snowflake-ml-python 1.14.0__py3-none-any.whl → 1.16.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (193) hide show
  1. snowflake/ml/_internal/platform_capabilities.py +13 -7
  2. snowflake/ml/_internal/utils/connection_params.py +5 -3
  3. snowflake/ml/_internal/utils/jwt_generator.py +3 -2
  4. snowflake/ml/_internal/utils/mixins.py +24 -9
  5. snowflake/ml/_internal/utils/temp_file_utils.py +1 -2
  6. snowflake/ml/experiment/_client/experiment_tracking_sql_client.py +16 -3
  7. snowflake/ml/experiment/_entities/__init__.py +2 -1
  8. snowflake/ml/experiment/_entities/run.py +0 -15
  9. snowflake/ml/experiment/_entities/run_metadata.py +3 -51
  10. snowflake/ml/experiment/experiment_tracking.py +71 -27
  11. snowflake/ml/jobs/_utils/spec_utils.py +49 -11
  12. snowflake/ml/jobs/manager.py +20 -0
  13. snowflake/ml/model/__init__.py +12 -2
  14. snowflake/ml/model/_client/model/batch_inference_specs.py +16 -4
  15. snowflake/ml/model/_client/model/inference_engine_utils.py +55 -0
  16. snowflake/ml/model/_client/model/model_version_impl.py +30 -62
  17. snowflake/ml/model/_client/ops/service_ops.py +68 -7
  18. snowflake/ml/model/_client/service/model_deployment_spec.py +1 -1
  19. snowflake/ml/model/_client/sql/service.py +29 -2
  20. snowflake/ml/model/_client/sql/stage.py +8 -0
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +1 -0
  22. snowflake/ml/model/_model_composer/model_method/model_method.py +25 -2
  23. snowflake/ml/model/_packager/model_env/model_env.py +26 -16
  24. snowflake/ml/model/_packager/model_handlers/_utils.py +4 -2
  25. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +7 -5
  26. snowflake/ml/model/_packager/model_packager.py +4 -3
  27. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +1 -2
  28. snowflake/ml/model/_signatures/utils.py +0 -21
  29. snowflake/ml/model/models/huggingface_pipeline.py +56 -21
  30. snowflake/ml/model/type_hints.py +13 -0
  31. snowflake/ml/model/volatility.py +34 -0
  32. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +1 -1
  33. snowflake/ml/modeling/cluster/affinity_propagation.py +1 -1
  34. snowflake/ml/modeling/cluster/agglomerative_clustering.py +1 -1
  35. snowflake/ml/modeling/cluster/birch.py +1 -1
  36. snowflake/ml/modeling/cluster/bisecting_k_means.py +1 -1
  37. snowflake/ml/modeling/cluster/dbscan.py +1 -1
  38. snowflake/ml/modeling/cluster/feature_agglomeration.py +1 -1
  39. snowflake/ml/modeling/cluster/k_means.py +1 -1
  40. snowflake/ml/modeling/cluster/mean_shift.py +1 -1
  41. snowflake/ml/modeling/cluster/mini_batch_k_means.py +1 -1
  42. snowflake/ml/modeling/cluster/optics.py +1 -1
  43. snowflake/ml/modeling/cluster/spectral_biclustering.py +1 -1
  44. snowflake/ml/modeling/cluster/spectral_clustering.py +1 -1
  45. snowflake/ml/modeling/cluster/spectral_coclustering.py +1 -1
  46. snowflake/ml/modeling/compose/column_transformer.py +1 -1
  47. snowflake/ml/modeling/compose/transformed_target_regressor.py +1 -1
  48. snowflake/ml/modeling/covariance/elliptic_envelope.py +1 -1
  49. snowflake/ml/modeling/covariance/empirical_covariance.py +1 -1
  50. snowflake/ml/modeling/covariance/graphical_lasso.py +1 -1
  51. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +1 -1
  52. snowflake/ml/modeling/covariance/ledoit_wolf.py +1 -1
  53. snowflake/ml/modeling/covariance/min_cov_det.py +1 -1
  54. snowflake/ml/modeling/covariance/oas.py +1 -1
  55. snowflake/ml/modeling/covariance/shrunk_covariance.py +1 -1
  56. snowflake/ml/modeling/decomposition/dictionary_learning.py +1 -1
  57. snowflake/ml/modeling/decomposition/factor_analysis.py +1 -1
  58. snowflake/ml/modeling/decomposition/fast_ica.py +1 -1
  59. snowflake/ml/modeling/decomposition/incremental_pca.py +1 -1
  60. snowflake/ml/modeling/decomposition/kernel_pca.py +1 -1
  61. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +1 -1
  62. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +1 -1
  63. snowflake/ml/modeling/decomposition/pca.py +1 -1
  64. snowflake/ml/modeling/decomposition/sparse_pca.py +1 -1
  65. snowflake/ml/modeling/decomposition/truncated_svd.py +1 -1
  66. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +1 -1
  67. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +1 -1
