sha256=ZAUJJjdFG9vuqz_1wGqpQhUfeUN2DyVZ-O-77odDxzA,16
9
+ snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
10
+ snowflake/ml/_internal/env_utils.py,sha256=SKnmFSb6K4umIREv_Cz2nuNZi-GaRVWav20OWmM9Pag,25156
11
+ snowflake/ml/_internal/file_utils.py,sha256=S-OlwrCd3G5sP5Tr9EwNHjdFV5v3VkCg80XxfdCy1Kw,13721
12
+ snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
13
+ snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
14
+ snowflake/ml/_internal/telemetry.py,sha256=SjK5jBkSglPFJj6IVVvwUovN8wdkajrk-3lEzoQAAZo,22376
15
+ snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
8
16
  snowflake/ml/_internal/container_services/image_registry/credential.py,sha256=nShNgIb2yNu9w6vceOY3aSgjpuOoi0spWWmvgEafPSk,3291
9
17
  snowflake/ml/_internal/container_services/image_registry/http_client.py,sha256=_zqPPp76Vk0jQ8eVK0OJ4mJgcWsdY4suUd1P7Orqmm8,5214
10
18
  snowflake/ml/_internal/container_services/image_registry/imagelib.py,sha256=Vh684uUZfwGGnxO-BZ4tRGa50l2uGM-4WfTg6QftlMY,14537
11
19
  snowflake/ml/_internal/container_services/image_registry/registry_client.py,sha256=Zic4bF67DMqEZbQMHffyeNoa83-FhswpZx02iBMjyrc,9115
12
- snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
13
- snowflake/ml/_internal/env_utils.py,sha256=KzD7FUTdRV3bdfvZQDr8GmS6V4eqwceKLcD15Zxo0Lo,25048
14
20
  snowflake/ml/_internal/exceptions/error_codes.py,sha256=a6c6yTgCR-Fwqk2rpjRPS__fJjrcE2G1aj3r57uWCbY,5177
15
21
  snowflake/ml/_internal/exceptions/error_messages.py,sha256=vF9XOWJoBuKvFxBkGcDelhXK1dipzTt-AdK4NkCbwTo,47
16
22
  snowflake/ml/_internal/exceptions/exceptions.py,sha256=ub0fthrNTVoKhpj1pXnKRfO1Gqnmbe7wY51vaoEOp5M,1653
17
23
  snowflake/ml/_internal/exceptions/fileset_error_messages.py,sha256=dqPpRu0cKyQA_0gahvbizgQBTwNhnwveN286JrJLvi8,419
18
24
  snowflake/ml/_internal/exceptions/fileset_errors.py,sha256=ZJfkpeDgRIw3qA876fk9FIzxIrm-yZ8I9RXUbzaeM84,1040
19
- snowflake/ml/_internal/exceptions/modeling_error_messages.py,sha256=cWDJHjHst8P-gPTPOY2EYapjhlB9tUm159VPBxNYefc,466
20
- snowflake/ml/_internal/file_utils.py,sha256=S-OlwrCd3G5sP5Tr9EwNHjdFV5v3VkCg80XxfdCy1Kw,13721
21
- snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
22
- snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
23
- snowflake/ml/_internal/telemetry.py,sha256=a7quIbktsSY4eHVfDxkfZmiLERwSm8CuJUOTMXF9c-M,21825
24
- snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
25
+ snowflake/ml/_internal/exceptions/modeling_error_messages.py,sha256=q1Nh7KvnUebdKCwwAPmotdAVS578CgAXcfDOfKoweVw,665
25
26
  snowflake/ml/_internal/utils/formatting.py,sha256=udoXzwbgeZ6NTUeU7ywgSA4pASv3xtxm-IslW1l6ZqM,3677
26
27
  snowflake/ml/_internal/utils/identifier.py,sha256=_NAW00FGtQsQESxF2b30_T4kkmzQITsdfykvJ2PqPUo,10870
27
28
  snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
@@ -40,6 +41,10 @@ snowflake/ml/_internal/utils/table_manager.py,sha256=jHGfl0YSqhFLL7DOOQkjUMzTmLk
40
41
  snowflake/ml/_internal/utils/temp_file_utils.py,sha256=7JNib0DvjxW7Eu3bimwAHibGosf0u8W49HEc49BghF8,1402
41
42
  snowflake/ml/_internal/utils/uri.py,sha256=pvskcWoeS0M66DaU2XlJzK9wce55z4J5dn5kTy_-Tqs,2828
42
43
  snowflake/ml/dataset/dataset.py,sha256=OG_RonPgj86mRKRgN-xhJV0uZfa78ohVBpxsoYYnceY,6078
44
+ snowflake/ml/feature_store/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
45
+ snowflake/ml/feature_store/entity.py,sha256=5Y9ijOW-eOxKUiBbACbG-SpZji-tJJ9vVxrdE_LUDlE,3035
46
+ snowflake/ml/feature_store/feature_store.py,sha256=9cUFcPY4geSvg2aXTIOuSJ04vbJtWywi5poYG_hrkEs,73209
47
+ snowflake/ml/feature_store/feature_view.py,sha256=5mY8gHuXgHwnYJzg6ZaLblnQ5KY0KN1g1fDx3BGDsro,17282
43
48
  snowflake/ml/fileset/fileset.py,sha256=QRhxLeKf1QBqvXO4RyyRd1c8TixhYpHuBEII8Qi3C_M,26201
44
49
  snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
45
50
  snowflake/ml/fileset/sfcfs.py,sha256=w27A8GffBoM1oMo6IfxafUNuMOC6_qr-fOy4Vpc-nEA,11968
@@ -48,42 +53,47 @@ snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx5
48
53
  snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPbt9WKYiBp0,2386
49
54
  snowflake/ml/model/__init__.py,sha256=fk8OMvOyrSIkAhX0EcrgBBvdz1VGRsdMmfYFV2GCf14,367
50
55
  snowflake/ml/model/_api.py,sha256=nhLsrwpI3CoXMF2FcL4VSs4hub1vMLGIsRV7kZjdsow,21512
56
+ snowflake/ml/model/custom_model.py,sha256=x1RczFD4cwlHwnQmRan5M6gN-71LNWXuiEk7nMici8Y,8185
57
+ snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
58
+ snowflake/ml/model/model_signature.py,sha256=Lb2yuYQ4pgrynOBTKkXTuioTM0Zxse1Ed9go25j67pI,28303
59
+ snowflake/ml/model/type_hints.py,sha256=coJ_1n2NHoSSGr_iSHKxLUKvCOM7NTV7JZwcmvLCABE,11526
51
60
  snowflake/ml/model/_client/model/model_impl.py,sha256=ulMsgwN6mMzOSsg5BCWuzE3kcbobIob4XzjonVastOU,11993
52
61
  snowflake/ml/model/_client/model/model_version_impl.py,sha256=eQmN6R_lseWydBXi-7PUET1HWdCUUMTfPFmZsfaXYpk,13001
53
62
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=XFNolmueu0nC3nAjb2Lj3v1NffDAhAq0JWMek9JVO38,4094
54
- snowflake/ml/model/_client/ops/model_ops.py,sha256=dzWrswJILnqInN6BZoHVp1PLh5vw58Mh5cxbyUupPc0,18548
55
- snowflake/ml/model/_client/sql/model.py,sha256=dKTnITZbz-Sw1fAWV5diAfmUK_ZJ-pfroM-L4-aBS2k,4803
56
- snowflake/ml/model/_client/sql/model_version.py,sha256=iba3vgq0AIS1_laWa-nbKWcOicknCiy8NdQ28W1P-ao,8188
63
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=0Hd2YMUpXPedaErZ4hdhCmK14JdQoKDxc2NrRAqELmU,17367
64
+ snowflake/ml/model/_client/sql/model.py,sha256=diuyGfFtLu1Z9yBThP-SjGOG9Zy4gflRKh6JoyUBDHk,4525
65
+ snowflake/ml/model/_client/sql/model_version.py,sha256=aJPyWqWCyw3cFFWB5mWzeWJpEH1XZP5kwyZ_nS2_JpI,8551
57
66
  snowflake/ml/model/_client/sql/stage.py,sha256=4zP8aO6cv0IDrZEqhkheNWwy4qBuv1qyGLwMFSW-7EI,1497
58
67
  snowflake/ml/model/_client/sql/tag.py,sha256=RYvblBfQmK4xmLF0pz0BNUd9wddqlfHtEK1JRRpJGPE,4646
59
68
  snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py,sha256=clCaoO0DZam4X79UtQV1ZuMQtTezAJkhLu9ViAX18Xk,302
60
69
  snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py,sha256=G74D9lV2B3d544YzFN-YrjPkaST7tbQeh-rM17dtoJc,10681
61
70
  snowflake/ml/model/_deploy_client/image_builds/docker_context.py,sha256=QZt02Wd2uU31th_WUxy4JmMvbftpyE7ZfI3MTw5RJ0o,6306
62
71
  snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh,sha256=1pntXgqFthW4gdomqlyWx9CJF-Wqv8VMoLkgSiTHEJ0,1578
72
+ snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=rbCMeMlSZJ99bzt3HBf-vFr2tFoZvha8ofb1-TIotwU,10052
63
73
  snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=Ltk7KrYsp-nrghMhbMWKqi3snU8inbqmKLHFFyBCeBY,11148
64
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=TWvjl0YYJZnxue2tQjbwtD6qoaXsgk-DYVp5xnn6SC4,9724
65
74
  snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template,sha256=yzNu-yOo9wfMj5Tsky3PZLgGMRzY0da2LWwaPcC5F40,1696
66
75
  snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template,sha256=g8mEvpJmwQ9OnAkZomeErPQ6h4OJ5NdtRCoylyIp7f4,1225
