snowflake-ml-python 1.17.0__py3-none-any.whl → 1.19.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. snowflake/ml/_internal/telemetry.py +3 -2
  2. snowflake/ml/experiment/_client/experiment_tracking_sql_client.py +18 -19
  3. snowflake/ml/experiment/callback/keras.py +3 -0
  4. snowflake/ml/experiment/callback/lightgbm.py +3 -0
  5. snowflake/ml/experiment/callback/xgboost.py +3 -0
  6. snowflake/ml/experiment/experiment_tracking.py +50 -70
  7. snowflake/ml/feature_store/feature_store.py +299 -69
  8. snowflake/ml/feature_store/feature_view.py +12 -6
  9. snowflake/ml/fileset/stage_fs.py +12 -1
  10. snowflake/ml/jobs/_utils/constants.py +12 -1
  11. snowflake/ml/jobs/_utils/payload_utils.py +7 -1
  12. snowflake/ml/jobs/_utils/stage_utils.py +4 -0
  13. snowflake/ml/jobs/_utils/types.py +5 -0
  14. snowflake/ml/jobs/job.py +19 -5
  15. snowflake/ml/jobs/manager.py +18 -7
  16. snowflake/ml/model/__init__.py +19 -0
  17. snowflake/ml/model/_client/model/batch_inference_specs.py +63 -0
  18. snowflake/ml/model/_client/model/inference_engine_utils.py +1 -5
  19. snowflake/ml/model/_client/model/model_version_impl.py +129 -11
  20. snowflake/ml/model/_client/ops/model_ops.py +11 -4
  21. snowflake/ml/model/_client/ops/service_ops.py +3 -0
  22. snowflake/ml/model/_client/service/model_deployment_spec.py +3 -0
  23. snowflake/ml/model/_client/service/model_deployment_spec_schema.py +1 -0
  24. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +3 -1
  25. snowflake/ml/model/_model_composer/model_method/model_method.py +4 -1
  26. snowflake/ml/model/_packager/model_handlers/_utils.py +70 -0
  27. snowflake/ml/model/_packager/model_handlers/prophet.py +566 -0
  28. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +6 -0
  29. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -1
  30. snowflake/ml/model/type_hints.py +16 -0
  31. snowflake/ml/modeling/metrics/metrics_utils.py +9 -2
  32. snowflake/ml/monitoring/explain_visualize.py +3 -1
  33. snowflake/ml/version.py +1 -1
  34. {snowflake_ml_python-1.17.0.dist-info → snowflake_ml_python-1.19.0.dist-info}/METADATA +50 -4
  35. {snowflake_ml_python-1.17.0.dist-info → snowflake_ml_python-1.19.0.dist-info}/RECORD +38 -37
  36. {snowflake_ml_python-1.17.0.dist-info → snowflake_ml_python-1.19.0.dist-info}/WHEEL +0 -0
  37. {snowflake_ml_python-1.17.0.dist-info → snowflake_ml_python-1.19.0.dist-info}/licenses/LICENSE.txt +0 -0
  38. {snowflake_ml_python-1.17.0.dist-info → snowflake_ml_python-1.19.0.dist-info}/top_level.txt +0 -0
@@ -24,6 +24,7 @@ if TYPE_CHECKING:
24
24
  import mlflow
25
25
  import numpy as np
26
26
  import pandas as pd
27
+ import prophet
27
28
  import sentence_transformers
28
29
  import sklearn.base
29
30
  import sklearn.pipeline
@@ -81,6 +82,7 @@ SupportedRequireSignatureModelType = Union[
81
82
  "catboost.CatBoost",
82
83
  "lightgbm.LGBMModel",
83
84
  "lightgbm.Booster",
85
+ "prophet.Prophet",
84
86
  "snowflake.ml.model.custom_model.CustomModel",
85
87
  "sklearn.base.BaseEstimator",
86
88
  "sklearn.pipeline.Pipeline",
@@ -113,6 +115,7 @@ Here is all acceptable types of Snowflake native model packaging and its handler
113
115
  | snowflake.ml.model.custom_model.CustomModel | custom.py | _CustomModelHandler |
114
116
  | sklearn.base.BaseEstimator | sklearn.py | _SKLModelHandler |
115
117
  | sklearn.pipeline.Pipeline | sklearn.py | _SKLModelHandler |
118
+ | prophet.Prophet | prophet.py | ProphetHandler |
116
119
  | xgboost.XGBModel | xgboost.py | _XGBModelHandler |
117
120
  | xgboost.Booster | xgboost.py | _XGBModelHandler |
118
121
  | lightgbm.LGBMModel | lightgbm.py | _LGBMModelHandler |
@@ -134,6 +137,7 @@ SupportedModelHandlerType = Literal[
134
137
  "huggingface_pipeline",
135
138
  "lightgbm",
136
139
  "mlflow",
140
+ "prophet",
137
141
  "pytorch",
138
142
  "sentence_transformers",
139
143
  "sklearn",
@@ -248,11 +252,18 @@ class KerasSaveOptions(BaseModelSaveOption):
248
252
  cuda_version: NotRequired[str]
249
253
 
250
254
 
255
+ class ProphetSaveOptions(BaseModelSaveOption):
256
+ target_methods: NotRequired[Sequence[str]]
257
+ date_column: NotRequired[str]
258
+ target_column: NotRequired[str]
259
+
260
+
251
261
  ModelSaveOption = Union[
252
262
  BaseModelSaveOption,
253
263
  CatBoostModelSaveOptions,
254
264
  CustomModelSaveOption,
255
265
  LGBMModelSaveOptions,
266
+ ProphetSaveOptions,
256
267
  SKLModelSaveOptions,
257
268
  XGBModelSaveOptions,
258
269
  SNOWModelSaveOptions,
@@ -327,11 +338,16 @@ class KerasLoadOptions(BaseModelLoadOption):
327
338
  use_gpu: NotRequired[bool]
328
339
 
329
340
 
341
+ class ProphetLoadOptions(BaseModelLoadOption):
342
+ ...