  68. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +1 -1
  69. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +1 -1
  70. snowflake/ml/modeling/ensemble/bagging_classifier.py +1 -1
  71. snowflake/ml/modeling/ensemble/bagging_regressor.py +1 -1
  72. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +1 -1
  73. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +1 -1
  74. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +1 -1
  75. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +1 -1
  76. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +1 -1
  77. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +1 -1
  78. snowflake/ml/modeling/ensemble/isolation_forest.py +1 -1
  79. snowflake/ml/modeling/ensemble/random_forest_classifier.py +1 -1
  80. snowflake/ml/modeling/ensemble/random_forest_regressor.py +1 -1
  81. snowflake/ml/modeling/ensemble/stacking_regressor.py +1 -1
  82. snowflake/ml/modeling/ensemble/voting_classifier.py +1 -1
  83. snowflake/ml/modeling/ensemble/voting_regressor.py +1 -1
  84. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +1 -1
  85. snowflake/ml/modeling/feature_selection/select_fdr.py +1 -1
  86. snowflake/ml/modeling/feature_selection/select_fpr.py +1 -1
  87. snowflake/ml/modeling/feature_selection/select_fwe.py +1 -1
  88. snowflake/ml/modeling/feature_selection/select_k_best.py +1 -1
  89. snowflake/ml/modeling/feature_selection/select_percentile.py +1 -1
  90. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +1 -1
  91. snowflake/ml/modeling/feature_selection/variance_threshold.py +1 -1
  92. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +1 -1
  93. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +1 -1
  94. snowflake/ml/modeling/impute/iterative_imputer.py +1 -1
  95. snowflake/ml/modeling/impute/knn_imputer.py +1 -1
  96. snowflake/ml/modeling/impute/missing_indicator.py +1 -1
  97. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +1 -1
  98. snowflake/ml/modeling/kernel_approximation/nystroem.py +1 -1
  99. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +1 -1
  100. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +1 -1
  101. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +1 -1
  102. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +1 -1
  103. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +1 -1
  104. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +1 -1
  105. snowflake/ml/modeling/linear_model/ard_regression.py +1 -1
  106. snowflake/ml/modeling/linear_model/bayesian_ridge.py +1 -1
  107. snowflake/ml/modeling/linear_model/elastic_net.py +1 -1
  108. snowflake/ml/modeling/linear_model/elastic_net_cv.py +1 -1
  109. snowflake/ml/modeling/linear_model/gamma_regressor.py +1 -1
  110. snowflake/ml/modeling/linear_model/huber_regressor.py +1 -1
  111. snowflake/ml/modeling/linear_model/lars.py +1 -1
  112. snowflake/ml/modeling/linear_model/lars_cv.py +1 -1
  113. snowflake/ml/modeling/linear_model/lasso.py +1 -1
  114. snowflake/ml/modeling/linear_model/lasso_cv.py +1 -1
  115. snowflake/ml/modeling/linear_model/lasso_lars.py +1 -1
  116. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +1 -1
  117. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +1 -1
  118. snowflake/ml/modeling/linear_model/linear_regression.py +1 -1
  119. snowflake/ml/modeling/linear_model/logistic_regression.py +1 -1
  120. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +1 -1
  121. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +1 -1
  122. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +1 -1
  123. snowflake/ml/modeling/linear_model/multi_task_lasso.py +1 -1
  124. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +1 -1
  125. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +1 -1
  126. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +1 -1
  127. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +1 -1
  128. snowflake/ml/modeling/linear_model/perceptron.py +1 -1
  129. snowflake/ml/modeling/linear_model/poisson_regressor.py +1 -1
  130. snowflake/ml/modeling/linear_model/ransac_regressor.py +1 -1
  131. snowflake/ml/modeling/linear_model/ridge.py +1 -1
  132. snowflake/ml/modeling/linear_model/ridge_classifier.py +1 -1