67
76
  snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template,sha256=nEK7fqo_XHJEVKLNe--EkES4oiDm7M5E9CacxGItFU0,3633
68
- snowflake/ml/model/_deploy_client/snowservice/deploy.py,sha256=SddWGE7_zevH53z0eXUlzgitjl1o8RdMNqw-MacvVJA,28889
69
- snowflake/ml/model/_deploy_client/snowservice/deploy_options.py,sha256=cymya_M0r0Tekepi0j3w5_9vEyBWgZ9JvQA0rMBJhBQ,5175
77
+ snowflake/ml/model/_deploy_client/snowservice/deploy.py,sha256=Juu-KE1ia080mJJyJ4_0svy-W1g-O9o6FpmWmiYEa7I,29061
78
+ snowflake/ml/model/_deploy_client/snowservice/deploy_options.py,sha256=X4ncWgcgS9DKaNDiauOR9aVC6D27yb3DNouXDEHEjMQ,5989
70
79
  snowflake/ml/model/_deploy_client/snowservice/instance_types.py,sha256=YHI5D7UXNlEbV_Bzk0Nq6nrzfv2VUJfxwchLe7hY-lA,232
71
80
  snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template,sha256=hZX8XYPAlEU2R6JhZLj46js91g7XSfe2pysflCYH4HM,734
72
81
  snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template_with_model,sha256=2SUfeKVOSuZJgY6HZLi0m80ZrOzofjABbnusUl_JT1U,540
73
82
  snowflake/ml/model/_deploy_client/utils/constants.py,sha256=ysEBrEs0sBCGHnk9uBX-IPZ_JA3ReRyyrDTFO_FNDPw,1841
74
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=lz7uvABEa8S9EbqRvTx4xOZLQo7Dqyz1Lrw2KOwj_zc,12869
83
+ snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=R_ilt8SGwQR6qh_roaUvst0YrnjbJbAyxYIPn4efo4E,13284
75
84
  snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=yZR9M76oh6JbPQJHb6t3wGO3wuD04w0zLEXiEyZW_tg,8358
76
85
  snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
77
86
  snowflake/ml/model/_model_composer/model_composer.py,sha256=hpaClgvyW-_e5TYawx-c34zNzDq58qL37yPO0ubnBWM,6313
78
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=6xFoEHVK4nQvMMBBwth_YZ6cdwaO_xQafhVR2yVl3_I,6896
79
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=xV1s6GkRZuQpV3LjvCG-XoZ8X8oJ1jhmHXuweb4-egw,2079
87
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=wdMTFH8St31mr88Fj8lQLTj_gvskHQu8fQOxAPQoXuQ,6677
88
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=k787AJ6CE7cMQKdh0ppp7E7a_NUYFl-M_ZB9dZ5L2EQ,1990
80
89
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=M-yaRVT5izL4JnwqZtKKDC5QlxT8MeZXhSFJKS_wXns,1654
81
90
  snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=QpQXAIKDs9cotLOL0JdI6xLet1QJU7KtaF7O10nDQcs,2291
82
91
  snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=RyR7ayq0K8aqmTzJfn4jXnNa6tflE3Br8F2hfcFTwik,5351
83
- snowflake/ml/model/_model_composer/model_runtime/_runtime_requirements.py,sha256=jf96gr4xT2QQt2mJ9SixbG8W5psWYR3TmwgCEt25bdQ,204
84
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py,sha256=2PCVqkUWJ-lgLUIJ1GDgVHqW32-QJRjo-D1zr_NlckI,4285
85
- snowflake/ml/model/_packager/model_env/model_env.py,sha256=MHajuZ7LnMadPImXESeEQDocgKh2E3QiKqC-fqmDKio,16640
92
+ snowflake/ml/model/_model_composer/model_runtime/_runtime_requirements.py,sha256=dSbdiP8Hu2fm-CYb7eihc5fL_8zmCMB_4KZYVypQsc0,238
93
+ snowflake/ml/model/_model_composer/model_runtime/model_runtime.py,sha256=rmIeKQh1u7bBnN_zko7tH4DCfUMazlGaIrZLmF8IgDE,4201
86
94
  snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
95
+ snowflake/ml/model/_packager/model_packager.py,sha256=aw9eiFhQENNFTNc0zZHJjPG7LKy1FDmEst-eD9T0tOc,5893
96
+ snowflake/ml/model/_packager/model_env/model_env.py,sha256=MHajuZ7LnMadPImXESeEQDocgKh2E3QiKqC-fqmDKio,16640
87
97
  snowflake/ml/model/_packager/model_handlers/_base.py,sha256=1K0H3Iio3r3UK5Ryd2-EvdvLGsBrH6uefop7W64ba4U,6023
88
98
  snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=gfDr6WyClxWzd0Nkg7AN8v5d2OsiatVqGqOlHHyynl4,2597
89
99
  snowflake/ml/model/_packager/model_handlers/custom.py,sha256=ahpjdOU-77L5Z7QBKmIGiNpB0Y6LF3SWF3Y91TRh5CU,7280
@@ -97,14 +107,14 @@ snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=xXSZfyN-zqSwTkr
97
107
  snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=MCfrUTBNwQfnNGUrHVYRFLZLQeFATuDWs3bVeO4Rw7Q,8064
98
108
  snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=Z594KEGkuIXB5ZfwmwkuJNovvPukwxOj7f3XXInW4QE,8833
99
109
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
100
- snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=BX1VhAGi1qBBPkg7fJrJNupwBIPptpB3aW9ZTV65epM,226
110
+ snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=2RvxDb8bXlEHxbbBo0_v3S76gWd8Enpa0pikxL-qM1E,264
111
+ snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
101
112
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=qwgBneEA9xu34FBKDDhxM1igRiviUsuQSGUfKatu_Ro,1818
102
- snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=YFFEQ_OErwD2CAYgWGIIAawQUkEZ5x0kLze_Sreiuzc,15555
113
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=ReiphecYn7JKWToGEUqZ7IqJUA_SzxYcpMa2VuSlyTc,16010
103
114
  snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=j5b7hkh3Kz79vDaQmuCnBq5S9FvpUfDz3Ee2KmaKfBE,1897
104
115
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
105
116
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=czF4J_i3FPHDaaFwKF93Gr6qxVwF4IbaoCdb3G_5iH8,1034
106
117
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
107
- snowflake/ml/model/_packager/model_packager.py,sha256=aw9eiFhQENNFTNc0zZHJjPG7LKy1FDmEst-eD9T0tOc,5893
108
118
  snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
109
119
  snowflake/ml/model/_signatures/builtins_handler.py,sha256=0kAnTZ_-gCK0j5AiWHQhzBZsCweP_87tClsCTUJb3jE,2706
110
120
  snowflake/ml/model/_signatures/core.py,sha256=VfOjMsCOKuZwFAXc_FSs2TeFjM-2MSHxQzB_LXc-gLk,17972
@@ -114,189 +124,185 @@ snowflake/ml/model/_signatures/pytorch_handler.py,sha256=QkSiWCBSRRCnsOaONvRPOyM
114
124
  snowflake/ml/model/_signatures/snowpark_handler.py,sha256=--EZ5gxlnFy9MOVXFiCzNZPJ4BU20HwplvTG_tq-Tmo,5923
115
125
  snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=VZcws6svwupulhDodRYTn6GmlWZRqY9fW_gLkT8slxA,6082
116
126
  snowflake/ml/model/_signatures/utils.py,sha256=aP5lkxiT4lY5gtN6vnupAJhXwRXFSlWFumIYNVH7AtU,12687
117
- snowflake/ml/model/custom_model.py,sha256=x1RczFD4cwlHwnQmRan5M6gN-71LNWXuiEk7nMici8Y,8185
118
- snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
119
- snowflake/ml/model/model_signature.py,sha256=ttf3MbOx9m9G0cK8EThrFjZ73EMqUoP8GD7LvaUHj3s,26494
120
127
  snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
121
128
  snowflake/ml/model/models/llm.py,sha256=ofrdHH4LQEQmnxYAGwmHV2sWLPenf0WcgBLg9MPwSmY,3616
122
- snowflake/ml/model/type_hints.py,sha256=N255-eGcW_Qz3ob31HJyMl5147yV4NtPYMyAGW-kq2o,10639
123
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py,sha256=YJbhHTu0E1-oS1rG1HZRa-kmDbk9WfJM_UK4Xf_SLr0,30807
124
- snowflake/ml/modeling/_internal/estimator_protocols.py,sha256=JaRmP4NAPcSdYXjOIIPCUoakelf6MG_cAx_XgNeCudY,2350
129
+ snowflake/ml/modeling/_internal/estimator_protocols.py,sha256=1singo7bMRj33dagqsrO-Ba-bvHbAdNIO4wlAvwdhUE,1238
125
130
  snowflake/ml/modeling/_internal/estimator_utils.py,sha256=s6MsyZFHSeSgpJ_WmVvVrgJXlXinnq8pQaEbhBI68Vo,5650