343
+
344
+
330
345
  ModelLoadOption = Union[
331
346
  BaseModelLoadOption,
332
347
  CatBoostModelLoadOptions,
333
348
  CustomModelLoadOption,
334
349
  LGBMModelLoadOptions,
350
+ ProphetLoadOptions,
335
351
  SKLModelLoadOptions,
336
352
  XGBModelLoadOptions,
337
353
  SNOWModelLoadOptions,
@@ -4,6 +4,7 @@ from typing import Any, Collection, Iterable, Optional, Union
4
4
 
5
5
  import cloudpickle
6
6
  import numpy as np
7
+ from packaging import version
7
8
 
8
9
  import snowflake.snowpark._internal.utils as snowpark_utils
9
10
  from snowflake import snowpark
@@ -59,7 +60,10 @@ def register_accumulator_udtf(*, session: Session, statement_params: dict[str, A
59
60
  ]
60
61
  ),
61
62
  input_types=[T.BinaryType()],
62
- packages=[f"numpy=={np.__version__}", f"cloudpickle=={cloudpickle.__version__}"],
63
+ packages=[
64
+ f"numpy=={version.parse(np.__version__).major}.*",
65
+ f"cloudpickle=={version.parse(cloudpickle.__version__).major}.*",
66
+ ],
63
67
  imports=[], # Prevents unnecessary import resolution.
64
68
  name=accumulator,
65
69
  is_permanent=False,
@@ -175,7 +179,10 @@ def register_sharded_dot_sum_computer(*, session: Session, statement_params: dic
175
179
  ]
176
180
  ),
177
181
  input_types=[T.ArrayType(), T.IntegerType(), T.IntegerType()],
178
- packages=[f"numpy=={np.__version__}", f"cloudpickle=={cloudpickle.__version__}"],
182
+ packages=[
183
+ f"numpy=={version.parse(np.__version__).major}.*",
184
+ f"cloudpickle=={version.parse(cloudpickle.__version__).major}.*",
185
+ ],
179
186
  imports=[], # Prevents unnecessary import resolution.
180
187
  name=sharded_dot_and_sum_computer,
181
188
  is_permanent=False,
@@ -1,3 +1,4 @@
1
+ import uuid
1
2
  from typing import Any, Union, cast, overload
2
3
 
3
4
  import altair as alt
@@ -319,7 +320,8 @@ def _prepare_feature_values_for_streamlit(
319
320
  import streamlit as st
320
321
 
321
322
  feature_columns = feature_values_df.columns
322
- chosen_ft: str = st.selectbox("Feature:", feature_columns)
323
+ unique_key = f"ml-explain-feature-select-{uuid.uuid4()}"
324
+ chosen_ft: str = st.selectbox("Feature:", feature_columns, key=unique_key)
323
325
  feature_values = feature_values_df[chosen_ft]
324
326
  shap_values = shap_values.iloc[:, feature_columns.get_loc(chosen_ft)]
325
327
  return feature_values, shap_values, st
snowflake/ml/version.py CHANGED
@@ -1,2 +1,2 @@
1
1
  # This is parsed by regex in conda recipe meta file. Make sure not to break it.
2
- VERSION = "1.17.0"
2
+ VERSION = "1.19.0"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: snowflake-ml-python
3
- Version: 1.17.0
3
+ Version: 1.19.0
4
4
  Summary: The machine learning client library that is used for interacting with Snowflake to build machine learning solutions.
5
5
  Author-email: "Snowflake, Inc" <support@snowflake.com>
6
6
  License:
@@ -253,7 +253,7 @@ Requires-Dist: s3fs<2026,>=2024.6.1
253
253
  Requires-Dist: scikit-learn<1.8
254
254
  Requires-Dist: scipy<2,>=1.9
255
255
  Requires-Dist: shap<1,>=0.46.0
256
- Requires-Dist: snowflake-connector-python[pandas]<4,>=3.17.0
256
+ Requires-Dist: snowflake-connector-python[pandas]<4,>=3.17.3
257
257
  Requires-Dist: snowflake-snowpark-python!=1.26.0,<2,>=1.17.0
258
258
  Requires-Dist: snowflake.core<2,>=1.0.2
259
259
  Requires-Dist: sqlparse<1,>=0.4
@@ -266,6 +266,7 @@ Requires-Dist: catboost<2,>=1.2.0; extra == "all"
266
266
  Requires-Dist: keras<4,>=2.0.0; extra == "all"
267
267
  Requires-Dist: lightgbm<5,>=4.1.0; extra == "all"
268
268
  Requires-Dist: mlflow<3,>=2.16.0; extra == "all"
269
+ Requires-Dist: prophet<2,>=1.1.0; extra == "all"
269
270
  Requires-Dist: sentence-transformers<4,>=2.7.0; extra == "all"
270
271
  Requires-Dist: sentencepiece<0.2.0,>=0.1.95; extra == "all"
271
272
  Requires-Dist: streamlit<2,>=1.30.0; extra == "all"
@@ -284,8 +285,18 @@ Requires-Dist: tensorflow<3,>=2.17.0; extra == "keras"
284
285
  Requires-Dist: torch<3,>=2.0.1; extra == "keras"
285
286
  Provides-Extra: lightgbm
286
287
  Requires-Dist: lightgbm<5,>=4.1.0; extra == "lightgbm"
288
+ Provides-Extra: llm
289
+ Requires-Dist: mlflow<3,>=2.16.0; extra == "llm"
290
+ Requires-Dist: sentence-transformers<4,>=2.7.0; extra == "llm"
291
+ Requires-Dist: sentencepiece<0.2.0,>=0.1.95; extra == "llm"
292
+ Requires-Dist: tokenizers<1,>=0.15.1; extra == "llm"
293
+ Requires-Dist: torch<3,>=2.0.1; extra == "llm"
294
+ Requires-Dist: torchdata<1,>=0.4; extra == "llm"
295
+ Requires-Dist: transformers!=4.51.3,<5,>=4.39.3; extra == "llm"
287
296
  Provides-Extra: mlflow
288
297
  Requires-Dist: mlflow<3,>=2.16.0; extra == "mlflow"
298
+ Provides-Extra: prophet
299
+ Requires-Dist: prophet<2,>=1.1.0; extra == "prophet"
289
300
  Provides-Extra: streamlit
290
301
  Requires-Dist: streamlit<2,>=1.30.0; extra == "streamlit"
291
302
  Provides-Extra: tensorflow
@@ -296,9 +307,7 @@ Requires-Dist: torchdata<1,>=0.4; extra == "torch"
296
307
  Provides-Extra: transformers
297
308
  Requires-Dist: sentence-transformers<4,>=2.7.0; extra == "transformers"
298
309
  Requires-Dist: sentencepiece<0.2.0,>=0.1.95; extra == "transformers"
299
- Requires-Dist: tokenizers<1,>=0.15.1; extra == "transformers"
300
310
  Requires-Dist: torch<3,>=2.0.1; extra == "transformers"
301
- Requires-Dist: transformers!=4.51.3,<5,>=4.39.3; extra == "transformers"
302
311
  Dynamic: license-file
303
312
 
304
313
  # Snowflake ML Python
@@ -406,6 +415,41 @@ NOTE: Version 1.7.0 is used as example here. Please choose the the latest versio
406
415
 
407
416
  # Release History
408
417
 
418
+ ## 1.19.0
419
+
420
+ ### Bug Fixes
421
+
422
+ * Experiment Tracking (PrPr): No longer throw an exception in `list_artifacts` when run does not have artifacts.
