snowflake-ml-python 1.2.0__py3-none-any.whl → 1.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (176) hide show
  1. snowflake/ml/_internal/telemetry.py +19 -0
  2. snowflake/ml/model/_client/ops/model_ops.py +16 -38
  3. snowflake/ml/model/_client/sql/model.py +1 -7
  4. snowflake/ml/model/_client/sql/model_version.py +20 -15
  5. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +1 -6
  6. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +0 -2
  7. snowflake/ml/model/_model_composer/model_runtime/_runtime_requirements.py +10 -1
  8. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -2
  9. snowflake/ml/model/_packager/model_meta/_core_requirements.py +11 -1
  10. snowflake/ml/model/_packager/model_meta/_packaging_requirements.py +3 -0
  11. snowflake/ml/model/_packager/model_meta/model_meta.py +17 -3
  12. snowflake/ml/model/type_hints.py +3 -0
  13. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +63 -95
  14. snowflake/ml/modeling/_internal/snowpark_handlers.py +9 -6
  15. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +16 -0
  16. snowflake/ml/modeling/cluster/affinity_propagation.py +16 -0
  17. snowflake/ml/modeling/cluster/agglomerative_clustering.py +16 -0
  18. snowflake/ml/modeling/cluster/birch.py +16 -0
  19. snowflake/ml/modeling/cluster/bisecting_k_means.py +16 -0
  20. snowflake/ml/modeling/cluster/dbscan.py +16 -0
  21. snowflake/ml/modeling/cluster/feature_agglomeration.py +16 -0
  22. snowflake/ml/modeling/cluster/k_means.py +16 -0
  23. snowflake/ml/modeling/cluster/mean_shift.py +16 -0
  24. snowflake/ml/modeling/cluster/mini_batch_k_means.py +16 -0
  25. snowflake/ml/modeling/cluster/optics.py +16 -0
  26. snowflake/ml/modeling/cluster/spectral_biclustering.py +16 -0
  27. snowflake/ml/modeling/cluster/spectral_clustering.py +16 -0
  28. snowflake/ml/modeling/cluster/spectral_coclustering.py +16 -0
  29. snowflake/ml/modeling/compose/column_transformer.py +16 -0
  30. snowflake/ml/modeling/compose/transformed_target_regressor.py +16 -0
  31. snowflake/ml/modeling/covariance/elliptic_envelope.py +16 -0
  32. snowflake/ml/modeling/covariance/empirical_covariance.py +16 -0
  33. snowflake/ml/modeling/covariance/graphical_lasso.py +16 -0
  34. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +16 -0
  35. snowflake/ml/modeling/covariance/ledoit_wolf.py +16 -0
  36. snowflake/ml/modeling/covariance/min_cov_det.py +16 -0
  37. snowflake/ml/modeling/covariance/oas.py +16 -0
  38. snowflake/ml/modeling/covariance/shrunk_covariance.py +16 -0
  39. snowflake/ml/modeling/decomposition/dictionary_learning.py +16 -0
  40. snowflake/ml/modeling/decomposition/factor_analysis.py +16 -0
  41. snowflake/ml/modeling/decomposition/fast_ica.py +16 -0
  42. snowflake/ml/modeling/decomposition/incremental_pca.py +16 -0
  43. snowflake/ml/modeling/decomposition/kernel_pca.py +16 -0
  44. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +16 -0
  45. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +16 -0
  46. snowflake/ml/modeling/decomposition/pca.py +16 -0
  47. snowflake/ml/modeling/decomposition/sparse_pca.py +16 -0
  48. snowflake/ml/modeling/decomposition/truncated_svd.py +16 -0
  49. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +16 -0
  50. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +16 -0
  51. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +16 -0
  52. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +16 -0
  53. snowflake/ml/modeling/ensemble/bagging_classifier.py +16 -0
  54. snowflake/ml/modeling/ensemble/bagging_regressor.py +16 -0
  55. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +16 -0
  56. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +16 -0
  57. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +16 -0
  58. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +16 -0
  59. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +16 -0
  60. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +16 -0
  61. snowflake/ml/modeling/ensemble/isolation_forest.py +16 -0
  62. snowflake/ml/modeling/ensemble/random_forest_classifier.py +16 -0
  63. snowflake/ml/modeling/ensemble/random_forest_regressor.py +16 -0
  64. snowflake/ml/modeling/ensemble/stacking_regressor.py +16 -0
  65. snowflake/ml/modeling/ensemble/voting_classifier.py +16 -0
  66. snowflake/ml/modeling/ensemble/voting_regressor.py +16 -0
  67. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +16 -0
  68. snowflake/ml/modeling/feature_selection/select_fdr.py +16 -0
  69. snowflake/ml/modeling/feature_selection/select_fpr.py +16 -0
  70. snowflake/ml/modeling/feature_selection/select_fwe.py +16 -0
  71. snowflake/ml/modeling/feature_selection/select_k_best.py +16 -0
  72. snowflake/ml/modeling/feature_selection/select_percentile.py +16 -0
  73. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +16 -0
  74. snowflake/ml/modeling/feature_selection/variance_threshold.py +16 -0
  75. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +16 -0
  76. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +16 -0
  77. snowflake/ml/modeling/impute/iterative_imputer.py +16 -0
  78. snowflake/ml/modeling/impute/knn_imputer.py +16 -0
  79. snowflake/ml/modeling/impute/missing_indicator.py +16 -0
  80. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +16 -0
  81. snowflake/ml/modeling/kernel_approximation/nystroem.py +16 -0
  82. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +16 -0
  83. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +16 -0
  84. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +16 -0
  85. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +16 -0
  86. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +16 -0
  87. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +16 -0
  88. snowflake/ml/modeling/linear_model/ard_regression.py +16 -0
  89. snowflake/ml/modeling/linear_model/bayesian_ridge.py +16 -0
  90. snowflake/ml/modeling/linear_model/elastic_net.py +16 -0
  91. snowflake/ml/modeling/linear_model/elastic_net_cv.py +16 -0
  92. snowflake/ml/modeling/linear_model/gamma_regressor.py +16 -0
  93. snowflake/ml/modeling/linear_model/huber_regressor.py +16 -0
  94. snowflake/ml/modeling/linear_model/lars.py +16 -0
  95. snowflake/ml/modeling/linear_model/lars_cv.py +16 -0
  96. snowflake/ml/modeling/linear_model/lasso.py +16 -0
  97. snowflake/ml/modeling/linear_model/lasso_cv.py +16 -0
  98. snowflake/ml/modeling/linear_model/lasso_lars.py +16 -0
  99. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +16 -0
  100. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +16 -0
  101. snowflake/ml/modeling/linear_model/linear_regression.py +16 -0
  102. snowflake/ml/modeling/linear_model/logistic_regression.py +16 -0
  103. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +16 -0
  104. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +16 -0
  105. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +16 -0
  106. snowflake/ml/modeling/linear_model/multi_task_lasso.py +16 -0
  107. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +16 -0
  108. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +16 -0
  109. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +16 -0
  110. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +16 -0
  111. snowflake/ml/modeling/linear_model/perceptron.py +16 -0
  112. snowflake/ml/modeling/linear_model/poisson_regressor.py +16 -0
  113. snowflake/ml/modeling/linear_model/ransac_regressor.py +16 -0
  114. snowflake/ml/modeling/linear_model/ridge.py +16 -0
  115. snowflake/ml/modeling/linear_model/ridge_classifier.py +16 -0
  116. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +16 -0
  117. snowflake/ml/modeling/linear_model/ridge_cv.py +16 -0
  118. snowflake/ml/modeling/linear_model/sgd_classifier.py +16 -0
  119. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +16 -0
  120. snowflake/ml/modeling/linear_model/sgd_regressor.py +16 -0