126
131
  snowflake/ml/modeling/_internal/model_specifications.py,sha256=-0PWh4cy-XjbejGb00RiFTnBSWiYMTNFQntXTMADgko,4725
127
132
  snowflake/ml/modeling/_internal/model_trainer.py,sha256=vTv_v9kiV0I4t67hHjBp-4Wwz0U7pp7L1pJB00wJJM8,374
128
- snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=b9gCCHfsOAKD1aqpGWZaXV4J5uqzEMdFAmoJllp6JbU,5019
129
- snowflake/ml/modeling/_internal/pandas_trainer.py,sha256=wYhOHBuzdgKuQj5K23DEf3DZPnjp7il2br3-GOVmOHM,1960
130
- snowflake/ml/modeling/_internal/snowpark_handlers.py,sha256=KLaZ7x82UnxpCmyLQmzaw2h1mdw1UbC5d3bevhn_5lE,16165
131
- snowflake/ml/modeling/_internal/snowpark_trainer.py,sha256=lvslpaAFo2GbgNKrrOoa7vqJwViyKNw3B6a5_Gk6f1Q,13820
132
- snowflake/ml/modeling/_internal/xgboost_external_memory_trainer.py,sha256=1MnPZllht4BQZfnfsUEYuA5hkafCeSMyQ7v58JdwfcE,17174
133
+ snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=pAkoudjEQiB1AZdd-033zA30SgW2ZEfDWG7xuq7yh2I,5131
134
+ snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=wYhOHBuzdgKuQj5K23DEf3DZPnjp7il2br3-GOVmOHM,1960
135
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=-HToa1y0mVPv_XmbwFrkhvLQ41WdYLqfBO-9LCjqymk,29378
136
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=tRpAx6_vHvSioPpaAYb1p5ukGabjnGIpYGbcCsO0uCE,16330
137
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=lvslpaAFo2GbgNKrrOoa7vqJwViyKNw3B6a5_Gk6f1Q,13820
138
+ snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=VBYWGTy6ajQ-u2aiEvVU6NnKobEqJyz65oaHJS-ZjBs,17208
133
139
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
134
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=JyfkGMbvVhVRhT9XEeO1PcufDPyN6YE8vUlKKEzYJzo,44797
140
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=qpagUelRJShla9AfcQeCUM3XOksTIZtiIBhPdXAX2uo,46496
135
141
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
136
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=8xqPFQaBX4hlrS7Ff11S4ZHe8_KN4L-VuB0hE5q0NCI,42625
137
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=odvY5QGPDpDEmUoi6ucKszu4TRq49R_ILvFDKqlRUak,44662
138
- snowflake/ml/modeling/cluster/birch.py,sha256=pT4abu3ElginBh0wVfszOJn-wPU94ekm1CuzuVI3BO8,42350
139
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=MXH5M2PcH9ftWlcvFNTTb5Eul5jT9caPYhtw3eNA0T0,45049
140
- snowflake/ml/modeling/cluster/dbscan.py,sha256=LE93Q9R9O6QvIN_I3NiCt3BcZJYybjFoNvfxjgfF5l8,42712
141
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=9yeBIsXmEnU5GQWjB4M89m-ep3_RFAI8aMCS3OqNnYU,45180
142
- snowflake/ml/modeling/cluster/k_means.py,sha256=uqg2_m77YyDgqlKZT_HxjA_GtH_aXeQPijLCDR0e5_U,44605
143
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=aekIa6XyKYx6tce5yt_zw8EIdZV2urjneVW3n--JWLE,42922
144
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=Tz2QyIXG8AV6yotHYiuvwR30XN4W_EXUt6Emt_M_Fj0,45967
145
- snowflake/ml/modeling/cluster/optics.py,sha256=31aQ64cAE6JhTwD1-7HcLKM-fVCN7Qxbevs6xPGDSw4,46026
146
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=DHoxf2wVca-skUAwQ1a7UdlsqvxR9wR1kfqznRFJ3aI,42922
147
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=gCU8-SPZijS3010GvWiO2ZxLsb_AFF2SOM7xHEmIWA0,46113
148
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=LvDjceZBmOT-M-LOZLG-q2bHEAE9huC0ezyp9PAjgkE,42055
142
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=WxiYuHP2w_c7-2-9O4oPEVJVu-D3_tdiwBVsHqh5wZg,44324
143
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=6QnR0PDuykhyU1pIaCK3zzxUkGJviA4csRNMqMTCO2A,46361
144
+ snowflake/ml/modeling/cluster/birch.py,sha256=3OJYEwy5PdiNyyX-iqvnqekChoWgstv8efkm-xMoeDg,44049
145
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=Kkhy2eDbvDIBADewqVJP5WBchKFLZsAi0M3MApSXvBc,46748
146
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=oBXZqPVCi7EcI2v0t4mSHc3Xh2V0lVfjB7-0b1WQXsw,44411
147
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=j35QPBL6NAVtNtpbN2KUQXBt7xeF-xWIteTbsuOh-cI,46879
148
+ snowflake/ml/modeling/cluster/k_means.py,sha256=nvYwTto4mCUTUyytBcZFgSml7nUKK2nj814GIxaI7cE,46304
149
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=Oy2W0VmAIvoqP1rbkNczpEYGRSWCoQYMBPAUtzZkLY4,44621
150
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=0-NySNe7avsyOIy1CWW3OMfdJ7YpFeTL-N8t9I-xKI0,47666
151
+ snowflake/ml/modeling/cluster/optics.py,sha256=FpRwcjxMMAXID6BRiO4NRJFYWuijJ3jSac6hrM_tqkg,47725
152
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=mwQl4k2E1EYr13CsVjjd6FUYZB9-6XKHSXNDEf2H9zA,44621
153
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=G-ZljAo4jttFxVgKkAWzvuIPZCeEaREod40T_kXYCO4,47812
154
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=rHCzbxqWmUHB72dZiKw6DgBtJueFivn7FOFvAs-bmlQ,43754
149
155
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
150
- snowflake/ml/modeling/compose/column_transformer.py,sha256=CiQ08df8956EQWXvR7R9w5uMPOYpnmiNNeB_9sS7Zxo,44621
151
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=zDFee-ua4V3Yk_KLsYxJ1rxF8KJa-GcvPILfOEBUzrM,42609
156
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=Vb2S1H6WhCck5xAaThjCd_Rru8hJfnEczfBg7fTIAgg,46320
157
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=e0ZdvAxg6KZylvTxYAydJPg1BMx1h_J-5-w3ZJQcn7U,44308
152
158
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
153
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=pO2vU3zKhwHDT1kW5zPETpIQYGf0XnRJ6XhMwspCEqw,42691
154
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=RSZuyhXr7mqNPbyMLl0CGaT-MaGm-NRSA8sTg4ZkQrM,40755
155
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=5ztLaB_ghnbJCHpbesq4y665MIAP0Gthxn1e16hvrpA,42619
156
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=LnPd3xbbKegoCIlvhC5Wl53Y3-uiw0NkNfbLBNlriig,43784
157
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=5F-INykbLioVQ_wVSXn2hP_4Bd-b9EG_h5hhTrzxfR0,40893
158
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=JMeiatpKLSqQv_DB-nQy03doLYekKkw57JVfPHlGvOk,41648
159
- snowflake/ml/modeling/covariance/oas.py,sha256=C8wyOQ7DdFNotZhON_jZCPrdbzE00wU5rGpJrIFj9cw,40534
160
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=oc5RnvZCRiMUKqGoqBqMazQzC_v8Mh-Vgt9_ZB3Y34I,40910
159
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=RdOzifuhQ1uFeLPDTZTzitOT16THpI_A60DKo5-ewZ8,44390
160
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=laWCsKj2NhWwvzJNLttCLYBvVd3vlTbDE3WaL4JAaPA,42454
161
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=QS0canaudgoadtXnJVWMwc54lHL4sK41Bfbzr4ND3g0,44318
162
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=khLWyrT4LOTjdzzmlzkZBjH5B8lsIoq-facrmDI229g,45483
163
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=czHCFBpUms7JTybvyd0Ktl6RaGPu4RNSFF9ypFMnMaU,42592
164
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=X2M82T46r9tBy-P_EGi5Yx9wfjtliD2yRFC3phhYhCs,43347
165
+ snowflake/ml/modeling/covariance/oas.py,sha256=OSIu5Dig8smF-xGtUYsBOzVO8P3fgvv3uu1SCAUxF8s,42233
