snowflake-ml-python 1.15.0__py3-none-any.whl → 1.17.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (201) hide show
  1. snowflake/ml/_internal/human_readable_id/adjectives.txt +5 -5
  2. snowflake/ml/_internal/human_readable_id/animals.txt +3 -3
  3. snowflake/ml/_internal/platform_capabilities.py +4 -0
  4. snowflake/ml/_internal/utils/mixins.py +24 -9
  5. snowflake/ml/experiment/experiment_tracking.py +63 -19
  6. snowflake/ml/jobs/__init__.py +4 -0
  7. snowflake/ml/jobs/_interop/__init__.py +0 -0
  8. snowflake/ml/jobs/_interop/data_utils.py +124 -0
  9. snowflake/ml/jobs/_interop/dto_schema.py +95 -0
  10. snowflake/ml/jobs/{_utils/interop_utils.py → _interop/exception_utils.py} +49 -178
  11. snowflake/ml/jobs/_interop/legacy.py +225 -0
  12. snowflake/ml/jobs/_interop/protocols.py +471 -0
  13. snowflake/ml/jobs/_interop/results.py +51 -0
  14. snowflake/ml/jobs/_interop/utils.py +144 -0
  15. snowflake/ml/jobs/_utils/constants.py +4 -1
  16. snowflake/ml/jobs/_utils/feature_flags.py +37 -5
  17. snowflake/ml/jobs/_utils/payload_utils.py +1 -1
  18. snowflake/ml/jobs/_utils/scripts/mljob_launcher.py +139 -102
  19. snowflake/ml/jobs/_utils/spec_utils.py +50 -11
  20. snowflake/ml/jobs/_utils/types.py +10 -0
  21. snowflake/ml/jobs/job.py +168 -36
  22. snowflake/ml/jobs/manager.py +54 -36
  23. snowflake/ml/model/__init__.py +16 -2
  24. snowflake/ml/model/_client/model/batch_inference_specs.py +18 -2
  25. snowflake/ml/model/_client/model/model_version_impl.py +44 -7
  26. snowflake/ml/model/_client/ops/model_ops.py +4 -0
  27. snowflake/ml/model/_client/ops/service_ops.py +50 -5
  28. snowflake/ml/model/_client/service/model_deployment_spec.py +1 -1
  29. snowflake/ml/model/_client/sql/model_version.py +3 -1
  30. snowflake/ml/model/_client/sql/stage.py +8 -0
  31. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +1 -0
  32. snowflake/ml/model/_model_composer/model_method/model_method.py +32 -4
  33. snowflake/ml/model/_model_composer/model_method/utils.py +28 -0
  34. snowflake/ml/model/_packager/model_env/model_env.py +48 -21
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +8 -0
  36. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +1 -0
  37. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +3 -3
  38. snowflake/ml/model/type_hints.py +13 -0
  39. snowflake/ml/model/volatility.py +34 -0
  40. snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py +5 -5
  41. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -1
  42. snowflake/ml/modeling/cluster/affinity_propagation.py +1 -1
  43. snowflake/ml/modeling/cluster/agglomerative_clustering.py +1 -1
  44. snowflake/ml/modeling/cluster/birch.py +1 -1
  45. snowflake/ml/modeling/cluster/bisecting_k_means.py +1 -1
  46. snowflake/ml/modeling/cluster/dbscan.py +1 -1
  47. snowflake/ml/modeling/cluster/feature_agglomeration.py +1 -1
  48. snowflake/ml/modeling/cluster/k_means.py +1 -1
  49. snowflake/ml/modeling/cluster/mean_shift.py +1 -1
  50. snowflake/ml/modeling/cluster/mini_batch_k_means.py +1 -1
  51. snowflake/ml/modeling/cluster/optics.py +1 -1
  52. snowflake/ml/modeling/cluster/spectral_biclustering.py +1 -1
  53. snowflake/ml/modeling/cluster/spectral_clustering.py +1 -1
  54. snowflake/ml/modeling/cluster/spectral_coclustering.py +1 -1
  55. snowflake/ml/modeling/compose/column_transformer.py +1 -1
  56. snowflake/ml/modeling/compose/transformed_target_regressor.py +1 -1
  57. snowflake/ml/modeling/covariance/elliptic_envelope.py +1 -1
  58. snowflake/ml/modeling/covariance/empirical_covariance.py +1 -1
  59. snowflake/ml/modeling/covariance/graphical_lasso.py +1 -1
  60. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +1 -1
  61. snowflake/ml/modeling/covariance/ledoit_wolf.py +1 -1
  62. snowflake/ml/modeling/covariance/min_cov_det.py +1 -1
  63. snowflake/ml/modeling/covariance/oas.py +1 -1
  64. snowflake/ml/modeling/covariance/shrunk_covariance.py +1 -1
  65. snowflake/ml/modeling/decomposition/dictionary_learning.py +1 -1
  66. snowflake/ml/modeling/decomposition/factor_analysis.py +1 -1
  67. snowflake/ml/modeling/decomposition/fast_ica.py +1 -1
  68. snowflake/ml/modeling/decomposition/incremental_pca.py +1 -1
  69. snowflake/ml/modeling/decomposition/kernel_pca.py +1 -1
  70. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +1 -1
  71. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +1 -1
  72. snowflake/ml/modeling/decomposition/pca.py +1 -1
  73. snowflake/ml/modeling/decomposition/sparse_pca.py +1 -1
  74. snowflake/ml/modeling/decomposition/truncated_svd.py +1 -1
  75. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +1 -1
  76. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +1 -1
  77. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -1
  78. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -1
  79. snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -1
  80. snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -1
  81. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +1 -1
  82. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +1 -1
  83. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +1 -1
  84. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +1 -1
  85. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +1 -1
  86. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +1 -1
  87. snowflake/ml/modeling/ensemble/isolation_forest.py +1 -1
  88. snowflake/ml/modeling/ensemble/random_forest_classifier.py +1 -1
  89. snowflake/ml/modeling/ensemble/random_forest_regressor.py +1 -1
  90. snowflake/ml/modeling/ensemble/stacking_regressor.py +1 -1
  91. snowflake/ml/modeling/ensemble/voting_classifier.py +1 -1
  92. snowflake/ml/modeling/ensemble/voting_regressor.py +1 -1
  93. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +1 -1
  94. snowflake/ml/modeling/feature_selection/select_fdr.py +1 -1
  95. snowflake/ml/modeling/feature_selection/select_fpr.py +1 -1
  96. snowflake/ml/modeling/feature_selection/select_fwe.py +1 -1
  97. snowflake/ml/modeling/feature_selection/select_k_best.py +1 -1
  98. snowflake/ml/modeling/feature_selection/select_percentile.py +1 -1
  99. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +1 -1
  100. snowflake/ml/modeling/feature_selection/variance_threshold.py +1 -1
  101. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +1 -1
  102. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +1 -1
  103. snowflake/ml/modeling/impute/iterative_imputer.py +1 -1
  104. snowflake/ml/modeling/impute/knn_imputer.py +1 -1
  105. snowflake/ml/modeling/impute/missing_indicator.py +1 -1
  106. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +1 -1
  107. snowflake/ml/modeling/kernel_approximation/nystroem.py +1 -1
  108. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +1 -1
  109. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +1 -1
  110. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +1 -1
  111. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +1 -1
  112. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +1 -1
  113. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +1 -1
  114. snowflake/ml/modeling/linear_model/ard_regression.py +1 -1
  115. snowflake/ml/modeling/linear_model/bayesian_ridge.py +1 -1
  116. snowflake/ml/modeling/linear_model/elastic_net.py +1 -1
  117. snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -1
  118. snowflake/ml/modeling/linear_model/gamma_regressor.py +1 -1
  119. snowflake/ml/modeling/linear_model/huber_regressor.py +1 -1
  120. snowflake/ml/modeling/linear_model/lars.py +1 -1
  121. snowflake/ml/modeling/linear_model/lars_cv.py +1 -1
  122. snowflake/ml/modeling/linear_model/lasso.py +1 -1
  123. snowflake/ml/modeling/linear_model/lasso_cv.py +1 -1
  124. snowflake/ml/modeling/linear_model/lasso_lars.py +1 -1
  125. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -1
  126. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +1 -1
  127. snowflake/ml/modeling/linear_model/linear_regression.py +1 -1
  128. snowflake/ml/modeling/linear_model/logistic_regression.py +1 -1
  129. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +1 -1
  130. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +1 -1
  131. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -1
  132. snowflake/ml/modeling/linear_model/multi_task_lasso.py +1 -1
  133. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -1
  134. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +1 -1
  135. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +1 -1
  136. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -1
  137. snowflake/ml/modeling/linear_model/perceptron.py +1 -1
  138. snowflake/ml/modeling/linear_model/poisson_regressor.py +1 -1