  121. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +16 -0
  122. snowflake/ml/modeling/linear_model/tweedie_regressor.py +16 -0
  123. snowflake/ml/modeling/manifold/isomap.py +16 -0
  124. snowflake/ml/modeling/manifold/mds.py +16 -0
  125. snowflake/ml/modeling/manifold/spectral_embedding.py +16 -0
  126. snowflake/ml/modeling/manifold/tsne.py +16 -0
  127. snowflake/ml/modeling/metrics/classification.py +5 -6
  128. snowflake/ml/modeling/metrics/metrics_utils.py +5 -3
  129. snowflake/ml/modeling/metrics/ranking.py +7 -3
  130. snowflake/ml/modeling/metrics/regression.py +6 -3
  131. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +16 -0
  132. snowflake/ml/modeling/mixture/gaussian_mixture.py +16 -0
  133. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +16 -0
  134. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +16 -0
  135. snowflake/ml/modeling/multiclass/output_code_classifier.py +16 -0
  136. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +16 -0
  137. snowflake/ml/modeling/naive_bayes/categorical_nb.py +16 -0
  138. snowflake/ml/modeling/naive_bayes/complement_nb.py +16 -0
  139. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +16 -0
  140. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +16 -0
  141. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +16 -0
  142. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +16 -0
  143. snowflake/ml/modeling/neighbors/kernel_density.py +16 -0
  144. snowflake/ml/modeling/neighbors/local_outlier_factor.py +16 -0
  145. snowflake/ml/modeling/neighbors/nearest_centroid.py +16 -0
  146. snowflake/ml/modeling/neighbors/nearest_neighbors.py +16 -0
  147. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +16 -0
  148. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +16 -0
  149. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +16 -0
  150. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +16 -0
  151. snowflake/ml/modeling/neural_network/mlp_classifier.py +16 -0
  152. snowflake/ml/modeling/neural_network/mlp_regressor.py +16 -0
  153. snowflake/ml/modeling/preprocessing/polynomial_features.py +16 -0
  154. snowflake/ml/modeling/semi_supervised/label_propagation.py +16 -0
  155. snowflake/ml/modeling/semi_supervised/label_spreading.py +16 -0
  156. snowflake/ml/modeling/svm/linear_svc.py +16 -0
  157. snowflake/ml/modeling/svm/linear_svr.py +16 -0
  158. snowflake/ml/modeling/svm/nu_svc.py +16 -0
  159. snowflake/ml/modeling/svm/nu_svr.py +16 -0
  160. snowflake/ml/modeling/svm/svc.py +16 -0
  161. snowflake/ml/modeling/svm/svr.py +16 -0
  162. snowflake/ml/modeling/tree/decision_tree_classifier.py +16 -0
  163. snowflake/ml/modeling/tree/decision_tree_regressor.py +16 -0
  164. snowflake/ml/modeling/tree/extra_tree_classifier.py +16 -0
  165. snowflake/ml/modeling/tree/extra_tree_regressor.py +16 -0
  166. snowflake/ml/modeling/xgboost/xgb_classifier.py +16 -0
  167. snowflake/ml/modeling/xgboost/xgb_regressor.py +16 -0
  168. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +16 -0
  169. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +16 -0
  170. snowflake/ml/registry/registry.py +2 -0
  171. snowflake/ml/version.py +1 -1
  172. snowflake_ml_python-1.2.1.dist-info/LICENSE.txt +202 -0
  173. {snowflake_ml_python-1.2.0.dist-info → snowflake_ml_python-1.2.1.dist-info}/METADATA +261 -50
  174. {snowflake_ml_python-1.2.0.dist-info → snowflake_ml_python-1.2.1.dist-info}/RECORD +189 -186
  175. {snowflake_ml_python-1.2.0.dist-info → snowflake_ml_python-1.2.1.dist-info}/WHEEL +2 -1
  176. snowflake_ml_python-1.2.1.dist-info/top_level.txt +1 -0
@@ -5,23 +5,24 @@ snowflake/cortex/_sentiment.py,sha256=7X_a8qJNFFgn-Y1tjwMDkyNJHz5yYl0PvnezVCc4Ts
5
5
  snowflake/cortex/_summarize.py,sha256=DJRxUrPrTVmtQNgus0ZPF1z8nPmn4Rs5oL3U25CfXxQ,1075
6
6
  snowflake/cortex/_translate.py,sha256=JPMIXxHTgJPfJqT5Hw_WtYM6FZ8NuQufZ4XR-M8wnyo,1420
7
7
  snowflake/cortex/_util.py,sha256=0xDaDSctenhuj59atZenZp5q9zuhji0WQ77KPjqqNoc,1557
8
+ snowflake/ml/version.py,sha256=knjbabqRMxHk5DvN0FyRcnyp78BcWPNPQB9HwpNtkws,16
9
+ snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
10
+ snowflake/ml/_internal/env_utils.py,sha256=KzD7FUTdRV3bdfvZQDr8GmS6V4eqwceKLcD15Zxo0Lo,25048
11
+ snowflake/ml/_internal/file_utils.py,sha256=S-OlwrCd3G5sP5Tr9EwNHjdFV5v3VkCg80XxfdCy1Kw,13721
12
+ snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
13
+ snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
14
+ snowflake/ml/_internal/telemetry.py,sha256=SjK5jBkSglPFJj6IVVvwUovN8wdkajrk-3lEzoQAAZo,22376
15
+ snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
8
16
  snowflake/ml/_internal/container_services/image_registry/credential.py,sha256=nShNgIb2yNu9w6vceOY3aSgjpuOoi0spWWmvgEafPSk,3291
9
17
  snowflake/ml/_internal/container_services/image_registry/http_client.py,sha256=_zqPPp76Vk0jQ8eVK0OJ4mJgcWsdY4suUd1P7Orqmm8,5214
10
18
  snowflake/ml/_internal/container_services/image_registry/imagelib.py,sha256=Vh684uUZfwGGnxO-BZ4tRGa50l2uGM-4WfTg6QftlMY,14537
11
19
  snowflake/ml/_internal/container_services/image_registry/registry_client.py,sha256=Zic4bF67DMqEZbQMHffyeNoa83-FhswpZx02iBMjyrc,9115
12
- snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
13
- snowflake/ml/_internal/env_utils.py,sha256=KzD7FUTdRV3bdfvZQDr8GmS6V4eqwceKLcD15Zxo0Lo,25048
14
20
  snowflake/ml/_internal/exceptions/error_codes.py,sha256=a6c6yTgCR-Fwqk2rpjRPS__fJjrcE2G1aj3r57uWCbY,5177
15
21
  snowflake/ml/_internal/exceptions/error_messages.py,sha256=vF9XOWJoBuKvFxBkGcDelhXK1dipzTt-AdK4NkCbwTo,47
16
22
  snowflake/ml/_internal/exceptions/exceptions.py,sha256=ub0fthrNTVoKhpj1pXnKRfO1Gqnmbe7wY51vaoEOp5M,1653
17
23
  snowflake/ml/_internal/exceptions/fileset_error_messages.py,sha256=dqPpRu0cKyQA_0gahvbizgQBTwNhnwveN286JrJLvi8,419
18
24
  snowflake/ml/_internal/exceptions/fileset_errors.py,sha256=ZJfkpeDgRIw3qA876fk9FIzxIrm-yZ8I9RXUbzaeM84,1040
19
25
  snowflake/ml/_internal/exceptions/modeling_error_messages.py,sha256=cWDJHjHst8P-gPTPOY2EYapjhlB9tUm159VPBxNYefc,466
20
- snowflake/ml/_internal/file_utils.py,sha256=S-OlwrCd3G5sP5Tr9EwNHjdFV5v3VkCg80XxfdCy1Kw,13721
21
- snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
22
- snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
23
- snowflake/ml/_internal/telemetry.py,sha256=a7quIbktsSY4eHVfDxkfZmiLERwSm8CuJUOTMXF9c-M,21825
24
- snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
25
26
  snowflake/ml/_internal/utils/formatting.py,sha256=udoXzwbgeZ6NTUeU7ywgSA4pASv3xtxm-IslW1l6ZqM,3677
26
27
  snowflake/ml/_internal/utils/identifier.py,sha256=_NAW00FGtQsQESxF2b30_T4kkmzQITsdfykvJ2PqPUo,10870
27
28
  snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
@@ -48,20 +49,24 @@ snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx5
48
49
  snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPbt9WKYiBp0,2386
49
50
  snowflake/ml/model/__init__.py,sha256=fk8OMvOyrSIkAhX0EcrgBBvdz1VGRsdMmfYFV2GCf14,367
50
51
  snowflake/ml/model/_api.py,sha256=nhLsrwpI3CoXMF2FcL4VSs4hub1vMLGIsRV7kZjdsow,21512
52
+ snowflake/ml/model/custom_model.py,sha256=x1RczFD4cwlHwnQmRan5M6gN-71LNWXuiEk7nMici8Y,8185
53
+ snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
54
+ snowflake/ml/model/model_signature.py,sha256=ttf3MbOx9m9G0cK8EThrFjZ73EMqUoP8GD7LvaUHj3s,26494
55
+ snowflake/ml/model/type_hints.py,sha256=7s3D1F4EWi8G2VMc_w8TXGPEtnWgk9rY86C5A8-B4BE,10874
51
56
  snowflake/ml/model/_client/model/model_impl.py,sha256=ulMsgwN6mMzOSsg5BCWuzE3kcbobIob4XzjonVastOU,11993
52
57
  snowflake/ml/model/_client/model/model_version_impl.py,sha256=eQmN6R_lseWydBXi-7PUET1HWdCUUMTfPFmZsfaXYpk,13001
53
58
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=XFNolmueu0nC3nAjb2Lj3v1NffDAhAq0JWMek9JVO38,4094
54
- snowflake/ml/model/_client/ops/model_ops.py,sha256=dzWrswJILnqInN6BZoHVp1PLh5vw58Mh5cxbyUupPc0,18548
55
- snowflake/ml/model/_client/sql/model.py,sha256=dKTnITZbz-Sw1fAWV5diAfmUK_ZJ-pfroM-L4-aBS2k,4803
56