166
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=oKnILTFSTT4paKs7rNtZxty2RH5h1jnBeqWnb3KkElg,42609
161
167
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
162
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=Jx9NkTintSWxFsdTkn6hRtZ_jhIDdsrC4hdp8gWYuL4,45618
163
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=Z00_m2lNIBz-5RnsOANtderYjV1tAvoxtgNxHQ5R0TY,43065
164
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=noA2BS2Eo28k8QISfmYucU8buHKKbMUYhujwKNjfDg0,43264
165
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=4B2bzsuzt1wHsHexubwyYO6fpcd_w76OkUXPGX7gBuw,41617
166
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=ezyDm0WywdV_DMhhnn8V2Hj3J5QhnGgoCFSY3gSqrKI,45616
167
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=zvpIyjf81YeHxFAQjnXAApAuA7qbP7ZF6hfCSbhn-00,46662
168
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=yCyi8DeC1gOIaJAKR-Aa3NqCp1_CNnoSbDJtdrbc37k,43954
169
- snowflake/ml/modeling/decomposition/pca.py,sha256=bnOGCVUTAcpwfYKHmW9DEcwy4eb7BRGlAF_VdZViUjU,44659
170
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=3D37WsYeov9C0i2Zw39YZw1jrXsQqRHSXTjbXZwqwaw,42786
171
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=Why9GofnWObcVqnwEjjelLfeLjcGu1BaGPotA1Bd9Tc,42374
168
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=9f_V56WO18Nl5ubBLBGBQVTrjDco88NuX8QEwAtTh4c,47317
169
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=DEzgyThqx9ppgwLmrMu4ZRyw63QPbaRRiXmnjpqmOUw,44764
170
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=Ea3akJFCBmI_519Z86kJWBDmZ7MGLmq-NtuBGLNsps4,44963
171
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=NVgU8IPdDLZWyAw-tVdMODw-idmOXJIj9Jxn5_Cv1eo,43316
172
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=hVYdPMGx3zGszQU0eaoGZsn0Qqh8X2ihgRWNE8kA_pU,47315
173
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=KuUJHLwFWJTEf-5GOijw5--oAkgn9UQ4CXhJhX5OVeA,48361
174
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=naOLVkEWp9vbMA3plkgzYoLbMJSKAr0V-p8-zaA7Zh0,45653
175
+ snowflake/ml/modeling/decomposition/pca.py,sha256=X9xdyDCMo6kW4zvPXM8-1SRWNRc_0Vayx9FXHTt5ng4,46358
176
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=phEU4DspQ9rhAJbO16tf79l1DE1Ez2KtlY7gzxzRiiQ,44485
177
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=T2-dgnRyplOh7v7CFvhmRRvP_wObDPK8dglAQCJq8Ws,44073
172
178
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
173
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=M-Qn_Vi63LEYiemTan4M_VMtxcoR_JO1hhvwCwT13VE,45089
174
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=x8kdb2nym2o2AS8MnXy0NfCAhff2Tc7h1KKmTVbVRmI,43178
179
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=weBTEWEAIvCCxSGmMAFGiLsUEOA118E0vHB06uDZ7Rg,46788
180
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=mlBBBKJD2h8jMYbBOvLOT2rY5I8Evbz0OrYK9pSS5Us,44877
175
181
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
176
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=1ILd3prSRgDPLFDNf_uTv8ZOxNjdPG2HoxNDxAw_B5w,43996
177
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=HsghqY6RLga-HmmcDJ7u23-vk0wQwgjKdkCwueTjv1s,42887
178
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=oiTLhUkzs180dDdU2AGRJmxbBOXDQhoE_Y65rioCYEc,44907
179
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=d4Q3D5WZozamvj8vYGCciGeSDJdCZNZ8EsqRX5ekDGM,44143
180
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=IPbue6aFna53KuHj3kCqhgM_5cunYnelha2G07Ulxd4,49827
181
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=jTeGCW2W5aIlIp7QfAo-lMbvDiZLeBHAgFkZ3U340Cw,48431
182
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=8PDwx2Rjyt4jkY0m2SBvDc3i2bwm0d2W8rN5GLy5YaQ,51282
183
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=N_M7_SPm_AYUyvIiBje3nSXPGylby5mshuyfYRJalZ0,50875
184
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=Q_khTxtTmaYkJU9sCljM0o358rHV76BasFgdLXBeeKI,51116
185
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=UBq9kEQYCWNoqCjt1FqhociHXE-NE7gejIAjHBOHvU4,49601
186
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=48Ki8bVxdNtOC6SLo1Ur11uszaAU5imEt_sp2l7rCdQ,43831
187
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=KzlK8YpViIp9iI3bOK-ccqN1bFDYeGrAWytl1MswO-I,49810
188
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=ec-5f_yW9jLouAguL5DLSoEPl1WPDZo_DNYSYHUlUuc,48402
189
- snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=KsvaSPL4j-5F-ybNH3RW2xM8di3irgsrkEC6Ch7o0Ig,43840
190
- snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=kqteUN3HfUkVoCOL-CeALes32W8LklgiBn9wTX0vd9E,43411
191
- snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=9b-hWH21-ih2kEL4RCJXR9rR5-x7BjPq2Yb6u3R0gA0,41940
182
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=vNH9gI0P7iEImk_bLH-mdfe99X-o9oMxdWENTeidjhM,45695
183
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=4_cQJ_TwBOog0FgqYflcoifbNoXtyz5qGobUzGkEFDQ,44586
184
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=qhC2VsnC9I9nee0FFKeYi86MSPG8sWaxS4YHPEA4JwY,46606
185
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=AorIrX4Yty7i1UNzx1WrEqZM3LpVSPnkl6e6inv0wdI,45842
186
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=zreSnaEWNlTRPldx9iPhpqFdAXbjE6OJuYolJ3KnGjE,51526
187
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=TN8F417_CPIZh5htrWBjbpFV-u0tESpTW5sJlD4rF_U,50130
188
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=VBfEmWV0X5M-r84XwRyVxBYzCo53_4YgMHeDK2Emuyk,52981
189
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=U78_3TcKJCKoYRkgkC9zKTDhjkVeTKGaEmNf7IxDrPk,52574
190
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=ppM6r1HJ3hnT1cK4SqQ5pwT0PNsHUXp9Y2M919vLvxY,52815
191
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=xhVQIFlgPSnS_HLNR7hssvnicn8pwzga6N35aLTkRJg,51300
192
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=Gv97ze1F8OODYaV-6TwuyALiFkFP6GvL_LIGH7Xt2zY,45530
193
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=4g6XMlEsAX6BVaEb94vI5Ms2AGBrm-CXB07M7_o_qNs,51509
194
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=ZEfTa4c9GvnbHZRC1ZG86hY60s-X2aC5tV1zYedku2k,50101
195
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=fRp_PHVqM02ZFHjniZ9kDiHuo9hMYQv-n5W_b04dVuA,45539
196
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=MY9h3u_ZWoUZFJEOB4KrohrwW5im7uyqYLFZa0gyzXk,45110
197
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=8olOZ1M9GN8-zrIPLEPkvs5dZLyi0-uUD5gujZzJrxc,43639
192
198
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
193
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=-lsag-SP2fHG7cof1bk_MWjStgx7jhUgA7kwHgaRf_A,41251
194
- snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=IWvxpq2LgSdaBnQW9mLfkcPssFRncJsWDoazg88mRl8,40894
195
- snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=XnisIdS7ecYuV7oi_rVeXZDEfN782VrW6u3egBnpzpo,40888
196
- snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=5Ah9u5iW3xEcOGceQtV98uyX9NaZ0PfVRuHAQSHJlRg,40896
197
- snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=WykHKonCnzxELvlv0-1x53-YZDjYO2s34PlaZNt1too,40981
198
- snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=RYXxTx5g-LxAT-oasdO1GaQpUlWwem3MBfsfpwKIU4s,41021
199
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=D0wnlfTTKEQUMt2elj92xsAhUlV8CaoGaj_QQuJUrNo,43614
200
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=PWd4lQEEtEvESdAf2wJp9T060P8zZ1g8hl6HN5UEVeA,40574
199
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=RsNcubnyrf5e9d1Csnx_dlj8alyicCV3fLrhef1DmT4,42950
200
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=-nsyNAGrmqC0tRPAUzdzZVe0IKv3rtqfrBHmhrSxiHA,42593
201
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=LeYtmcYmqezStGIpR6TKJVyCjV8lUKyL8dZX1TRg1QE,42587
202
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=FQZWfAe5RLWsioJcBuvRkW60DVOYlmSl__TGH1GSPQM,42595
203
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=Bxt1KPqg3TYugoCREQadZ12HBXGBl0X7wXR453NxTQc,42680
204
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=4vi9nhUhStJkYNUEosrKM_OCY4NYCtVsJII9rThMjl0,42720
205
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=ehkOQX1lMUC54dpVwe9nH7AXGRTsX7aF17n67jakedA,45313
206
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=ATzG7U1AsHTB5mWsGKZzmtGiV6FfVkTJPLtWE3sFt3s,42273
201
207
  snowflake/ml/modeling/framework/_utils.py,sha256=85q83_QVwAQmnzMYefSE5FaxiGMYnOpRatyvdpemU6w,9974
202
208
  snowflake/ml/modeling/framework/base.py,sha256=eT0baNs7Iqe4tG0Ax4fivvlk0ugmrFrUBlHkwA3BA9M,27776
203
209
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
204
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=GdSq_7m23KwdSRnTd969WTekRc4RInqeiICkFY1VdYQ,46548
205
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=sVTyaYQAVJthFy14SqE2hwmxS8wuwHi1p37WFbm3qBo,45613
210
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=fSWmhZlo4QAGPX3KI2Z8DeJGniFF_h1hTPks4RQdlHY,48247
211
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=iq3U--lhqLH7bcD8Bq0yASsmR_HURZrdcVKYCpbj-jk,47312
206
212
  snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
207
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=YKf1GYmAvmZ-Nw4bCnT8Yp84fmBUOxc1hgTAtE1jxs8,47111
208
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=ptilJDfaeZrOMiesPtpJsLDmL-8EJIwIcUxXNGnLnSg,42868
209
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=m8UFHf7ZkZ4Mr1NCych49HxliAHIgXAyvhwMCSiET3c,41696
213
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=Hd6KiDe_Nve089ylNNXtwoJC2Tltuz9N26t0Sasip-w,48810
214
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=xNzSH9HlRyDb7pK9gFOufUIOZG43_0k-MvXVcS3tHVI,44567
215
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=aBlLMnWWWgKn3HqesTu1X2smcM0LbnTJia5DL_5atv0,43395
210
216
  snowflake/ml/modeling/impute/simple_imputer.py,sha256=eC9CRhHMmsylm7oi5LGiukRlP6HIN6r3IP1DVpYrwmg,19258
211
217
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
212
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=Jhb6sNxY3rxgyF9PAu83lbMtvPP7-4s1gzLP4P0BACM,40687
213
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=wkbrRXUwH8iH8CktgZf9qlsSJvMFXZu7ecLqaDoMmIg,42491
214
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=UrWdbMfeF94MqQEDdJDioKrYX7FVYPTZJgKT2DMM_Ag,41700
215
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=g8drJNTNoDoRw4vEoSemSSncPBSJKIEf5XK16LCt51E,41087
216
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=2sm5uhJa6QYfBjYog66SUL-7sJWDTgNxInhj07TqJoo,41114
218
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=FshL2R7hi-0dvJYXpgHxLDxoRAick5iVxjsNf6c6M4U,42386
219
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=5xoYwHIxBi9meN_X431hSuMFSNHTDTgBS8fc22ltJ8g,44190
220
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=0glcY85B5CfpGp5Hlo3F41Y04eIF9_KD4yQzMJXoGzw,43399
221
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=01lc64-RmHURdVhQxdk03yh4EZzlTevYa0-WJZovc1c,42786
222
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=4-txijePPp_8GrUgggrKhDIyAwez-MBLSgwB6KFwFsU,42813
217
223
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
218
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=OavnM2kJxhqpTqv3PykhH-pJfdTtXT1ESO3osrjjGKY,42927
224
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=ItTQB-Ur3LpEHvsNb2JpKEJ3vlSk-iulTRqaokfzW_E,44626
219
225
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
220
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=jawtEY37iRB2NAISKiq53dWtcNaHS1yAxwDAVBpm2pM,42429
221
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=tnSQ8IFLI6Ti-lp0i-SMVNcN4l9mlOyptP2qS-AwcXs,41932
226
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=R8uXUHiOeU8asW6xntOQNMQALs0_ALmSS399DgjKT5A,44128
227
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=u4QJ3ej452WJLsXJf8bSWEXz0h3c1Q70eDQoZ3hqjAs,43631
222
228
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
223
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=ZG2eJ-rXMGH3hGwzHwdZEuvSPJxEPm-nHHEyVhCH_2w,42872
224
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=ERcPMbMWJLLx1eF8zdp0QYYkXG4Dfd86SbXFRyaft-k,43288
225
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=ZQIZ9z5DzWr9bddKuCfkEDHqBhDnpQUynK1UKprJA7Q,43860
226
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=Sxym1gJSNBhd_stTTsN7CbcaQUUJBaHsro_kZ0zskZw,45128
227
- snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=ZLvUG9bAIijOvGvxlmBWwJ7PmMP1LgmsoE5dV8VxnfA,42940
228
- snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=e87LkfJHCZ0pdvq_vxn8jwjmd0WMPP140gq8KeMYOnM,42137
229
- snowflake/ml/modeling/linear_model/lars.py,sha256=UDBLsgZMeDluSFCzGDSpxc_FxdXRc6kyn5AF_bQsbUA,43360
230
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=vXV-lbk3aHD3uxn1ontaeEPHu2lsDiYoUKe0U1wluAs,43581
231
- snowflake/ml/modeling/linear_model/lasso.py,sha256=x9BCHNV0F9kah9mM4hfFX6U7TazgofMZrdnw6lrqJGs,43466
232
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=S-0zIlMzOuHHCcWoYy-rUgDwl6Y5-kX1Qmgl613YLgM,44251
233
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=uo2Qd5JuaFhEitPO7pSG11j9KOpmNFrqHzagbrILNoQ,44496
234
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=uGpr9rM4pH5MCPTPmOzHcumTQe7Nx8blbgqh9YuRel4,44457
235
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=yWGrBNY4FhMtHqSiCHcCyIqU7KcapD_rtwJ4iH2EEzM,43803
236
- snowflake/ml/modeling/linear_model/linear_regression.py,sha256=b0h0NUPH07a27h4Ak7Nu8aOTtTsS25kD03IIMb4bF1c,41679
237
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=3QMKr5fKqJsJ55LgFIacr6_PE4xhjHqQGf1lvohzNt4,47934
238
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=s2doZKZmEXhY1EP3AV2GBn6wnYQpbgjWzocBpeo_PVQ,48974
239
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=tNtt7HTaIPIhnkQzY7EzHlr4IAgYSBkCsE3Jq_-AS40,43151
240
