snowflake-ml-python 1.15.0__py3-none-any.whl → 1.16.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (178) hide show
  1. snowflake/ml/_internal/platform_capabilities.py +4 -0
  2. snowflake/ml/_internal/utils/mixins.py +24 -9
  3. snowflake/ml/experiment/experiment_tracking.py +63 -19
  4. snowflake/ml/jobs/_utils/spec_utils.py +49 -11
  5. snowflake/ml/jobs/manager.py +20 -0
  6. snowflake/ml/model/__init__.py +16 -2
  7. snowflake/ml/model/_client/model/batch_inference_specs.py +18 -2
  8. snowflake/ml/model/_client/model/model_version_impl.py +5 -0
  9. snowflake/ml/model/_client/ops/service_ops.py +50 -5
  10. snowflake/ml/model/_client/service/model_deployment_spec.py +1 -1
  11. snowflake/ml/model/_client/sql/stage.py +8 -0
  12. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +1 -0
  13. snowflake/ml/model/_model_composer/model_method/model_method.py +25 -2
  14. snowflake/ml/model/_packager/model_env/model_env.py +26 -16
  15. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -1
  16. snowflake/ml/model/type_hints.py +13 -0
  17. snowflake/ml/model/volatility.py +34 -0
  18. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -1
  19. snowflake/ml/modeling/cluster/affinity_propagation.py +1 -1
  20. snowflake/ml/modeling/cluster/agglomerative_clustering.py +1 -1
  21. snowflake/ml/modeling/cluster/birch.py +1 -1
  22. snowflake/ml/modeling/cluster/bisecting_k_means.py +1 -1
  23. snowflake/ml/modeling/cluster/dbscan.py +1 -1
  24. snowflake/ml/modeling/cluster/feature_agglomeration.py +1 -1
  25. snowflake/ml/modeling/cluster/k_means.py +1 -1
  26. snowflake/ml/modeling/cluster/mean_shift.py +1 -1
  27. snowflake/ml/modeling/cluster/mini_batch_k_means.py +1 -1
  28. snowflake/ml/modeling/cluster/optics.py +1 -1
  29. snowflake/ml/modeling/cluster/spectral_biclustering.py +1 -1
  30. snowflake/ml/modeling/cluster/spectral_clustering.py +1 -1
  31. snowflake/ml/modeling/cluster/spectral_coclustering.py +1 -1
  32. snowflake/ml/modeling/compose/column_transformer.py +1 -1
  33. snowflake/ml/modeling/compose/transformed_target_regressor.py +1 -1
  34. snowflake/ml/modeling/covariance/elliptic_envelope.py +1 -1
  35. snowflake/ml/modeling/covariance/empirical_covariance.py +1 -1
  36. snowflake/ml/modeling/covariance/graphical_lasso.py +1 -1
  37. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +1 -1
  38. snowflake/ml/modeling/covariance/ledoit_wolf.py +1 -1
  39. snowflake/ml/modeling/covariance/min_cov_det.py +1 -1
  40. snowflake/ml/modeling/covariance/oas.py +1 -1
  41. snowflake/ml/modeling/covariance/shrunk_covariance.py +1 -1
  42. snowflake/ml/modeling/decomposition/dictionary_learning.py +1 -1
  43. snowflake/ml/modeling/decomposition/factor_analysis.py +1 -1
  44. snowflake/ml/modeling/decomposition/fast_ica.py +1 -1
  45. snowflake/ml/modeling/decomposition/incremental_pca.py +1 -1
  46. snowflake/ml/modeling/decomposition/kernel_pca.py +1 -1
  47. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +1 -1
  48. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +1 -1
  49. snowflake/ml/modeling/decomposition/pca.py +1 -1
  50. snowflake/ml/modeling/decomposition/sparse_pca.py +1 -1
  51. snowflake/ml/modeling/decomposition/truncated_svd.py +1 -1
  52. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +1 -1
  53. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +1 -1
  54. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -1
  55. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -1
  56. snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -1
  57. snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -1
  58. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +1 -1
  59. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +1 -1
  60. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +1 -1
  61. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +1 -1
  62. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +1 -1
  63. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +1 -1
  64. snowflake/ml/modeling/ensemble/isolation_forest.py +1 -1
  65. snowflake/ml/modeling/ensemble/random_forest_classifier.py +1 -1
  66. snowflake/ml/modeling/ensemble/random_forest_regressor.py +1 -1
  67. snowflake/ml/modeling/ensemble/stacking_regressor.py +1 -1
  68. snowflake/ml/modeling/ensemble/voting_classifier.py +1 -1
  69. snowflake/ml/modeling/ensemble/voting_regressor.py +1 -1
  70. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +1 -1
  71. snowflake/ml/modeling/feature_selection/select_fdr.py +1 -1
  72. snowflake/ml/modeling/feature_selection/select_fpr.py +1 -1
  73. snowflake/ml/modeling/feature_selection/select_fwe.py +1 -1
  74. snowflake/ml/modeling/feature_selection/select_k_best.py +1 -1
  75. snowflake/ml/modeling/feature_selection/select_percentile.py +1 -1
  76. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +1 -1
  77. snowflake/ml/modeling/feature_selection/variance_threshold.py +1 -1
  78. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +1 -1
  79. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +1 -1
  80. snowflake/ml/modeling/impute/iterative_imputer.py +1 -1
  81. snowflake/ml/modeling/impute/knn_imputer.py +1 -1
  82. snowflake/ml/modeling/impute/missing_indicator.py +1 -1
  83. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +1 -1
  84. snowflake/ml/modeling/kernel_approximation/nystroem.py +1 -1
  85. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +1 -1
  86. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +1 -1
  87. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +1 -1
  88. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +1 -1
  89. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +1 -1
  90. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +1 -1
  91. snowflake/ml/modeling/linear_model/ard_regression.py +1 -1
  92. snowflake/ml/modeling/linear_model/bayesian_ridge.py +1 -1
  93. snowflake/ml/modeling/linear_model/elastic_net.py +1 -1
  94. snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -1
  95. snowflake/ml/modeling/linear_model/gamma_regressor.py +1 -1
  96. snowflake/ml/modeling/linear_model/huber_regressor.py +1 -1
  97. snowflake/ml/modeling/linear_model/lars.py +1 -1
  98. snowflake/ml/modeling/linear_model/lars_cv.py +1 -1
  99. snowflake/ml/modeling/linear_model/lasso.py +1 -1
  100. snowflake/ml/modeling/linear_model/lasso_cv.py +1 -1
  101. snowflake/ml/modeling/linear_model/lasso_lars.py +1 -1
  102. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -1
  103. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +1 -1
  104. snowflake/ml/modeling/linear_model/linear_regression.py +1 -1
  105. snowflake/ml/modeling/linear_model/logistic_regression.py +1 -1
  106. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +1 -1
  107. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +1 -1
  108. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -1
  109. snowflake/ml/modeling/linear_model/multi_task_lasso.py +1 -1
  110. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -1
  111. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +1 -1
  112. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +1 -1
  113. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -1
  114. snowflake/ml/modeling/linear_model/perceptron.py +1 -1
  115. snowflake/ml/modeling/linear_model/poisson_regressor.py +1 -1
  116. snowflake/ml/modeling/linear_model/ransac_regressor.py +1 -1
  117. snowflake/ml/modeling/linear_model/ridge.py +1 -1
  118. snowflake/ml/modeling/linear_model/ridge_classifier.py +1 -1
  119. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +1 -1
  120. snowflake/ml/modeling/linear_model/ridge_cv.py +1 -1
  121. snowflake/ml/modeling/linear_model/sgd_classifier.py +1 -1
  122. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +1 -1
  123. snowflake/ml/modeling/linear_model/sgd_regressor.py +1 -1
  124. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +1 -1