- snowflake/ml/model/_client/sql/model_version.py,sha256=iba3vgq0AIS1_laWa-nbKWcOicknCiy8NdQ28W1P-ao,8188
59
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=0Hd2YMUpXPedaErZ4hdhCmK14JdQoKDxc2NrRAqELmU,17367
60
+ snowflake/ml/model/_client/sql/model.py,sha256=diuyGfFtLu1Z9yBThP-SjGOG9Zy4gflRKh6JoyUBDHk,4525
61
+ snowflake/ml/model/_client/sql/model_version.py,sha256=aJPyWqWCyw3cFFWB5mWzeWJpEH1XZP5kwyZ_nS2_JpI,8551
57
62
  snowflake/ml/model/_client/sql/stage.py,sha256=4zP8aO6cv0IDrZEqhkheNWwy4qBuv1qyGLwMFSW-7EI,1497
58
63
  snowflake/ml/model/_client/sql/tag.py,sha256=RYvblBfQmK4xmLF0pz0BNUd9wddqlfHtEK1JRRpJGPE,4646
59
64
  snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py,sha256=clCaoO0DZam4X79UtQV1ZuMQtTezAJkhLu9ViAX18Xk,302
60
65
  snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py,sha256=G74D9lV2B3d544YzFN-YrjPkaST7tbQeh-rM17dtoJc,10681
61
66
  snowflake/ml/model/_deploy_client/image_builds/docker_context.py,sha256=QZt02Wd2uU31th_WUxy4JmMvbftpyE7ZfI3MTw5RJ0o,6306
62
67
  snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh,sha256=1pntXgqFthW4gdomqlyWx9CJF-Wqv8VMoLkgSiTHEJ0,1578
63
- snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=Ltk7KrYsp-nrghMhbMWKqi3snU8inbqmKLHFFyBCeBY,11148
64
68
  snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=TWvjl0YYJZnxue2tQjbwtD6qoaXsgk-DYVp5xnn6SC4,9724
69
+ snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=Ltk7KrYsp-nrghMhbMWKqi3snU8inbqmKLHFFyBCeBY,11148
65
70
  snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template,sha256=yzNu-yOo9wfMj5Tsky3PZLgGMRzY0da2LWwaPcC5F40,1696
66
71
  snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template,sha256=g8mEvpJmwQ9OnAkZomeErPQ6h4OJ5NdtRCoylyIp7f4,1225
67
72
  snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template,sha256=nEK7fqo_XHJEVKLNe--EkES4oiDm7M5E9CacxGItFU0,3633
@@ -75,15 +80,16 @@ snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=lz7uvABEa8S
75
80
  snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=yZR9M76oh6JbPQJHb6t3wGO3wuD04w0zLEXiEyZW_tg,8358
76
81
  snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
77
82
  snowflake/ml/model/_model_composer/model_composer.py,sha256=hpaClgvyW-_e5TYawx-c34zNzDq58qL37yPO0ubnBWM,6313
78
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=6xFoEHVK4nQvMMBBwth_YZ6cdwaO_xQafhVR2yVl3_I,6896
79
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=xV1s6GkRZuQpV3LjvCG-XoZ8X8oJ1jhmHXuweb4-egw,2079
83
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=wdMTFH8St31mr88Fj8lQLTj_gvskHQu8fQOxAPQoXuQ,6677
84
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=k787AJ6CE7cMQKdh0ppp7E7a_NUYFl-M_ZB9dZ5L2EQ,1990
80
85
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=M-yaRVT5izL4JnwqZtKKDC5QlxT8MeZXhSFJKS_wXns,1654
81
86
  snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=QpQXAIKDs9cotLOL0JdI6xLet1QJU7KtaF7O10nDQcs,2291
82
87
  snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=RyR7ayq0K8aqmTzJfn4jXnNa6tflE3Br8F2hfcFTwik,5351
83
- snowflake/ml/model/_model_composer/model_runtime/_runtime_requirements.py,sha256=jf96gr4xT2QQt2mJ9SixbG8W5psWYR3TmwgCEt25bdQ,204
84
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py,sha256=2PCVqkUWJ-lgLUIJ1GDgVHqW32-QJRjo-D1zr_NlckI,4285
85
- snowflake/ml/model/_packager/model_env/model_env.py,sha256=MHajuZ7LnMadPImXESeEQDocgKh2E3QiKqC-fqmDKio,16640
88
+ snowflake/ml/model/_model_composer/model_runtime/_runtime_requirements.py,sha256=dSbdiP8Hu2fm-CYb7eihc5fL_8zmCMB_4KZYVypQsc0,238
89
+ snowflake/ml/model/_model_composer/model_runtime/model_runtime.py,sha256=rmIeKQh1u7bBnN_zko7tH4DCfUMazlGaIrZLmF8IgDE,4201
86
90
  snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
91
+ snowflake/ml/model/_packager/model_packager.py,sha256=aw9eiFhQENNFTNc0zZHJjPG7LKy1FDmEst-eD9T0tOc,5893
92
+ snowflake/ml/model/_packager/model_env/model_env.py,sha256=MHajuZ7LnMadPImXESeEQDocgKh2E3QiKqC-fqmDKio,16640
87
93
  snowflake/ml/model/_packager/model_handlers/_base.py,sha256=1K0H3Iio3r3UK5Ryd2-EvdvLGsBrH6uefop7W64ba4U,6023
88
94
  snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=gfDr6WyClxWzd0Nkg7AN8v5d2OsiatVqGqOlHHyynl4,2597
89
95
  snowflake/ml/model/_packager/model_handlers/custom.py,sha256=ahpjdOU-77L5Z7QBKmIGiNpB0Y6LF3SWF3Y91TRh5CU,7280
@@ -97,14 +103,14 @@ snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=xXSZfyN-zqSwTkr
97
103
  snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=MCfrUTBNwQfnNGUrHVYRFLZLQeFATuDWs3bVeO4Rw7Q,8064
98
104
  snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=Z594KEGkuIXB5ZfwmwkuJNovvPukwxOj7f3XXInW4QE,8833
99
105
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
100
- snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=BX1VhAGi1qBBPkg7fJrJNupwBIPptpB3aW9ZTV65epM,226
106
+ snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=2RvxDb8bXlEHxbbBo0_v3S76gWd8Enpa0pikxL-qM1E,264
107
+ snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
101
108
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=qwgBneEA9xu34FBKDDhxM1igRiviUsuQSGUfKatu_Ro,1818
102
- snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=YFFEQ_OErwD2CAYgWGIIAawQUkEZ5x0kLze_Sreiuzc,15555
109
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=ReiphecYn7JKWToGEUqZ7IqJUA_SzxYcpMa2VuSlyTc,16010
103
110
  snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=j5b7hkh3Kz79vDaQmuCnBq5S9FvpUfDz3Ee2KmaKfBE,1897
104
111
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
105
112
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=czF4J_i3FPHDaaFwKF93Gr6qxVwF4IbaoCdb3G_5iH8,1034
106
113
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
107
- snowflake/ml/model/_packager/model_packager.py,sha256=aw9eiFhQENNFTNc0zZHJjPG7LKy1FDmEst-eD9T0tOc,5893
108
114
  snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
109
115
  snowflake/ml/model/_signatures/builtins_handler.py,sha256=0kAnTZ_-gCK0j5AiWHQhzBZsCweP_87tClsCTUJb3jE,2706
110
116
  snowflake/ml/model/_signatures/core.py,sha256=VfOjMsCOKuZwFAXc_FSs2TeFjM-2MSHxQzB_LXc-gLk,17972
@@ -114,189 +120,185 @@ snowflake/ml/model/_signatures/pytorch_handler.py,sha256=QkSiWCBSRRCnsOaONvRPOyM
114
120
  snowflake/ml/model/_signatures/snowpark_handler.py,sha256=--EZ5gxlnFy9MOVXFiCzNZPJ4BU20HwplvTG_tq-Tmo,5923
115
121
  snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=VZcws6svwupulhDodRYTn6GmlWZRqY9fW_gLkT8slxA,6082
116
122
  snowflake/ml/model/_signatures/utils.py,sha256=aP5lkxiT4lY5gtN6vnupAJhXwRXFSlWFumIYNVH7AtU,12687
117
- snowflake/ml/model/custom_model.py,sha256=x1RczFD4cwlHwnQmRan5M6gN-71LNWXuiEk7nMici8Y,8185
118
- snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
119
- snowflake/ml/model/model_signature.py,sha256=ttf3MbOx9m9G0cK8EThrFjZ73EMqUoP8GD7LvaUHj3s,26494
120
123
  snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
121
124
  snowflake/ml/model/models/llm.py,sha256=ofrdHH4LQEQmnxYAGwmHV2sWLPenf0WcgBLg9MPwSmY,3616
122
- snowflake/ml/model/type_hints.py,sha256=N255-eGcW_Qz3ob31HJyMl5147yV4NtPYMyAGW-kq2o,10639
123
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py,sha256=YJbhHTu0E1-oS1rG1HZRa-kmDbk9WfJM_UK4Xf_SLr0,30807
125
+ snowflake/ml/modeling/_internal/distributed_hpo_trainer.py,sha256=PPo0EIL_sWQA7rUXdD3C2Bpq9Cw-iJpgdbBelD9WT68,29344
124
126
  snowflake/ml/modeling/_internal/estimator_protocols.py,sha256=JaRmP4NAPcSdYXjOIIPCUoakelf6MG_cAx_XgNeCudY,2350
125
127
  snowflake/ml/modeling/_internal/estimator_utils.py,sha256=s6MsyZFHSeSgpJ_WmVvVrgJXlXinnq8pQaEbhBI68Vo,5650
126
128
  snowflake/ml/modeling/_internal/model_specifications.py,sha256=-0PWh4cy-XjbejGb00RiFTnBSWiYMTNFQntXTMADgko,4725
127
129
  snowflake/ml/modeling/_internal/model_trainer.py,sha256=vTv_v9kiV0I4t67hHjBp-4Wwz0U7pp7L1pJB00wJJM8,374
128
130
  snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=b9gCCHfsOAKD1aqpGWZaXV4J5uqzEMdFAmoJllp6JbU,5019
129
131
  snowflake/ml/modeling/_internal/pandas_trainer.py,sha256=wYhOHBuzdgKuQj5K23DEf3DZPnjp7il2br3-GOVmOHM,1960
130