  139. snowflake/ml/modeling/linear_model/ransac_regressor.py +1 -1
  140. snowflake/ml/modeling/linear_model/ridge.py +1 -1
  141. snowflake/ml/modeling/linear_model/ridge_classifier.py +1 -1
  142. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +1 -1
  143. snowflake/ml/modeling/linear_model/ridge_cv.py +1 -1
  144. snowflake/ml/modeling/linear_model/sgd_classifier.py +1 -1
  145. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +1 -1
  146. snowflake/ml/modeling/linear_model/sgd_regressor.py +1 -1
  147. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +1 -1
  148. snowflake/ml/modeling/linear_model/tweedie_regressor.py +1 -1
  149. snowflake/ml/modeling/manifold/isomap.py +1 -1
  150. snowflake/ml/modeling/manifold/mds.py +1 -1
  151. snowflake/ml/modeling/manifold/spectral_embedding.py +1 -1
  152. snowflake/ml/modeling/manifold/tsne.py +1 -1
  153. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +1 -1
  154. snowflake/ml/modeling/mixture/gaussian_mixture.py +1 -1
  155. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +1 -1
  156. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +1 -1
  157. snowflake/ml/modeling/multiclass/output_code_classifier.py +1 -1
  158. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +1 -1
  159. snowflake/ml/modeling/naive_bayes/categorical_nb.py +1 -1
  160. snowflake/ml/modeling/naive_bayes/complement_nb.py +1 -1
  161. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +1 -1
  162. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +1 -1
  163. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +1 -1
  164. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +1 -1
  165. snowflake/ml/modeling/neighbors/kernel_density.py +1 -1
  166. snowflake/ml/modeling/neighbors/local_outlier_factor.py +1 -1
  167. snowflake/ml/modeling/neighbors/nearest_centroid.py +1 -1
  168. snowflake/ml/modeling/neighbors/nearest_neighbors.py +1 -1
  169. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +1 -1
  170. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +1 -1
  171. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -1
  172. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +1 -1
  173. snowflake/ml/modeling/neural_network/mlp_classifier.py +1 -1
  174. snowflake/ml/modeling/neural_network/mlp_regressor.py +1 -1
  175. snowflake/ml/modeling/preprocessing/polynomial_features.py +1 -1
  176. snowflake/ml/modeling/semi_supervised/label_propagation.py +1 -1
  177. snowflake/ml/modeling/semi_supervised/label_spreading.py +1 -1
  178. snowflake/ml/modeling/svm/linear_svc.py +1 -1
  179. snowflake/ml/modeling/svm/linear_svr.py +1 -1
  180. snowflake/ml/modeling/svm/nu_svc.py +1 -1
  181. snowflake/ml/modeling/svm/nu_svr.py +1 -1
  182. snowflake/ml/modeling/svm/svc.py +1 -1
  183. snowflake/ml/modeling/svm/svr.py +1 -1
  184. snowflake/ml/modeling/tree/decision_tree_classifier.py +1 -1
  185. snowflake/ml/modeling/tree/decision_tree_regressor.py +1 -1
  186. snowflake/ml/modeling/tree/extra_tree_classifier.py +1 -1
  187. snowflake/ml/modeling/tree/extra_tree_regressor.py +1 -1
  188. snowflake/ml/modeling/xgboost/xgb_classifier.py +1 -1
  189. snowflake/ml/modeling/xgboost/xgb_regressor.py +1 -1
  190. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +1 -1
  191. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +1 -1
  192. snowflake/ml/registry/_manager/model_manager.py +1 -0
  193. snowflake/ml/registry/_manager/model_parameter_reconciler.py +27 -0
  194. snowflake/ml/registry/registry.py +15 -0
  195. snowflake/ml/utils/authentication.py +16 -0
  196. snowflake/ml/version.py +1 -1
  197. {snowflake_ml_python-1.15.0.dist-info → snowflake_ml_python-1.17.0.dist-info}/METADATA +65 -5
  198. {snowflake_ml_python-1.15.0.dist-info → snowflake_ml_python-1.17.0.dist-info}/RECORD +201 -192
  199. {snowflake_ml_python-1.15.0.dist-info → snowflake_ml_python-1.17.0.dist-info}/WHEEL +0 -0
  200. {snowflake_ml_python-1.15.0.dist-info → snowflake_ml_python-1.17.0.dist-info}/licenses/LICENSE.txt +0 -0
  201. {snowflake_ml_python-1.15.0.dist-info → snowflake_ml_python-1.17.0.dist-info}/top_level.txt +0 -0
@@ -10,13 +10,13 @@ snowflake/cortex/_sse_client.py,sha256=sLYgqAfTOPADCnaWH2RWAJi8KbU_7gSRsTUDcDD5T
10
10
  snowflake/cortex/_summarize.py,sha256=7GH8zqfIdOiHA5w4b6EvJEKEWhaTrL4YA6iDGbn7BNM,1307
11
11
  snowflake/cortex/_translate.py,sha256=9ZGjvAnJFisbzJ_bXnt4pyug5UzhHJRXW8AhGQEersM,1652
12
12
  snowflake/cortex/_util.py,sha256=krNTpbkFLXwdFqy1bd0xi7ZmOzOHRnIfHdQCPiLZJxk,3288
13
- snowflake/ml/version.py,sha256=mD6wWkVyRAcznVsn3yajxYM3y9_AIAyvWE6K1C1nDQU,99
13
+ snowflake/ml/version.py,sha256=9UkEbfQJuMoktQRwLQs1TMavYNPwvWxULqMN3SA-KnE,99
14
14
  snowflake/ml/_internal/env.py,sha256=EY_2KVe8oR3LgKWdaeRb5rRU-NDNXJppPDsFJmMZUUY,265
15
15
  snowflake/ml/_internal/env_utils.py,sha256=x6ID94g6FYoMX3afp0zoUHzBvuvPyiE2F6RDpxx5Cq0,30967
16
16
  snowflake/ml/_internal/file_utils.py,sha256=7sA6loOeSfmGP4yx16P4usT9ZtRqG3ycnXu7_Tk7dOs,14206
17
17
  snowflake/ml/_internal/init_utils.py,sha256=WhrlvS-xcmKErSpwg6cUk6XDQ5lQcwDqPJnU7cooMIg,2672
18
18
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
19
- snowflake/ml/_internal/platform_capabilities.py,sha256=jWla9jzRgsEd2HBpECixsFX2vZCHIuVDVWXMEMtTYek,7366
19
+ snowflake/ml/_internal/platform_capabilities.py,sha256=5cpeKpsxCObjOsPIz38noIusWw4n5KXOvPqRPiF3Kj4,7627
20
20
  snowflake/ml/_internal/relax_version_strategy.py,sha256=MYEIZrx1HfKNhl9Na3GN50ipX8c0MKIj9nwxjB0IC0Y,484
21
21
  snowflake/ml/_internal/telemetry.py,sha256=GCut6xG7SvAV8JRCxuQjvno9t7cLGLByECpMNUY1q30,31867
22
22
  snowflake/ml/_internal/type_utils.py,sha256=bNNW0I9rOvwhx-Y274vGd0qWA0fMIPA3SGnaDE09wvc,2198
@@ -29,8 +29,8 @@ snowflake/ml/_internal/exceptions/fileset_error_messages.py,sha256=dqPpRu0cKyQA_
29
29
  snowflake/ml/_internal/exceptions/fileset_errors.py,sha256=pHwY7f5c6JH-RZDtkiWy8nICHKy4T5vvWs5cq5rPD_4,1030
30
30
  snowflake/ml/_internal/exceptions/modeling_error_messages.py,sha256=M1s_PNHcOGlSDKD2kvSUQYsSaKHdHdnE74609LvF27c,749
31
31
  snowflake/ml/_internal/exceptions/sql_error_codes.py,sha256=aEI3-gW7FeNahoPncdOaGGRBmPJmkCHK-a1o2e3c3PI,206
32
- snowflake/ml/_internal/human_readable_id/adjectives.txt,sha256=5o4MbVeHoELAqyLpyuKleOKR47jPjC_nKoziOIZMwT0,804
33
- snowflake/ml/_internal/human_readable_id/animals.txt,sha256=GDLzMwzxiL07PhIMxw4t89bhYqqg0bQfPiuQT8VNeME,837
32
+ snowflake/ml/_internal/human_readable_id/adjectives.txt,sha256=n_nj9zvA09H3cn3DoZBIuu_4ki76S1hBiuhyfbjUr3g,812
33
+ snowflake/ml/_internal/human_readable_id/animals.txt,sha256=IycV3Cs9XgkCFo24MB3wDye2iBZHhF5YN_PFxXs3AOc,841
34
34
  snowflake/ml/_internal/human_readable_id/hrid_generator.py,sha256=LYWB86qZgsVBvnc6Q5VjfDOmnGSQU3cTRKfId_nJSPY,1341
35
35
  snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=_Egc-L0DKWgug1WaJebLCayKcljr2WdPuqH5uIoR1Kg,4469
36
36
  snowflake/ml/_internal/lineage/lineage_utils.py,sha256=-_PKuznsL_w38rVj3wXgbPdm6XkcbnABrU4v4GwZQcg,3426
@@ -40,7 +40,7 @@ snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJ
40
40
  snowflake/ml/_internal/utils/identifier.py,sha256=HrcCBOyn93fRjMj4K1YJG37ONtw7e3EZnt29LzhEgLA,12586
41
41
  snowflake/ml/_internal/utils/import_utils.py,sha256=msvUDaCcJpAcNCS-5Ynz4F1CvUhXjRsuZyOv1rN6Yhk,3213
42
42
  snowflake/ml/_internal/utils/jwt_generator.py,sha256=X8D_bjVRnpcSCuJFjrA71KBJDRFXD_73tVu4VL9agpE,5441
43
- snowflake/ml/_internal/utils/mixins.py,sha256=YSdf7UzpiR2N6Xv2Rbjw_BpIt8vsyd9Rlc3DJSXWGNM,3139
43
+ snowflake/ml/_internal/utils/mixins.py,sha256=0_jJN_-iNvLim0-GsJ4geqK4Ja91O-M527uWzj3vBtw,3511
44
44
  snowflake/ml/_internal/utils/parallelize.py,sha256=l8Zjo-hp8zqoLgHxBlpz9Zmn2Z-MRQ0fS_NnrR4jWR8,4522
45
45
  snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=EaY_3IsVOZ9BCH28F5VLjp-0AiEqDlL7L715vkPsgrY,5149
46
46
  snowflake/ml/_internal/utils/query_result_checker.py,sha256=1PR41Xn9BUIXvp-UmJ9FgEbj8WfgU7RUhz3PqvvVQ5E,10656
@@ -65,7 +65,7 @@ snowflake/ml/dataset/dataset_metadata.py,sha256=lcNvugBkP8YEkGMQqaV8SlHs5mwUKsUS
65
65
  snowflake/ml/dataset/dataset_reader.py,sha256=mZsG9HyWUGgfotrGkLrunyEsOm_659mH-Sn2OyG6A-Q,5036
66
66
  snowflake/ml/experiment/__init__.py,sha256=r7qdyPd3jwxzqvksim2ju5j_LrnYQrta0ZI6XpWUqmc,109
67
67
  snowflake/ml/experiment/_experiment_info.py,sha256=iaJ65x6nzBYJ5djleSOzBtMpZUJCUDlRpaDw0pu-dcU,2533
68
- snowflake/ml/experiment/experiment_tracking.py,sha256=JgnyJWfGQ6nTl1XsskWdoBI2iU7M4ivaTobLNNnD7ps,15557
68
+ snowflake/ml/experiment/experiment_tracking.py,sha256=5WEZpI19MCbqbozpWG88Ba7Kd5v7JvfNDvJA-tscMwo,17418
69
69
  snowflake/ml/experiment/utils.py,sha256=3bpbkilc5vvFjnti-kcyhhjAd9Ga3LqiKqJDwORiATY,628
70
70
  snowflake/ml/experiment/_client/artifact.py,sha256=R2WB4Y_kqv43BWLfXv8SEDINn1Bnevzgb-mH5LyvgGk,3035