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=ED-yQ-2BMoNxFDxFUzzAsILd5JPz_OdLI2AFYKr4m8M,44789
241
- snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=4BX83z8_QVQ5Fg8XatcDb23_fKLaizUZLpgq4qJt9OU,42699
242
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=ulMcq-_DBx5klqjA7SlUKy7v4LUU6eUPXU81m0dyFG8,43961
243
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=LaO7pscog6YQQsQuSJDyacm_6HI0ry-WLi4h5gxBU5Q,42306
244
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=Y6naJgECrJyqapoyq0bw_XRQ0GkAHhx8dgOBwpjbNdo,45662
245
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=OIhWzeR0tDWIG6Fl4jlxXlf4tsh9lxJ2qauF7xGeOrM,44729
246
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=o-FSpfO2AVLz4fTlVRvcZe03S2CEu0SEdAtPtrwLu78,45046
247
- snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=FXRiwv3fDY28mi6_USBs0U5Sucy6SR2s65ShCy2C8l4,42985
248
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=KyUdNzzQvNcBx4LvcuxNR1g1-FgJW1gLLYHlEHLv9Nk,46104
249
- snowflake/ml/modeling/linear_model/ridge.py,sha256=e2OZzGOhvjwLUs5IEXbMsWKAHQ2paPhWhfjvOCDIuuk,45010
250
- snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=tJTD0gQLfTtbhWKLisaon4SAtkSKo__tGVf20rZrBig,45398
251
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=FY-bWofGidi3LvrYeOYeG9Zwioq5r_TBhc_bAHh9zpQ,43393
252
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=1xjGoXcJOFf-geIL7HVMhjm6CLQeRGaSHbZAnY_4zmk,44094
253
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=39xunTsqzHs6VbvWVbc269Ccpc1ugNux_UHXGAOJrrg,50471
254
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=gN8su9zJtxOdTr1n_vbo0d8KbrhfmXr3HCFILNux5TI,45020
255
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=R428dmq0C2_xNxpugIMGJpqvogYwuHyJwWypdiswhBg,47942
256
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=LBAnaTsFABdzglNsWUSvo3TrWIL11cVE5f96Y_IUv_4,43420
257
- snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=VATOqWVuQgdvK8M2_NG3BhvL-E7xWg7AlRs9QJ2MYXE,44376
229
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=5mFClkdPwvN3D7jGFtce6QkH_UHZU5vY9YZXJQAwjJM,44571
230
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=ZToumW9lKuls3Y5Pzy4-vhdDZ9wPvkpz1vwWqFSBZK0,44987
231
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=uBWHkv-c6vzsaOgENRjdyl_Lafze-31tIwTnDKr10G8,45559
232
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=H8s8gYZjmuBX0S6Ul2wZAXl4aLKB61PLoEWyJYivN24,46827
233
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=WlLE9XmvjTecmNfItP7Tk_mR3lbm5m8W0l7TuOigjYY,44639
234
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=Kjtcrw6x5d00jjLIdXwBCuBLEGoYSHYn0KeFDPAtPaM,43836
235
+ snowflake/ml/modeling/linear_model/lars.py,sha256=OALzUevDL8XQsnuAaFww_0vGgKMooz3rtKFJYnWIcDg,45059
236
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=r8mi_aUFj6HJaKsVF98WNc_3abQHE-Jv4ZDgXZjyCuo,45280
237
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=cq6ETR5IJJPewYtIsJVkEgAhSWKqwF1erdNfKbjaNX8,45165
238
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=Z12EtfxehQSH8ynfl_bHud0FRWVp1SiP09zaWy1oLmY,45950
239
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=SF0poeu71ajqGbx3F2AjrzggjfQyPzIWz4fkkxoPXps,46195
240
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=rR_Zitrqd4uzmzI6IJ-qK7gRekMo3vVeQay3bGrXGG0,46156
241
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=BU4RGkzUbSgpZ0EtFwgn5DhTsskodYpHSa1kgM8lgyM,45502
242
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=_WPW-7OYOYJ5HfJAnHqA3aTU-qECOJJ_p_zN8KGI-G0,43378
243
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=HJzdcbYtIHGIAfetKgjZcDXMS3K8WPRqvj4EOEUhijY,49633
244
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=dtEspSt99o0wKENK6F6dJe7E8a3-VVyc2QJ9OQFHqcw,50673
245
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=PPplCW4KAURSfv2BbU4ZGfGzENXsbBEE1fQQUqwgY6s,44850
246
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=QkJoWhXe2QO-v8nfuBxM585DgLEtLv-B5-Id8iMvNCY,46488
247
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=jtv9eW00irAG0piIe5vxnYduSKHDNR_knhVQrp93eDw,44398
248
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=jizZO1OjXkoNCLoNMTjBwBFQmHXA2_kQLrFLDV8WT1s,45660
249
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=4fCqvbBJYtsky9D3V6l7H62Bf7BInifFD2OdE6MiFgw,44005
250
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=LIJNgA1cpC6vR4yFUyKKCSyKR0w7-tdeQTqDQWJ2eOE,47361
251
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=uIloiDp6sW4dvW9p8gJs-Le4o-wE4IeqciIIFTjEmRo,46428
252
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=UiGmAUVrXS7brta0CFEr7AtMsT82PN6_u4DI0qeRrYA,46745
253
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=P9J7FrDwJv3Zf9t5Q7tZ0gCq-aOOrY2CmXnNMmlLfe4,44684
254
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=aXsAEzfhgtubg8DrgaZMS9G16v0A2pxl_uqYrSkUDj4,47803
255
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=BiyUD5Zg8T7fM2xP8BQDz50LYtDjx-PDY6-RvmAdgfk,46709
256
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=VyX-M_zhve6Qbrb300UKaGEEASNR8s2e-gEOD4P4k6Q,47097
257
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=VSUKsGPS-esqgcB7qjW0uEpLlzIofpCHD761gXg0d3M,45092
258
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=X2LsI9EgcouO0O2So0UhYqSxiwIhTmsD_hpABAV8Udc,45793
259
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=ydzFgj7ETrqy5L9KWIf5b5ZS3lg20h3UDlZoJXqAorw,52170
260
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=n1UBLN0YeMy1vPjac39TIKjU4HbjU0cPJiRWUNWc24w,46719
261
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=i1PPBRNmikQHRL9CCAtAqGR3xI_BuaVjRFZ-s9Imk5E,49641
262
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=rXvZdIqoenfkk3nMRLt3zSimLfJrEN3m59h_Dr1GEcY,45119
263
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=kl-7sRbb2fe7DrC_oa_9RkFhskEHyyIwTmwODA7CILk,46075
258
264
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
259
- snowflake/ml/modeling/manifold/isomap.py,sha256=sXmTH84SZZrFZRpscHFClFDEndHr-7xL_aTJHsB7yK4,43380
260
- snowflake/ml/modeling/manifold/mds.py,sha256=fNoGg-w52vCOE_laeAQzS8WynwJKcoz9Q3PnmhrS-r4,42594
261
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=E4ojEmeuXFMmAoWmTpP0WDVTSO7Cvi04pZYpiLxd6ek,43418
262
- snowflake/ml/modeling/manifold/tsne.py,sha256=Nw_0Rfd4biobdR29QsIgKLMAkRSXUnsg8MlW8LK4mnc,46377
265
+ snowflake/ml/modeling/manifold/isomap.py,sha256=2vjFtlSL0AiWKEXcfuFjGpvwi8PeCSP3VTAYvhebt_o,45079
266
+ snowflake/ml/modeling/manifold/mds.py,sha256=Hsmd65ft_k0q741fr7HHNHS-fleEbfKqZXFp5_HVmw8,44293
267
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=0DDGJ7MlsLFpT-AObOVaMh60fdfFajBO7_F3YL0AoM8,45117
268
+ snowflake/ml/modeling/manifold/tsne.py,sha256=S9aDjztmJVeacG3DH0LHNGceMissTFyNK-MFkCO8ZJk,48076
263
269
  snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
264
- snowflake/ml/modeling/metrics/classification.py,sha256=xvD_-4fTkR_qwGT4SPry7npbCwv03wZy0mMpPufDja8,63232