423
+ * Registry: Fix `get_version_by_alias`: now requires an exact match of snowflake identifier.
424
+
425
+ ### Behavior Changes
426
+
427
+ ### New Features
428
+
429
+ * Online feature serving in Feature Store is in public preview.
430
+ * Experiment Tracking (`snowflake.ml.experiment`) is in public preview.
431
+
432
+ ### Deprecations
433
+
434
+ ## 1.18.0
435
+
436
+ ### Bug Fixes
437
+
438
+ * Registry: The create_service API now validates that a model has a GPU runtime configuration and will throw a
439
+ descriptive error if the configuration is missing.
440
+
441
+ ### Behavior Changes
442
+
443
+ ### New Features
444
+
445
+ * Registry (PrPr): Introducing `ModelVersion.run_batch` for batch inference in Snowpark Container Services.
446
+ * Experiment Tracking (PrPr): Added `version_name` argument to the autologging callbacks
447
+ to specify the version name for the autologged model.
448
+
449
+ ### Deprecations
450
+
451
+ * `Python 3.9` is deprecated.
452
+
409
453
  ## 1.17.0
410
454
 
411
455
  ### Bug Fixes
@@ -427,6 +471,8 @@ NOTE: Version 1.7.0 is used as example here. Please choose the the latest versio
427
471
  * Jobs submitted using v2 will automatically use the latest Container Runtime image
428
472
  * v1 behavior can be restored by setting environment variable `MLRS_USE_SUBMIT_JOB_V2` to `false`
429
473
 
474
+ ### Deprecations
475
+
430
476
  ## 1.16.0
431
477
 
432
478
  ### Bug Fixes
@@ -10,7 +10,7 @@ snowflake/cortex/_sse_client.py,sha256=sLYgqAfTOPADCnaWH2RWAJi8KbU_7gSRsTUDcDD5T
10
10
  snowflake/cortex/_summarize.py,sha256=7GH8zqfIdOiHA5w4b6EvJEKEWhaTrL4YA6iDGbn7BNM,1307
11
11
  snowflake/cortex/_translate.py,sha256=9ZGjvAnJFisbzJ_bXnt4pyug5UzhHJRXW8AhGQEersM,1652
12
12
  snowflake/cortex/_util.py,sha256=krNTpbkFLXwdFqy1bd0xi7ZmOzOHRnIfHdQCPiLZJxk,3288
13
- snowflake/ml/version.py,sha256=9UkEbfQJuMoktQRwLQs1TMavYNPwvWxULqMN3SA-KnE,99
13
+ snowflake/ml/version.py,sha256=E_REf6eP-Jb1wbXaox0ybf5CMbKewy8U_8Nru3GYxPU,99
14
14
  snowflake/ml/_internal/env.py,sha256=EY_2KVe8oR3LgKWdaeRb5rRU-NDNXJppPDsFJmMZUUY,265
15
15
  snowflake/ml/_internal/env_utils.py,sha256=x6ID94g6FYoMX3afp0zoUHzBvuvPyiE2F6RDpxx5Cq0,30967
16
16
  snowflake/ml/_internal/file_utils.py,sha256=7sA6loOeSfmGP4yx16P4usT9ZtRqG3ycnXu7_Tk7dOs,14206
@@ -18,7 +18,7 @@ snowflake/ml/_internal/init_utils.py,sha256=WhrlvS-xcmKErSpwg6cUk6XDQ5lQcwDqPJnU
18
18
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
19
19
  snowflake/ml/_internal/platform_capabilities.py,sha256=5cpeKpsxCObjOsPIz38noIusWw4n5KXOvPqRPiF3Kj4,7627
20
20
  snowflake/ml/_internal/relax_version_strategy.py,sha256=MYEIZrx1HfKNhl9Na3GN50ipX8c0MKIj9nwxjB0IC0Y,484
21
- snowflake/ml/_internal/telemetry.py,sha256=GCut6xG7SvAV8JRCxuQjvno9t7cLGLByECpMNUY1q30,31867
21
+ snowflake/ml/_internal/telemetry.py,sha256=SL5_yXvRoqvmIckTpTHVwGsgPyg06uIIPZHMZWfdkzo,31922
22
22
  snowflake/ml/_internal/type_utils.py,sha256=bNNW0I9rOvwhx-Y274vGd0qWA0fMIPA3SGnaDE09wvc,2198
23
23
  snowflake/ml/_internal/exceptions/dataset_error_messages.py,sha256=h7uGJbxBM6se-TW_64LKGGGdBCbwflzbBnmijWKX3Gc,285
24
24
  snowflake/ml/_internal/exceptions/dataset_errors.py,sha256=TqESe8cDfWurJdv5X0DOwgzBfHCEqga_F3WQipYbdqg,741
@@ -65,22 +65,22 @@ snowflake/ml/dataset/dataset_metadata.py,sha256=lcNvugBkP8YEkGMQqaV8SlHs5mwUKsUS
65
65
  snowflake/ml/dataset/dataset_reader.py,sha256=mZsG9HyWUGgfotrGkLrunyEsOm_659mH-Sn2OyG6A-Q,5036
66
66
  snowflake/ml/experiment/__init__.py,sha256=r7qdyPd3jwxzqvksim2ju5j_LrnYQrta0ZI6XpWUqmc,109
67
67
  snowflake/ml/experiment/_experiment_info.py,sha256=iaJ65x6nzBYJ5djleSOzBtMpZUJCUDlRpaDw0pu-dcU,2533
68
- snowflake/ml/experiment/experiment_tracking.py,sha256=5WEZpI19MCbqbozpWG88Ba7Kd5v7JvfNDvJA-tscMwo,17418