- snowflake/ml/modeling/_internal/snowpark_handlers.py,sha256=KLaZ7x82UnxpCmyLQmzaw2h1mdw1UbC5d3bevhn_5lE,16165
132
+ snowflake/ml/modeling/_internal/snowpark_handlers.py,sha256=tRpAx6_vHvSioPpaAYb1p5ukGabjnGIpYGbcCsO0uCE,16330
131
133
  snowflake/ml/modeling/_internal/snowpark_trainer.py,sha256=lvslpaAFo2GbgNKrrOoa7vqJwViyKNw3B6a5_Gk6f1Q,13820
132
134
  snowflake/ml/modeling/_internal/xgboost_external_memory_trainer.py,sha256=1MnPZllht4BQZfnfsUEYuA5hkafCeSMyQ7v58JdwfcE,17174
133
135
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
134
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=JyfkGMbvVhVRhT9XEeO1PcufDPyN6YE8vUlKKEzYJzo,44797
136
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=_XhENjxRZMccr0sd4zhvGRKo-a7lDjgqg_jxV69MA08,46469
135
137
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
136
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=8xqPFQaBX4hlrS7Ff11S4ZHe8_KN4L-VuB0hE5q0NCI,42625
137
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=odvY5QGPDpDEmUoi6ucKszu4TRq49R_ILvFDKqlRUak,44662
138
- snowflake/ml/modeling/cluster/birch.py,sha256=pT4abu3ElginBh0wVfszOJn-wPU94ekm1CuzuVI3BO8,42350
139
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=MXH5M2PcH9ftWlcvFNTTb5Eul5jT9caPYhtw3eNA0T0,45049
140
- snowflake/ml/modeling/cluster/dbscan.py,sha256=LE93Q9R9O6QvIN_I3NiCt3BcZJYybjFoNvfxjgfF5l8,42712
141
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=9yeBIsXmEnU5GQWjB4M89m-ep3_RFAI8aMCS3OqNnYU,45180
142
- snowflake/ml/modeling/cluster/k_means.py,sha256=uqg2_m77YyDgqlKZT_HxjA_GtH_aXeQPijLCDR0e5_U,44605
143
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=aekIa6XyKYx6tce5yt_zw8EIdZV2urjneVW3n--JWLE,42922
144
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=Tz2QyIXG8AV6yotHYiuvwR30XN4W_EXUt6Emt_M_Fj0,45967
145
- snowflake/ml/modeling/cluster/optics.py,sha256=31aQ64cAE6JhTwD1-7HcLKM-fVCN7Qxbevs6xPGDSw4,46026
146
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=DHoxf2wVca-skUAwQ1a7UdlsqvxR9wR1kfqznRFJ3aI,42922
147
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=gCU8-SPZijS3010GvWiO2ZxLsb_AFF2SOM7xHEmIWA0,46113
148
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=LvDjceZBmOT-M-LOZLG-q2bHEAE9huC0ezyp9PAjgkE,42055
138
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=suAgiYFCiW2DUMZM00Wgib1Lqu2QpSX3_YzEkjBS-J8,44297
139
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=lyc1Od05-Sbh-Lg2vBWegK69XjPBHZpbrfWeu_Yw010,46334
140
+ snowflake/ml/modeling/cluster/birch.py,sha256=xhkCfHw5JfsroPvnOoUsCWKakI3RY5GxwFMDxzCClgg,44022
141
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=FDGQ5pPPPJXR1hXBGUM92q1iyjMbmC7w0I7rbMkHp7c,46721
142
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=tOsUiMTePcCuIG0owXbJJb_PgaAetgKTSYnY9FRbMdI,44384
143
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=Ba_xfgUQA31Fe24q0fN1BP9xM9dEv-HgiW2Iq3Qn00U,46852
144
+ snowflake/ml/modeling/cluster/k_means.py,sha256=u4tKTm14cIqmzNbJZudtgYPB8AN8yV9zXMCp5MS8dOs,46277
145
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=emb1m8Hwk_Z5y5Ftm7zLSF1xvkPxMumn5sIVNwi_9UI,44594
146
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=R-nsqxW8KVBVMksxXQep5D92WxDsrD8k4jngQ_NiGNA,47639
147
+ snowflake/ml/modeling/cluster/optics.py,sha256=dCbtCnMGQIox49lRvigXf6bsNJyaeAgoKsDvczrqllo,47698
148
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=BcsU5GisicKB4cBAbV2trvo_CfriMLNBDx2bROpVbcM,44594
149
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=NFDSquCiuii4iTQ9f1doe8x-1FoJ7mleiLtYnr2NNFE,47785
150
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=4iTuLye8sqRFzNBzxzaVfaeA64PEcQFM3dlM4HWS9wc,43727
149
151
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
150
- snowflake/ml/modeling/compose/column_transformer.py,sha256=CiQ08df8956EQWXvR7R9w5uMPOYpnmiNNeB_9sS7Zxo,44621
151
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=zDFee-ua4V3Yk_KLsYxJ1rxF8KJa-GcvPILfOEBUzrM,42609
152
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=8OQqJ88rBU6jg6XUshqFp8Jwg7uqYKnInRdGpEQYRZ4,46293
153
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=9X0cXs6n_4RYaRrXoMoW6-bLIpnkbuBPzOmEda7ADKY,44281
152
154
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
153
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=pO2vU3zKhwHDT1kW5zPETpIQYGf0XnRJ6XhMwspCEqw,42691
154
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=RSZuyhXr7mqNPbyMLl0CGaT-MaGm-NRSA8sTg4ZkQrM,40755
155
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=5ztLaB_ghnbJCHpbesq4y665MIAP0Gthxn1e16hvrpA,42619
156
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=LnPd3xbbKegoCIlvhC5Wl53Y3-uiw0NkNfbLBNlriig,43784
157
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=5F-INykbLioVQ_wVSXn2hP_4Bd-b9EG_h5hhTrzxfR0,40893
158
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=JMeiatpKLSqQv_DB-nQy03doLYekKkw57JVfPHlGvOk,41648
159
- snowflake/ml/modeling/covariance/oas.py,sha256=C8wyOQ7DdFNotZhON_jZCPrdbzE00wU5rGpJrIFj9cw,40534
160
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=oc5RnvZCRiMUKqGoqBqMazQzC_v8Mh-Vgt9_ZB3Y34I,40910
155
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=5K-mnw1sCU6Fiz9mltzgIExudPyhk-Fehprx79S4y9M,44363
156
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=5FC-yiyM0cH1PHQKbSVQSftRqC8_XXeA8Kgk5lKd7_U,42427
157
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=42FgwIgwZOFhW9Q6MpJAsFHZc07loPnAvK69kxzBWcA,44291
158
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=MrPDLLB9pfSi25oS1sFegZ-RdXlRi5LHeKXwBcWI8GU,45456
159
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=rlB1Bo82kHHBKFjL3QKvgdUqdZZg1Bb-XkNn18yKfRY,42565
160
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=5gUsZmDu2_stjR4NgygYPqcaN3SldXyQ0dm9JaSfHRo,43320
161
+ snowflake/ml/modeling/covariance/oas.py,sha256=_yWBPl9nyBgK5_6sTHyhqW3IGeX9Nn62F8gUlqVvR_4,42206
162
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=eFFSc1wnOf-9xkT1Oin0xo_NwJwAI9RcxErjOLZrKEE,42582
161
163
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
162
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=Jx9NkTintSWxFsdTkn6hRtZ_jhIDdsrC4hdp8gWYuL4,45618
163
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=Z00_m2lNIBz-5RnsOANtderYjV1tAvoxtgNxHQ5R0TY,43065
164
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=noA2BS2Eo28k8QISfmYucU8buHKKbMUYhujwKNjfDg0,43264
165
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=4B2bzsuzt1wHsHexubwyYO6fpcd_w76OkUXPGX7gBuw,41617
166
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=ezyDm0WywdV_DMhhnn8V2Hj3J5QhnGgoCFSY3gSqrKI,45616
167
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=zvpIyjf81YeHxFAQjnXAApAuA7qbP7ZF6hfCSbhn-00,46662
168
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=yCyi8DeC1gOIaJAKR-Aa3NqCp1_CNnoSbDJtdrbc37k,43954
169
- snowflake/ml/modeling/decomposition/pca.py,sha256=bnOGCVUTAcpwfYKHmW9DEcwy4eb7BRGlAF_VdZViUjU,44659
170
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=3D37WsYeov9C0i2Zw39YZw1jrXsQqRHSXTjbXZwqwaw,42786
171
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=Why9GofnWObcVqnwEjjelLfeLjcGu1BaGPotA1Bd9Tc,42374
164
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=cTqrYUWdmfCM_4xTFskc8WPOkan7M8hDnAbRLJOMTgQ,47290
165
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=0iEeVKSF_qCrHcOGaeDg60uY6h2DM9ds6VjhxCYfFyU,44737
166
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=wYP1rlaWMP-wtsLgbIqsIb_L7Mytp1VOzFbIjjg-Kc0,44936
167
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=Z3E5JkFnAbvTfKyIOcUpzT8vexFOqpCpdNV2QUHT7ok,43289
168
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=7EyyE5FjZ1n4ylu_had9C_w9RxIaOtz7NZlJ9nnMVvY,47288
169
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=fVUmz_t2sj_VGjWX1IVIKjOviToxQSUpRYiNDqQv7No,48334
170
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=_Z4HPO3jUyLf6Ji0Bl6tUNhQ7qb8UkZTfKg_NvwpLuE,45626
171
+ snowflake/ml/modeling/decomposition/pca.py,sha256=RnID9USg-lVHwi1in-qOtL21MmxN2UA8BHxabCKW2Iw,46331
172
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=sg02LHDwaUoKIYAQf_7OEvLcuEYuZCd9tGowoiZOGz8,44458