71
71
  snowflake/ml/experiment/_client/experiment_tracking_sql_client.py,sha256=0cR2aTQa9uB9D7s5AStZ9gOAJe3SL7rFebttvpqkZFk,7250
@@ -108,29 +108,36 @@ snowflake/ml/fileset/fileset.py,sha256=ApMpHiiyzGRkyxQfJPdXPuKtw_wOXbOfQCXSH6pDw
108
108
  snowflake/ml/fileset/sfcfs.py,sha256=FJFc9-gc0KXaNyc10ZovN_87aUCShb0WztVwa02t0io,15517
109
109
  snowflake/ml/fileset/snowfs.py,sha256=uF5QluYtiJ-HezGIhF55dONi3t0E6N7ByaVAIAlM3nk,5133
110
110
  snowflake/ml/fileset/stage_fs.py,sha256=V4pysouSKKDPLzuW3u_extxfvjkQa5OlwIRES9Srpzo,20151
111
- snowflake/ml/jobs/__init__.py,sha256=v-v9-SA1Vy-M98B31-NlqJgpI6uEg9jEEghJLub1RUY,468
111
+ snowflake/ml/jobs/__init__.py,sha256=h176wKqEylZs5cdWdzWHuUrSAcwctDdw4tUhIpy-mO4,657
112
112
  snowflake/ml/jobs/decorators.py,sha256=mQgdWvvCwD7q79cSFKZHKegXGh2j1u8WM64UD3lCKr4,3428
113
- snowflake/ml/jobs/job.py,sha256=VFBogPXXTWa0p-Jl10lSUFyKeqGQOtbzJIgrWTPA0rQ,22222
114
- snowflake/ml/jobs/manager.py,sha256=1tOpEE66gQv36BmmYnUIQ2yjS1r-uAHxIQht6ilucO8,27276
113
+ snowflake/ml/jobs/job.py,sha256=62LDUUaOmcs9WJobgeQq4o4kT3sfj6SI3cgz5cQdRMs,26743
114
+ snowflake/ml/jobs/manager.py,sha256=nLLtXmfgqWO7K5T0JUSLSiU1sHo_wYQIfMJCs5mPypc,28732
115
+ snowflake/ml/jobs/_interop/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
116
+ snowflake/ml/jobs/_interop/data_utils.py,sha256=xUO5YlhUKFVCDtbjam5gP2lka3lfoknTLr7syNAVxK0,4074
117
+ snowflake/ml/jobs/_interop/dto_schema.py,sha256=NhoQ6WJa7uLO9VJojEENVVZhZMfL_G1VPPSSUYmmhO8,2750
118
+ snowflake/ml/jobs/_interop/exception_utils.py,sha256=ZCphBkaaNINFATXZmjPzzNLKZZxKvGPROZ2azU8w13g,16348
119
+ snowflake/ml/jobs/_interop/legacy.py,sha256=8BuC197e6nPmAzh4urYiuBuCNP-RlOlvWnWpSHTduqQ,9238
120
+ snowflake/ml/jobs/_interop/protocols.py,sha256=xfOXL25hxhhy3ULfZWOfEjX0XqSTxo5cOURPXt777W4,18175
121
+ snowflake/ml/jobs/_interop/results.py,sha256=nQ07XJ1BZEkPB4xa12pbGyaKqR8sWCoSzx0IKQlub4w,1714
122
+ snowflake/ml/jobs/_interop/utils.py,sha256=TWFkUcAYmb-fpTwEL8idkk3XxlZ8vLz4X_gyS78PSi4,5552
115
123
  snowflake/ml/jobs/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
116
- snowflake/ml/jobs/_utils/constants.py,sha256=JB8i85VbI0nIYP_c2nyAADQcmEF8BscVHHKBGhruofY,3838
117
- snowflake/ml/jobs/_utils/feature_flags.py,sha256=cH_NyeOncL3_tzbk0WvL1siNyodxBgn1ziPk2yBW6wY,404
124
+ snowflake/ml/jobs/_utils/constants.py,sha256=4XhBfvFATdQHQ-7CfdrFREFt0xt0T3m9wwQADlcn5dI,4009
125
+ snowflake/ml/jobs/_utils/feature_flags.py,sha256=c69OYFOZyXVmj87VKRh-rp_MP-3I1gJXhxBSiXAprbQ,1612
118
126
  snowflake/ml/jobs/_utils/function_payload_utils.py,sha256=4LBaStMdhRxcqwRkwFje-WwiEKRWnBfkaOYouF3N3Kg,1308
119
- snowflake/ml/jobs/_utils/interop_utils.py,sha256=7mODMTjKCLXkJloACG6_9b2wvmRgjXF0Jx3wpWYyJeA,21413
120
- snowflake/ml/jobs/_utils/payload_utils.py,sha256=1Xon3jlBgzfv1SQgQkJ1ir3xt9PVviP8-UC6P-FOmwc,30807
127
+ snowflake/ml/jobs/_utils/payload_utils.py,sha256=GV3r7FE7h7BwEs3DBkVY3Mes0fuX9G3xu7HyHT3gkcY,30797
121
128
  snowflake/ml/jobs/_utils/query_helper.py,sha256=1-XK-y4iukbR1693qAELprRbHmJDM4YoEBHov8IYbHU,1115
122
129
  snowflake/ml/jobs/_utils/runtime_env_utils.py,sha256=fqa3ctf_CAOSv1zT__01Qp9T058mKgMjXuEkBZqKUqA,2247
123
- snowflake/ml/jobs/_utils/spec_utils.py,sha256=_USJN0H7wjprPcS5p6SbAUQJOQjljEbLcdMrtnBkRrM,14751
130
+ snowflake/ml/jobs/_utils/spec_utils.py,sha256=Ch-3iKezKWXgSJm-xpHOW7ZpMBjIZvSNiEZGL9CyA2w,16346
124
131
  snowflake/ml/jobs/_utils/stage_utils.py,sha256=38-LsokaGx0NzlnP8CMRioClRz-3x6xhPiZIgl2CB9g,5224
125
- snowflake/ml/jobs/_utils/types.py,sha256=AGLu0kPTNRUki26rah_KBwWp0bBJEtUP3zcfxkj5kB0,2326
132
+ snowflake/ml/jobs/_utils/types.py,sha256=wK-VOc4MAkuDkrji--loSdF-SkPc0K0JLuQoYVrXHBw,2494
126
133
  snowflake/ml/jobs/_utils/scripts/constants.py,sha256=YyIWZqQPYOTtgCY6SfyJjk2A98I5RQVmrOuLtET5Pqg,173
127
134
  snowflake/ml/jobs/_utils/scripts/get_instance_ip.py,sha256=N2wJYMPlwg-hidwgHhDhiBWOE6TskqCfWLMRRNnZBQs,5776
128
- snowflake/ml/jobs/_utils/scripts/mljob_launcher.py,sha256=DPRupPuFqJ9TBbMCuomCf3jRqBJ_QQ1nCplg28HYt04,15752
135
+ snowflake/ml/jobs/_utils/scripts/mljob_launcher.py,sha256=XcCyXYkwAAF3quPs0uoq_n-OiEYPYJtadKGsOFKBlTM,17005
129
136
  snowflake/ml/jobs/_utils/scripts/signal_workers.py,sha256=AR1Pylkm4-FGh10WXfrCtcxaV0rI7IQ2ZiO0Li7zZ3U,7433
130
137
  snowflake/ml/jobs/_utils/scripts/worker_shutdown_listener.py,sha256=SeJ8v5XDriwHAjIGpcQkwVP-f-lO9QIdVjVD7Fkgafs,7893
131
138
  snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCrzI4,65
132
139
  snowflake/ml/lineage/lineage_node.py,sha256=SA0rbbI67rMr1qTMs4bAVkvqVtuKNI4lIaO5w0S-IXE,5767
133
- snowflake/ml/model/__init__.py,sha256=H-kWd3CzYFgFwfM-BDy3rRWFAeHH5JgqhC0dCS8lFig,426
140
+ snowflake/ml/model/__init__.py,sha256=78w63Y250_m2zsN6eamZAZ2ovPpxk2ZCYOClTwJS1-s,567
134
141
  snowflake/ml/model/custom_model.py,sha256=fDhMObqlyzD_qQG1Bq6HHkBN1w3Qzg9e81JWPiqRfc4,12249
135
142
  snowflake/ml/model/event_handler.py,sha256=pojleQVM9TPNeDvliTvon2Sfxqbf2WWxrOebo1SaEHo,7211
136
143
  snowflake/ml/model/inference_engine.py,sha256=L0nwySY2Qwp3JzuRpPS87r0--m3HTUNUgZXYyOPJjyk,66
@@ -138,35 +145,37 @@ snowflake/ml/model/model_signature.py,sha256=RH62vv4YmrQugTXLsh6kyuzfTs9_yz8a0TM
138
145
  snowflake/ml/model/openai_signatures.py,sha256=ZVnHDgaOA6RcvtSP3HIbHVgr3scJH2gG_9QvZidn41g,2630
139
146
  snowflake/ml/model/target_platform.py,sha256=H5d-wtuKQyVlq9x33vPtYZAlR5ka0ytcKRYgwlKl0bQ,390
140
147
  snowflake/ml/model/task.py,sha256=Zp5JaLB-YfX5p_HSaw81P3J7UnycQq5EMa87A35VOaQ,286
141
- snowflake/ml/model/type_hints.py,sha256=G0kp85-ksnYoAUHRdXxLFQBLq3XURuqYOpu_YeKEaNA,9847
142
- snowflake/ml/model/_client/model/batch_inference_specs.py,sha256=tajjnvp5pI00MyFFQhM-ZJcFe9OZzIi9luz2Ylemf8g,557
148
+ snowflake/ml/model/type_hints.py,sha256=VmP8qr60V9mBZYuTeGRWIZP3w14NXERNExrXQLx3jWI,10836
149
+ snowflake/ml/model/volatility.py,sha256=qu-wqe9oKkRwXwE2qkKygxTWzUypQYEk3UjsqOGRl_I,1144
150
+ snowflake/ml/model/_client/model/batch_inference_specs.py,sha256=FFzNvP-OHO1gFBfqXz89T5HMheFGfsx7P5_5Ze_QYvM,957
143
151
  snowflake/ml/model/_client/model/inference_engine_utils.py,sha256=lOqZzySZygeWqHTNYGBYgpTRfEst9f7lX50Ku8k950g,1966
144
152
  snowflake/ml/model/_client/model/model_impl.py,sha256=Yabrbir5vPMOnsVmQJ23YN7vqhi756Jcm6pfO8Aq92o,17469
145
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=uomU-rJRA_tV5iWYh7Lg4HEgLOR0J13yxWS_Y3euuIY,53046
153
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=7D1sGqu8RCLMKP6LizYY4hbIXgDbBlGbIxpIsb_jUEQ,54757
146
154
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=qpK6PL3OyfuhyOmpvLCpHLy6vCxbZbp1HlEvakFGwv4,4884
147
- snowflake/ml/model/_client/ops/model_ops.py,sha256=XGQB62Nc4ld86I7wJzuJGkmbrI38wIBm4egsZptdrM8,50394
148
- snowflake/ml/model/_client/ops/service_ops.py,sha256=yTFeXkQLO194G5oT_dVIWTW1-9JvrHgB7Abkc5UNys0,44679
149
- snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=LxdhU1m4YGc1MNyApQ0IyUetcH4IXOmwYOY9X3wjznY,19499
155
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=sQ0t6plS5o_2qqnA48quYwJOZ0NlhgnZMarwrzSKwew,50599
156
+ snowflake/ml/model/_client/ops/service_ops.py,sha256=gUmYDvXnacachE9OK92HGYbZ7ec9WEsrDRsOgOckhbI,47036
157
+ snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=Ro2kAM_rfMccMjW23RpP6qDPq090vAIUv_he-8GE68k,19487
150
158
  snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=QpDso2bjx2eCRKIG4-ppc3z46B7hgYMZehOTRoR9IJs,2425
151
159
  snowflake/ml/model/_client/sql/_base.py,sha256=Qrm8M92g3MHb-QnSLUlbd8iVKCRxLhG_zr5M2qmXwJ8,1473
152
160
  snowflake/ml/model/_client/sql/model.py,sha256=nstZ8zR7MkXVEfhqLt7PWMik6dZr06nzq7VsF5NVNow,5840
153
- snowflake/ml/model/_client/sql/model_version.py,sha256=QwzFlDH5laTqK2qF7SJQSbt28DgspWj3R11l-yD1Da0,23496
161
+ snowflake/ml/model/_client/sql/model_version.py,sha256=JE974ehlquitpDK9YHv94QklyereYk_vPiz64WYNXSk,23673
154
162
  snowflake/ml/model/_client/sql/service.py,sha256=0aXyRDZIFCgBq6TEG6qdhc7wtCsmphpyBXuSoNyLmTw,11630
155
- snowflake/ml/model/_client/sql/stage.py,sha256=2gxYNtmEXricwxeACVUr63OUDCy_iQvCi-kRT4qQtBA,887
163
+ snowflake/ml/model/_client/sql/stage.py,sha256=1TWYIVoWIeNwhVG9uqwmNpmKcC6x45LrbxCtzJW7fi4,1214
156
164
  snowflake/ml/model/_client/sql/tag.py,sha256=9sI0VoldKmsfToWSjMQddozPPGCxYUI6n0gPBiqd6x8,4333
157
165
  snowflake/ml/model/_model_composer/model_composer.py,sha256=Xqi-sxmkBoZl383LQAXhMQkq9KsAS0A3ythC5bN3EOU,8292
158
166
  snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=y6lu1_4UC7pfosBKofc0dl-LWF8mpcTqhY5sKSkUH_I,9247
159
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=Oc_PvWG3u0E2pb35w4uMYQdDFEuHdUdOb2gnqnVLE3Q,2917
167
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=vfuZQ4YADfLcEvJYTSqVMsLfxCO-QWsFFzLXI1NoMXk,2950
160
168
  snowflake/ml/model/_model_composer/model_method/constants.py,sha256=hoJwIopSdZiYn0fGq15_NiirC0l02d5LEs2D-4J_tPk,35