68
+ snowflake/ml/experiment/experiment_tracking.py,sha256=B_7_u0tOZ2_ftNQZJriY_-IfNVsAOEJonzAJahFRYis,16793
69
69
  snowflake/ml/experiment/utils.py,sha256=3bpbkilc5vvFjnti-kcyhhjAd9Ga3LqiKqJDwORiATY,628
70
70
  snowflake/ml/experiment/_client/artifact.py,sha256=R2WB4Y_kqv43BWLfXv8SEDINn1Bnevzgb-mH5LyvgGk,3035
71
- snowflake/ml/experiment/_client/experiment_tracking_sql_client.py,sha256=0cR2aTQa9uB9D7s5AStZ9gOAJe3SL7rFebttvpqkZFk,7250
71
+ snowflake/ml/experiment/_client/experiment_tracking_sql_client.py,sha256=7AuC9VvDmH04PnyuCxSJt-YcwEm8cmkfmxixVN7dSbQ,8167
72
72
  snowflake/ml/experiment/_entities/__init__.py,sha256=11XxkvAzosydf5owNmMzLwXZdQ2NtNKRM-MMra4ND2k,247
73
73
  snowflake/ml/experiment/_entities/experiment.py,sha256=lKmQj59K8fGDWVwRqeIesxorrChb-m78vX_WUmI7PV0,225
74
74
  snowflake/ml/experiment/_entities/run.py,sha256=JkhiS4UZWuRm3ZSLgc2uktedeag5Voih2r02YFr6DQk,1621
75
75
  snowflake/ml/experiment/_entities/run_metadata.py,sha256=25cIg8FnAYHk5SoTg_StzL10_BkomL7xrhMmWxUTU8E,366
76
- snowflake/ml/experiment/callback/keras.py,sha256=7oq23irYkBV7bLFBCxxKlf9pL4YuDFJDCZ8xtffVRFI,2547
77
- snowflake/ml/experiment/callback/lightgbm.py,sha256=5co7eR_t651cq1WTK9JCQjhSlYc2oIvxaf3aVnVOlR4,2613
78
- snowflake/ml/experiment/callback/xgboost.py,sha256=eZMRFAebMERwdqMFm7i6S9wkHD7_VLcwIP0OkWHDOMM,2621
76
+ snowflake/ml/experiment/callback/keras.py,sha256=I_O2SBYttFNChO2Sc_C6xQh03r3ymSFB4eN2TS41Dgs,2680
77
+ snowflake/ml/experiment/callback/lightgbm.py,sha256=qu4m8WV6Rqxa39X7g7ZBd1zJ8icYEkBBF3Kh3C1VpHU,2754
78
+ snowflake/ml/experiment/callback/xgboost.py,sha256=F547AXZ7Gv39cyIrgRdxVE8MQ3VlNi5JqKKW0Z5RlQo,2754
79
79
  snowflake/ml/feature_store/__init__.py,sha256=MJr2Gp_EimDgDxD6DtenOEdLTzg6NYPfdNiPM-5rEtw,406
80
80
  snowflake/ml/feature_store/access_manager.py,sha256=Q5ImMXRY8WA5X5dpBMzHnIJmeyKVShjNAlbn3cQb4N8,10654
81
81
  snowflake/ml/feature_store/entity.py,sha256=ViOSlqCV17ouiO4iH-_KvkvJZqSzpf-nfsjijG6G1Uk,4047
82
- snowflake/ml/feature_store/feature_store.py,sha256=r51z1SC6e7Sz68dz8pIWQYscVgtG68yiOncBJe6Fcyc,161425
83
- snowflake/ml/feature_store/feature_view.py,sha256=fCciDGC8qd-ySGVEHKHo-PYIFrAuFlVAFDu8ZiRTDIY,44141
82
+ snowflake/ml/feature_store/feature_store.py,sha256=wJliNeSifIK-zlx1a4aIhji9th0sExDxJs_MytzppZ4,172323
83
+ snowflake/ml/feature_store/feature_view.py,sha256=OHhhk33DJa1-P0YG0g9XQxlMrt761yRpZ3CO1y4mtwc,44329
84
84
  snowflake/ml/feature_store/examples/example_helper.py,sha256=eaD2vLe7y4C5hMZQTeMXylbTtLacbq9gJcAluGHrkug,12470
85
85
  snowflake/ml/feature_store/examples/airline_features/entities.py,sha256=mzHRS-InHpXON0eHds-QLmi7nK9ciOnCruhPZI4niLs,438
86
86
  snowflake/ml/feature_store/examples/airline_features/source.yaml,sha256=kzl8ukOK8OuSPsxChEgJ9SPyPnzC-fPHqZC4O6aqd5o,247
@@ -107,11 +107,11 @@ snowflake/ml/fileset/embedded_stage_fs.py,sha256=Cw1L3Ktd1g0nWeADH6xjIxR0VweBbVt
107
107
  snowflake/ml/fileset/fileset.py,sha256=ApMpHiiyzGRkyxQfJPdXPuKtw_wOXbOfQCXSH6pDwWE,26333
108
108
  snowflake/ml/fileset/sfcfs.py,sha256=FJFc9-gc0KXaNyc10ZovN_87aUCShb0WztVwa02t0io,15517
109
109
  snowflake/ml/fileset/snowfs.py,sha256=uF5QluYtiJ-HezGIhF55dONi3t0E6N7ByaVAIAlM3nk,5133
110
- snowflake/ml/fileset/stage_fs.py,sha256=V4pysouSKKDPLzuW3u_extxfvjkQa5OlwIRES9Srpzo,20151
110
+ snowflake/ml/fileset/stage_fs.py,sha256=SnkgCta6_5G6Ljl-Nzctr4yavhHUSlNKN3je0ojp54E,20685
111
111
  snowflake/ml/jobs/__init__.py,sha256=h176wKqEylZs5cdWdzWHuUrSAcwctDdw4tUhIpy-mO4,657
112
112
  snowflake/ml/jobs/decorators.py,sha256=mQgdWvvCwD7q79cSFKZHKegXGh2j1u8WM64UD3lCKr4,3428
113
- snowflake/ml/jobs/job.py,sha256=62LDUUaOmcs9WJobgeQq4o4kT3sfj6SI3cgz5cQdRMs,26743
114
- snowflake/ml/jobs/manager.py,sha256=nLLtXmfgqWO7K5T0JUSLSiU1sHo_wYQIfMJCs5mPypc,28732