173
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=3tZwcY8fJs1OO3wa_TduabXjLxQJd3YnnE1s710ml3A,44046
172
174
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
173
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=M-Qn_Vi63LEYiemTan4M_VMtxcoR_JO1hhvwCwT13VE,45089
174
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=x8kdb2nym2o2AS8MnXy0NfCAhff2Tc7h1KKmTVbVRmI,43178
175
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=6ar7vQ2LSMROg_sCG-dHCrsexzaSyD81jN87uyx5Py0,46761
176
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=GdjY5hWfk3JosgasO6iDV9Irx7ltMbn4mfAU529MdsA,44850
175
177
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
176
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=1ILd3prSRgDPLFDNf_uTv8ZOxNjdPG2HoxNDxAw_B5w,43996
177
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=HsghqY6RLga-HmmcDJ7u23-vk0wQwgjKdkCwueTjv1s,42887
178
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=oiTLhUkzs180dDdU2AGRJmxbBOXDQhoE_Y65rioCYEc,44907
179
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=d4Q3D5WZozamvj8vYGCciGeSDJdCZNZ8EsqRX5ekDGM,44143
180
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=IPbue6aFna53KuHj3kCqhgM_5cunYnelha2G07Ulxd4,49827
181
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=jTeGCW2W5aIlIp7QfAo-lMbvDiZLeBHAgFkZ3U340Cw,48431
182
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=8PDwx2Rjyt4jkY0m2SBvDc3i2bwm0d2W8rN5GLy5YaQ,51282
183
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=N_M7_SPm_AYUyvIiBje3nSXPGylby5mshuyfYRJalZ0,50875
184
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=Q_khTxtTmaYkJU9sCljM0o358rHV76BasFgdLXBeeKI,51116
185
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=UBq9kEQYCWNoqCjt1FqhociHXE-NE7gejIAjHBOHvU4,49601
186
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=48Ki8bVxdNtOC6SLo1Ur11uszaAU5imEt_sp2l7rCdQ,43831
187
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=KzlK8YpViIp9iI3bOK-ccqN1bFDYeGrAWytl1MswO-I,49810
188
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=ec-5f_yW9jLouAguL5DLSoEPl1WPDZo_DNYSYHUlUuc,48402
189
- snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=KsvaSPL4j-5F-ybNH3RW2xM8di3irgsrkEC6Ch7o0Ig,43840
190
- snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=kqteUN3HfUkVoCOL-CeALes32W8LklgiBn9wTX0vd9E,43411
191
- snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=9b-hWH21-ih2kEL4RCJXR9rR5-x7BjPq2Yb6u3R0gA0,41940
178
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=-dKiDfryeJpp_nqeKiDnXsHQY4TIBR-MFNrcPoS5lJQ,45668
179
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=9YKFE4eDiT8d8cLnjuiJdAARNzKOH_CElWHNHtyo5Vs,44559
180
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=SC76L_tDRhnRJS5F_1m1OubGM09XdHabJQKymIX_hNw,46579
181
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=JMc-JWWXQ-w6IcM6YkT_LXuPwsQEm2xQEC4SIPpAs6Y,45815
182
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=eMmcgLskTSW2Hj4Q01jFPWKaweYzxFL4I6xir4KK6AY,51499
183
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=_ysEXx7b7UdHqtd9ND1NDrfrxT8dyxAAVEZ_vNgH_X0,50103
184
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=YM6Vky4P2pLggEXvgGKeEfxLVyls2BsQi3O5LiIo2EU,52954
185
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=Zk30my6twITahFkqtJHrEkT3kCfm7aMWZAsbGNz2-3A,52547
186
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=oPsxzcx9HOwb6VJ1rP7Nnf4GCiOSPGdwpdzeK7SGqn0,52788
187
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=ZNITW02ZzvjajNeykYJZ3i-L0lWfft4CEbjDRUFmDsk,51273
188
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=IWDV0vJeoUbVKApJVsgbd-_8xOZoOFEGS6iej5QXKys,45503
189
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=YIqXMA0ISmZjsHPvbVUciq98EHaOMlDePVhZwnYld2g,51482
190
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=sERTA-XRHtbqRFOI6IhD0Z5XtENy1MrgpWN6f1V5q5s,50074
191
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=GLtphzVLHWBB7nZIi-poOOvZYZOm_nRVUldKteAeACU,45512
192
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=qiWdNwAZoDvNQSO3c9Xe7fkX0E5gLGubk3WfcYmUw_Y,45083
193
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=x6TFhhnhAuEUGJTxnF7h-Os_4EzMnMn9Rza-sIa0-do,43612
192
194
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
193
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=-lsag-SP2fHG7cof1bk_MWjStgx7jhUgA7kwHgaRf_A,41251
194
- snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=IWvxpq2LgSdaBnQW9mLfkcPssFRncJsWDoazg88mRl8,40894
195
- snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=XnisIdS7ecYuV7oi_rVeXZDEfN782VrW6u3egBnpzpo,40888
196
- snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=5Ah9u5iW3xEcOGceQtV98uyX9NaZ0PfVRuHAQSHJlRg,40896
197
- snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=WykHKonCnzxELvlv0-1x53-YZDjYO2s34PlaZNt1too,40981
198
- snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=RYXxTx5g-LxAT-oasdO1GaQpUlWwem3MBfsfpwKIU4s,41021
199
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=D0wnlfTTKEQUMt2elj92xsAhUlV8CaoGaj_QQuJUrNo,43614
200
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=PWd4lQEEtEvESdAf2wJp9T060P8zZ1g8hl6HN5UEVeA,40574
195
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=w07fP7M8qyD_S7dq5kxpZ-xaHHn1esUdgFWhR2_ca94,42923
196
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=IAm_TimRqitTgCMoM-I4-ahqzJoPtvk57RV9U7PMKGY,42566
197
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=tJyLgppE3XrftGgkI43gYBIj9C390V_re5MI7GUXdOg,42560
198
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=hY_DllyRJ48yjmPleKRl6amJW1LD5A1C0JNIdQKGjXQ,42568
199
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=XvuXNOeCXwrOtxtdHpoFu6ooY6DdWNnxWvIW8e36hS4,42653
200
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=ageTBgnOq4KQ6kRDt6oaarXRNf4cjWAuMkqNwYgi-p0,42693
201
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=gJarTYrkCw14LMsLmMLo8f0aiykK0BcyONg_p-R7sd0,45286
202
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=qnPxeNBg3cpX5DDGBgMST3-BTJ2g1uysSTT17AnRIWk,42246
201
203
  snowflake/ml/modeling/framework/_utils.py,sha256=85q83_QVwAQmnzMYefSE5FaxiGMYnOpRatyvdpemU6w,9974
202
204
  snowflake/ml/modeling/framework/base.py,sha256=eT0baNs7Iqe4tG0Ax4fivvlk0ugmrFrUBlHkwA3BA9M,27776
203
205
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
204
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=GdSq_7m23KwdSRnTd969WTekRc4RInqeiICkFY1VdYQ,46548
205
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=sVTyaYQAVJthFy14SqE2hwmxS8wuwHi1p37WFbm3qBo,45613
206
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=HOS5f7gymGuduBhwZ0ibe1VRY_1OARSJdlrP13XlHo0,48220
207
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=2PXnB9eQutmH5k_GmHcINf_QKC7jUBi3qDzJ2V2A6eE,47285
206
208
  snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
207
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=YKf1GYmAvmZ-Nw4bCnT8Yp84fmBUOxc1hgTAtE1jxs8,47111
208
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=ptilJDfaeZrOMiesPtpJsLDmL-8EJIwIcUxXNGnLnSg,42868
209
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=m8UFHf7ZkZ4Mr1NCych49HxliAHIgXAyvhwMCSiET3c,41696
209
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=SbL5lUyUKsKIxGi3tn49n7hn9mh4ochn0G7IffIb29A,48783
210
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=Sw_yuXJ2ak1nBjbmgbTH6k9LrcPGWxj7JsCcFlsLlQk,44540
211
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=0Ud2DGN5QsVZUdAeuS9Yx2HE4_De8QZsyqWK2I230e8,43368
210
212
  snowflake/ml/modeling/impute/simple_imputer.py,sha256=eC9CRhHMmsylm7oi5LGiukRlP6HIN6r3IP1DVpYrwmg,19258
211
213
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
212
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=Jhb6sNxY3rxgyF9PAu83lbMtvPP7-4s1gzLP4P0BACM,40687
213
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=wkbrRXUwH8iH8CktgZf9qlsSJvMFXZu7ecLqaDoMmIg,42491
214
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=UrWdbMfeF94MqQEDdJDioKrYX7FVYPTZJgKT2DMM_Ag,41700
215