  125. snowflake/ml/modeling/linear_model/tweedie_regressor.py +1 -1
  126. snowflake/ml/modeling/manifold/isomap.py +1 -1
  127. snowflake/ml/modeling/manifold/mds.py +1 -1
  128. snowflake/ml/modeling/manifold/spectral_embedding.py +1 -1
  129. snowflake/ml/modeling/manifold/tsne.py +1 -1
  130. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +1 -1
  131. snowflake/ml/modeling/mixture/gaussian_mixture.py +1 -1
  132. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +1 -1
  133. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +1 -1
  134. snowflake/ml/modeling/multiclass/output_code_classifier.py +1 -1
  135. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +1 -1
  136. snowflake/ml/modeling/naive_bayes/categorical_nb.py +1 -1
  137. snowflake/ml/modeling/naive_bayes/complement_nb.py +1 -1
  138. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +1 -1
  139. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +1 -1
  140. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +1 -1
  141. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +1 -1
  142. snowflake/ml/modeling/neighbors/kernel_density.py +1 -1
  143. snowflake/ml/modeling/neighbors/local_outlier_factor.py +1 -1
  144. snowflake/ml/modeling/neighbors/nearest_centroid.py +1 -1
  145. snowflake/ml/modeling/neighbors/nearest_neighbors.py +1 -1
  146. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +1 -1
  147. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +1 -1
  148. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -1
  149. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +1 -1
  150. snowflake/ml/modeling/neural_network/mlp_classifier.py +1 -1
  151. snowflake/ml/modeling/neural_network/mlp_regressor.py +1 -1
  152. snowflake/ml/modeling/preprocessing/polynomial_features.py +1 -1
  153. snowflake/ml/modeling/semi_supervised/label_propagation.py +1 -1
  154. snowflake/ml/modeling/semi_supervised/label_spreading.py +1 -1
  155. snowflake/ml/modeling/svm/linear_svc.py +1 -1
  156. snowflake/ml/modeling/svm/linear_svr.py +1 -1
  157. snowflake/ml/modeling/svm/nu_svc.py +1 -1
  158. snowflake/ml/modeling/svm/nu_svr.py +1 -1
  159. snowflake/ml/modeling/svm/svc.py +1 -1
  160. snowflake/ml/modeling/svm/svr.py +1 -1
  161. snowflake/ml/modeling/tree/decision_tree_classifier.py +1 -1
  162. snowflake/ml/modeling/tree/decision_tree_regressor.py +1 -1
  163. snowflake/ml/modeling/tree/extra_tree_classifier.py +1 -1
  164. snowflake/ml/modeling/tree/extra_tree_regressor.py +1 -1
  165. snowflake/ml/modeling/xgboost/xgb_classifier.py +1 -1
  166. snowflake/ml/modeling/xgboost/xgb_regressor.py +1 -1
  167. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +1 -1
  168. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +1 -1
  169. snowflake/ml/registry/_manager/model_manager.py +1 -0
  170. snowflake/ml/registry/_manager/model_parameter_reconciler.py +27 -0
  171. snowflake/ml/registry/registry.py +15 -0
  172. snowflake/ml/utils/authentication.py +16 -0
  173. snowflake/ml/version.py +1 -1
  174. {snowflake_ml_python-1.15.0.dist-info → snowflake_ml_python-1.16.0.dist-info}/METADATA +41 -3
  175. {snowflake_ml_python-1.15.0.dist-info → snowflake_ml_python-1.16.0.dist-info}/RECORD +178 -177
  176. {snowflake_ml_python-1.15.0.dist-info → snowflake_ml_python-1.16.0.dist-info}/WHEEL +0 -0
  177. {snowflake_ml_python-1.15.0.dist-info → snowflake_ml_python-1.16.0.dist-info}/licenses/LICENSE.txt +0 -0
  178. {snowflake_ml_python-1.15.0.dist-info → snowflake_ml_python-1.16.0.dist-info}/top_level.txt +0 -0
@@ -10,13 +10,13 @@ snowflake/cortex/_sse_client.py,sha256=sLYgqAfTOPADCnaWH2RWAJi8KbU_7gSRsTUDcDD5T
10
10
  snowflake/cortex/_summarize.py,sha256=7GH8zqfIdOiHA5w4b6EvJEKEWhaTrL4YA6iDGbn7BNM,1307
11
11
  snowflake/cortex/_translate.py,sha256=9ZGjvAnJFisbzJ_bXnt4pyug5UzhHJRXW8AhGQEersM,1652
12
12
  snowflake/cortex/_util.py,sha256=krNTpbkFLXwdFqy1bd0xi7ZmOzOHRnIfHdQCPiLZJxk,3288
13
- snowflake/ml/version.py,sha256=mD6wWkVyRAcznVsn3yajxYM3y9_AIAyvWE6K1C1nDQU,99
13
+ snowflake/ml/version.py,sha256=zo4wv3_2on676LLh7nL4I4AC6CM54PzfNBPoXameD38,99
14
14
  snowflake/ml/_internal/env.py,sha256=EY_2KVe8oR3LgKWdaeRb5rRU-NDNXJppPDsFJmMZUUY,265
15
15
  snowflake/ml/_internal/env_utils.py,sha256=x6ID94g6FYoMX3afp0zoUHzBvuvPyiE2F6RDpxx5Cq0,30967
16
16
  snowflake/ml/_internal/file_utils.py,sha256=7sA6loOeSfmGP4yx16P4usT9ZtRqG3ycnXu7_Tk7dOs,14206
17
17
  snowflake/ml/_internal/init_utils.py,sha256=WhrlvS-xcmKErSpwg6cUk6XDQ5lQcwDqPJnU7cooMIg,2672
18
18
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
19
- snowflake/ml/_internal/platform_capabilities.py,sha256=jWla9jzRgsEd2HBpECixsFX2vZCHIuVDVWXMEMtTYek,7366
19
+ snowflake/ml/_internal/platform_capabilities.py,sha256=5cpeKpsxCObjOsPIz38noIusWw4n5KXOvPqRPiF3Kj4,7627
20
20
  snowflake/ml/_internal/relax_version_strategy.py,sha256=MYEIZrx1HfKNhl9Na3GN50ipX8c0MKIj9nwxjB0IC0Y,484
21
21
  snowflake/ml/_internal/telemetry.py,sha256=GCut6xG7SvAV8JRCxuQjvno9t7cLGLByECpMNUY1q30,31867
22
22
  snowflake/ml/_internal/type_utils.py,sha256=bNNW0I9rOvwhx-Y274vGd0qWA0fMIPA3SGnaDE09wvc,2198
@@ -40,7 +40,7 @@ snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJ
40
40
  snowflake/ml/_internal/utils/identifier.py,sha256=HrcCBOyn93fRjMj4K1YJG37ONtw7e3EZnt29LzhEgLA,12586
41
41
  snowflake/ml/_internal/utils/import_utils.py,sha256=msvUDaCcJpAcNCS-5Ynz4F1CvUhXjRsuZyOv1rN6Yhk,3213
42
42
  snowflake/ml/_internal/utils/jwt_generator.py,sha256=X8D_bjVRnpcSCuJFjrA71KBJDRFXD_73tVu4VL9agpE,5441
43
- snowflake/ml/_internal/utils/mixins.py,sha256=YSdf7UzpiR2N6Xv2Rbjw_BpIt8vsyd9Rlc3DJSXWGNM,3139
43
+ snowflake/ml/_internal/utils/mixins.py,sha256=0_jJN_-iNvLim0-GsJ4geqK4Ja91O-M527uWzj3vBtw,3511
44
44
  snowflake/ml/_internal/utils/parallelize.py,sha256=l8Zjo-hp8zqoLgHxBlpz9Zmn2Z-MRQ0fS_NnrR4jWR8,4522
45
45
  snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=EaY_3IsVOZ9BCH28F5VLjp-0AiEqDlL7L715vkPsgrY,5149
46
46
  snowflake/ml/_internal/utils/query_result_checker.py,sha256=1PR41Xn9BUIXvp-UmJ9FgEbj8WfgU7RUhz3PqvvVQ5E,10656
@@ -65,7 +65,7 @@ snowflake/ml/dataset/dataset_metadata.py,sha256=lcNvugBkP8YEkGMQqaV8SlHs5mwUKsUS
65
65
  snowflake/ml/dataset/dataset_reader.py,sha256=mZsG9HyWUGgfotrGkLrunyEsOm_659mH-Sn2OyG6A-Q,5036
66
66
  snowflake/ml/experiment/__init__.py,sha256=r7qdyPd3jwxzqvksim2ju5j_LrnYQrta0ZI6XpWUqmc,109
67
67
  snowflake/ml/experiment/_experiment_info.py,sha256=iaJ65x6nzBYJ5djleSOzBtMpZUJCUDlRpaDw0pu-dcU,2533
68
- snowflake/ml/experiment/experiment_tracking.py,sha256=JgnyJWfGQ6nTl1XsskWdoBI2iU7M4ivaTobLNNnD7ps,15557
68
+ snowflake/ml/experiment/experiment_tracking.py,sha256=5WEZpI19MCbqbozpWG88Ba7Kd5v7JvfNDvJA-tscMwo,17418
69
69
  snowflake/ml/experiment/utils.py,sha256=3bpbkilc5vvFjnti-kcyhhjAd9Ga3LqiKqJDwORiATY,628
70
70
  snowflake/ml/experiment/_client/artifact.py,sha256=R2WB4Y_kqv43BWLfXv8SEDINn1Bnevzgb-mH5LyvgGk,3035
71
71
  snowflake/ml/experiment/_client/experiment_tracking_sql_client.py,sha256=0cR2aTQa9uB9D7s5AStZ9gOAJe3SL7rFebttvpqkZFk,7250
@@ -111,7 +111,7 @@ snowflake/ml/fileset/stage_fs.py,sha256=V4pysouSKKDPLzuW3u_extxfvjkQa5OlwIRES9Sr
111
111
  snowflake/ml/jobs/__init__.py,sha256=v-v9-SA1Vy-M98B31-NlqJgpI6uEg9jEEghJLub1RUY,468
112
112
  snowflake/ml/jobs/decorators.py,sha256=mQgdWvvCwD7q79cSFKZHKegXGh2j1u8WM64UD3lCKr4,3428
113
113
  snowflake/ml/jobs/job.py,sha256=VFBogPXXTWa0p-Jl10lSUFyKeqGQOtbzJIgrWTPA0rQ,22222
114
- snowflake/ml/jobs/manager.py,sha256=1tOpEE66gQv36BmmYnUIQ2yjS1r-uAHxIQht6ilucO8,27276
114
+ snowflake/ml/jobs/manager.py,sha256=kRv4LyNP_dgKSpbPRfQWAOYUHxRj92PIujiJfgSf9Tc,28610
115
115
  snowflake/ml/jobs/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
116
116
  snowflake/ml/jobs/_utils/constants.py,sha256=JB8i85VbI0nIYP_c2nyAADQcmEF8BscVHHKBGhruofY,3838
117
117
  snowflake/ml/jobs/_utils/feature_flags.py,sha256=cH_NyeOncL3_tzbk0WvL1siNyodxBgn1ziPk2yBW6wY,404