113
+ snowflake/ml/jobs/job.py,sha256=GeV8uCaoupuahHe8so4DyVPEvHoenEekdn-WLr-2Nj0,27580
114
+ snowflake/ml/jobs/manager.py,sha256=yYxY8E-0V8PIIwBTtDDaWCwqZHe8HpUM2C7nTu7gPLs,29110
115
115
  snowflake/ml/jobs/_interop/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
116
116
  snowflake/ml/jobs/_interop/data_utils.py,sha256=xUO5YlhUKFVCDtbjam5gP2lka3lfoknTLr7syNAVxK0,4074
117
117
  snowflake/ml/jobs/_interop/dto_schema.py,sha256=NhoQ6WJa7uLO9VJojEENVVZhZMfL_G1VPPSSUYmmhO8,2750
@@ -121,15 +121,15 @@ snowflake/ml/jobs/_interop/protocols.py,sha256=xfOXL25hxhhy3ULfZWOfEjX0XqSTxo5cO
121
121
  snowflake/ml/jobs/_interop/results.py,sha256=nQ07XJ1BZEkPB4xa12pbGyaKqR8sWCoSzx0IKQlub4w,1714
122
122
  snowflake/ml/jobs/_interop/utils.py,sha256=TWFkUcAYmb-fpTwEL8idkk3XxlZ8vLz4X_gyS78PSi4,5552
123
123
  snowflake/ml/jobs/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
124
- snowflake/ml/jobs/_utils/constants.py,sha256=4XhBfvFATdQHQ-7CfdrFREFt0xt0T3m9wwQADlcn5dI,4009
124
+ snowflake/ml/jobs/_utils/constants.py,sha256=Wp2s_wBX5WZnxo3cdrsitnb9Ze0OUGmH26sofDFrdMI,4613
125
125
  snowflake/ml/jobs/_utils/feature_flags.py,sha256=c69OYFOZyXVmj87VKRh-rp_MP-3I1gJXhxBSiXAprbQ,1612
126
126
  snowflake/ml/jobs/_utils/function_payload_utils.py,sha256=4LBaStMdhRxcqwRkwFje-WwiEKRWnBfkaOYouF3N3Kg,1308
127
- snowflake/ml/jobs/_utils/payload_utils.py,sha256=GV3r7FE7h7BwEs3DBkVY3Mes0fuX9G3xu7HyHT3gkcY,30797
127
+ snowflake/ml/jobs/_utils/payload_utils.py,sha256=INq_G1flV-Sa2riuqKwx5DOWTUegcDF01jfmJKpBcao,31101
128
128
  snowflake/ml/jobs/_utils/query_helper.py,sha256=1-XK-y4iukbR1693qAELprRbHmJDM4YoEBHov8IYbHU,1115
129
129
  snowflake/ml/jobs/_utils/runtime_env_utils.py,sha256=fqa3ctf_CAOSv1zT__01Qp9T058mKgMjXuEkBZqKUqA,2247
130
130
  snowflake/ml/jobs/_utils/spec_utils.py,sha256=Ch-3iKezKWXgSJm-xpHOW7ZpMBjIZvSNiEZGL9CyA2w,16346
131
- snowflake/ml/jobs/_utils/stage_utils.py,sha256=38-LsokaGx0NzlnP8CMRioClRz-3x6xhPiZIgl2CB9g,5224
132
- snowflake/ml/jobs/_utils/types.py,sha256=wK-VOc4MAkuDkrji--loSdF-SkPc0K0JLuQoYVrXHBw,2494
131
+ snowflake/ml/jobs/_utils/stage_utils.py,sha256=YjN7cQFRcAUT1JvNZDSiNw8KiCF4HJ6ymkOYMhYJwE0,5297
132
+ snowflake/ml/jobs/_utils/types.py,sha256=uOf7TPPWfIRALZhD6Li3AgizPOktPXv8_6iVK2grkgc,2587
133
133
  snowflake/ml/jobs/_utils/scripts/constants.py,sha256=YyIWZqQPYOTtgCY6SfyJjk2A98I5RQVmrOuLtET5Pqg,173
134
134
  snowflake/ml/jobs/_utils/scripts/get_instance_ip.py,sha256=N2wJYMPlwg-hidwgHhDhiBWOE6TskqCfWLMRRNnZBQs,5776
135
135
  snowflake/ml/jobs/_utils/scripts/mljob_launcher.py,sha256=XcCyXYkwAAF3quPs0uoq_n-OiEYPYJtadKGsOFKBlTM,17005
@@ -137,7 +137,7 @@ snowflake/ml/jobs/_utils/scripts/signal_workers.py,sha256=AR1Pylkm4-FGh10WXfrCtc
137
137
  snowflake/ml/jobs/_utils/scripts/worker_shutdown_listener.py,sha256=SeJ8v5XDriwHAjIGpcQkwVP-f-lO9QIdVjVD7Fkgafs,7893
138
138
  snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCrzI4,65
139
139
  snowflake/ml/lineage/lineage_node.py,sha256=SA0rbbI67rMr1qTMs4bAVkvqVtuKNI4lIaO5w0S-IXE,5767
140
- snowflake/ml/model/__init__.py,sha256=78w63Y250_m2zsN6eamZAZ2ovPpxk2ZCYOClTwJS1-s,567
140
+ snowflake/ml/model/__init__.py,sha256=TV9yOwEKUWXKHiZ-z7mIwS2S6-bhCHOHU43NhVgLaOw,1012
141
141
  snowflake/ml/model/custom_model.py,sha256=fDhMObqlyzD_qQG1Bq6HHkBN1w3Qzg9e81JWPiqRfc4,12249
142
142
  snowflake/ml/model/event_handler.py,sha256=pojleQVM9TPNeDvliTvon2Sfxqbf2WWxrOebo1SaEHo,7211
143
143
  snowflake/ml/model/inference_engine.py,sha256=L0nwySY2Qwp3JzuRpPS87r0--m3HTUNUgZXYyOPJjyk,66
@@ -145,17 +145,17 @@ snowflake/ml/model/model_signature.py,sha256=RH62vv4YmrQugTXLsh6kyuzfTs9_yz8a0TM
145
145
  snowflake/ml/model/openai_signatures.py,sha256=ZVnHDgaOA6RcvtSP3HIbHVgr3scJH2gG_9QvZidn41g,2630