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=g8drJNTNoDoRw4vEoSemSSncPBSJKIEf5XK16LCt51E,41087
216
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=2sm5uhJa6QYfBjYog66SUL-7sJWDTgNxInhj07TqJoo,41114
214
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=YS-YO2qwdAbyMS2Q0US7VDH2FnwA07v1TaV9_iOBobM,42359
215
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=zUIC2-sAhokQNA0n5hf4C_wuyG_SGYf08RFYJdbrrEM,44163
216
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=9JlgCEJaV-dQaJqy1RNTUG_OG2x7cMcxumiYYMnd6lo,43372
217
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=6uBY5QUJP0IZKKiRo0cD4gTxzodqbeGA5pt3WAdX56c,42759
218
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=zuvzquiP_D6GTQf6y4KBQ_9dF_a5UFpBw0PBDkFFiYo,42786
217
219
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
218
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=OavnM2kJxhqpTqv3PykhH-pJfdTtXT1ESO3osrjjGKY,42927
220
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=YdLE4DmuAWnRHz2vph9ztstWDRTwC4aEi0uIScVGafk,44599
219
221
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
220
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=jawtEY37iRB2NAISKiq53dWtcNaHS1yAxwDAVBpm2pM,42429
221
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=tnSQ8IFLI6Ti-lp0i-SMVNcN4l9mlOyptP2qS-AwcXs,41932
222
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=64GqqUguuIYXKa1yeRXlW0fCn0mouaTDOESow8BZzo4,44101
223
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=W_YL1657vJV-wwuJBHfL2RMntNc459m5KKuAYCMwm5M,43604
222
224
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
223
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=ZG2eJ-rXMGH3hGwzHwdZEuvSPJxEPm-nHHEyVhCH_2w,42872
224
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=ERcPMbMWJLLx1eF8zdp0QYYkXG4Dfd86SbXFRyaft-k,43288
225
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=ZQIZ9z5DzWr9bddKuCfkEDHqBhDnpQUynK1UKprJA7Q,43860
226
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=Sxym1gJSNBhd_stTTsN7CbcaQUUJBaHsro_kZ0zskZw,45128
227
- snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=ZLvUG9bAIijOvGvxlmBWwJ7PmMP1LgmsoE5dV8VxnfA,42940
228
- snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=e87LkfJHCZ0pdvq_vxn8jwjmd0WMPP140gq8KeMYOnM,42137
229
- snowflake/ml/modeling/linear_model/lars.py,sha256=UDBLsgZMeDluSFCzGDSpxc_FxdXRc6kyn5AF_bQsbUA,43360
230
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=vXV-lbk3aHD3uxn1ontaeEPHu2lsDiYoUKe0U1wluAs,43581
231
- snowflake/ml/modeling/linear_model/lasso.py,sha256=x9BCHNV0F9kah9mM4hfFX6U7TazgofMZrdnw6lrqJGs,43466
232
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=S-0zIlMzOuHHCcWoYy-rUgDwl6Y5-kX1Qmgl613YLgM,44251
233
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=uo2Qd5JuaFhEitPO7pSG11j9KOpmNFrqHzagbrILNoQ,44496
234
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=uGpr9rM4pH5MCPTPmOzHcumTQe7Nx8blbgqh9YuRel4,44457
235
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=yWGrBNY4FhMtHqSiCHcCyIqU7KcapD_rtwJ4iH2EEzM,43803
236
- snowflake/ml/modeling/linear_model/linear_regression.py,sha256=b0h0NUPH07a27h4Ak7Nu8aOTtTsS25kD03IIMb4bF1c,41679
237
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=3QMKr5fKqJsJ55LgFIacr6_PE4xhjHqQGf1lvohzNt4,47934
238
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=s2doZKZmEXhY1EP3AV2GBn6wnYQpbgjWzocBpeo_PVQ,48974
239
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=tNtt7HTaIPIhnkQzY7EzHlr4IAgYSBkCsE3Jq_-AS40,43151
240
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=ED-yQ-2BMoNxFDxFUzzAsILd5JPz_OdLI2AFYKr4m8M,44789
241
- snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=4BX83z8_QVQ5Fg8XatcDb23_fKLaizUZLpgq4qJt9OU,42699
242
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=ulMcq-_DBx5klqjA7SlUKy7v4LUU6eUPXU81m0dyFG8,43961
243
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=LaO7pscog6YQQsQuSJDyacm_6HI0ry-WLi4h5gxBU5Q,42306
244
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=Y6naJgECrJyqapoyq0bw_XRQ0GkAHhx8dgOBwpjbNdo,45662
245
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=OIhWzeR0tDWIG6Fl4jlxXlf4tsh9lxJ2qauF7xGeOrM,44729
246
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=o-FSpfO2AVLz4fTlVRvcZe03S2CEu0SEdAtPtrwLu78,45046
247
- snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=FXRiwv3fDY28mi6_USBs0U5Sucy6SR2s65ShCy2C8l4,42985
248
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=KyUdNzzQvNcBx4LvcuxNR1g1-FgJW1gLLYHlEHLv9Nk,46104
249
- snowflake/ml/modeling/linear_model/ridge.py,sha256=e2OZzGOhvjwLUs5IEXbMsWKAHQ2paPhWhfjvOCDIuuk,45010
250
- snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=tJTD0gQLfTtbhWKLisaon4SAtkSKo__tGVf20rZrBig,45398
251
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=FY-bWofGidi3LvrYeOYeG9Zwioq5r_TBhc_bAHh9zpQ,43393
252
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=1xjGoXcJOFf-geIL7HVMhjm6CLQeRGaSHbZAnY_4zmk,44094
253
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=39xunTsqzHs6VbvWVbc269Ccpc1ugNux_UHXGAOJrrg,50471
254
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=gN8su9zJtxOdTr1n_vbo0d8KbrhfmXr3HCFILNux5TI,45020
255
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=R428dmq0C2_xNxpugIMGJpqvogYwuHyJwWypdiswhBg,47942
256
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=LBAnaTsFABdzglNsWUSvo3TrWIL11cVE5f96Y_IUv_4,43420
257
- snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=VATOqWVuQgdvK8M2_NG3BhvL-E7xWg7AlRs9QJ2MYXE,44376
225
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=_aoC9N27o-5LqUwI3B9brHdr0TTPKd3oYG9zpcUeMlI,44544
226
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=UM-1VMt_IxClG8V25YnEYgSSigWRtqucNFK1LwjCBXY,44960
227
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=r5vcwM4fpb8jCRE7z-Ym_RfaBW1w0xiUlLc7sv-4RFo,45532
228
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=2h3aWG6CWr2mZ3R342Brm6dU7sRdCO45Ce-dvUzoeKs,46800
229
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=H_COk1G7U7tbWzbjCaiRMU3_ZgEgZ7p6SQYSGCN4cFw,44612
230
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=1eKvG_h2F_H0naE2sZWSdnvylnto4TIID553RUrwfPU,43809
231
+ snowflake/ml/modeling/linear_model/lars.py,sha256=YBcOfl_u6JJwwp8Hm16FxhfuMCyiLi0Y3C3cfYd9Mss,45032
232
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=wyQVIZUyKRrKj1HIOVIwGYeyxcLKcNLrupllivLp8iE,45253
233
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=JDvI-NQJdbQMl7Bhvwg2vXpd31kgOR7a8t-umLIG7I4,45138
234
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=fp-Jrm7JHx2LAiFwQZ9lhaBAwQr1tzByiDuIKsMLWO4,45923
235
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=WB_zG1_OzGsQ39T2NWUkG181qd6e5sFDh7crNxNEjHI,46168
236
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=4XpDU7spRW_ErYMuIkgCv6CRTWL8nXMVl5MU2vdXVo0,46129
237
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=c1ZMDb5sZTEn4Fmo0OlBfLoCpHmiaIUU7CPKB2OuMt8,45475
238
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=LOyhVtvM-YQd-e07TiN9Ig3lysQWuIyI9QUmpIX0nbw,43351
239
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=CHhSAO2yVoX71RM7BLz9PrxzBwkNVTqIW1o4MqnLPm8,49606
240
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=TdJXDMFgJUA-Jm2hLLTQ8zDgpNVepqQceDXUuLwgWq4,50646
241
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=hCt1TwrXd4yRHIjtwaWEMUufAl1k0BGJST4JITgAWNE,44823
242
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=FwhfLi-CGM_ITCZLUbWALiqasFtLMIayNs44VHjDfzE,46461
243
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=aMw2t58ohNrLg304Gj_Eo-1zXZzyktt7cyJkukwuCrc,44371
244
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=GNDil1dVl7NE2HLbz80KhO23fvb_j_eZI2GVpRLzVPM,45633
245
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=fqWJokyblnOIFE7fVsI0e6XToyanGa6QfQRI6wm01ps,43978
246
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=tEiIyc9TyXuJhXaxbrhltiDtQ3SxEpiwUU8VeGAFhv4,47334
247
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=24Wjf269GXHSM84PG4MElXzK_NFhUBJ8kawSFVCEh2I,46401
248
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=1nWk7XQc55INPZ5UnnHzokVsCrtyEmmT9LLdcglzkPU,46718