@@ -120,7 +120,7 @@ snowflake/ml/jobs/_utils/interop_utils.py,sha256=7mODMTjKCLXkJloACG6_9b2wvmRgjXF
120
120
  snowflake/ml/jobs/_utils/payload_utils.py,sha256=1Xon3jlBgzfv1SQgQkJ1ir3xt9PVviP8-UC6P-FOmwc,30807
121
121
  snowflake/ml/jobs/_utils/query_helper.py,sha256=1-XK-y4iukbR1693qAELprRbHmJDM4YoEBHov8IYbHU,1115
122
122
  snowflake/ml/jobs/_utils/runtime_env_utils.py,sha256=fqa3ctf_CAOSv1zT__01Qp9T058mKgMjXuEkBZqKUqA,2247
123
- snowflake/ml/jobs/_utils/spec_utils.py,sha256=_USJN0H7wjprPcS5p6SbAUQJOQjljEbLcdMrtnBkRrM,14751
123
+ snowflake/ml/jobs/_utils/spec_utils.py,sha256=dVhz4AVRqVOkULgc4PyQmtBRYw8SL21-YfpN27w4hVI,16269
124
124
  snowflake/ml/jobs/_utils/stage_utils.py,sha256=38-LsokaGx0NzlnP8CMRioClRz-3x6xhPiZIgl2CB9g,5224
125
125
  snowflake/ml/jobs/_utils/types.py,sha256=AGLu0kPTNRUki26rah_KBwWp0bBJEtUP3zcfxkj5kB0,2326
126
126
  snowflake/ml/jobs/_utils/scripts/constants.py,sha256=YyIWZqQPYOTtgCY6SfyJjk2A98I5RQVmrOuLtET5Pqg,173
@@ -130,7 +130,7 @@ snowflake/ml/jobs/_utils/scripts/signal_workers.py,sha256=AR1Pylkm4-FGh10WXfrCtc
130
130
  snowflake/ml/jobs/_utils/scripts/worker_shutdown_listener.py,sha256=SeJ8v5XDriwHAjIGpcQkwVP-f-lO9QIdVjVD7Fkgafs,7893
131
131
  snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCrzI4,65
132
132
  snowflake/ml/lineage/lineage_node.py,sha256=SA0rbbI67rMr1qTMs4bAVkvqVtuKNI4lIaO5w0S-IXE,5767
133
- snowflake/ml/model/__init__.py,sha256=H-kWd3CzYFgFwfM-BDy3rRWFAeHH5JgqhC0dCS8lFig,426
133
+ snowflake/ml/model/__init__.py,sha256=78w63Y250_m2zsN6eamZAZ2ovPpxk2ZCYOClTwJS1-s,567
134
134
  snowflake/ml/model/custom_model.py,sha256=fDhMObqlyzD_qQG1Bq6HHkBN1w3Qzg9e81JWPiqRfc4,12249
135
135
  snowflake/ml/model/event_handler.py,sha256=pojleQVM9TPNeDvliTvon2Sfxqbf2WWxrOebo1SaEHo,7211
136
136
  snowflake/ml/model/inference_engine.py,sha256=L0nwySY2Qwp3JzuRpPS87r0--m3HTUNUgZXYyOPJjyk,66
@@ -138,35 +138,36 @@ snowflake/ml/model/model_signature.py,sha256=RH62vv4YmrQugTXLsh6kyuzfTs9_yz8a0TM
138
138
  snowflake/ml/model/openai_signatures.py,sha256=ZVnHDgaOA6RcvtSP3HIbHVgr3scJH2gG_9QvZidn41g,2630
139
139
  snowflake/ml/model/target_platform.py,sha256=H5d-wtuKQyVlq9x33vPtYZAlR5ka0ytcKRYgwlKl0bQ,390
140
140
  snowflake/ml/model/task.py,sha256=Zp5JaLB-YfX5p_HSaw81P3J7UnycQq5EMa87A35VOaQ,286
141
- snowflake/ml/model/type_hints.py,sha256=G0kp85-ksnYoAUHRdXxLFQBLq3XURuqYOpu_YeKEaNA,9847
142
- snowflake/ml/model/_client/model/batch_inference_specs.py,sha256=tajjnvp5pI00MyFFQhM-ZJcFe9OZzIi9luz2Ylemf8g,557
141
+ snowflake/ml/model/type_hints.py,sha256=VmP8qr60V9mBZYuTeGRWIZP3w14NXERNExrXQLx3jWI,10836
142
+ snowflake/ml/model/volatility.py,sha256=qu-wqe9oKkRwXwE2qkKygxTWzUypQYEk3UjsqOGRl_I,1144
143
+ snowflake/ml/model/_client/model/batch_inference_specs.py,sha256=FFzNvP-OHO1gFBfqXz89T5HMheFGfsx7P5_5Ze_QYvM,957
143
144
  snowflake/ml/model/_client/model/inference_engine_utils.py,sha256=lOqZzySZygeWqHTNYGBYgpTRfEst9f7lX50Ku8k950g,1966
144
145
  snowflake/ml/model/_client/model/model_impl.py,sha256=Yabrbir5vPMOnsVmQJ23YN7vqhi756Jcm6pfO8Aq92o,17469
145
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=uomU-rJRA_tV5iWYh7Lg4HEgLOR0J13yxWS_Y3euuIY,53046
146
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=DgdbEWkgAvfvO-xO_Bg-qFzwfAGT6tst-7sW_TZzQ3Q,53232
146
147
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=qpK6PL3OyfuhyOmpvLCpHLy6vCxbZbp1HlEvakFGwv4,4884
147
148
  snowflake/ml/model/_client/ops/model_ops.py,sha256=XGQB62Nc4ld86I7wJzuJGkmbrI38wIBm4egsZptdrM8,50394
148
- snowflake/ml/model/_client/ops/service_ops.py,sha256=yTFeXkQLO194G5oT_dVIWTW1-9JvrHgB7Abkc5UNys0,44679
149
- snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=LxdhU1m4YGc1MNyApQ0IyUetcH4IXOmwYOY9X3wjznY,19499
149
+ snowflake/ml/model/_client/ops/service_ops.py,sha256=gUmYDvXnacachE9OK92HGYbZ7ec9WEsrDRsOgOckhbI,47036
150
+ snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=Ro2kAM_rfMccMjW23RpP6qDPq090vAIUv_he-8GE68k,19487
150
151
  snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=QpDso2bjx2eCRKIG4-ppc3z46B7hgYMZehOTRoR9IJs,2425
151
152
  snowflake/ml/model/_client/sql/_base.py,sha256=Qrm8M92g3MHb-QnSLUlbd8iVKCRxLhG_zr5M2qmXwJ8,1473
152
153
  snowflake/ml/model/_client/sql/model.py,sha256=nstZ8zR7MkXVEfhqLt7PWMik6dZr06nzq7VsF5NVNow,5840
153
154
  snowflake/ml/model/_client/sql/model_version.py,sha256=QwzFlDH5laTqK2qF7SJQSbt28DgspWj3R11l-yD1Da0,23496
154
155
  snowflake/ml/model/_client/sql/service.py,sha256=0aXyRDZIFCgBq6TEG6qdhc7wtCsmphpyBXuSoNyLmTw,11630
155
- snowflake/ml/model/_client/sql/stage.py,sha256=2gxYNtmEXricwxeACVUr63OUDCy_iQvCi-kRT4qQtBA,887
156
+ snowflake/ml/model/_client/sql/stage.py,sha256=1TWYIVoWIeNwhVG9uqwmNpmKcC6x45LrbxCtzJW7fi4,1214
156
157
  snowflake/ml/model/_client/sql/tag.py,sha256=9sI0VoldKmsfToWSjMQddozPPGCxYUI6n0gPBiqd6x8,4333
157
158
  snowflake/ml/model/_model_composer/model_composer.py,sha256=Xqi-sxmkBoZl383LQAXhMQkq9KsAS0A3ythC5bN3EOU,8292
158
159
  snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=y6lu1_4UC7pfosBKofc0dl-LWF8mpcTqhY5sKSkUH_I,9247
159
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=Oc_PvWG3u0E2pb35w4uMYQdDFEuHdUdOb2gnqnVLE3Q,2917
160
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=vfuZQ4YADfLcEvJYTSqVMsLfxCO-QWsFFzLXI1NoMXk,2950
160
161
  snowflake/ml/model/_model_composer/model_method/constants.py,sha256=hoJwIopSdZiYn0fGq15_NiirC0l02d5LEs2D-4J_tPk,35
161
162
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=nnUJki3bJVCTF3gZ-usZW3xQ6wwlJ08EfNsPAgsnI3s,2625
162
163
  snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=olysEb_bE2C8CjIRAhm7qdr2mtgk77Tx45gnLRVQGFw,1511
163
164
  snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template,sha256=8p8jkTOJA-mBt5cuGhcWSH4z7ySQ9xevC35UioCLkC8,1539
164
165
  snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=QT32N6akQDutLh00cXp2OD4WI6Gb7IGG1snsnrXNih8,1453
165
- snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=NhTAkjRlfHqOEfDtm2U6LdkiVDUufwP9cC7sjsJiUwA,7167
166
+ snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=4H1-1N8lQpkqgHXWlzvj7u8joF5okt1cwais08BUm7k,8229
166
167
  snowflake/ml/model/_model_composer/model_user_file/model_user_file.py,sha256=dYNgg8P9p6nRH47-OLxZIbt_Ja3t1VPGNQ0qJtpGuAw,1018
167
168
  snowflake/ml/model/_packager/model_handler.py,sha256=qZB5FVRWZD5wDdm6vuuoXnDFar7i2nHarbe8iZRCLPo,2630
168
169
  snowflake/ml/model/_packager/model_packager.py,sha256=6-1MnGUR8nxB86A13nCZcWbET_Q6fSEOlyfcbTv7xCI,6087
169
- snowflake/ml/model/_packager/model_env/model_env.py,sha256=tWZVz0KOt5CixAk5P317XzdejNPbN3EG_oWlIg-9EC0,19571
170
+ snowflake/ml/model/_packager/model_env/model_env.py,sha256=sQeElFH7qW3-dXTHWO48xCtlBrKCNJgeNEorad4t2cU,20231
170
171
  snowflake/ml/model/_packager/model_handlers/_base.py,sha256=OZhGv7nyej3PqaoBz021uGa40T06d9rv-kDcKUY3VnM,7152
171
172
  snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=DIN1oKCl4DytNcH1xP3fGl4BHaEmQ_RGoKuysFiWz7s,12599
172
173
  snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=dbI2QizGZS04l6ehgXb3oy5YSXrlwRHz8YENVefEbms,10676
@@ -193,7 +194,7 @@ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=UGPTjzxLBUKn
193
194
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=8zTgq3n6TBXv7Vcwmf7b9wjK3m-9HHMsY0Qy1Rs-sZ4,1305
194
195
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=5butM-lyaDRhCAO2BaCOIQufpAxAfSAinsNuGqbbjMU,1029
195
196
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=cyZVvBGM3nF1IVqDKfYstLCchNO-ZhSkPvLM4aU7J5c,2066
196
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=sx6L8N7RjNV2FgG4370zeEulGVRIz47V0vEcW_w8M7g,912
197
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=xtyKWzGDR9IrUsS1p63RCdFifP0bZqKR-Re8Hq6ZkB8,912
197
198
  snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=xEf-S9QurEOeQzrNxlc-4-S_VkHsVO1eNS4UR0hWwHU,5495
198
199
  snowflake/ml/model/_packager/model_task/model_task_utils.py,sha256=_nm3Irl5W6Oa8_OnJyp3bLeA9QAbV9ygGCsgHI70GX4,6641
199
200
  snowflake/ml/model/_signatures/base_handler.py,sha256=4CTZKKbg4WIz_CmXjyVy8tKZW-5OFcz0J8XVPHm2dfQ,1269