161
169
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=nnUJki3bJVCTF3gZ-usZW3xQ6wwlJ08EfNsPAgsnI3s,2625
162
170
  snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=olysEb_bE2C8CjIRAhm7qdr2mtgk77Tx45gnLRVQGFw,1511
163
171
  snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template,sha256=8p8jkTOJA-mBt5cuGhcWSH4z7ySQ9xevC35UioCLkC8,1539
164
172
  snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=QT32N6akQDutLh00cXp2OD4WI6Gb7IGG1snsnrXNih8,1453
165
- snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=NhTAkjRlfHqOEfDtm2U6LdkiVDUufwP9cC7sjsJiUwA,7167
173
+ snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=0wAFFMro9gwhHsQ6EW1M2tPW_6WiXYNANTucaOdqUr4,8432
174
+ snowflake/ml/model/_model_composer/model_method/utils.py,sha256=RQi2qebBeE-0Y-jLYXiDWZU8nfvbnif9QbExeWiMmyI,1057
166
175
  snowflake/ml/model/_model_composer/model_user_file/model_user_file.py,sha256=dYNgg8P9p6nRH47-OLxZIbt_Ja3t1VPGNQ0qJtpGuAw,1018
167
176
  snowflake/ml/model/_packager/model_handler.py,sha256=qZB5FVRWZD5wDdm6vuuoXnDFar7i2nHarbe8iZRCLPo,2630
168
177
  snowflake/ml/model/_packager/model_packager.py,sha256=6-1MnGUR8nxB86A13nCZcWbET_Q6fSEOlyfcbTv7xCI,6087
169
- snowflake/ml/model/_packager/model_env/model_env.py,sha256=tWZVz0KOt5CixAk5P317XzdejNPbN3EG_oWlIg-9EC0,19571
178
+ snowflake/ml/model/_packager/model_env/model_env.py,sha256=xDDyRr8AzME0SRv2mQxzfh-blh2MH7Fz8H7R5HXiVJQ,21085
170
179
  snowflake/ml/model/_packager/model_handlers/_base.py,sha256=OZhGv7nyej3PqaoBz021uGa40T06d9rv-kDcKUY3VnM,7152
171
180
  snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=DIN1oKCl4DytNcH1xP3fGl4BHaEmQ_RGoKuysFiWz7s,12599
172
181
  snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=dbI2QizGZS04l6ehgXb3oy5YSXrlwRHz8YENVefEbms,10676
@@ -188,12 +197,12 @@ snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2023_12
188
197
  snowflake/ml/model/_packager/model_handlers_migrator/tensorflow_migrator_2025_01_01.py,sha256=0DxwZtXFgXpxb5LQEAfTUfEFV7zgbG4j3F-oNHLkTgE,769
189
198
  snowflake/ml/model/_packager/model_handlers_migrator/torchscript_migrator_2023_12_01.py,sha256=MDOAGV6kML9sJh_hnYjnrPH4GtECP5DDCjaRT7NmYpU,768
190
199
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=CzY_MhiSshKi9dWzXc4lrC9PysU0FCdHG2oRlz1vCb8,1943
191
- snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=CctjNVwdC7ghVIPqbhb62t43SOFsmk2j2FdoZMZ8KXs,20063
192
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=UGPTjzxLBUKn8XSAuMvGnJGdjEvlUZjjfvI9rDRAQl4,3759
200
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=7FuL0nClHpd7kBLhSM6BJPd6JCdyXLo4dePGThpcxfg,20549
201
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=dt9k2FoQkJYTHXhismvPkp6ijyRpPMJMy4rCuXgd9Hg,3818
193
202
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=8zTgq3n6TBXv7Vcwmf7b9wjK3m-9HHMsY0Qy1Rs-sZ4,1305
194
203
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=5butM-lyaDRhCAO2BaCOIQufpAxAfSAinsNuGqbbjMU,1029
195
204
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=cyZVvBGM3nF1IVqDKfYstLCchNO-ZhSkPvLM4aU7J5c,2066
196
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=sx6L8N7RjNV2FgG4370zeEulGVRIz47V0vEcW_w8M7g,912
205
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=xVdhOAl8aj6B_zWHjrqq0YUQrgjZXL7SRdlazq682jo,904
197
206
  snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=xEf-S9QurEOeQzrNxlc-4-S_VkHsVO1eNS4UR0hWwHU,5495
198
207
  snowflake/ml/model/_packager/model_task/model_task_utils.py,sha256=_nm3Irl5W6Oa8_OnJyp3bLeA9QAbV9ygGCsgHI70GX4,6641
199
208
  snowflake/ml/model/_signatures/base_handler.py,sha256=4CTZKKbg4WIz_CmXjyVy8tKZW-5OFcz0J8XVPHm2dfQ,1269
@@ -219,137 +228,137 @@ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer
219
228
  snowflake/ml/modeling/_internal/snowpark_implementations/distributed_search_udf_file.py,sha256=HnsSmsXAeJrH9zVeq3CSziIaCUDxeWWx6kRyAK4qajM,6601
220
229
  snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=oXumJxQFMokoxsrXZ03X8NKLWr3yGuUGB3OM8qTTH4E,16416
221
230
  snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=xem3xtoOHi_HFoi85wvSx7F1BhzxVrGYqMhuyrFz4Ik,32919
222
- snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=Cu_ywcFzlkflbUvJ5C8rNk1H3YwRDEhVdsyngNcjE2Q,17282
231
+ snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=nfdUDS7tJY2qPbYCRG-p05v8l0vVZq010mOHfU90US0,17310
223
232
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
224
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=4h420OqHN2JYG7FKYwAwT3RG03sOh8u9vdTnabRr-cY,54177
233
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=UfQ3LkyxPC2F8USLcofkiCPz_7uFXWx69pzr81JfE18,54177
225
234
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
226
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=hhEEDmf_7Rcd0_nh4PKhQuLEbOcq6F5Q7UgaxIBoxE0,52430
227
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=P88_8O5B9BijnAwkUErVIk59go3tTNC1qlNAnAyAx3M,54343
228
- snowflake/ml/modeling/cluster/birch.py,sha256=1tqVZGRHa44TT-Q15eBYa4pfBkMq2aOtM_T5zw5AFBY,52343
229
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=muIuhv-fC-rAAN-Q4eT9Lz2vmYYY4f6owfhyy441MBA,55112
230
- snowflake/ml/modeling/cluster/dbscan.py,sha256=lP3GhtEm4SvZKfzLRFUMIohDQORmgYTEeRX3xt3hEls,52684
231
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=b2KooSg3jLLOazr9itI6txGi2EhWb0DmR2nZJk7TjOU,54637
232
- snowflake/ml/modeling/cluster/k_means.py,sha256=TvMN2o8xqxTVHmaONgHIeEylSUyX1eYGAkxLrlJmK_s,54838
233
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=bwZNCGb12LWReRI5dIXlT0CY2frdCB9wI1-rPTWPL8g,52717
234
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=xSeHFzoXTUAWQfr0ekaXZ7-POh9_bzc6kl2oD0sRvKg,56035
235
- snowflake/ml/modeling/cluster/optics.py,sha256=0EeDzyeRR28SyQSS5t-bLgWbnwilN7OzR5cJ26D2QPE,55894
236
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=fs57CErGTlvZqxVrAESBHj3IuaMbJsZX9GZG1hDS39U,52727
237
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=qzZe8QUOTCCjx975p5Xg7J8i6L_DQep6RETCTRvpNE8,56011
238
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=uYuiIBFR1T44tXuSZdQVPam8eUNSBrcXDSw4e36yRco,51860
235
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=hadj1D4P2aopYF8fvMW5NQs9rRxwixUbPh7DglAwNjY,52430
236
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=r_ee-8Ut1efRT00tzp_A0AzzOZVQm9qsO2fsp9eYZb4,54343
237
+ snowflake/ml/modeling/cluster/birch.py,sha256=XUAi_HEbnyODFE0sQN5ApoqU2xazKTYOTz-pivktTiM,52343
238
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=8KBcfC5saYxf9JdlF9ArDfQGXc9Te3ghwSNPZxB7rfE,55112
239
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=6ylpEDWucFLKNhIA40U9kjnjCUIocW1fYLSNnciQf_E,52684
240
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=n5jlCJ5I7DrsTQ5Hu7vLhlbLe5sY9Ujw3gPu8x3qibo,54637
241
+ snowflake/ml/modeling/cluster/k_means.py,sha256=jYKJRZx0H2YEzS4srU-Gm33qxdFqODkqDjRrwhqiIOQ,54838
242
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=3Wb4_3fNn7Md9MtGMvk8j4DQJQBHxgoCzJX0MnTG7YE,52717
243
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=g6mc-aod2dZ6HEo_AbAxRnKnxSnppY2t36F_zEYI9_M,56035
244
+ snowflake/ml/modeling/cluster/optics.py,sha256=6y5UNdBsr0_iFGZfC283d4jzigdHIUh4mVnNX8LCJDQ,55894
245
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=W0pfmV1nqeEgwCbQHfCiCmlR-uLbqqkQt6DsOiEz3hE,52727
246
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=BaWzosF4klydr4-dUi-k5-VsF297lSD13WejrL247eQ,56011
247
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=CfcDKKo4m-CrxySNnNWpCXVUGRzYjdXFogjqFna43VY,51860
239
248
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
240
- snowflake/ml/modeling/compose/column_transformer.py,sha256=LHcJ39mmAwlqryf2-8pXVdP8kuXeIwC9S8tDvUaLAG8,55185
241
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=TCYzw4WkdQBmyOBbDI3dWUWq3qta4Foiqw7enLl7f_s,52472
249
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=wHZzO0uMokTNZod5Bl13AAK-jUqxP7sdVjHA-Lr33jQ,55185
250
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=x4GsmeSeMT4eUTIzAnmtNocFVbJ8V07vmoMb2Q5-2Qk,52472
242
251
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
243
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=udQIgxCcl7UI0wg81Jt6n0gw-CqZ6430g-biGXM31j8,52761
244
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=UpR2fJ4tVAn2_FKqQKsfYptOY1t3hEnZfweVMp2drtU,50559
245
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=IjvlmpKDQXsnXRmTypisGVKAjfYMOT-7nwcatmrGY80,52418
246
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=E5ZQB1Lu7vt9wdEtHBJlX0IpLb_fyeVFXdQqEqISHg8,53610
247
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=GO83MDcAFqxHu2IANpSghyTV7AM0d2Y-97BBqiNK0-Q,50688
248
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=sPOYsy80WTsriKmrZUii097Ok7O9jMsRfmDEpNizLzs,51455
249
- snowflake/ml/modeling/covariance/oas.py,sha256=LlGWvL00tQaSku23a1_PZCivln8KmwXX8N37v6fREJE,50302