146
146
  snowflake/ml/model/target_platform.py,sha256=H5d-wtuKQyVlq9x33vPtYZAlR5ka0ytcKRYgwlKl0bQ,390
147
147
  snowflake/ml/model/task.py,sha256=Zp5JaLB-YfX5p_HSaw81P3J7UnycQq5EMa87A35VOaQ,286
148
- snowflake/ml/model/type_hints.py,sha256=VmP8qr60V9mBZYuTeGRWIZP3w14NXERNExrXQLx3jWI,10836
148
+ snowflake/ml/model/type_hints.py,sha256=hoIq3KOscvp9rqJnmgWHW3IGwCSwiCVbklFAqSQekr4,11225
149
149
  snowflake/ml/model/volatility.py,sha256=qu-wqe9oKkRwXwE2qkKygxTWzUypQYEk3UjsqOGRl_I,1144
150
- snowflake/ml/model/_client/model/batch_inference_specs.py,sha256=FFzNvP-OHO1gFBfqXz89T5HMheFGfsx7P5_5Ze_QYvM,957
151
- snowflake/ml/model/_client/model/inference_engine_utils.py,sha256=lOqZzySZygeWqHTNYGBYgpTRfEst9f7lX50Ku8k950g,1966
150
+ snowflake/ml/model/_client/model/batch_inference_specs.py,sha256=0SlLTpZW_gzNP5IH_8cFnqjArxM0zVjA5nBLKnKAnz8,4396
151
+ snowflake/ml/model/_client/model/inference_engine_utils.py,sha256=L8HnoAEbnN5YAcMlsgNbeqfyZbiOyrNMxj7rD4DcjyU,1878
152
152
  snowflake/ml/model/_client/model/model_impl.py,sha256=Yabrbir5vPMOnsVmQJ23YN7vqhi756Jcm6pfO8Aq92o,17469
153
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=7D1sGqu8RCLMKP6LizYY4hbIXgDbBlGbIxpIsb_jUEQ,54757
153
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=v03RFKRnu7Gr8lovgRjE-MUK1MY_-RD5zjrrrbliJq4,60470
154
154
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=qpK6PL3OyfuhyOmpvLCpHLy6vCxbZbp1HlEvakFGwv4,4884
155
- snowflake/ml/model/_client/ops/model_ops.py,sha256=sQ0t6plS5o_2qqnA48quYwJOZ0NlhgnZMarwrzSKwew,50599
156
- snowflake/ml/model/_client/ops/service_ops.py,sha256=gUmYDvXnacachE9OK92HGYbZ7ec9WEsrDRsOgOckhbI,47036
157
- snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=Ro2kAM_rfMccMjW23RpP6qDPq090vAIUv_he-8GE68k,19487
158
- snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=QpDso2bjx2eCRKIG4-ppc3z46B7hgYMZehOTRoR9IJs,2425
155
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=e6z-Pd-yslMFokzJV-ZKNK3m5dyIyl9Zk1TQX5lmgRY,50903
156
+ snowflake/ml/model/_client/ops/service_ops.py,sha256=Ey_yvKQvFnD4dafjFtPA3aaU1GTGqrdlgIpjrfYC8Ew,47143
157
+ snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=n1i19opcjocXflWdr2jjtNk1GVqw8YSwip_ki2XyVMc,19628
158
+ snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=Nlw-rwCGmiGqPYwWjZrowPtcRvgYMInpmWZvsEC4sTI,2464
159
159
  snowflake/ml/model/_client/sql/_base.py,sha256=Qrm8M92g3MHb-QnSLUlbd8iVKCRxLhG_zr5M2qmXwJ8,1473
160
160
  snowflake/ml/model/_client/sql/model.py,sha256=nstZ8zR7MkXVEfhqLt7PWMik6dZr06nzq7VsF5NVNow,5840
161
161
  snowflake/ml/model/_client/sql/model_version.py,sha256=JE974ehlquitpDK9YHv94QklyereYk_vPiz64WYNXSk,23673
@@ -163,27 +163,28 @@ snowflake/ml/model/_client/sql/service.py,sha256=0aXyRDZIFCgBq6TEG6qdhc7wtCsmphp
163
163
  snowflake/ml/model/_client/sql/stage.py,sha256=1TWYIVoWIeNwhVG9uqwmNpmKcC6x45LrbxCtzJW7fi4,1214
164
164
  snowflake/ml/model/_client/sql/tag.py,sha256=9sI0VoldKmsfToWSjMQddozPPGCxYUI6n0gPBiqd6x8,4333
165
165
  snowflake/ml/model/_model_composer/model_composer.py,sha256=Xqi-sxmkBoZl383LQAXhMQkq9KsAS0A3ythC5bN3EOU,8292
166
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=y6lu1_4UC7pfosBKofc0dl-LWF8mpcTqhY5sKSkUH_I,9247
166
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=MyNaOLRD94RiMf-GofqPP989ifTLrSOOOau2RHCHphg,9308
167
167
  snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=vfuZQ4YADfLcEvJYTSqVMsLfxCO-QWsFFzLXI1NoMXk,2950
168
168
  snowflake/ml/model/_model_composer/model_method/constants.py,sha256=hoJwIopSdZiYn0fGq15_NiirC0l02d5LEs2D-4J_tPk,35
169
169
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=nnUJki3bJVCTF3gZ-usZW3xQ6wwlJ08EfNsPAgsnI3s,2625
170
170
  snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=olysEb_bE2C8CjIRAhm7qdr2mtgk77Tx45gnLRVQGFw,1511
171
171
  snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template,sha256=8p8jkTOJA-mBt5cuGhcWSH4z7ySQ9xevC35UioCLkC8,1539
172
172
  snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=QT32N6akQDutLh00cXp2OD4WI6Gb7IGG1snsnrXNih8,1453
173
- snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=0wAFFMro9gwhHsQ6EW1M2tPW_6WiXYNANTucaOdqUr4,8432
173
+ snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=7rfNQPgWT3scRIFAgIGdzrJaWeUftKhI2MGG5PFBDfM,8700
174
174
  snowflake/ml/model/_model_composer/model_method/utils.py,sha256=RQi2qebBeE-0Y-jLYXiDWZU8nfvbnif9QbExeWiMmyI,1057
175
175
  snowflake/ml/model/_model_composer/model_user_file/model_user_file.py,sha256=dYNgg8P9p6nRH47-OLxZIbt_Ja3t1VPGNQ0qJtpGuAw,1018
176
176
  snowflake/ml/model/_packager/model_handler.py,sha256=qZB5FVRWZD5wDdm6vuuoXnDFar7i2nHarbe8iZRCLPo,2630
177
177
  snowflake/ml/model/_packager/model_packager.py,sha256=6-1MnGUR8nxB86A13nCZcWbET_Q6fSEOlyfcbTv7xCI,6087
178
178
  snowflake/ml/model/_packager/model_env/model_env.py,sha256=xDDyRr8AzME0SRv2mQxzfh-blh2MH7Fz8H7R5HXiVJQ,21085
179
179
  snowflake/ml/model/_packager/model_handlers/_base.py,sha256=OZhGv7nyej3PqaoBz021uGa40T06d9rv-kDcKUY3VnM,7152
180
- snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=DIN1oKCl4DytNcH1xP3fGl4BHaEmQ_RGoKuysFiWz7s,12599
180
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=v_IjjbvzJDqrAYSq4_l7_CiN8vkMzLx5MlYDJ_oL970,15522
181
181
  snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=dbI2QizGZS04l6ehgXb3oy5YSXrlwRHz8YENVefEbms,10676
182
182
  snowflake/ml/model/_packager/model_handlers/custom.py,sha256=fM_13N5ejT0Ta0-M_Uzsqr_TwGVk_3jSjsLJiMEfyR4,8514
183
183
  snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=4k05ouWc7qxTMX-tXJ4z9KJHWPcVF62vIkoM1XwBTAc,37246
184
184
  snowflake/ml/model/_packager/model_handlers/keras.py,sha256=JKBCiJEjc41zaoEhsen7rnlyPo2RBuEqG9Vq6JR_Cq0,8696
185
185
  snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=DAFMiqpXEUmKqeq5rgn5j6rtuwScNnuiMUBwS4OyC7Q,11074
186
186
  snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=xSpoXO0UOfBUpzx2W1O8P2WF0Xi1vrZ_J-DdgzQG0o8,9177
187
+ snowflake/ml/model/_packager/model_handlers/prophet.py,sha256=MzmIkX2WukTApf85SUEmn8k_jeBAhfGa_8RTZK0-aCA,23913
187
188
  snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=mF-pzH1kqL7egpYA3kP1NVwOLNPYdOViEkywdzRXYJc,9867
188
189
  snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=sKp-bt-fAnruDMZJ5cN6F_m9dJRY0G2FjJ4-KjNLgcg,11380
189
190
  snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=_D1YE7TmEJDsuOUt-mT-2Nza2Bz0sIzSGRKn9sxuDhI,18340
@@ -198,11 +199,11 @@ snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2025_01
198
199
  snowflake/ml/model/_packager/model_handlers_migrator/torchscript_migrator_2023_12_01.py,sha256=MDOAGV6kML9sJh_hnYjnrPH4GtECP5DDCjaRT7NmYpU,768
199
200
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=CzY_MhiSshKi9dWzXc4lrC9PysU0FCdHG2oRlz1vCb8,1943
200
201
  snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=7FuL0nClHpd7kBLhSM6BJPd6JCdyXLo4dePGThpcxfg,20549
201
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=dt9k2FoQkJYTHXhismvPkp6ijyRpPMJMy4rCuXgd9Hg,3818
202
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=mtKRbHQb6Hq2xiH1fTHSlBGaZg94qfyJ90rYRg14l0Y,3992
202
203
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=8zTgq3n6TBXv7Vcwmf7b9wjK3m-9HHMsY0Qy1Rs-sZ4,1305
203
204
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=5butM-lyaDRhCAO2BaCOIQufpAxAfSAinsNuGqbbjMU,1029
204
205
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=cyZVvBGM3nF1IVqDKfYstLCchNO-ZhSkPvLM4aU7J5c,2066
205