@@ -221,135 +222,135 @@ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sh
221
222
  snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=xem3xtoOHi_HFoi85wvSx7F1BhzxVrGYqMhuyrFz4Ik,32919
222
223
  snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=Cu_ywcFzlkflbUvJ5C8rNk1H3YwRDEhVdsyngNcjE2Q,17282
223
224
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
224
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=4h420OqHN2JYG7FKYwAwT3RG03sOh8u9vdTnabRr-cY,54177
225
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=UfQ3LkyxPC2F8USLcofkiCPz_7uFXWx69pzr81JfE18,54177
225
226
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
226
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=hhEEDmf_7Rcd0_nh4PKhQuLEbOcq6F5Q7UgaxIBoxE0,52430
227
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=P88_8O5B9BijnAwkUErVIk59go3tTNC1qlNAnAyAx3M,54343
228
- snowflake/ml/modeling/cluster/birch.py,sha256=1tqVZGRHa44TT-Q15eBYa4pfBkMq2aOtM_T5zw5AFBY,52343
229
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=muIuhv-fC-rAAN-Q4eT9Lz2vmYYY4f6owfhyy441MBA,55112
230
- snowflake/ml/modeling/cluster/dbscan.py,sha256=lP3GhtEm4SvZKfzLRFUMIohDQORmgYTEeRX3xt3hEls,52684
231
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=b2KooSg3jLLOazr9itI6txGi2EhWb0DmR2nZJk7TjOU,54637
232
- snowflake/ml/modeling/cluster/k_means.py,sha256=TvMN2o8xqxTVHmaONgHIeEylSUyX1eYGAkxLrlJmK_s,54838
233
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=bwZNCGb12LWReRI5dIXlT0CY2frdCB9wI1-rPTWPL8g,52717
234
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=xSeHFzoXTUAWQfr0ekaXZ7-POh9_bzc6kl2oD0sRvKg,56035
235
- snowflake/ml/modeling/cluster/optics.py,sha256=0EeDzyeRR28SyQSS5t-bLgWbnwilN7OzR5cJ26D2QPE,55894
236
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=fs57CErGTlvZqxVrAESBHj3IuaMbJsZX9GZG1hDS39U,52727
237
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=qzZe8QUOTCCjx975p5Xg7J8i6L_DQep6RETCTRvpNE8,56011
238
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=uYuiIBFR1T44tXuSZdQVPam8eUNSBrcXDSw4e36yRco,51860
227
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=hadj1D4P2aopYF8fvMW5NQs9rRxwixUbPh7DglAwNjY,52430
228
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=r_ee-8Ut1efRT00tzp_A0AzzOZVQm9qsO2fsp9eYZb4,54343
229
+ snowflake/ml/modeling/cluster/birch.py,sha256=XUAi_HEbnyODFE0sQN5ApoqU2xazKTYOTz-pivktTiM,52343
230
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=8KBcfC5saYxf9JdlF9ArDfQGXc9Te3ghwSNPZxB7rfE,55112
231
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=6ylpEDWucFLKNhIA40U9kjnjCUIocW1fYLSNnciQf_E,52684
232
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=n5jlCJ5I7DrsTQ5Hu7vLhlbLe5sY9Ujw3gPu8x3qibo,54637
233
+ snowflake/ml/modeling/cluster/k_means.py,sha256=jYKJRZx0H2YEzS4srU-Gm33qxdFqODkqDjRrwhqiIOQ,54838
234
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=3Wb4_3fNn7Md9MtGMvk8j4DQJQBHxgoCzJX0MnTG7YE,52717
235
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=g6mc-aod2dZ6HEo_AbAxRnKnxSnppY2t36F_zEYI9_M,56035
236
+ snowflake/ml/modeling/cluster/optics.py,sha256=6y5UNdBsr0_iFGZfC283d4jzigdHIUh4mVnNX8LCJDQ,55894
237
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=W0pfmV1nqeEgwCbQHfCiCmlR-uLbqqkQt6DsOiEz3hE,52727
238
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=BaWzosF4klydr4-dUi-k5-VsF297lSD13WejrL247eQ,56011
239
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=CfcDKKo4m-CrxySNnNWpCXVUGRzYjdXFogjqFna43VY,51860
239
240
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
240
- snowflake/ml/modeling/compose/column_transformer.py,sha256=LHcJ39mmAwlqryf2-8pXVdP8kuXeIwC9S8tDvUaLAG8,55185
241
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=TCYzw4WkdQBmyOBbDI3dWUWq3qta4Foiqw7enLl7f_s,52472
241
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=wHZzO0uMokTNZod5Bl13AAK-jUqxP7sdVjHA-Lr33jQ,55185
242
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=x4GsmeSeMT4eUTIzAnmtNocFVbJ8V07vmoMb2Q5-2Qk,52472
242
243
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
243
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=udQIgxCcl7UI0wg81Jt6n0gw-CqZ6430g-biGXM31j8,52761
244
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=UpR2fJ4tVAn2_FKqQKsfYptOY1t3hEnZfweVMp2drtU,50559
245
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=IjvlmpKDQXsnXRmTypisGVKAjfYMOT-7nwcatmrGY80,52418
246
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=E5ZQB1Lu7vt9wdEtHBJlX0IpLb_fyeVFXdQqEqISHg8,53610
247
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=GO83MDcAFqxHu2IANpSghyTV7AM0d2Y-97BBqiNK0-Q,50688
248
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=sPOYsy80WTsriKmrZUii097Ok7O9jMsRfmDEpNizLzs,51455
249
- snowflake/ml/modeling/covariance/oas.py,sha256=LlGWvL00tQaSku23a1_PZCivln8KmwXX8N37v6fREJE,50302
250
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=nrU72bUxnhuyZ5q_DV5mvhk40FJmjjREd-sTtAzLuik,50711
244
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=dpoDhSNtQXyqPUjpWm1qu8LyCy84_JUlugElWV3DrQU,52761
245
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=SqMBF3G3jhGCtr45e7HucK_F8NXrtJ8WOgQKw3XU8r8,50559
246
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=5mrYpgYaplXAn9iUwiDvJfyRnw8p2iY7sS0KM47GlSk,52418
247
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=-jpQ9bxodaCg9cAj8GlNCjaSSuDafpJajAyTIWIBv3E,53610
248
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=OFXGlTXDBflRvhMlc82SH2vZfRbH5M0M5QxwkSFDYSg,50688
249
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=Tq9SBSIW9IsOiUU1f5THMgvOgkwvXRLXHWxfOoaVheY,51455
250
+ snowflake/ml/modeling/covariance/oas.py,sha256=rUneEzX-bh81RlO9KYjSOKymGJrLjoedOcTVBJvafUc,50302
251
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=GvCkQ43XTlMTwARnmznEZFQ6ggMidZDEuoTKReVVYyo,50711
251
252
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
252
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=4BCi3SpwYLXtkT9tltU8MeDEGK8OnZ0HY6QOtleWLS4,55710
253
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=OiR42u5l2FfX1gmr9hNtxczwzSS4azf_LX7g8k4jg3s,53369
254
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=bKK3xDuichdh11HWHy3od1feEqL0nJXU0b3SWk_GypA,53296
255
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=KH_qcARGUK16j-cHWC9nOoyWRYfTVX1wWdo2XCq0T-s,51663
256
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=nuxqk1FLSJEY8YqJgcLFelG46fcRP6vr_HUDDXeMEx0,55653
257
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=9egcKgnjZOxR71x-7Kg06-U4Bz1pCjSU2zWvVEe6_WU,56442
258
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=oV9ajBzClXmWKYrrEC0KfyohI0SwBsMAuwxl99fpu7k,53705
259
- snowflake/ml/modeling/decomposition/pca.py,sha256=_ybuLQHLf-nueGRY1UJt9ICmL1X3bOvH-c-PRTJewqw,55873
260
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=VI3xl-hXhPqiqS-2n9O8Z60WrkLfROJ-fkcrsm1s1vM,52812
261
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=EdCwIHZbriYswrb5DZ0spWTQ2z2JXwzWWqa2PO_Mabs,52438
253
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=KFQIq5SSHZJB8WkYdBg6Pz_3kc7hW5ayP-NiRyMEPTI,55710
254
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=tqCtzp0_KGwyzZDntUvtDim-jnFyzIjn9EqnN9LEghM,53369
255
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=LMdy8unD_uZuUp19dOUwMJb1bSO7KGrckFz2lRduASk,53296
256
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=3TxugnCnnzkvn7KPTWSwRhWN7q0iwDZOfM31SolQwWI,51663
257
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=PO_cBLyuWIEkwxYn6HcL8_fRB1lp4AKZv-PYmQ2MJzE,55653
258
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=pWEH8s_fx3RfUxMJ9kjPQxDYkoYfRd403eV6T2BadyY,56442
259
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=UsEF3Gx-mLBSTZ0TdbDPzOnYy7Dg4d4ilMjElB4kPnc,53705
260
+ snowflake/ml/modeling/decomposition/pca.py,sha256=-jr-tqa8hjH9eQCakOF494rYQLCEZx84I0xiA27Rf4w,55873
261
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=ZxzfWAX9MU3MpHlRmXv1Vucq5djT27UfLtBv2Z7O6GM,52812
262