249
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=UpFkhGvwSAKZLQ4IngSDm8aIejeBd5N0nU6zXI7md2w,44657
250
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=PbNVech1WYuly5MVKxHrZLDT46R_BOtbIuqklG4-9ts,47776
251
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=Qez0QK6EfFq833jHC9haTdziS8wn0gMRZTuAbc5FkyQ,46682
252
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=uXLgVQniVjpBAsj_j4pjNimZufFrWvyshtsgIW-2Ovs,47070
253
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=oI1K_AodG2_5bGuBJcp3RPj6o4-DPsD9KcWVKiKVCeM,45065
254
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=78xUs4J2uU_2XUW0OkdDdlDIBbdRG-k-rKojSFP32dc,45766
255
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=Y9TrBc-_X0OT28B83FfLrlPuAFVec6YRe6r93TvjPPs,52143
256
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=qHvBnzlAVn3y2JkUdCkCGGlWRqfPaqJRrfKWvwFIIbM,46692
257
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=oO6MWadZDENE0N_xLcbHwMGSKi-OTFG4YgPfi6888mE,49614
258
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=ru3f46xNu-tpt5uZx7duG0ytEX7zF-o8Qzwz5lFZUAg,45092
259
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=k61UUJ1NzLjQx6kZ8xk5PZ9a2s1U2vNo-jlNkb7Xt98,46048
258
260
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
259
- snowflake/ml/modeling/manifold/isomap.py,sha256=sXmTH84SZZrFZRpscHFClFDEndHr-7xL_aTJHsB7yK4,43380
260
- snowflake/ml/modeling/manifold/mds.py,sha256=fNoGg-w52vCOE_laeAQzS8WynwJKcoz9Q3PnmhrS-r4,42594
261
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=E4ojEmeuXFMmAoWmTpP0WDVTSO7Cvi04pZYpiLxd6ek,43418
262
- snowflake/ml/modeling/manifold/tsne.py,sha256=Nw_0Rfd4biobdR29QsIgKLMAkRSXUnsg8MlW8LK4mnc,46377
261
+ snowflake/ml/modeling/manifold/isomap.py,sha256=d2gMufZ0V1gxCDwgyglEIfNk0qhz7uut8YuKVzH6D_I,45052
262
+ snowflake/ml/modeling/manifold/mds.py,sha256=6E-hkZMHjgTEmZ4h14SI1399teLdCrhOy1b48I0H2VY,44266
263
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=src1MnIzBrTsF3x1LuK-UxrqazureBfqzLe8_6KfGlk,45090
264
+ snowflake/ml/modeling/manifold/tsne.py,sha256=Dx8MPR3Yor-qH0H4aHepi8agms84BXTwsaJYLGL9opE,48049
263
265
  snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
264
- snowflake/ml/modeling/metrics/classification.py,sha256=xvD_-4fTkR_qwGT4SPry7npbCwv03wZy0mMpPufDja8,63232
266
+ snowflake/ml/modeling/metrics/classification.py,sha256=ZWizjYJTogw9iSMXHfKJlMJgbPbKOBjGG3TwG91YROE,63241
265
267
  snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
266
268
  snowflake/ml/modeling/metrics/covariance.py,sha256=HxJK1mwyt6lMSg8yonHFQ8IxAEa62MHeb1M3eHEtqlk,4672
267
- snowflake/ml/modeling/metrics/metrics_utils.py,sha256=ga7eVXlLHscKlqQd6HccUqNKIy1_5GpWBggyN0yuGsM,13075
268
- snowflake/ml/modeling/metrics/ranking.py,sha256=n1lK7StCE0touDN_PRUYMGH3-OPUMC4OTA9oz__rxpw,17230
269
- snowflake/ml/modeling/metrics/regression.py,sha256=L0DdKi4eKw5t4-JcICwMPfwz2Y6MA853V17a64E9lxs,25488
269
+ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=NETSOkhP9m_GZSywiDydCQXKuXOp3qltNgbabROtJAw,13114
270
+ snowflake/ml/modeling/metrics/ranking.py,sha256=gA1R1x1jUXA9bRrYn8IfJPM5BDY4DK1JCtoPQVsz5z4,17569
271
+ snowflake/ml/modeling/metrics/regression.py,sha256=OEawjdiMZHYlycQFXM_h2czIZmmGe5GKciEQD9MSWx4,25845
270
272
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
271
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=5_ynndoUrUabhHo8hjXCHFnCVm8oUOympM2xGKCKRX0,47909
272
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=j7JcQAsxb2Am27jOswXzEFO1g1rZg3k3vuAAqUXJ2ck,45834
273
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=hOSVxk6-Aq3zZKYauz_xJNAE8ABR_mwzt9SNzAdBnfU,49581
274
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=7wqZQshXByj_iivUC8vIE7hijJTKZ65jEkjkMR0GRUU,47506
273
275
  snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
274
276
  snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=KNrM2z1H5Cbg4Lb6GV1yNOEHjm2xcSgDWCeymBF51ws,36020
275
277
  snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=i8AxF6XzwEiRpvYuvFtAUB0p5m0fT67jVrXfIyE0EI8,36752
276
278
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
277
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=yGfSibq5ik-QXAqDi-IGpubhrrpCBkgtEa50RS4KF5U,41679
278
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=1mdKSB3SljHPok_ofH0d9lXPvEg-GX72bYsCxAsjVnw,42613
279
- snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=hI13zAmr7oXfPtYoom2XhsO9Dxyx1dExJjQ-32xNzSU,41949
279
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=N191soVLy-4zbELld2vMsmN5JhiNZ8-H9U5GI33VEwE,43351
280
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=1GQTuY4pnGgZ7b04sifcLC5Ulf8e2WYz5Rpz5pGElls,44285
281
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=hTIoTAKjMQbQ4_0LmOY5NHtSwl81uF-JkY35jHjDhSc,43621
280
282
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
281
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=kuVGcCDXpamT2k_fZfHT0V_APBGF2XZPjCWbUaZo0sA,42218
282
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=8qQsqTyLjoouktlsWoPM05zmJ_liFIZ1joiohxGxBTU,42553
283
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=uR9WCiXa51a3yZvCkn0shBdBlK5WIcFMEiHgj-UClyY,42233
284
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=8hchz4QIpaUGYY__tb0Kh-tf3p7T4JeCeBAPJ3TLkmM,41362
285
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=DNJau9L_PkvCE9F6ost-0HoaGY6yasVZ3JXClDeam0Y,41998
283
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=GufAyLQ0nU1PL2W_ZlKVN44UqjTfi2texHOmP1BNbqo,43890
284
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=n98XdtpnTR1mUqDCVE7gkkfiGkRpuV2aClv8v7wGozs,44225
285
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=F61CrgcV0k1mFukpm7LDLdFjns1ZlaBlV0U_vCM-0zc,43905
286
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=cGnMpZGOKxRaG2Qz94uQkynhIjiprIqc6czlUV5woog,43034
287
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=VkXjDDeVWg2O5fFo9cZaJJFATFEFI-yeCjg8ziV25sI,43670
286
288
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
287
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=wcMzz1iizXEUg2x43aRezkyKdme56InjNS4fOcNtkoc,45067
288
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=4df5fQLyYkBJB6mY1gv7Y947wfgGpgovshtScrWBzUE,44538
289
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=oHA_zNt4IXZ2afYNj_FwsGEFN5OYRluuMqkDXJTDhPo,42637
290
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=UbUM9r5zROYQxRcQVzcukR2YEUlgEWNkQvnLCbBIuBo,45216
291
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=DVEpMN_e1jF2SDje08lvh7qvpXvytYN2u817iN7TFYQ,41556
292
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=38Ehqo7DvP0rTde75U889_3vdhJTA8qg34InKzPnCOE,43365
293
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=t_HXF3Gl1N7tFjW1a8qXSd7nYF8XcFTG736WQVhhHsw,44745
294
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=BoTYoUHbLMW4vr6ml6NnorkIFf2q1AfbY2D0C4wnTLc,45480
295
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=9WICMWN8VGt7iEA8EG2WBivblCuqpiM_bXLWtjRxdAo,44361
289
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=4_FR3Gh-GjfFmpTn0SOv-A9aNa6YEL8DlJ9TbtH009g,46739
290
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=KZ9IqGGEM2towFPTjQJG9pMCA1dsac9vl6fq-smIYLQ,46210
291
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=F3Dg6aaYeBp-fbZsc9LYZfJtzgepRG70AA5YJujYBqc,44309
292
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=MroGfIwGlev9vCZELnY6rDuteuYSY8TjSJNWyQdz3ew,46888
293
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=jqlq4dGz8Ox-nBk4p7l_fB2SCKus0JbUrzj7005PIxs,43228
294
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=Tg-GwZpETpuGJbukPW6M8tCbrLP8iqtLI_xOfS5nDO8,45037
295
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=nxO8xW-57l4U3hkLd91iWE2SCCKjZYzgPqXPIYGadeE,46417
296
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=aLHMAJ3M3Nj9UgTDL6MLWWwKa_NVaI5qHJIRkIND2eI,47152
297
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=SYjAtzyQa3ZiLm34ycJ7Aq8-CGipNYuiGUlxaiCvYPA,46033
296
298