250
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=nrU72bUxnhuyZ5q_DV5mvhk40FJmjjREd-sTtAzLuik,50711
252
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=dpoDhSNtQXyqPUjpWm1qu8LyCy84_JUlugElWV3DrQU,52761
253
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=SqMBF3G3jhGCtr45e7HucK_F8NXrtJ8WOgQKw3XU8r8,50559
254
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=5mrYpgYaplXAn9iUwiDvJfyRnw8p2iY7sS0KM47GlSk,52418
255
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=-jpQ9bxodaCg9cAj8GlNCjaSSuDafpJajAyTIWIBv3E,53610
256
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=OFXGlTXDBflRvhMlc82SH2vZfRbH5M0M5QxwkSFDYSg,50688
257
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=Tq9SBSIW9IsOiUU1f5THMgvOgkwvXRLXHWxfOoaVheY,51455
258
+ snowflake/ml/modeling/covariance/oas.py,sha256=rUneEzX-bh81RlO9KYjSOKymGJrLjoedOcTVBJvafUc,50302
259
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=GvCkQ43XTlMTwARnmznEZFQ6ggMidZDEuoTKReVVYyo,50711
251
260
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
252
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=4BCi3SpwYLXtkT9tltU8MeDEGK8OnZ0HY6QOtleWLS4,55710
253
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=OiR42u5l2FfX1gmr9hNtxczwzSS4azf_LX7g8k4jg3s,53369
254
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=bKK3xDuichdh11HWHy3od1feEqL0nJXU0b3SWk_GypA,53296
255
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=KH_qcARGUK16j-cHWC9nOoyWRYfTVX1wWdo2XCq0T-s,51663
256
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=nuxqk1FLSJEY8YqJgcLFelG46fcRP6vr_HUDDXeMEx0,55653
257
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=9egcKgnjZOxR71x-7Kg06-U4Bz1pCjSU2zWvVEe6_WU,56442
258
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=oV9ajBzClXmWKYrrEC0KfyohI0SwBsMAuwxl99fpu7k,53705
259
- snowflake/ml/modeling/decomposition/pca.py,sha256=_ybuLQHLf-nueGRY1UJt9ICmL1X3bOvH-c-PRTJewqw,55873
260
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=VI3xl-hXhPqiqS-2n9O8Z60WrkLfROJ-fkcrsm1s1vM,52812
261
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=EdCwIHZbriYswrb5DZ0spWTQ2z2JXwzWWqa2PO_Mabs,52438
261
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=KFQIq5SSHZJB8WkYdBg6Pz_3kc7hW5ayP-NiRyMEPTI,55710
262
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=tqCtzp0_KGwyzZDntUvtDim-jnFyzIjn9EqnN9LEghM,53369
263
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=LMdy8unD_uZuUp19dOUwMJb1bSO7KGrckFz2lRduASk,53296
264
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=3TxugnCnnzkvn7KPTWSwRhWN7q0iwDZOfM31SolQwWI,51663
265
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=PO_cBLyuWIEkwxYn6HcL8_fRB1lp4AKZv-PYmQ2MJzE,55653
266
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=pWEH8s_fx3RfUxMJ9kjPQxDYkoYfRd403eV6T2BadyY,56442
267
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=UsEF3Gx-mLBSTZ0TdbDPzOnYy7Dg4d4ilMjElB4kPnc,53705
268
+ snowflake/ml/modeling/decomposition/pca.py,sha256=-jr-tqa8hjH9eQCakOF494rYQLCEZx84I0xiA27Rf4w,55873
269
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=ZxzfWAX9MU3MpHlRmXv1Vucq5djT27UfLtBv2Z7O6GM,52812
270
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=whEN3QTQtLIqr9grcWgrtu3T74s5ZjYtaDEdWVhRJ4g,52438
262
271
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
263
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=_OG85UPee-TMgmj-cozucFwMRs0AmDnA6yHkBtSjTbM,55329
264
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=cqWVxZzmm0eZbqwseotsVLeXWHeVoue9t0wBUfTTfAw,52908
272
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=vReAbbyJmFOYOIDGevUMy3EmYVKodAoXfdIc4Zc0vqU,55329
273
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=GqxuN0NfakfJFCfbzhxUc1zzewJI9xcUwL8E6zVoKXw,52908
265
274
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
266
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=X6OnK0zNWQ0awL1B9wqLd713OsiSSRmXmOaEaeIWlx0,53110
267
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=8ETFFsCb1UjeC8-smV7alpPz3gx_PNuEczsnmsJ-DfE,52113
268
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=rtc5OKzthDFd9LrT-3v1iDX5NjPnResPbNqJBZyiadk,54302
269
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=G4hMysxv8WmdK7Ng7skgljUIQqUVy-zJNeEQ515i898,53537
270
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=RrC6X3K5KurJl_QTF_Fq9MCn7RPikidDk1sQlEc3Dxw,60351
271
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=eM42h5z0pj7At5xASxs_Dq4Sgfkj8GaGaqQurXzIKqI,58804
272
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=H4pv_EMvoX0vwowg0Zy26zvJYFK1ILji-HGDFjTNaX8,61110
273
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=sY43QWkOhyH0C_70ASi-BoN_zv7UnIozxXf9scM1iT0,60702
274
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=JHWxXKtuAGN6ZZt5XQLxQBpm9eWYsFOQ8YrDYzG2rKE,61596
275
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=UDCLnxaGN657vPWsUS7n8FuOTIHP9BXhJj1Gr6m-lHo,59931
276
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=u7dSxs_iFN-7a3Wy2RTymUBkSbEAyBjE24o4rJy1aiQ,53895
277
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=nmjQDX__xwZfHWDEXKbfSFj0IdhhYugMQQcDXv9SwvE,60324
278
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=g45YEEvmzgWR4IDFINcJ8drHHeoCgvFiI3duciFxwqI,58777
279
- snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=ho6T70nctk2mvMk4gqcScqBSuuI0AHhogmSLcl6lsBQ,53839
280
- snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=5ol0kwo9QxsRew7oMoxd70tjdseomR4hX-AL-e54CQg,53391
281
- snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=yKsAYuM3gEqzhJg-h5bpu_ynv6gGNbmEj_j9kJIyjKs,51916
275
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=6IJdYNzatIu8lszix4rR9cw5RYIIwP-mZKrwTI7ncqY,53110
276
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=l0x1Be5suxu3qp_Lh6HdUDd-IMImwU_QtNPnyepafaM,52113
277
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=n6o0QHxasJq2Ow73dvtTIOKtVauuLdRuFcIb4NYneNo,54302
278
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=ZXEPFxr7-Dz0HPrc9q2nS2Llzf75gq0_JMDkgG39lx0,53537
279
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=tAzYm74a7b8y1vwXWmWda8M5Zvdplb44HsKrJ6Z9Quk,60351
280
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=g3gRPHvRebgMB8SOgboZ8wpdilrkNQVLbM463H7MaH0,58804
281
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=ybndeYIft3GFmK0VxV5yTI4UonsHOk6km0w29KDpP-s,61110
282
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=jGWYuMnsz55dry8F3WY-DTSPTM9VMZwtpINePA8HGro,60702
283
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=6-W9aOGHxtJhOetfI_hUuz2K8Xegx2I4LevxRHchaQs,61596
284
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=VH38-J59oal0fPMLm5AU-pjEngwvHUAqt-4f7mnD17o,59931
285
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=KUB8KYDqQEYUr0xILteLRHZIwOc4wAt7Y-kiNzAevO0,53895
286
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=d4fyJwoUf8iC-mf5djW8bTDBxbn7CZoVKVmn5IbFlD8,60324
287
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=0fMOVAlISm4rXSMeJZ_HyIoNtaifFpNQd9M56mh44ns,58777
288
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=XLSNj1P7Ag_3b4cMC0k3Kc0b8TZIAV8mmbFnm4-PCyM,53839
289
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=Le_bB-WEopBqUQqYzMux2wuUOmNcg_CpW-yGa4dr7ew,53391
290
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=7BgxytdhCWP7YWldyg-AYgJxMdkyH0CBKjOsEBc6yLg,51916
282
291
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
283
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=nix50a4yDR4z7FX4dEeT3TBSZRf66sHYWumITcEJ4UY,51386
284
- snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=61qkpUUTKUWVNIMK7sC-elUNzfr6FtMi5Fr9Z3srY-I,50848
285
- snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=a0O0NGClsBQrbC7--p9vIfF6D-zuogyF8TxHAIJsCs0,50842
286
- snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=pexrtxanFshhlfRL1GbOPRHp2Kw4n0ex1-FTKbLgzIw,50850
287
- snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=avMa179Pmb5eaU0U43AFJegbC5BDxxPnhl3Vi5oBE7I,50943
288
- snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=wRxpUQr4k2fm8O7YYRoeB1BrRyXvQh72j67n4sNsP90,51003
289
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=TnbKMWYj4ui8L1AjxXVUelcbhHg0aANZRe_r9Ov44uk,53782
290
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=i-CJH0XQbp_yqmmBQW8jMGqsKBJir38PQoZvUYloyLQ,50644
292
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=_i8BPYZQuD5LijKTxZOEy8n-8HXY4apJ8XfIkOja260,51386
293
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=XBGincwqKekefrb0bdCsyQTaKl_7xFd7r4M6HQZGEUI,50848
294
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=YFgNj8yg5dhDKHgLn7MFgXVy287FfkkadCNHR_XxGA8,50842
295
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=-lZ3pN_5xsHWwR8_9aZKclM37iTJR3IC0TjEMFyAzp4,50850
296
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=Ki51hfJQpQTDmyZB-LPyf1IApvHVBlK4YIMRX6XIqsE,50943