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=xVdhOAl8aj6B_zWHjrqq0YUQrgjZXL7SRdlazq682jo,904
206
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=pdqy_tKGOlQyhuSh5ZhmOXxmC2dK_VPycdghrWrq5PI,904
206
207
  snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=xEf-S9QurEOeQzrNxlc-4-S_VkHsVO1eNS4UR0hWwHU,5495
207
208
  snowflake/ml/model/_packager/model_task/model_task_utils.py,sha256=_nm3Irl5W6Oa8_OnJyp3bLeA9QAbV9ygGCsgHI70GX4,6641
208
209
  snowflake/ml/model/_signatures/base_handler.py,sha256=4CTZKKbg4WIz_CmXjyVy8tKZW-5OFcz0J8XVPHm2dfQ,1269
@@ -363,7 +364,7 @@ snowflake/ml/modeling/metrics/__init__.py,sha256=1lc1DCVNeo7D-gvvCjmpI5tFIIrOsEd
363
364
  snowflake/ml/modeling/metrics/classification.py,sha256=UOc2w9iGkLzuleTpxCbfhAWpbli0HvNsGsN-r8G0ztI,66433
364
365
  snowflake/ml/modeling/metrics/correlation.py,sha256=N7GIT-EVlvyh_WMC-zOUzDUUQeKU1IXu4ocOjnx-WQo,5187
365
366
  snowflake/ml/modeling/metrics/covariance.py,sha256=HxJK1mwyt6lMSg8yonHFQ8IxAEa62MHeb1M3eHEtqlk,4672
366
- snowflake/ml/modeling/metrics/metrics_utils.py,sha256=XuAjYfL437LCeBY8RMElunk8jgVzemAgln573JzS3Qk,13315
367
+ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=vNeyYJHJBKXGrL2P-5PBD22Y5umRBOAVKLCZ3obbOdI,13507
367
368
  snowflake/ml/modeling/metrics/ranking.py,sha256=NwMdH_nubwdpIcCAZFEyafw_46uS9ULGdWkMgstGwjk,17774
368
369
  snowflake/ml/modeling/metrics/regression.py,sha256=qHUdhRkRssl2BDLyUyn5vZQqcrSVxp3TgTWa1kh1Mso,26052
369
370
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
@@ -433,7 +434,7 @@ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=dpJ7Y4ZRjejDxvE1vmxNUVIpg
433
434
  snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=huczAVSfD5XpsXwxjC3fiaRnr_NLz1qtNyW0H_zIa6w,63580
434
435
  snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=9ZyYqcdsx7nUQsrNJFMBohySPhZpFZHkbyL66-2vOJQ,64253
435
436
  snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=Zvl3atGaaZpOjI5XizLsLqWuHWA3B-M59jGzYtjkq14,63778
436
- snowflake/ml/monitoring/explain_visualize.py,sha256=Vj4x7ClGvXY42HQzFcvVr1CbO_vVfZv6eZn_jV9N9gk,16145
437
+ snowflake/ml/monitoring/explain_visualize.py,sha256=I5-JKHhpD7JD6inZYMGUxm1MEEflBB9jwQgXcrDStow,16234
437
438
  snowflake/ml/monitoring/model_monitor.py,sha256=m-1eeQIhAYAvFQ-8mjMQ-PTzCpnN9XEcWpdHdQuEEus,4707
438
439
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
439
440
  snowflake/ml/monitoring/_client/model_monitor_sql_client.py,sha256=6IVU1aQdiRu0GRhpZfNatJdzd5YgUNFlJ3Ti-mBxzN8,18027
@@ -450,8 +451,8 @@ snowflake/ml/utils/connection_params.py,sha256=NSBUgcs-DXPRHs1BKpxdSubbJx1yrFRlM
450
451
  snowflake/ml/utils/html_utils.py,sha256=L4pzpvFd20SIk4rie2kTAtcQjbxBHfjKmxonMAT2OoA,7665
451
452
  snowflake/ml/utils/sparse.py,sha256=zLBNh-ynhGpKH5TFtopk0YLkHGvv0yq1q-sV59YQKgg,3819
452
453
  snowflake/ml/utils/sql_client.py,sha256=pSe2od6Pkh-8NwG3D-xqN76_uNf-ohOtVbT55HeQg1Y,668
453
- snowflake_ml_python-1.17.0.dist-info/licenses/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
454
- snowflake_ml_python-1.17.0.dist-info/METADATA,sha256=mhZyi2QLv4tmA0nmTKABH-c-VR8oFf5CWOSGJCMr8Fo,96492
455
- snowflake_ml_python-1.17.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
456
- snowflake_ml_python-1.17.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
457
- snowflake_ml_python-1.17.0.dist-info/RECORD,,
454
+ snowflake_ml_python-1.19.0.dist-info/licenses/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
455
+ snowflake_ml_python-1.19.0.dist-info/METADATA,sha256=AgdELvFlnXyalB8a6NU6Fer0MffT245XRWf94InGRY4,97868
456
+ snowflake_ml_python-1.19.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
457
+ snowflake_ml_python-1.19.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
458
+ snowflake_ml_python-1.19.0.dist-info/RECORD,,