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=whEN3QTQtLIqr9grcWgrtu3T74s5ZjYtaDEdWVhRJ4g,52438
262
263
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
263
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=_OG85UPee-TMgmj-cozucFwMRs0AmDnA6yHkBtSjTbM,55329
264
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=cqWVxZzmm0eZbqwseotsVLeXWHeVoue9t0wBUfTTfAw,52908
264
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=vReAbbyJmFOYOIDGevUMy3EmYVKodAoXfdIc4Zc0vqU,55329
265
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=GqxuN0NfakfJFCfbzhxUc1zzewJI9xcUwL8E6zVoKXw,52908
265
266
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
266
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=X6OnK0zNWQ0awL1B9wqLd713OsiSSRmXmOaEaeIWlx0,53110
267
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=8ETFFsCb1UjeC8-smV7alpPz3gx_PNuEczsnmsJ-DfE,52113
268
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=rtc5OKzthDFd9LrT-3v1iDX5NjPnResPbNqJBZyiadk,54302
269
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=G4hMysxv8WmdK7Ng7skgljUIQqUVy-zJNeEQ515i898,53537
270
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=RrC6X3K5KurJl_QTF_Fq9MCn7RPikidDk1sQlEc3Dxw,60351
271
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=eM42h5z0pj7At5xASxs_Dq4Sgfkj8GaGaqQurXzIKqI,58804
272
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=H4pv_EMvoX0vwowg0Zy26zvJYFK1ILji-HGDFjTNaX8,61110
273
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=sY43QWkOhyH0C_70ASi-BoN_zv7UnIozxXf9scM1iT0,60702
274
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=JHWxXKtuAGN6ZZt5XQLxQBpm9eWYsFOQ8YrDYzG2rKE,61596
275
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=UDCLnxaGN657vPWsUS7n8FuOTIHP9BXhJj1Gr6m-lHo,59931
276
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=u7dSxs_iFN-7a3Wy2RTymUBkSbEAyBjE24o4rJy1aiQ,53895
277
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=nmjQDX__xwZfHWDEXKbfSFj0IdhhYugMQQcDXv9SwvE,60324
278
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=g45YEEvmzgWR4IDFINcJ8drHHeoCgvFiI3duciFxwqI,58777
279
- snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=ho6T70nctk2mvMk4gqcScqBSuuI0AHhogmSLcl6lsBQ,53839
280
- snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=5ol0kwo9QxsRew7oMoxd70tjdseomR4hX-AL-e54CQg,53391
281
- snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=yKsAYuM3gEqzhJg-h5bpu_ynv6gGNbmEj_j9kJIyjKs,51916
267
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=6IJdYNzatIu8lszix4rR9cw5RYIIwP-mZKrwTI7ncqY,53110
268
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=l0x1Be5suxu3qp_Lh6HdUDd-IMImwU_QtNPnyepafaM,52113
269
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=n6o0QHxasJq2Ow73dvtTIOKtVauuLdRuFcIb4NYneNo,54302
270
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=ZXEPFxr7-Dz0HPrc9q2nS2Llzf75gq0_JMDkgG39lx0,53537
271
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=tAzYm74a7b8y1vwXWmWda8M5Zvdplb44HsKrJ6Z9Quk,60351
272
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=g3gRPHvRebgMB8SOgboZ8wpdilrkNQVLbM463H7MaH0,58804
273
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=ybndeYIft3GFmK0VxV5yTI4UonsHOk6km0w29KDpP-s,61110
274
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=jGWYuMnsz55dry8F3WY-DTSPTM9VMZwtpINePA8HGro,60702
275
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=6-W9aOGHxtJhOetfI_hUuz2K8Xegx2I4LevxRHchaQs,61596
276
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=VH38-J59oal0fPMLm5AU-pjEngwvHUAqt-4f7mnD17o,59931
277
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=KUB8KYDqQEYUr0xILteLRHZIwOc4wAt7Y-kiNzAevO0,53895
278
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=d4fyJwoUf8iC-mf5djW8bTDBxbn7CZoVKVmn5IbFlD8,60324
279
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=0fMOVAlISm4rXSMeJZ_HyIoNtaifFpNQd9M56mh44ns,58777
280
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=XLSNj1P7Ag_3b4cMC0k3Kc0b8TZIAV8mmbFnm4-PCyM,53839
281
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=Le_bB-WEopBqUQqYzMux2wuUOmNcg_CpW-yGa4dr7ew,53391
282
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=7BgxytdhCWP7YWldyg-AYgJxMdkyH0CBKjOsEBc6yLg,51916
282
283
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
283
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=nix50a4yDR4z7FX4dEeT3TBSZRf66sHYWumITcEJ4UY,51386
284
- snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=61qkpUUTKUWVNIMK7sC-elUNzfr6FtMi5Fr9Z3srY-I,50848
285
- snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=a0O0NGClsBQrbC7--p9vIfF6D-zuogyF8TxHAIJsCs0,50842
286
- snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=pexrtxanFshhlfRL1GbOPRHp2Kw4n0ex1-FTKbLgzIw,50850
287
- snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=avMa179Pmb5eaU0U43AFJegbC5BDxxPnhl3Vi5oBE7I,50943
288
- snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=wRxpUQr4k2fm8O7YYRoeB1BrRyXvQh72j67n4sNsP90,51003
289
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=TnbKMWYj4ui8L1AjxXVUelcbhHg0aANZRe_r9Ov44uk,53782
290
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=i-CJH0XQbp_yqmmBQW8jMGqsKBJir38PQoZvUYloyLQ,50644
284
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=_i8BPYZQuD5LijKTxZOEy8n-8HXY4apJ8XfIkOja260,51386
285
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=XBGincwqKekefrb0bdCsyQTaKl_7xFd7r4M6HQZGEUI,50848
286
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=YFgNj8yg5dhDKHgLn7MFgXVy287FfkkadCNHR_XxGA8,50842
287
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=-lZ3pN_5xsHWwR8_9aZKclM37iTJR3IC0TjEMFyAzp4,50850
288
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=Ki51hfJQpQTDmyZB-LPyf1IApvHVBlK4YIMRX6XIqsE,50943
289
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=0nWnpn3vDlUEvekYP0wIakoVlD2jvlP337jfSSdtLDY,51003
290
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=Wm-zRXQaWe_CGjeOpG0QgLNupA1LcqO_LiZqB-ZPt80,53782
291
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=W4jZp49Km7ZMB9Xjch1V2qLn0G6_D7_FdLu6O0kBh2o,50644
291
292
  snowflake/ml/modeling/framework/_utils.py,sha256=UvB9hlvvUl_N6qQM-xIDcbtMr0oJQnlV1aTZCRUveQg,10197
292
293
  snowflake/ml/modeling/framework/base.py,sha256=DZAsRuPDV_NX7Epqfu2kHuT0oBdAVKPIX43L2Z63NP0,31943
293
294
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
294
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=aduPyn2geozr8vKsP5q0tZIjBf2Q3xUPAt2bkbzEmvI,56274
295
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=pQUdutVW3SUNFZhDIynvPKnhrW5ib8LcCbz3UNOkM3Y,55338
295
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=YXJ59B8PxPloA_PIDChaGhp5Xxt_SFFv6xWGfKkzFbE,56274
296
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=N-hZNj_getC9dRsMAn5nR3PZMHaiOuPN39-QwwDQYeA,55338
296
297
  snowflake/ml/modeling/impute/__init__.py,sha256=AUAyMIRsAF9Ocf7zDnGPYSvKgGfkR8LInyFvkC-7MiU,281
297
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=oCLli0ZSsYWxUE19anmPnoOvDFMzclWR-gXZpiaTVZU,57167
298
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=4H-9PI-wHPSvBkisyViyskkeH1yNxBGPcdsfRzAIf4M,52877
299
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=oIAoFiwpaYVYGGmUKFrOwvXzT69u-RvP7I8tiX7jTXc,51740
298
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=XbJhDI0YPWszcTOHPXeNjHNnfRgngOGb1E3Ms3GF9Wk,57167
299
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=MRCYvV-b6qsjDybRixBflzonYxchfeIylBQJt2R4oiw,52877
300
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=HPbwrS-JEdDklBcwiFjM3KDEqZ9bOJzhjChcNLgwWA8,51740
300
301
  snowflake/ml/modeling/impute/simple_imputer.py,sha256=Tznj3hrPZQSy6nnaOAWoWYuMcz1AwtzmtToG2l5t-d4,20934
301
302
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
302
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=3Gm_Vve-EI4kJQPLWC0OeCWSeJ0h6hWcx5dI2KEQ7r4,50774
303
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=uDivdkvNa0sFeEQncGx6AtaUO3VlnV-_o1Q76UjmIGw,52534
304
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=Pji_6I_IVABShOWXYb5tukclCzF4VZV1n9I06id3Xm8,51795
305