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
297
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=_gZGQHFfThZv9xVKVEJkvRJXp3RVntlVTsPWDsN2_sw,41612
298
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=5ehXuVkrGfAyowcSG2Pf02dDGozWaDF77u__rRBUec8,49440
299
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=-WEguHwXRTqiVJJIWcyvYLebWTvJWpo8T0wiaN-N4Dc,48709
299
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=sm-20EQqNj1edtaNDD9fFLlehCWMlrzuCLFiKvihH94,43284
300
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=pl8rP_i8vRFkNMDERcRPJCXELKZcEHzSkPwHP2dkNSU,51112
301
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=BGz2NrBK4rTjchHqeDgdWEg8RAUaN0tTOFo_YKlwAnY,50381
300
302
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
301
303
  snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
302
304
  snowflake/ml/modeling/pipeline/pipeline.py,sha256=iVewRZJVNHP0F8dvISy2u52cUq2oeSPQqEiyZDZywRM,24810
@@ -309,44 +311,45 @@ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=SRPvTPZtNKdpWFpX9ey
309
311
  snowflake/ml/modeling/preprocessing/normalizer.py,sha256=rSn1c8n7sbIswlDrFdq1eaWRvW0nTrX1LF0IIHBWTJM,6696
310
312
  snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=0kX_H6dhjPiycUW0axCb_-Wbz37MhoAuMq33HHnuwWU,71691
311
313
  snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=rkY_9ANjLAfn1VNm3aowppLJBnHVDsAJRthtWCKFcTA,33388
312
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=fLuklF6c-KRFwTi0NksCxu6U30S4Oby8h0NjCPEhYDo,41771
314
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=rHiXRIjJGk38qeiP7gkNIFRAzjSpTB0R-Zhi9_3C_DE,43443
313
315
  snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=SrQgRixonU2pwqfy3DVeBC3OiQ_0UeQpqNtEkn4Hr74,12510
314
316
  snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=Wol8YEr2JjqsbFrLk5A4MKcpXvLDScVtflnspOB-PSg,11197
315
317
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
316
- snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=tePzE1DgrX6vRhk5ABkxK2V9hFVLYbgz5vKPk-VTKuI,42455
317
- snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=BOLc08MiktKERUQ5got3zEdJHoP9rkpMqX2-XToZ9T0,42804
318
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=jg-UassDXOtyJXVow9XmfsXoqoDdPFOhEPXqtsqTIYg,44127
319
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=F8DVIgRP8mw6IQrOEsk0vJE2CI2h6D5Tg0kEFlwr53E,44476
318
320
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
319
- snowflake/ml/modeling/svm/linear_svc.py,sha256=fugwpXQOyHq_FzNanLN1z8jRDWFiV39r2V28VO4ogGI,45265
320
- snowflake/ml/modeling/svm/linear_svr.py,sha256=FH9GmZmsKVZwQ36oAVvgfIj--3s4yIiUnoQUxPeLZoQ,43618
321
- snowflake/ml/modeling/svm/nu_svc.py,sha256=U6rb51nP6aXargYTkpJIvgaDNCBKIRp6ix45Nuioc0A,45577
322
- snowflake/ml/modeling/svm/nu_svr.py,sha256=GGjkfoY3X-fgDUSgZgjr_GjXNbJMxUrovh-qi1-kMEM,42656
323
- snowflake/ml/modeling/svm/svc.py,sha256=WtNExIVwp1sPaMxuJadIuWU3Np99GND7KeVsymjy-Dk,45726
324
- snowflake/ml/modeling/svm/svr.py,sha256=v9RX7A0isMhAm_ntyEsVPE7IJf82_1shAo81onMKhUQ,42845
321
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=9S91Bz5ygfTpOtJaoGvmYZ1S3eoSaUn2xc88l6DPdYI,46937
322
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=3Ki2lz1Xd_G4P2aStDnCWO1KST9r6cHOTI8XpQD2iks,45290
323
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=GTp9igGbdBAehki45tJ7q0jGM3U-hrr9sOMP1mtlZ4A,47249
324
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=u-OEg2odORCDAT_GQlZFpY2kzfmcn46FhakPVGn8RDw,44328
325
+ snowflake/ml/modeling/svm/svc.py,sha256=fHxzLtK0yKlS2JG6fLC2EV2fUEgs2U2BY13JG1eYOEo,47398
326
+ snowflake/ml/modeling/svm/svr.py,sha256=6zNSrWE8Gs87dkLWTFi9BLvboZ83cw3GgCvsqGWUwbw,44517
325
327
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
326
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=rC_shzZZjLL-R3eSVEF6G4Kwfwu-No3rxbpiCEeaDcU,48002
327
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=Xi-amzJH7vT11mTmacbjKOcPa16YrZkwM8La360mx4o,46701
328
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=--LFm-oC6BrhlpUx4bH-btrn_5s6AbnJbj-fQv22Rqc,47344
329
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=aZhcdRFDgr8FlMdNsmdHY25CbMaStx-GI9a7y0unBCk,46052
328
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=D-wP0jJ8GUE9-abamdJmwMZ2nZfCl3Vb8nhnLK1CWD4,49674
329
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=0b544Zl6rzpL6TfrL9fhpopiAeVppPOnwDfIGFwfm6w,48373
330
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=9pLfJc0xjJLNNuzqgKkfdsr-PVvmBoUx6i4FtUSFH84,49016
331
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=4tGcgid5UsSZeXrYKxhQ-DOg18NuXUKOR4QH8LIDdIE,47724
330
332
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
331
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=yecyZQazTEIjud7LoTmxoY7u4ioi0RjLVF7Yj4JAbVM,53000
332
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=duV_igo_SzthrPPtY2wuVgec-yf68R-rniyGbBex9-4,52499
333
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=xaxSuf1PaiFRgIjli9XdCO9k_oXUKwq04a7fQm0pK18,53176
334
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=-gTN130w9KwxsJl0quB3KWfKyrU6c-Edh6Cor29-d24,52702
333
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=_BFxw9K9tEQQJ9g45tY9UP1QKIq0tco_0qfSpXBllMg,54672
334
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=3Opr_-nUfNMKPEMzE3SMwv6zHnQzNpBLIGp390HSbl8,54171
335
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=cVbwIRnX4xpbn78C_s-VjpiXCjp9fGncFLhRUCwwPiU,54848
336
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=hUpAYUHr0U4fYFzOEvu4FI22N9n14QQVtBW4KaBrpn8,54374
335
337
  snowflake/ml/monitoring/monitor.py,sha256=M9IRk6bnVwKNEvCexEJ5Rf95zEFap4O5qjbwfwdXGS0,7135
336
338
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
337
339
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
338
340
  snowflake/ml/registry/_artifact_manager.py,sha256=Q-6cRfU-pQBNVroh1_YIhd8hQtk8lC0y9vRBCDVizGQ,5544
339
341
  snowflake/ml/registry/_initial_schema.py,sha256=KusBbu0vpgCh-dPHgC90xRSfP6Z79qC-eXTqT8GXpFI,5316
340
- snowflake/ml/registry/_manager/model_manager.py,sha256=gF41jp6vqcFf7Hl9qlz-jFFo8pFMkBEoNg-Gt5m7fAQ,5573
341
342
  snowflake/ml/registry/_schema.py,sha256=GOA427_mVKkq9RWRENHuqDimRS0SmmP4EWThNCu1Kz4,3166
342
343
  snowflake/ml/registry/_schema_upgrade_plans.py,sha256=LxZNXYGjGG-NmB7w7_SxgaJpZuXUO66XVMuh04oL6SI,4209
343
344
  snowflake/ml/registry/_schema_version_manager.py,sha256=-9wGH-7ELSZxp7-fW7hXTMqkJSIebXdSpwwgzdvnoYs,6922
344
345
  snowflake/ml/registry/artifact.py,sha256=9JDcr4aaR0d4cp4YSRnGMFRIdu-k0tABbs6jDH4VDGQ,1263
345
346
  snowflake/ml/registry/model_registry.py,sha256=I9bPGFt9ByMqOL_cPYVizp0Swn7CWnknK3OOwM6wzDU,89586
346
- snowflake/ml/registry/registry.py,sha256=paPemKCJSnSk52QX7OnCirKirJE8TfknQ0SwYt7GQIA,9748
347
+ snowflake/ml/registry/registry.py,sha256=Q0URdVOeo5V6CXJzBGpIlhHfPvToPnHyzuYQ61vIAAw,9956
348
+ snowflake/ml/registry/_manager/model_manager.py,sha256=gF41jp6vqcFf7Hl9qlz-jFFo8pFMkBEoNg-Gt5m7fAQ,5573
347
349
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
348
350
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
349
- snowflake/ml/version.py,sha256=-eGI8JVcePjgLuVzFXzogxJRId2R96eIcJFtzws9vsU,16
350
- snowflake_ml_python-1.2.0.dist-info/METADATA,sha256=nk03ZSylxJFYjVhRmTVK46A-i1o8KsLtBdxt4E-MEOE,27912
351
- snowflake_ml_python-1.2.0.dist-info/RECORD,,
352
- snowflake_ml_python-1.2.0.dist-info/WHEEL,sha256=sobxWSyDDkdg_rinUth-jxhXHqoNqlmNMJY3aTZn2Us,91
351
+ snowflake_ml_python-1.2.1.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
352
+ snowflake_ml_python-1.2.1.dist-info/METADATA,sha256=uonsLrbybqfVQtD-q6CwJULZj7HuCu99MZLqio73mdY,41345
353
+ snowflake_ml_python-1.2.1.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
354
+ snowflake_ml_python-1.2.1.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
355
+ snowflake_ml_python-1.2.1.dist-info/RECORD,,
@@ -1,4 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bazel-wheelmaker 1.0
2
+ Generator: bdist_wheel (0.42.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
+
@@ -0,0 +1 @@
1
+ snowflake