297
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=0nWnpn3vDlUEvekYP0wIakoVlD2jvlP337jfSSdtLDY,51003
298
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=Wm-zRXQaWe_CGjeOpG0QgLNupA1LcqO_LiZqB-ZPt80,53782
299
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=W4jZp49Km7ZMB9Xjch1V2qLn0G6_D7_FdLu6O0kBh2o,50644
291
300
  snowflake/ml/modeling/framework/_utils.py,sha256=UvB9hlvvUl_N6qQM-xIDcbtMr0oJQnlV1aTZCRUveQg,10197
292
301
  snowflake/ml/modeling/framework/base.py,sha256=DZAsRuPDV_NX7Epqfu2kHuT0oBdAVKPIX43L2Z63NP0,31943
293
302
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
294
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=aduPyn2geozr8vKsP5q0tZIjBf2Q3xUPAt2bkbzEmvI,56274
295
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=pQUdutVW3SUNFZhDIynvPKnhrW5ib8LcCbz3UNOkM3Y,55338
303
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=YXJ59B8PxPloA_PIDChaGhp5Xxt_SFFv6xWGfKkzFbE,56274
304
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=N-hZNj_getC9dRsMAn5nR3PZMHaiOuPN39-QwwDQYeA,55338
296
305
  snowflake/ml/modeling/impute/__init__.py,sha256=AUAyMIRsAF9Ocf7zDnGPYSvKgGfkR8LInyFvkC-7MiU,281
297
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=oCLli0ZSsYWxUE19anmPnoOvDFMzclWR-gXZpiaTVZU,57167
298
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=4H-9PI-wHPSvBkisyViyskkeH1yNxBGPcdsfRzAIf4M,52877
299
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=oIAoFiwpaYVYGGmUKFrOwvXzT69u-RvP7I8tiX7jTXc,51740
306
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=XbJhDI0YPWszcTOHPXeNjHNnfRgngOGb1E3Ms3GF9Wk,57167
307
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=MRCYvV-b6qsjDybRixBflzonYxchfeIylBQJt2R4oiw,52877
308
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=HPbwrS-JEdDklBcwiFjM3KDEqZ9bOJzhjChcNLgwWA8,51740
300
309
  snowflake/ml/modeling/impute/simple_imputer.py,sha256=Tznj3hrPZQSy6nnaOAWoWYuMcz1AwtzmtToG2l5t-d4,20934
301
310
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
302
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=3Gm_Vve-EI4kJQPLWC0OeCWSeJ0h6hWcx5dI2KEQ7r4,50774
303
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=uDivdkvNa0sFeEQncGx6AtaUO3VlnV-_o1Q76UjmIGw,52534
304
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=Pji_6I_IVABShOWXYb5tukclCzF4VZV1n9I06id3Xm8,51795
305
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=QuKDIYu4bntOnSG8Q9geB2fyD5wQx1jcx2bL5bSohuw,51138
306
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=iNOduIbLkC3F1WI_UNkTGFjIpojPX_5fsH6DotJuEx4,51193
311
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=_KY1t2lYWrO5bwxmB4Yuxys5_Lxn_GoZ3Haip3yLpBg,50774
312
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=Ep2To6H2NtEbvOZ0y3wleDck80H2jSS3uw7m07GnPWI,52534
313
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=wOxgRJX-sENWlW9bc1oy_kUlQq-JJiC4BiD4HBnYYd4,51795
314
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=KgJ16UlwvPuEiShUoYrSvo1d1DYbuE9lo9p1Pmpx1e0,51138
315
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=W0ZiXv5LWtazsKUX4j18kHEXDOyn74IDobKVT7VXncc,51193
307
316
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
308
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=gId-qhl4Enp3rlNb_1KfvP3SqSj-NNuMu1lwTeI9VdI,52642
317
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=vi-MtHMqKoBwZASDA_NeI7ADRRtdtJMDMMPfsFslEUM,52642
309
318
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
310
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=PSCx7L__aH4tnPAlxoYGcf1iSXRuAb-QqFdnjwYtScM,52145
311
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=SYTj57vjjgSV8awExIRIxtc5b8pwBJMOU9pTyyw6Mdo,51647
319
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=grssUaFzpCtljXEF2tMHQwtRF-ngeCzQQrl9epn6u5U,52145
320
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=Cm5tSfEvNvaajh6tJ_Zew3kongbz-HMRcoU-4NO47hk,51647
312
321
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
313
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=Gw4gyVGrMlPvkkzyOfPhs5JcRWR1Xke5gp5iXQ7jIbI,52402
314
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=-1o1eak3QCAuj4TxuzUSovxbt5TB9c5pq_hKQnaYEeg,52772
315
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=zQh4KoiP3LRJAI4rpfFBL3Wm-0OaO08NxllPaKlrPSQ,53790
316
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=Vnvhk7Kqa0-E2UAj8Fnz4uddF8WusaV7HYlLHQ0BTOM,54866
317
- snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=oFJgET3M0somaOMiqXSeqkWlLT7IDYPq3aK4-5Fgnkw,52655
318
- snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=t1XJjA4IJOxuwCtHNBmUlRQC4GMLMao1z0fYy7WjsmY,51852
319
- snowflake/ml/modeling/linear_model/lars.py,sha256=9EWnmtoXtQ7qfPDysIEscYI0URVW7Erz87faNHWSnB8,52558
320
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=MOVCchqvi3ig51Mdj4fxgIOnFQPT4IiOQwyNy994POI,52806
321
- snowflake/ml/modeling/linear_model/lasso.py,sha256=P4J8YiQGhce2aEQ3-Dt6zhJDi_435PUuRc6-AND20b0,53172
322
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=H301rhXQ6FLmRnllLa0Xj-bXhrqvX72iSQhtT6vnNr0,53984
323
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=i2VFYA3sDSdkxjzr0ZfP17G__AuZvF-4FSXpvq4ItIU,53699
324
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=dPOQ1taHXpEZiIxoAQM0_A60yb-h6sydB5QWpLw3yQ0,53687
325
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=laCliDcS1zCMNMXfsViJGOGnVK4c7RWrs1Lp5O-KLmQ,53008
326
- snowflake/ml/modeling/linear_model/linear_regression.py,sha256=Ff_lG_X-trFgRd1NTS8imvizRgXz4Bwcjc-E1J6DDdk,51396
327
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=ERAsDCJotCVSEZ0mV16TC2gE_jK_pCBGbEnDCZqLJzQ,58161
328
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=1EjeRpIhVOFgzEviAxMSxyQ_41frzpUAo1UixdVGX90,59225
329
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=UHtV00Q03_NC16quLOfseA4UXgh8taxnW5g41ewjqOs,52871
330
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=uDGIRgfM8igt3G7moQC7enGlxidKYvokk5aUUpioiCM,54536
331
- snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=lC1DwiYq77sIBgIN1wY0UIZgq39zlHIkzCKopzRJfqY,52414
332
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=5D7E6aQ1ai-KJAtrN3sPoOwFBz6JHUXtuSEzX7zL0UA,53703
333
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=3TX4B198YtQaOlgDQECkycdu5bHg2JDS-VKUQ_oxQmc,51619
334
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=IK6h28zVJRtM39D3aYmolORbYAN-w1pb073i1GOleIw,55443
335
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=_bTXS9tF6fLzvnuP3xl3UFtqPwc1CjjaYg8tvHufj3I,54505
336
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=TFSw4k_iVgJkCT-2mFY-iOwwQFeCcLODaVExLXWmV60,54760
337
- snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=_tHgFG75s9KWY09j0EVjYbzESVfc1n8mKcde9FoV_6Q,52702
338
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=-UbBiILWGC5QZ3ZgCJPCOWhS0rqIs5j-3f6cBRvamQk,55841
339
- snowflake/ml/modeling/linear_model/ridge.py,sha256=m44D16wifl6ddFPiTzDwvXEe5oN1T3SbRg3wznHmLuE,54716
340
- snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=poqerGrJudOW_uJ8TqWD9L7VlcMK7Ighq4-C_rI2tXE,55114
341
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=qi2FXUnAoBH9GYOCoT92DNiSLetuiASMPzpgXkK4Mz0,53579
342
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=Kp-7RKsryYRaPjOSDCi0KX3-XUX-0OxjlH30NXKlMic,54186
343
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=7paDupysLP2v9KwiLk2Kr8V7ga3m590SVX_9pPA1WCo,60171
344
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=9KnZ1bDYdxvTvBu26is0ZShldse5kzAePlmVbCg4RCs,55253
345
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=eMtVqclhBeK2SERRsSJDd9q_bKpAhFJvqVdcd0M_WUY,58148
346
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=tC-ZKgIh3jirmJQ4pz9q-gx_VAg2g1lU1W3ySBmqmUg,53138
347
- snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=n2b9wJ_JsjEP9eCtXXPVL0Zwyi8WAbcDy3Gox_x22f4,54093
322
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=qE5uEwXHMb99txngUIbv24zYuam6d_66U3c5wruNRwE,52402
323
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=qVyvtmx6JkXGkhsIfTuDi6jVBgQo4V3rD78IKeTWACM,52772
324
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=E55Ab1cZTZnWyZzQrf5gw1zLabZRbeOQtK1Umm1p8_I,53790
325
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=ffkqNL1XKp4VB4k_6kg5K1TIPoaYuRZXFnw8aHQk3Xw,54866
326
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=GM4TQsT_-D-ZyY441wuTNI568W77QDc8qFyiD1IPHrk,52655
327
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=kTIDIHetmOPhYevs-lWTXYsKmubPxK9WJHnoLcyaY9g,51852
328
+ snowflake/ml/modeling/linear_model/lars.py,sha256=Ht-c6BFl-7X4NBdMosO6gbNBrpeU9RfYeitvSWpXPrg,52558
329
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=63ql9r6AbC358Zoce9iRZMOlNGcBg4X9d2kwKKYqAaE,52806
330
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=7Pz9Cchm_SLR6hT0k-usaQu9JTtBOsDXVrO9XK7MgIQ,53172