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=QuKDIYu4bntOnSG8Q9geB2fyD5wQx1jcx2bL5bSohuw,51138
306
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=iNOduIbLkC3F1WI_UNkTGFjIpojPX_5fsH6DotJuEx4,51193
303
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=_KY1t2lYWrO5bwxmB4Yuxys5_Lxn_GoZ3Haip3yLpBg,50774
304
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=Ep2To6H2NtEbvOZ0y3wleDck80H2jSS3uw7m07GnPWI,52534
305
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=wOxgRJX-sENWlW9bc1oy_kUlQq-JJiC4BiD4HBnYYd4,51795
306
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=KgJ16UlwvPuEiShUoYrSvo1d1DYbuE9lo9p1Pmpx1e0,51138
307
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=W0ZiXv5LWtazsKUX4j18kHEXDOyn74IDobKVT7VXncc,51193
307
308
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
308
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=gId-qhl4Enp3rlNb_1KfvP3SqSj-NNuMu1lwTeI9VdI,52642
309
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=vi-MtHMqKoBwZASDA_NeI7ADRRtdtJMDMMPfsFslEUM,52642
309
310
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
310
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=PSCx7L__aH4tnPAlxoYGcf1iSXRuAb-QqFdnjwYtScM,52145
311
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=SYTj57vjjgSV8awExIRIxtc5b8pwBJMOU9pTyyw6Mdo,51647
311
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=grssUaFzpCtljXEF2tMHQwtRF-ngeCzQQrl9epn6u5U,52145
312
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=Cm5tSfEvNvaajh6tJ_Zew3kongbz-HMRcoU-4NO47hk,51647
312
313
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
313
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=Gw4gyVGrMlPvkkzyOfPhs5JcRWR1Xke5gp5iXQ7jIbI,52402
314
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=-1o1eak3QCAuj4TxuzUSovxbt5TB9c5pq_hKQnaYEeg,52772
315
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=zQh4KoiP3LRJAI4rpfFBL3Wm-0OaO08NxllPaKlrPSQ,53790
316
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=Vnvhk7Kqa0-E2UAj8Fnz4uddF8WusaV7HYlLHQ0BTOM,54866
317
- snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=oFJgET3M0somaOMiqXSeqkWlLT7IDYPq3aK4-5Fgnkw,52655
318
- snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=t1XJjA4IJOxuwCtHNBmUlRQC4GMLMao1z0fYy7WjsmY,51852
319
- snowflake/ml/modeling/linear_model/lars.py,sha256=9EWnmtoXtQ7qfPDysIEscYI0URVW7Erz87faNHWSnB8,52558
320
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=MOVCchqvi3ig51Mdj4fxgIOnFQPT4IiOQwyNy994POI,52806
321
- snowflake/ml/modeling/linear_model/lasso.py,sha256=P4J8YiQGhce2aEQ3-Dt6zhJDi_435PUuRc6-AND20b0,53172
322
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=H301rhXQ6FLmRnllLa0Xj-bXhrqvX72iSQhtT6vnNr0,53984
323
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=i2VFYA3sDSdkxjzr0ZfP17G__AuZvF-4FSXpvq4ItIU,53699
324
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=dPOQ1taHXpEZiIxoAQM0_A60yb-h6sydB5QWpLw3yQ0,53687
325
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=laCliDcS1zCMNMXfsViJGOGnVK4c7RWrs1Lp5O-KLmQ,53008
326
- snowflake/ml/modeling/linear_model/linear_regression.py,sha256=Ff_lG_X-trFgRd1NTS8imvizRgXz4Bwcjc-E1J6DDdk,51396
327
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=ERAsDCJotCVSEZ0mV16TC2gE_jK_pCBGbEnDCZqLJzQ,58161
328
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=1EjeRpIhVOFgzEviAxMSxyQ_41frzpUAo1UixdVGX90,59225
329
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=UHtV00Q03_NC16quLOfseA4UXgh8taxnW5g41ewjqOs,52871
330
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=uDGIRgfM8igt3G7moQC7enGlxidKYvokk5aUUpioiCM,54536
331
- snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=lC1DwiYq77sIBgIN1wY0UIZgq39zlHIkzCKopzRJfqY,52414
332
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=5D7E6aQ1ai-KJAtrN3sPoOwFBz6JHUXtuSEzX7zL0UA,53703
333
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=3TX4B198YtQaOlgDQECkycdu5bHg2JDS-VKUQ_oxQmc,51619
334
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=IK6h28zVJRtM39D3aYmolORbYAN-w1pb073i1GOleIw,55443
335
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=_bTXS9tF6fLzvnuP3xl3UFtqPwc1CjjaYg8tvHufj3I,54505
336
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=TFSw4k_iVgJkCT-2mFY-iOwwQFeCcLODaVExLXWmV60,54760
337
- snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=_tHgFG75s9KWY09j0EVjYbzESVfc1n8mKcde9FoV_6Q,52702
338
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=-UbBiILWGC5QZ3ZgCJPCOWhS0rqIs5j-3f6cBRvamQk,55841
339
- snowflake/ml/modeling/linear_model/ridge.py,sha256=m44D16wifl6ddFPiTzDwvXEe5oN1T3SbRg3wznHmLuE,54716
340
- snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=poqerGrJudOW_uJ8TqWD9L7VlcMK7Ighq4-C_rI2tXE,55114
341
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=qi2FXUnAoBH9GYOCoT92DNiSLetuiASMPzpgXkK4Mz0,53579
342
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=Kp-7RKsryYRaPjOSDCi0KX3-XUX-0OxjlH30NXKlMic,54186
343
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=7paDupysLP2v9KwiLk2Kr8V7ga3m590SVX_9pPA1WCo,60171
344
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=9KnZ1bDYdxvTvBu26is0ZShldse5kzAePlmVbCg4RCs,55253
345
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=eMtVqclhBeK2SERRsSJDd9q_bKpAhFJvqVdcd0M_WUY,58148
346
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=tC-ZKgIh3jirmJQ4pz9q-gx_VAg2g1lU1W3ySBmqmUg,53138
347
- snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=n2b9wJ_JsjEP9eCtXXPVL0Zwyi8WAbcDy3Gox_x22f4,54093
314
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=qE5uEwXHMb99txngUIbv24zYuam6d_66U3c5wruNRwE,52402
315
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=qVyvtmx6JkXGkhsIfTuDi6jVBgQo4V3rD78IKeTWACM,52772
316
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=E55Ab1cZTZnWyZzQrf5gw1zLabZRbeOQtK1Umm1p8_I,53790
317
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=ffkqNL1XKp4VB4k_6kg5K1TIPoaYuRZXFnw8aHQk3Xw,54866
318
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=GM4TQsT_-D-ZyY441wuTNI568W77QDc8qFyiD1IPHrk,52655
319
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=kTIDIHetmOPhYevs-lWTXYsKmubPxK9WJHnoLcyaY9g,51852
320
+ snowflake/ml/modeling/linear_model/lars.py,sha256=Ht-c6BFl-7X4NBdMosO6gbNBrpeU9RfYeitvSWpXPrg,52558
321
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=63ql9r6AbC358Zoce9iRZMOlNGcBg4X9d2kwKKYqAaE,52806
322
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=7Pz9Cchm_SLR6hT0k-usaQu9JTtBOsDXVrO9XK7MgIQ,53172
323
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=DC0-rWFA_kkwpHG8Lpss9MKI4t7lTXUOFJhv8Kso-y0,53984
324
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=nWjowWXdYwg3HBQefxECS9HSrVzDKL0TqavmDyCJ4ak,53699
325
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=rnWvcIjhESu5oFrBNSMFUgNd1heMy2R4eBoU5uDK4vE,53687
326
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=CRKDqdSSg8e_O_xh4KpkT6ZZc5uYHcDlLO2iZ7y8GSw,53008
327
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=P7czaGDt0unf8XiGuT1kxDqs4M83cR9SXeBXBblyH-A,51396
328
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=mVsSRXF3eG7rbr413LOJnFRjdpOO5vJ3HlTvwsMteVI,58161
329
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=-dWY8Kjn1d1Ohe5kFZrIYUuImhtngAlgMmvbVHSqs2A,59225
330
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=rIuFEj5Ubh7wgu6bgr0xOTs6sGdpo6M1kqjTRGi1roA,52871
331
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=oT536Udjje2h6nUdWOBzzvyU1NDd-mGIAeCLMjOJjGo,54536
332
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=AcmJcDqJ8vd0b9-ZR_40ELuBlF43QuyR_VG69qVSGaw,52414
333
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=6vaAM-5_HoBD_7e439x77UOImJupaDqKrLRUfs5rxnc,53703
334
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=OesB3Rhay0Fk-8wR1nimTU3eCS8N54EBS414VSRhY3Q,51619
335
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=Q0sYa6R4F-jeg6RjZCn8EwhBk0rEcIsqV7PFWKpaL10,55443
336
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=bSU2Cz04zsCsjKKQflKFfYiAPiNSiTsIbyxNa1eCOEA,54505
337
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=rwwCJQP-EWcz3L_ZR1dd682fxHNU-yEjn2DPrIqlMJ0,54760