270
+ snowflake/ml/modeling/metrics/classification.py,sha256=ZWizjYJTogw9iSMXHfKJlMJgbPbKOBjGG3TwG91YROE,63241
265
271
  snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
266
272
  snowflake/ml/modeling/metrics/covariance.py,sha256=HxJK1mwyt6lMSg8yonHFQ8IxAEa62MHeb1M3eHEtqlk,4672
267
- snowflake/ml/modeling/metrics/metrics_utils.py,sha256=ga7eVXlLHscKlqQd6HccUqNKIy1_5GpWBggyN0yuGsM,13075
268
- snowflake/ml/modeling/metrics/ranking.py,sha256=n1lK7StCE0touDN_PRUYMGH3-OPUMC4OTA9oz__rxpw,17230
269
- snowflake/ml/modeling/metrics/regression.py,sha256=L0DdKi4eKw5t4-JcICwMPfwz2Y6MA853V17a64E9lxs,25488
273
+ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=NETSOkhP9m_GZSywiDydCQXKuXOp3qltNgbabROtJAw,13114
274
+ snowflake/ml/modeling/metrics/ranking.py,sha256=gA1R1x1jUXA9bRrYn8IfJPM5BDY4DK1JCtoPQVsz5z4,17569
275
+ snowflake/ml/modeling/metrics/regression.py,sha256=OEawjdiMZHYlycQFXM_h2czIZmmGe5GKciEQD9MSWx4,25845
270
276
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
271
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=5_ynndoUrUabhHo8hjXCHFnCVm8oUOympM2xGKCKRX0,47909
272
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=j7JcQAsxb2Am27jOswXzEFO1g1rZg3k3vuAAqUXJ2ck,45834
277
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=EEUcfF0kpPJRSBc-EYRHLzOVfTzX_zf10rbtMCAMBO0,49608
278
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=j8kOol_rG06EUgb0CFjoFUN3yLw4UdgI8o7IBbZ3Upw,47533
273
279
  snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
274
- snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=KNrM2z1H5Cbg4Lb6GV1yNOEHjm2xcSgDWCeymBF51ws,36020
275
- snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=i8AxF6XzwEiRpvYuvFtAUB0p5m0fT67jVrXfIyE0EI8,36752
280
+ snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=yd8KLROGTHGCTZrnzNK6pOFvQ5PVyI4Of6mZAv__TX0,35774
281
+ snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=hrTKyGl5mhrXcHDDJGPd5FYGBwpXJhllCRgmWVVeocE,36506
276
282
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
277
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=yGfSibq5ik-QXAqDi-IGpubhrrpCBkgtEa50RS4KF5U,41679
278
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=1mdKSB3SljHPok_ofH0d9lXPvEg-GX72bYsCxAsjVnw,42613
279
- snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=hI13zAmr7oXfPtYoom2XhsO9Dxyx1dExJjQ-32xNzSU,41949
283
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=rRoYyNgCBcTKSyKkRwvztnt2ISuAFGA7caWulXeiBYw,43378
284
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=SWDgK-e60NsnnkxSzUmyL0o-yEkSswFAQezGPuPFo-k,44312
285
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=QSiGWMdhFhsMx6mTqrabJUgIcW4Z4vw4T15P_RafkuM,43648
280
286
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
281
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=kuVGcCDXpamT2k_fZfHT0V_APBGF2XZPjCWbUaZo0sA,42218
282
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=8qQsqTyLjoouktlsWoPM05zmJ_liFIZ1joiohxGxBTU,42553
283
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=uR9WCiXa51a3yZvCkn0shBdBlK5WIcFMEiHgj-UClyY,42233
284
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=8hchz4QIpaUGYY__tb0Kh-tf3p7T4JeCeBAPJ3TLkmM,41362
285
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=DNJau9L_PkvCE9F6ost-0HoaGY6yasVZ3JXClDeam0Y,41998
287
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=Qy4cNDGtEXjP0UUStvblcqyG2thKi7SgdtYGxGLplhw,43917
288
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=5T_qVJjhp7sLwc3FnP17-67aB9GYxzSPkop1YTBG3_g,44252
289
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=16vNWWqj-TJ9CxtiluFMPY_AJIUclmxyA5i63AWTsh8,43932
290
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=d9yvEWiAIs5GkxQkVENYmuF7L3sgLdS8zmgZoYh1ku8,43061
291
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=7GEaOBJXq6gbSYhkZ1BVV0lgxyoHY8bGo-5olm9qlj4,43697
286
292
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
287
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=wcMzz1iizXEUg2x43aRezkyKdme56InjNS4fOcNtkoc,45067
288
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=4df5fQLyYkBJB6mY1gv7Y947wfgGpgovshtScrWBzUE,44538
289
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=oHA_zNt4IXZ2afYNj_FwsGEFN5OYRluuMqkDXJTDhPo,42637
290
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=UbUM9r5zROYQxRcQVzcukR2YEUlgEWNkQvnLCbBIuBo,45216
291
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=DVEpMN_e1jF2SDje08lvh7qvpXvytYN2u817iN7TFYQ,41556
292
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=38Ehqo7DvP0rTde75U889_3vdhJTA8qg34InKzPnCOE,43365
293
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=t_HXF3Gl1N7tFjW1a8qXSd7nYF8XcFTG736WQVhhHsw,44745
294
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=BoTYoUHbLMW4vr6ml6NnorkIFf2q1AfbY2D0C4wnTLc,45480
295
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=9WICMWN8VGt7iEA8EG2WBivblCuqpiM_bXLWtjRxdAo,44361
293
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=43XW7TTPZSxJkdhvVZXpAlgoyC7OLXICH_WAWVAG6kg,46766
294
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=dyQzcVqyLoAilyJpbrsW1uRR04QxczBob14T061r-S8,46237
295
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=lzxekKFgX2HoII6XssdL8DD1sj-6c0T389THcjiIXmE,44336
296
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=u17yiMKSlDr1pZjrwVN8ObR7xqTmaFmdVzB8fPL4VoU,46915
297
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=FAecHeC28mj2FdHkrFXihGnLasl20FubcG9HhH-DGFc,43255
298
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=dyA7PK7gFcERXFsFHxfu840PzlR1t__XGSDqpMS2mCE,45064
299
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=RAnAflrC4YNgIQqeUqQkp226AABq-rAg-YQZ_Qhhiqs,46444
300
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=Uc0SrovcqN1qfpJBwuy6IJXdmesVfEq0nG52GfYLQfo,47179
301
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=bH1MP9H2REexSHMHHOohGMX9YB1nNhUeM-eo0tqD9Hg,46060
296
302
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
297
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=_gZGQHFfThZv9xVKVEJkvRJXp3RVntlVTsPWDsN2_sw,41612
298
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=5ehXuVkrGfAyowcSG2Pf02dDGozWaDF77u__rRBUec8,49440
299
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=-WEguHwXRTqiVJJIWcyvYLebWTvJWpo8T0wiaN-N4Dc,48709
303
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=Nqggpym-pQq67OdwvRkDzuLl2aBGqslIIi4wJklWhsw,43311
304
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=oul8mpsp1OKBo6E1COQ3jMlcSZXnEfD7rALIYWp4JPM,51139
305
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=41GFQj47wVjLK_6hnhEqgGCRuwk-qZm9_dt8pFGrCsM,50408
300
306
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
301
307
  snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
302
308
  snowflake/ml/modeling/pipeline/pipeline.py,sha256=iVewRZJVNHP0F8dvISy2u52cUq2oeSPQqEiyZDZywRM,24810