331
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=DC0-rWFA_kkwpHG8Lpss9MKI4t7lTXUOFJhv8Kso-y0,53984
332
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=nWjowWXdYwg3HBQefxECS9HSrVzDKL0TqavmDyCJ4ak,53699
333
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=rnWvcIjhESu5oFrBNSMFUgNd1heMy2R4eBoU5uDK4vE,53687
334
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=CRKDqdSSg8e_O_xh4KpkT6ZZc5uYHcDlLO2iZ7y8GSw,53008
335
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=P7czaGDt0unf8XiGuT1kxDqs4M83cR9SXeBXBblyH-A,51396
336
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=mVsSRXF3eG7rbr413LOJnFRjdpOO5vJ3HlTvwsMteVI,58161
337
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=-dWY8Kjn1d1Ohe5kFZrIYUuImhtngAlgMmvbVHSqs2A,59225
338
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=rIuFEj5Ubh7wgu6bgr0xOTs6sGdpo6M1kqjTRGi1roA,52871
339
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=oT536Udjje2h6nUdWOBzzvyU1NDd-mGIAeCLMjOJjGo,54536
340
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=AcmJcDqJ8vd0b9-ZR_40ELuBlF43QuyR_VG69qVSGaw,52414
341
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=6vaAM-5_HoBD_7e439x77UOImJupaDqKrLRUfs5rxnc,53703
342
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=OesB3Rhay0Fk-8wR1nimTU3eCS8N54EBS414VSRhY3Q,51619
343
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=Q0sYa6R4F-jeg6RjZCn8EwhBk0rEcIsqV7PFWKpaL10,55443
344
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=bSU2Cz04zsCsjKKQflKFfYiAPiNSiTsIbyxNa1eCOEA,54505
345
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=rwwCJQP-EWcz3L_ZR1dd682fxHNU-yEjn2DPrIqlMJ0,54760
346
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=B-6XC6sesILABXKri4Wcu_v5ZJG5IfQffC7iogDEotY,52702
347
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=1lpy_diLoUHMygtnUoZzz4tWCYFAyDN897YXwGXOboI,55841
348
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=O3ZaC2f14CUEA7UEF659gAMhKtuUbDc0iRyOW9FnpxQ,54716
349
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=c5X3scInzUBMBFDSSNYXMk0ssfhcIP67rLPNWt6dNdY,55114
350
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=ehcdvzGbY_2SrGDKwToIRNjlMyEQfceFz98zZP98M1U,53579
351
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=yJ6Q0CEjouQIwEvyKxPZhK35RUJq8DdWMHWIsVKONps,54186
352
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=kKDs5UhXAy1R_5yMOVX9C5TxwV_pS2-IM1_xlonA9XU,60171
353
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=mnDNhh0w6_33DTiHmLq55fheA_DEHcM9seCxh4y0fU8,55253
354
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=wiv7LhJbv1b9h1P4P8u_3t4KeiqE9XYX80NdbI6ifGA,58148
355
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=1mF1fnSK5svvFpPhGsa9Nw0c8hA0UtocfDQHXtAVras,53138
356
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=_YqPRX01OXu0EbGSpmy5YPcK_LAQn5erYNSYHoOZJoM,54093
348
357
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
349
- snowflake/ml/modeling/manifold/isomap.py,sha256=40qlogth5GJ-OvbfwJ4uiNnAGy6toDMkgFrdhuvubv0,53396
350
- snowflake/ml/modeling/manifold/mds.py,sha256=kqtvzO4U7dMFvJyk7-dk_CO4KFqj4a52QdWqVlxC0F0,52612
351
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=3hoL1EeGhWHbskUhrqKopE6f-__TNwEBPk4FxX1fSao,53476
352
- snowflake/ml/modeling/manifold/tsne.py,sha256=LsguZKjlriDl-TGRyb7dM3LPBIhEnkzFfP8gxULJ9t8,56599
358
+ snowflake/ml/modeling/manifold/isomap.py,sha256=esYoXfVhCE974uIBS3HBrqEIl14ENK--qU7ZEm-4Y1g,53396
359
+ snowflake/ml/modeling/manifold/mds.py,sha256=PSZYcajFmeLSXz3q8ZNqXSGoKNLUxThWBcMONJ0MBXc,52612
360
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=20dNIWRVQBXdMViqC2dATxDWAAzKB4aQDFEu-5j1J5o,53476
361
+ snowflake/ml/modeling/manifold/tsne.py,sha256=ItqrwjT9tEQIMEwpyEfuKZ8vjVD25AJalwFSOsDuY_o,56599
353
362
  snowflake/ml/modeling/metrics/__init__.py,sha256=1lc1DCVNeo7D-gvvCjmpI5tFIIrOsEdEZMrQiXJnQ8E,507
354
363
  snowflake/ml/modeling/metrics/classification.py,sha256=UOc2w9iGkLzuleTpxCbfhAWpbli0HvNsGsN-r8G0ztI,66433
355
364
  snowflake/ml/modeling/metrics/correlation.py,sha256=N7GIT-EVlvyh_WMC-zOUzDUUQeKU1IXu4ocOjnx-WQo,5187
@@ -358,35 +367,35 @@ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=XuAjYfL437LCeBY8RMElunk8jg
358
367
  snowflake/ml/modeling/metrics/ranking.py,sha256=NwMdH_nubwdpIcCAZFEyafw_46uS9ULGdWkMgstGwjk,17774
359
368
  snowflake/ml/modeling/metrics/regression.py,sha256=qHUdhRkRssl2BDLyUyn5vZQqcrSVxp3TgTWa1kh1Mso,26052
360
369
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
361
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=BSU-QkKxHAhmXvvrvJNMRSD97i8big99ddn3prcG3tA,57984
362
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=LjF-eH_jVwiYHSYcYoKhAQdu1zbGh625-1wrWVOawN4,55877
370
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=HuctDH43vdnDMxQ7PDd9ULHrj6UyLkWC-e1rFlMVEAs,57984
371
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=0X6bn_ELPylzm48MTkmvyUU5kfKNH9pDYIxbfmA4m9o,55877
363
372
  snowflake/ml/modeling/model_selection/__init__.py,sha256=AUAyMIRsAF9Ocf7zDnGPYSvKgGfkR8LInyFvkC-7MiU,281
364
373
  snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=MN2ShNWFKDJYU8-ofhNfef3zAsGyPMAzfToC6EuQMs4,38358
365
374
  snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=E5i1AsL50HV9A25JkUUTEQZkX4EVJqrFP2T9EOW5B4U,39100
366
375
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
367
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=RFKcpcQ6V67zYA8B8Ie_HegCKcC7WP8mb7fw5vCLBOc,51398
368
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=jGJYLbIoGoe5YApV15c1-U66Ru5MEjjipmJWbMz1uUQ,52333
369
- snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=JzN-_s5-HB8iYn008dfRYBm0vVXUakHGp7g0F6E0yaM,51670
376
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=dHfpAxfwElq12NKUDTclfz8e0_cXKKwkNyW9M-9y5Ds,51398
377
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=PeoWfMty0HoFyCuDjqETFRCfLMztdZ-b6l4fCP9G5LM,52333
378
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=gv6LdLxlC7aUME93jgFjTqaVn7swuhy-YkTEMc9SRQ4,51670
370
379
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
371
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=FF2aeMo3SPtzPJaS3uxWtbqOe9QELkWfLKy2mr2VyL0,51925
372
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=2PZm3AjauUH6JwJV1qKkH6P4VJyx1nmA_qUc5gDKtxU,52262
373
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=m9E8wrfEWdz-nZa6YbeQ6HKEkMHvlJ9rN_gIRug-qTs,51941
374
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=MD5opflzY1Z6RkvTO__q8bz-dO1byZACNXlk8RtHuqw,51073
375
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=Rph7Qx7AaILxFiRwkmxLcq9Mp7tcB9Zldnk_TGnjM7E,51707
380
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=w9pqjMTr1FPWFpj-TfiIp9FK3iX39q3oxesvVFizZJ8,51925
381
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=thsPKeqzAVQW2UBNGPcVV7wfRQ_4GErW_5Zy6XyLmyg,52262
382
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=XSeVs1c2zUVxpdNJSG4x6GddgTAIzHqS3NIxatwbT9c,51941
383
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=j6LuA1lodgAdfNUhlhrWfLu3lp3FILFZhxYBWVFIjB0,51073
384
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=cbwK9KBIwbq54ynYTQDqjpwiWYLPHIlInCu-vKmQLlU,51707
376
385
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
377
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=DV0nOvJOON9nGjnVUQ-ZGTo6tDYZVwwZ9x0rx_F92xQ,55039
378
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=Gmm1EuNwVRP8Tg_JQgsUZQAkGV5FLAoQuXPhElBI1W8,54405
379
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=V0BvTtIbqoKLC8YxtucLOsEOhvqn3f7dk6t27Pqhnj8,52694
380
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=iMBCeK3MWsVQaTCHzpnwDykFJ01Qt6H6W7C1WvjN92M,55270
381
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=DMhr-Liybn0-xjtOamrlZDlGOFvRjXWbQcHZUpkto7k,50858
382
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=H_uFZBPw_TzQJ2ss1JUwkzawJR55SXYkChOSHwddrlU,53177
383
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=d1yhmcaF_ykTEM9l8CIOfIBvwmEig1MhDG6pPBPsznA,54759
384
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=8x2CFYZ8PJc1auXzsrfJaon1qh44N7MUk4wIw2C4XmA,55488
385
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=VVaX6vWhonNGEWozb-tvfCw1yr22lzfrNHs1PFwgHD8,54088
386
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=8JMw-E6pkwBdIbR89upDpnua3t93RY_TkHkuk-bz6A0,55039
387
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=gymYv49yXY5dgKyfKD2vcdlXDl7UucsKxEZIEE7npwM,54405
388
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=pJQ16nlowsBaJbGYQoeY59CMBoOXsbVFnscDJ7ssVIc,52694
389
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=sJAg9jov2G0ctLW6XGmVEp9da2QSdoFkPWYN9KA874c,55270
390
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=Q_vzM5pEwPT1a6fsOCKFPF_3ZjEU23fHtmBWnnHPW70,50858
391