338
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=B-6XC6sesILABXKri4Wcu_v5ZJG5IfQffC7iogDEotY,52702
339
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=1lpy_diLoUHMygtnUoZzz4tWCYFAyDN897YXwGXOboI,55841
340
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=O3ZaC2f14CUEA7UEF659gAMhKtuUbDc0iRyOW9FnpxQ,54716
341
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=c5X3scInzUBMBFDSSNYXMk0ssfhcIP67rLPNWt6dNdY,55114
342
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=ehcdvzGbY_2SrGDKwToIRNjlMyEQfceFz98zZP98M1U,53579
343
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=yJ6Q0CEjouQIwEvyKxPZhK35RUJq8DdWMHWIsVKONps,54186
344
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=kKDs5UhXAy1R_5yMOVX9C5TxwV_pS2-IM1_xlonA9XU,60171
345
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=mnDNhh0w6_33DTiHmLq55fheA_DEHcM9seCxh4y0fU8,55253
346
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=wiv7LhJbv1b9h1P4P8u_3t4KeiqE9XYX80NdbI6ifGA,58148
347
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=1mF1fnSK5svvFpPhGsa9Nw0c8hA0UtocfDQHXtAVras,53138
348
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=_YqPRX01OXu0EbGSpmy5YPcK_LAQn5erYNSYHoOZJoM,54093
348
349
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
349
- snowflake/ml/modeling/manifold/isomap.py,sha256=40qlogth5GJ-OvbfwJ4uiNnAGy6toDMkgFrdhuvubv0,53396
350
- snowflake/ml/modeling/manifold/mds.py,sha256=kqtvzO4U7dMFvJyk7-dk_CO4KFqj4a52QdWqVlxC0F0,52612
351
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=3hoL1EeGhWHbskUhrqKopE6f-__TNwEBPk4FxX1fSao,53476
352
- snowflake/ml/modeling/manifold/tsne.py,sha256=LsguZKjlriDl-TGRyb7dM3LPBIhEnkzFfP8gxULJ9t8,56599
350
+ snowflake/ml/modeling/manifold/isomap.py,sha256=esYoXfVhCE974uIBS3HBrqEIl14ENK--qU7ZEm-4Y1g,53396
351
+ snowflake/ml/modeling/manifold/mds.py,sha256=PSZYcajFmeLSXz3q8ZNqXSGoKNLUxThWBcMONJ0MBXc,52612
352
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=20dNIWRVQBXdMViqC2dATxDWAAzKB4aQDFEu-5j1J5o,53476
353
+ snowflake/ml/modeling/manifold/tsne.py,sha256=ItqrwjT9tEQIMEwpyEfuKZ8vjVD25AJalwFSOsDuY_o,56599
353
354
  snowflake/ml/modeling/metrics/__init__.py,sha256=1lc1DCVNeo7D-gvvCjmpI5tFIIrOsEdEZMrQiXJnQ8E,507
354
355
  snowflake/ml/modeling/metrics/classification.py,sha256=UOc2w9iGkLzuleTpxCbfhAWpbli0HvNsGsN-r8G0ztI,66433
355
356
  snowflake/ml/modeling/metrics/correlation.py,sha256=N7GIT-EVlvyh_WMC-zOUzDUUQeKU1IXu4ocOjnx-WQo,5187
@@ -358,35 +359,35 @@ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=XuAjYfL437LCeBY8RMElunk8jg
358
359
  snowflake/ml/modeling/metrics/ranking.py,sha256=NwMdH_nubwdpIcCAZFEyafw_46uS9ULGdWkMgstGwjk,17774
359
360
  snowflake/ml/modeling/metrics/regression.py,sha256=qHUdhRkRssl2BDLyUyn5vZQqcrSVxp3TgTWa1kh1Mso,26052
360
361
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
361
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=BSU-QkKxHAhmXvvrvJNMRSD97i8big99ddn3prcG3tA,57984
362
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=LjF-eH_jVwiYHSYcYoKhAQdu1zbGh625-1wrWVOawN4,55877
362
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=HuctDH43vdnDMxQ7PDd9ULHrj6UyLkWC-e1rFlMVEAs,57984
363
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=0X6bn_ELPylzm48MTkmvyUU5kfKNH9pDYIxbfmA4m9o,55877
363
364
  snowflake/ml/modeling/model_selection/__init__.py,sha256=AUAyMIRsAF9Ocf7zDnGPYSvKgGfkR8LInyFvkC-7MiU,281
364
365
  snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=MN2ShNWFKDJYU8-ofhNfef3zAsGyPMAzfToC6EuQMs4,38358
365
366
  snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=E5i1AsL50HV9A25JkUUTEQZkX4EVJqrFP2T9EOW5B4U,39100
366
367
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
367
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=RFKcpcQ6V67zYA8B8Ie_HegCKcC7WP8mb7fw5vCLBOc,51398
368
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=jGJYLbIoGoe5YApV15c1-U66Ru5MEjjipmJWbMz1uUQ,52333
369
- snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=JzN-_s5-HB8iYn008dfRYBm0vVXUakHGp7g0F6E0yaM,51670
368
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=dHfpAxfwElq12NKUDTclfz8e0_cXKKwkNyW9M-9y5Ds,51398
369
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=PeoWfMty0HoFyCuDjqETFRCfLMztdZ-b6l4fCP9G5LM,52333
370
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=gv6LdLxlC7aUME93jgFjTqaVn7swuhy-YkTEMc9SRQ4,51670
370
371
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
371
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=FF2aeMo3SPtzPJaS3uxWtbqOe9QELkWfLKy2mr2VyL0,51925
372
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=2PZm3AjauUH6JwJV1qKkH6P4VJyx1nmA_qUc5gDKtxU,52262
373
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=m9E8wrfEWdz-nZa6YbeQ6HKEkMHvlJ9rN_gIRug-qTs,51941
374
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=MD5opflzY1Z6RkvTO__q8bz-dO1byZACNXlk8RtHuqw,51073
375
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=Rph7Qx7AaILxFiRwkmxLcq9Mp7tcB9Zldnk_TGnjM7E,51707
372
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=w9pqjMTr1FPWFpj-TfiIp9FK3iX39q3oxesvVFizZJ8,51925
373
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=thsPKeqzAVQW2UBNGPcVV7wfRQ_4GErW_5Zy6XyLmyg,52262
374
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=XSeVs1c2zUVxpdNJSG4x6GddgTAIzHqS3NIxatwbT9c,51941
375
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=j6LuA1lodgAdfNUhlhrWfLu3lp3FILFZhxYBWVFIjB0,51073
376
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=cbwK9KBIwbq54ynYTQDqjpwiWYLPHIlInCu-vKmQLlU,51707
376
377
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
377
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=DV0nOvJOON9nGjnVUQ-ZGTo6tDYZVwwZ9x0rx_F92xQ,55039
378
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=Gmm1EuNwVRP8Tg_JQgsUZQAkGV5FLAoQuXPhElBI1W8,54405
379
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=V0BvTtIbqoKLC8YxtucLOsEOhvqn3f7dk6t27Pqhnj8,52694
380
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=iMBCeK3MWsVQaTCHzpnwDykFJ01Qt6H6W7C1WvjN92M,55270
381
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=DMhr-Liybn0-xjtOamrlZDlGOFvRjXWbQcHZUpkto7k,50858
382
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=H_uFZBPw_TzQJ2ss1JUwkzawJR55SXYkChOSHwddrlU,53177
383
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=d1yhmcaF_ykTEM9l8CIOfIBvwmEig1MhDG6pPBPsznA,54759
384
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=8x2CFYZ8PJc1auXzsrfJaon1qh44N7MUk4wIw2C4XmA,55488
385
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=VVaX6vWhonNGEWozb-tvfCw1yr22lzfrNHs1PFwgHD8,54088
378
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=8JMw-E6pkwBdIbR89upDpnua3t93RY_TkHkuk-bz6A0,55039
379
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=gymYv49yXY5dgKyfKD2vcdlXDl7UucsKxEZIEE7npwM,54405
380
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=pJQ16nlowsBaJbGYQoeY59CMBoOXsbVFnscDJ7ssVIc,52694
381
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=sJAg9jov2G0ctLW6XGmVEp9da2QSdoFkPWYN9KA874c,55270
382
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=Q_vzM5pEwPT1a6fsOCKFPF_3ZjEU23fHtmBWnnHPW70,50858
383
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=UrYrKtV8wEx3IegaM1vzUqVSVpZ7826DgRQp7B_HveE,53177
384
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=ESWQNhF4V46IE2ODhG37xO5HsWkWMf0c74gZGIkfwzg,54759
385
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=aXuMzbPVLTM5kQ9dvc0QFwQiDIl-ZpA3x_A4Pu4RAr8,55488
386
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=VxqvxIO1RyoZbDQ8QR_h8zPjfyaABub1PRbArI8UWO8,54088
386
387
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
387
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=Yc-lI8mnWqrFw4eA6eDkBUcQoNRCWelefdyuI0BG5IY,51901
388
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=jqweN_4dDGdUVTWk-YbMPrgwu1HB6UJqlIo2ekX7qIM,59455
389
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=oI9lQJlJcB6YkAZz3MEpZgr-yA89XfW80JNIPqmx2aQ,58567
388