@@ -309,44 +315,45 @@ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=SRPvTPZtNKdpWFpX9ey
309
315
  snowflake/ml/modeling/preprocessing/normalizer.py,sha256=rSn1c8n7sbIswlDrFdq1eaWRvW0nTrX1LF0IIHBWTJM,6696
310
316
  snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=0kX_H6dhjPiycUW0axCb_-Wbz37MhoAuMq33HHnuwWU,71691
311
317
  snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=rkY_9ANjLAfn1VNm3aowppLJBnHVDsAJRthtWCKFcTA,33388
312
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=fLuklF6c-KRFwTi0NksCxu6U30S4Oby8h0NjCPEhYDo,41771
318
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=G4TXeFfl4Ttufvfcnp3NmB622FRkZ9GKorpOq0R0PwM,43470
313
319
  snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=SrQgRixonU2pwqfy3DVeBC3OiQ_0UeQpqNtEkn4Hr74,12510
314
320
  snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=Wol8YEr2JjqsbFrLk5A4MKcpXvLDScVtflnspOB-PSg,11197
315
321
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
316
- snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=tePzE1DgrX6vRhk5ABkxK2V9hFVLYbgz5vKPk-VTKuI,42455
317
- snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=BOLc08MiktKERUQ5got3zEdJHoP9rkpMqX2-XToZ9T0,42804
322
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=y1C9_2bDPNlZFqU7dGsTjuvvAnVomp9AFa0iuh1Dres,44154
323
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=J5HKVRhWEXuA1T1nWzrpVOlxeDXZ9WQOzmrKvNUpwWI,44503
318
324
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
319
- snowflake/ml/modeling/svm/linear_svc.py,sha256=fugwpXQOyHq_FzNanLN1z8jRDWFiV39r2V28VO4ogGI,45265
320
- snowflake/ml/modeling/svm/linear_svr.py,sha256=FH9GmZmsKVZwQ36oAVvgfIj--3s4yIiUnoQUxPeLZoQ,43618
321
- snowflake/ml/modeling/svm/nu_svc.py,sha256=U6rb51nP6aXargYTkpJIvgaDNCBKIRp6ix45Nuioc0A,45577
322
- snowflake/ml/modeling/svm/nu_svr.py,sha256=GGjkfoY3X-fgDUSgZgjr_GjXNbJMxUrovh-qi1-kMEM,42656
323
- snowflake/ml/modeling/svm/svc.py,sha256=WtNExIVwp1sPaMxuJadIuWU3Np99GND7KeVsymjy-Dk,45726
324
- snowflake/ml/modeling/svm/svr.py,sha256=v9RX7A0isMhAm_ntyEsVPE7IJf82_1shAo81onMKhUQ,42845
325
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=NNRKiPb8E0M8yqgwg_PBqOXMZJn18Rwk1Sfy7qlZJso,46964
326
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=kB-X9rjmGOXjHumrq2EE1JYDgRtLv6AmP9N4oIkd-0M,45317
327
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=oteI9oDgEm_UnNCV0xcQIHSXW5EXYjtiN3EIi9cpi8Q,47276
328
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=V6yyWcUcioDKnWayy_FGcdV-aZP-grqwoXu8LECzZfU,44355
329
+ snowflake/ml/modeling/svm/svc.py,sha256=Neu0RrCIa_BHYoPI1eKNZYp-z0HqkLRmGHMrylbYF_s,47425
330
+ snowflake/ml/modeling/svm/svr.py,sha256=1NSPJHvyVJs-Jt5fJEkkT-Ur8t4HFeOlJ1EdV6lx93g,44544
325
331
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
326
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=rC_shzZZjLL-R3eSVEF6G4Kwfwu-No3rxbpiCEeaDcU,48002
327
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=Xi-amzJH7vT11mTmacbjKOcPa16YrZkwM8La360mx4o,46701
328
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=--LFm-oC6BrhlpUx4bH-btrn_5s6AbnJbj-fQv22Rqc,47344
329
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=aZhcdRFDgr8FlMdNsmdHY25CbMaStx-GI9a7y0unBCk,46052
332
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=YwLYrfJin3Z18Fkfun7NviTpVsD32NUAQtfzJlpl0YY,49701
333
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=q4tDGxbROJn9H2j3NDoIRiLpaEnXSKPpGBaAxpW2XpE,48400
334
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=d2l5Sdt-q-oEjszUWIrQ7bQQMdKBkXu2dTKzs5yNxMQ,49043
335
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=xUb3CjDqyccivlcEiIcbbtRWyRDNByiX1tn1HXaj9B4,47751
330
336
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
331
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=yecyZQazTEIjud7LoTmxoY7u4ioi0RjLVF7Yj4JAbVM,53000
332
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=duV_igo_SzthrPPtY2wuVgec-yf68R-rniyGbBex9-4,52499
333
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=xaxSuf1PaiFRgIjli9XdCO9k_oXUKwq04a7fQm0pK18,53176
334
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=-gTN130w9KwxsJl0quB3KWfKyrU6c-Edh6Cor29-d24,52702
337
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=VgAJhn9yU4RncJvix9NJdIlt1zz8kKa-rkKwnHmKdds,54699
338
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=tvcQrgng-JA54eMoSBNM0n0izsyS5mWPBvGtwr8l8Jw,54198
339
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=QOkC23VYfP5RLMGT9v-zeJlvYZIbHDaOg6Gv9S6Bg_o,54875
340
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=lhKOSzt7zyog-Ra4Vjpk4LKNGKTgrJ4JM36i5X4XmRk,54401
335
341
  snowflake/ml/monitoring/monitor.py,sha256=M9IRk6bnVwKNEvCexEJ5Rf95zEFap4O5qjbwfwdXGS0,7135
336
342
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
337
343
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
338
344
  snowflake/ml/registry/_artifact_manager.py,sha256=Q-6cRfU-pQBNVroh1_YIhd8hQtk8lC0y9vRBCDVizGQ,5544
339
345
  snowflake/ml/registry/_initial_schema.py,sha256=KusBbu0vpgCh-dPHgC90xRSfP6Z79qC-eXTqT8GXpFI,5316
340
- snowflake/ml/registry/_manager/model_manager.py,sha256=gF41jp6vqcFf7Hl9qlz-jFFo8pFMkBEoNg-Gt5m7fAQ,5573
341
346
  snowflake/ml/registry/_schema.py,sha256=GOA427_mVKkq9RWRENHuqDimRS0SmmP4EWThNCu1Kz4,3166
342
347
  snowflake/ml/registry/_schema_upgrade_plans.py,sha256=LxZNXYGjGG-NmB7w7_SxgaJpZuXUO66XVMuh04oL6SI,4209
343
348
  snowflake/ml/registry/_schema_version_manager.py,sha256=-9wGH-7ELSZxp7-fW7hXTMqkJSIebXdSpwwgzdvnoYs,6922
344
349
  snowflake/ml/registry/artifact.py,sha256=9JDcr4aaR0d4cp4YSRnGMFRIdu-k0tABbs6jDH4VDGQ,1263
345
350
  snowflake/ml/registry/model_registry.py,sha256=I9bPGFt9ByMqOL_cPYVizp0Swn7CWnknK3OOwM6wzDU,89586
346
- snowflake/ml/registry/registry.py,sha256=paPemKCJSnSk52QX7OnCirKirJE8TfknQ0SwYt7GQIA,9748
351
+ snowflake/ml/registry/registry.py,sha256=Q0URdVOeo5V6CXJzBGpIlhHfPvToPnHyzuYQ61vIAAw,9956
352
+ snowflake/ml/registry/_manager/model_manager.py,sha256=gF41jp6vqcFf7Hl9qlz-jFFo8pFMkBEoNg-Gt5m7fAQ,5573
347
353
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
348
354
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
349
- snowflake/ml/version.py,sha256=-eGI8JVcePjgLuVzFXzogxJRId2R96eIcJFtzws9vsU,16
350
- snowflake_ml_python-1.2.0.dist-info/METADATA,sha256=nk03ZSylxJFYjVhRmTVK46A-i1o8KsLtBdxt4E-MEOE,27912
351
- snowflake_ml_python-1.2.0.dist-info/RECORD,,
352
- snowflake_ml_python-1.2.0.dist-info/WHEEL,sha256=sobxWSyDDkdg_rinUth-jxhXHqoNqlmNMJY3aTZn2Us,91
355
+ snowflake_ml_python-1.2.2.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
356
+ snowflake_ml_python-1.2.2.dist-info/METADATA,sha256=DeX8aUf_uO8KORTh7oZs-fSdwXHGI9KvZxoWcVYV-44,42075
357
+ snowflake_ml_python-1.2.2.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
358
+ snowflake_ml_python-1.2.2.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
359
+ snowflake_ml_python-1.2.2.dist-info/RECORD,,