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=UrYrKtV8wEx3IegaM1vzUqVSVpZ7826DgRQp7B_HveE,53177
392
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=ESWQNhF4V46IE2ODhG37xO5HsWkWMf0c74gZGIkfwzg,54759
393
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=aXuMzbPVLTM5kQ9dvc0QFwQiDIl-ZpA3x_A4Pu4RAr8,55488
394
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=VxqvxIO1RyoZbDQ8QR_h8zPjfyaABub1PRbArI8UWO8,54088
386
395
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
387
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=Yc-lI8mnWqrFw4eA6eDkBUcQoNRCWelefdyuI0BG5IY,51901
388
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=jqweN_4dDGdUVTWk-YbMPrgwu1HB6UJqlIo2ekX7qIM,59455
389
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=oI9lQJlJcB6YkAZz3MEpZgr-yA89XfW80JNIPqmx2aQ,58567
396
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=0nr3Oz3GdvMvxJfFrz8LtuzIs5NHugNAtodCME8Sers,51901
397
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=mEzHV5pK0bnqZRAkta2hrGDE9R9tulx7GWKKMxu_bio,59455
398
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=BNsMgfy6iKsO9yqjsWfrJo_BHoHtKKTMyhAbIz03wPc,58567
390
399
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
391
400
  snowflake/ml/modeling/parameters/disable_model_tracer.py,sha256=uj6SZz7HQpThGLs90zfUDcNMChxf0C6DKRN2xOfjmvI,203
392
401
  snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
@@ -401,29 +410,29 @@ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=NappHtB3aOPDstBFkc-
401
410
  snowflake/ml/modeling/preprocessing/normalizer.py,sha256=rVlTClMkFz2N12vlV5pbKBMLJ14FU9XOd1p064Wv1lU,6984
402
411
  snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=JWwBI5Ew1pwyMmJRmvEEnfkNn4zR-p4BbpgqGHQpFVQ,75160
403
412
  snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=FLPX9ix3dWUe2_8GdEZ9v4MWPzoYfp8Ig6B5w4svPcQ,35307
404
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=SKYrRTkTS9Jsx2l0jTRoVrWyzWqJUw7StnOlfp-3pBw,51843
413
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=tBmKu9s0Eyo9ttfOE0Nlr6yDhI3gJxNbSwjbKsA-T2w,51843
405
414
  snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=XW9d7z0JlQlmkcsNxfEgf78uOmb0T2uQd4B-vfyA8zY,12634
406
415
  snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=V-9LbiD5G-RXGayLMnsC4wh9EQx0rw3bAou1gARWtIQ,11761
407
416
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
408
- snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=swPlF0NThzMS-3bCa28R6NWh9i-lpngshdKtp6yamVc,52172
409
- snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=jkDezUzyTieSWdPj0w3xMXwePeqVeAlmPDmIylzmcBg,52519
417
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=f5tRqYgJFX9ziRgFChYmT9A6_xtWkWecc2y3O3SEYr0,52172
418
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=jJktppNOpPXp44VeMWhYT4FwLhnwfAUih3srCILC9Ew,52519
410
419
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
411
- snowflake/ml/modeling/svm/linear_svc.py,sha256=H5uBK6-hIbZ07UBuLk8cT4fOCr6IWJAAoiEl5NkoQR0,55744
412
- snowflake/ml/modeling/svm/linear_svr.py,sha256=RoT53AR6Mxf51Qz7iUiDOx9bbx6sVHj7TQuqFDuodUA,53927
413
- snowflake/ml/modeling/svm/nu_svc.py,sha256=UlEqjXs6a1nLoAew4HMRUEc44eCeKgQUM2Zzz-nE61M,55412
414
- snowflake/ml/modeling/svm/nu_svr.py,sha256=5iKVXl-VNItqx90T6LdiFfp826JpU43pXnPpCDVmTv0,52526
415
- snowflake/ml/modeling/svm/svc.py,sha256=xrz4ewWJPcuUHKddohzRdMi-jGY6CbmbiHjopf_7h9w,55726
416
- snowflake/ml/modeling/svm/svr.py,sha256=72iX4D41zCQoJzwsHVkCnILlT_DlGRwAPgAoRImgRGE,52705
420
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=UBHP70BWaYG8UF3LrP6e_m_ONzrt257HN2Yh9o4Qj3U,55744
421
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=UhncOs6t0E8n9EJWG2GlL2yVVI5IdfduqAsgXjKyc-4,53927
422
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=qhkYr0mbZykMM6BHe911BxAUDU7ALcIrIbKgpb57T4s,55412
423
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=e9xt_5Ibtv1TTEOQTyPWLeBBVuHH-BEtfAwrNGkZ0lU,52526
424
+ snowflake/ml/modeling/svm/svc.py,sha256=41cdwUsK_cEvYrcEgURuUWA3yxvzTWF5kenEse-yLx4,55726
425
+ snowflake/ml/modeling/svm/svr.py,sha256=nEXrDSEMBeAe02IjhhXt-fXSvQUqprn-uaSL7V3eXU4,52705
417
426
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
418
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=D9p2cce4dsg8LtUpWSAMXrw2zPHrzBxV4qwJPIabLhA,58512
419
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=kUCcY_Zx7s8XMbTVuEJr_DyyOQIhXBa43NVFSfFgCcg,57060
420
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=MmWQQoB1weztkYYlbqick8QLhRfihHk9oKDC8KCsJBs,57823
421
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=kbWsKxEKXpPg-5IK3K9BWTdpO49jPCANdFB5Ihn5xRw,56408
427
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=3vBtoCHWGIZN5Y_YVQMzZOvHxXAfLD9wnW4AtTetk6Y,58512
428
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=yxJXTTwuIZDqCNgDcQgMu4b3gj9dP_4p1z2HWumtRzo,57060
429
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=FclUl67xDWQkVkUdK23i-pIWYzWEFT5vMjmgAG_UU2Y,57823
430
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=bFAXk7WfzdDmomPOYiJrxabPUUEBGDguOBulWjEiOfw,56408
422
431
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
423
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=q0KnKqzxkLjg4c8FjKF343k-PyvdqpnQIkKyK7Fohwk,63977
424
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=-k0ZHkTZkVybwNTbnRkR4O0MglbPvqbyD8M58daeN04,63580
425
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=e7WgTxM3xHVxkOIhgUWnDrvFt1lZIGPJel4LhIGk46I,64253
426
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=tnCllaN_BEgRybZcxyvI3vZYzsEpCIIM7oGEPgF6y60,63778
432
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=dpJ7Y4ZRjejDxvE1vmxNUVIpg187GRnnNi-vnHQOvYk,63977
433
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=huczAVSfD5XpsXwxjC3fiaRnr_NLz1qtNyW0H_zIa6w,63580
434
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=9ZyYqcdsx7nUQsrNJFMBohySPhZpFZHkbyL66-2vOJQ,64253
435
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=Zvl3atGaaZpOjI5XizLsLqWuHWA3B-M59jGzYtjkq14,63778
427
436
  snowflake/ml/monitoring/explain_visualize.py,sha256=Vj4x7ClGvXY42HQzFcvVr1CbO_vVfZv6eZn_jV9N9gk,16145
428
437
  snowflake/ml/monitoring/model_monitor.py,sha256=m-1eeQIhAYAvFQ-8mjMQ-PTzCpnN9XEcWpdHdQuEEus,4707
429
438
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
@@ -433,16 +442,16 @@ snowflake/ml/monitoring/_client/queries/rmse.ssql,sha256=OEJiSStRz9-qKoZaFvmubtY
433
442
  snowflake/ml/monitoring/_manager/model_monitor_manager.py,sha256=Aouj5ojRk28Na7TnCDPke13MEezHdVXC7WG1CBq4LoQ,10702
434
443
  snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=tKjYuzBmnpomIogmXcLyJlHfoCBgguulav8TOdzu0lQ,2053
435
444
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
436
- snowflake/ml/registry/registry.py,sha256=Ro7flVHv3FnEU9Ly3zWRnDAqWiwRSOA2uw_MSKmCBTI,32936
437
- snowflake/ml/registry/_manager/model_manager.py,sha256=Yu-coZcJtvmGDal3kaE_Z9EzfpYX5HnMIOWfz2x0J40,17632
438
- snowflake/ml/registry/_manager/model_parameter_reconciler.py,sha256=UU1ek5ozzatPyHLy5KwNaOxOQJMvlyz-ePzOchfTLY8,13982
439
- snowflake/ml/utils/authentication.py,sha256=E1at4TIAQRDZDsMXSbrKvSJaT6_kSYJBkkr37vU9P2s,2606
445
+ snowflake/ml/registry/registry.py,sha256=GLQCuHKbNPZH2lbT4gkhf3fbw8RfhCIn1nrnh_kWZoI,34531
446
+ snowflake/ml/registry/_manager/model_manager.py,sha256=X0a_MKcwFGAtXGCt0jeELtnfloVvESxD3ZD3D__HAv8,17657
447
+ snowflake/ml/registry/_manager/model_parameter_reconciler.py,sha256=QsnIp9bspUo7wqGwn2o78YewsNDOgYp3eQtfJ_Rf2Tc,15332
448
+ snowflake/ml/utils/authentication.py,sha256=TQV3E8YDHAPXA3dS8JWDmb_Zm8P0d9c8kCexRI4nefo,3106
440
449
  snowflake/ml/utils/connection_params.py,sha256=NSBUgcs-DXPRHs1BKpxdSubbJx1yrFRlMPBp-bE3Ugc,8308
441
450
  snowflake/ml/utils/html_utils.py,sha256=L4pzpvFd20SIk4rie2kTAtcQjbxBHfjKmxonMAT2OoA,7665
442
451
  snowflake/ml/utils/sparse.py,sha256=zLBNh-ynhGpKH5TFtopk0YLkHGvv0yq1q-sV59YQKgg,3819
443
452
  snowflake/ml/utils/sql_client.py,sha256=pSe2od6Pkh-8NwG3D-xqN76_uNf-ohOtVbT55HeQg1Y,668
444
- snowflake_ml_python-1.15.0.dist-info/licenses/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
445
- snowflake_ml_python-1.15.0.dist-info/METADATA,sha256=rfPqEjkTc1DS2kDyP6bcwF_EgjzI_q1MfYsRWgUHZ-Y,94545
446
- snowflake_ml_python-1.15.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
447
- snowflake_ml_python-1.15.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
448
- snowflake_ml_python-1.15.0.dist-info/RECORD,,
453
+ snowflake_ml_python-1.17.0.dist-info/licenses/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
454
+ snowflake_ml_python-1.17.0.dist-info/METADATA,sha256=mhZyi2QLv4tmA0nmTKABH-c-VR8oFf5CWOSGJCMr8Fo,96492
455
+ snowflake_ml_python-1.17.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
456
+ snowflake_ml_python-1.17.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
457
+ snowflake_ml_python-1.17.0.dist-info/RECORD,,