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=0nr3Oz3GdvMvxJfFrz8LtuzIs5NHugNAtodCME8Sers,51901
389
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=mEzHV5pK0bnqZRAkta2hrGDE9R9tulx7GWKKMxu_bio,59455
390
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=BNsMgfy6iKsO9yqjsWfrJo_BHoHtKKTMyhAbIz03wPc,58567
390
391
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
391
392
  snowflake/ml/modeling/parameters/disable_model_tracer.py,sha256=uj6SZz7HQpThGLs90zfUDcNMChxf0C6DKRN2xOfjmvI,203
392
393
  snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
@@ -401,29 +402,29 @@ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=NappHtB3aOPDstBFkc-
401
402
  snowflake/ml/modeling/preprocessing/normalizer.py,sha256=rVlTClMkFz2N12vlV5pbKBMLJ14FU9XOd1p064Wv1lU,6984
402
403
  snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=JWwBI5Ew1pwyMmJRmvEEnfkNn4zR-p4BbpgqGHQpFVQ,75160
403
404
  snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=FLPX9ix3dWUe2_8GdEZ9v4MWPzoYfp8Ig6B5w4svPcQ,35307
404
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=SKYrRTkTS9Jsx2l0jTRoVrWyzWqJUw7StnOlfp-3pBw,51843
405
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=tBmKu9s0Eyo9ttfOE0Nlr6yDhI3gJxNbSwjbKsA-T2w,51843
405
406
  snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=XW9d7z0JlQlmkcsNxfEgf78uOmb0T2uQd4B-vfyA8zY,12634
406
407
  snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=V-9LbiD5G-RXGayLMnsC4wh9EQx0rw3bAou1gARWtIQ,11761
407
408
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
408
- snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=swPlF0NThzMS-3bCa28R6NWh9i-lpngshdKtp6yamVc,52172
409
- snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=jkDezUzyTieSWdPj0w3xMXwePeqVeAlmPDmIylzmcBg,52519
409
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=f5tRqYgJFX9ziRgFChYmT9A6_xtWkWecc2y3O3SEYr0,52172
410
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=jJktppNOpPXp44VeMWhYT4FwLhnwfAUih3srCILC9Ew,52519
410
411
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
411
- snowflake/ml/modeling/svm/linear_svc.py,sha256=H5uBK6-hIbZ07UBuLk8cT4fOCr6IWJAAoiEl5NkoQR0,55744
412
- snowflake/ml/modeling/svm/linear_svr.py,sha256=RoT53AR6Mxf51Qz7iUiDOx9bbx6sVHj7TQuqFDuodUA,53927
413
- snowflake/ml/modeling/svm/nu_svc.py,sha256=UlEqjXs6a1nLoAew4HMRUEc44eCeKgQUM2Zzz-nE61M,55412
414
- snowflake/ml/modeling/svm/nu_svr.py,sha256=5iKVXl-VNItqx90T6LdiFfp826JpU43pXnPpCDVmTv0,52526
415
- snowflake/ml/modeling/svm/svc.py,sha256=xrz4ewWJPcuUHKddohzRdMi-jGY6CbmbiHjopf_7h9w,55726
416
- snowflake/ml/modeling/svm/svr.py,sha256=72iX4D41zCQoJzwsHVkCnILlT_DlGRwAPgAoRImgRGE,52705
412
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=UBHP70BWaYG8UF3LrP6e_m_ONzrt257HN2Yh9o4Qj3U,55744
413
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=UhncOs6t0E8n9EJWG2GlL2yVVI5IdfduqAsgXjKyc-4,53927
414
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=qhkYr0mbZykMM6BHe911BxAUDU7ALcIrIbKgpb57T4s,55412
415
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=e9xt_5Ibtv1TTEOQTyPWLeBBVuHH-BEtfAwrNGkZ0lU,52526
416
+ snowflake/ml/modeling/svm/svc.py,sha256=41cdwUsK_cEvYrcEgURuUWA3yxvzTWF5kenEse-yLx4,55726
417
+ snowflake/ml/modeling/svm/svr.py,sha256=nEXrDSEMBeAe02IjhhXt-fXSvQUqprn-uaSL7V3eXU4,52705
417
418
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
418
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=D9p2cce4dsg8LtUpWSAMXrw2zPHrzBxV4qwJPIabLhA,58512
419
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=kUCcY_Zx7s8XMbTVuEJr_DyyOQIhXBa43NVFSfFgCcg,57060
420
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=MmWQQoB1weztkYYlbqick8QLhRfihHk9oKDC8KCsJBs,57823
421
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=kbWsKxEKXpPg-5IK3K9BWTdpO49jPCANdFB5Ihn5xRw,56408
419
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=3vBtoCHWGIZN5Y_YVQMzZOvHxXAfLD9wnW4AtTetk6Y,58512
420
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=yxJXTTwuIZDqCNgDcQgMu4b3gj9dP_4p1z2HWumtRzo,57060
421
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=FclUl67xDWQkVkUdK23i-pIWYzWEFT5vMjmgAG_UU2Y,57823
422
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=bFAXk7WfzdDmomPOYiJrxabPUUEBGDguOBulWjEiOfw,56408
422
423
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
423
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=q0KnKqzxkLjg4c8FjKF343k-PyvdqpnQIkKyK7Fohwk,63977
424
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=-k0ZHkTZkVybwNTbnRkR4O0MglbPvqbyD8M58daeN04,63580
425
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=e7WgTxM3xHVxkOIhgUWnDrvFt1lZIGPJel4LhIGk46I,64253
426
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=tnCllaN_BEgRybZcxyvI3vZYzsEpCIIM7oGEPgF6y60,63778
424
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=dpJ7Y4ZRjejDxvE1vmxNUVIpg187GRnnNi-vnHQOvYk,63977
425
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=huczAVSfD5XpsXwxjC3fiaRnr_NLz1qtNyW0H_zIa6w,63580
426
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=9ZyYqcdsx7nUQsrNJFMBohySPhZpFZHkbyL66-2vOJQ,64253
427
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=Zvl3atGaaZpOjI5XizLsLqWuHWA3B-M59jGzYtjkq14,63778
427
428
  snowflake/ml/monitoring/explain_visualize.py,sha256=Vj4x7ClGvXY42HQzFcvVr1CbO_vVfZv6eZn_jV9N9gk,16145
428
429
  snowflake/ml/monitoring/model_monitor.py,sha256=m-1eeQIhAYAvFQ-8mjMQ-PTzCpnN9XEcWpdHdQuEEus,4707
429
430
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
@@ -433,16 +434,16 @@ snowflake/ml/monitoring/_client/queries/rmse.ssql,sha256=OEJiSStRz9-qKoZaFvmubtY
433
434
  snowflake/ml/monitoring/_manager/model_monitor_manager.py,sha256=Aouj5ojRk28Na7TnCDPke13MEezHdVXC7WG1CBq4LoQ,10702
434
435
  snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=tKjYuzBmnpomIogmXcLyJlHfoCBgguulav8TOdzu0lQ,2053
435
436
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
436
- snowflake/ml/registry/registry.py,sha256=Ro7flVHv3FnEU9Ly3zWRnDAqWiwRSOA2uw_MSKmCBTI,32936
437
- snowflake/ml/registry/_manager/model_manager.py,sha256=Yu-coZcJtvmGDal3kaE_Z9EzfpYX5HnMIOWfz2x0J40,17632
438
- snowflake/ml/registry/_manager/model_parameter_reconciler.py,sha256=UU1ek5ozzatPyHLy5KwNaOxOQJMvlyz-ePzOchfTLY8,13982
439
- snowflake/ml/utils/authentication.py,sha256=E1at4TIAQRDZDsMXSbrKvSJaT6_kSYJBkkr37vU9P2s,2606
437
+ snowflake/ml/registry/registry.py,sha256=GLQCuHKbNPZH2lbT4gkhf3fbw8RfhCIn1nrnh_kWZoI,34531
438
+ snowflake/ml/registry/_manager/model_manager.py,sha256=X0a_MKcwFGAtXGCt0jeELtnfloVvESxD3ZD3D__HAv8,17657
439
+ snowflake/ml/registry/_manager/model_parameter_reconciler.py,sha256=QsnIp9bspUo7wqGwn2o78YewsNDOgYp3eQtfJ_Rf2Tc,15332
440
+ snowflake/ml/utils/authentication.py,sha256=TQV3E8YDHAPXA3dS8JWDmb_Zm8P0d9c8kCexRI4nefo,3106
440
441
  snowflake/ml/utils/connection_params.py,sha256=NSBUgcs-DXPRHs1BKpxdSubbJx1yrFRlMPBp-bE3Ugc,8308
441
442
  snowflake/ml/utils/html_utils.py,sha256=L4pzpvFd20SIk4rie2kTAtcQjbxBHfjKmxonMAT2OoA,7665
442
443
  snowflake/ml/utils/sparse.py,sha256=zLBNh-ynhGpKH5TFtopk0YLkHGvv0yq1q-sV59YQKgg,3819
443
444
  snowflake/ml/utils/sql_client.py,sha256=pSe2od6Pkh-8NwG3D-xqN76_uNf-ohOtVbT55HeQg1Y,668
444
- snowflake_ml_python-1.15.0.dist-info/licenses/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
445
- snowflake_ml_python-1.15.0.dist-info/METADATA,sha256=rfPqEjkTc1DS2kDyP6bcwF_EgjzI_q1MfYsRWgUHZ-Y,94545
446
- snowflake_ml_python-1.15.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
447
- snowflake_ml_python-1.15.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
448
- snowflake_ml_python-1.15.0.dist-info/RECORD,,
445
+ snowflake_ml_python-1.16.0.dist-info/licenses/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
446
+ snowflake_ml_python-1.16.0.dist-info/METADATA,sha256=sHObJCXSJ0RKqaUrM_jSwLZiR1VA65K_B4kumAwXIvg,95756
447
+ snowflake_ml_python-1.16.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
448
+ snowflake_ml_python-1.16.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
449
+ snowflake_ml_python-1.16.0.dist-info/RECORD,,