  133. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +1 -1
  134. snowflake/ml/modeling/linear_model/ridge_cv.py +1 -1
  135. snowflake/ml/modeling/linear_model/sgd_classifier.py +1 -1
  136. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +1 -1
  137. snowflake/ml/modeling/linear_model/sgd_regressor.py +1 -1
  138. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +1 -1
  139. snowflake/ml/modeling/linear_model/tweedie_regressor.py +1 -1
  140. snowflake/ml/modeling/manifold/isomap.py +1 -1
  141. snowflake/ml/modeling/manifold/mds.py +1 -1
  142. snowflake/ml/modeling/manifold/spectral_embedding.py +1 -1
  143. snowflake/ml/modeling/manifold/tsne.py +1 -1
  144. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +1 -1
  145. snowflake/ml/modeling/mixture/gaussian_mixture.py +1 -1
  146. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +1 -1
  147. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +1 -1
  148. snowflake/ml/modeling/multiclass/output_code_classifier.py +1 -1
  149. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +1 -1
  150. snowflake/ml/modeling/naive_bayes/categorical_nb.py +1 -1
  151. snowflake/ml/modeling/naive_bayes/complement_nb.py +1 -1
  152. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +1 -1
  153. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +1 -1
  154. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +1 -1
  155. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +1 -1
  156. snowflake/ml/modeling/neighbors/kernel_density.py +1 -1
  157. snowflake/ml/modeling/neighbors/local_outlier_factor.py +1 -1
  158. snowflake/ml/modeling/neighbors/nearest_centroid.py +1 -1
  159. snowflake/ml/modeling/neighbors/nearest_neighbors.py +1 -1
  160. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +1 -1
  161. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +1 -1
  162. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +1 -1
  163. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +1 -1
  164. snowflake/ml/modeling/neural_network/mlp_classifier.py +1 -1
  165. snowflake/ml/modeling/neural_network/mlp_regressor.py +1 -1
  166. snowflake/ml/modeling/preprocessing/polynomial_features.py +1 -1
  167. snowflake/ml/modeling/semi_supervised/label_propagation.py +1 -1
  168. snowflake/ml/modeling/semi_supervised/label_spreading.py +1 -1
  169. snowflake/ml/modeling/svm/linear_svc.py +1 -1
  170. snowflake/ml/modeling/svm/linear_svr.py +1 -1
  171. snowflake/ml/modeling/svm/nu_svc.py +1 -1
  172. snowflake/ml/modeling/svm/nu_svr.py +1 -1
  173. snowflake/ml/modeling/svm/svc.py +1 -1
  174. snowflake/ml/modeling/svm/svr.py +1 -1
  175. snowflake/ml/modeling/tree/decision_tree_classifier.py +1 -1
  176. snowflake/ml/modeling/tree/decision_tree_regressor.py +1 -1
  177. snowflake/ml/modeling/tree/extra_tree_classifier.py +1 -1
  178. snowflake/ml/modeling/tree/extra_tree_regressor.py +1 -1
  179. snowflake/ml/modeling/xgboost/xgb_classifier.py +1 -1
  180. snowflake/ml/modeling/xgboost/xgb_regressor.py +1 -1
  181. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +1 -1
  182. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +1 -1
  183. snowflake/ml/registry/_manager/model_manager.py +2 -1
  184. snowflake/ml/registry/_manager/model_parameter_reconciler.py +29 -2
  185. snowflake/ml/registry/registry.py +15 -0
  186. snowflake/ml/utils/authentication.py +16 -0
  187. snowflake/ml/utils/connection_params.py +5 -3
  188. snowflake/ml/version.py +1 -1
  189. {snowflake_ml_python-1.14.0.dist-info → snowflake_ml_python-1.16.0.dist-info}/METADATA +81 -36
  190. {snowflake_ml_python-1.14.0.dist-info → snowflake_ml_python-1.16.0.dist-info}/RECORD +193 -191
  191. {snowflake_ml_python-1.14.0.dist-info → snowflake_ml_python-1.16.0.dist-info}/WHEEL +0 -0
  192. {snowflake_ml_python-1.14.0.dist-info → snowflake_ml_python-1.16.0.dist-info}/licenses/LICENSE.txt +0 -0
  193. {snowflake_ml_python-1.14.0.dist-info → snowflake_ml_python-1.16.0.dist-info}/top_level.txt +0 -0
@@ -10,13 +10,13 @@ snowflake/cortex/_sse_client.py,sha256=sLYgqAfTOPADCnaWH2RWAJi8KbU_7gSRsTUDcDD5T
10
10
  snowflake/cortex/_summarize.py,sha256=7GH8zqfIdOiHA5w4b6EvJEKEWhaTrL4YA6iDGbn7BNM,1307
11
11
  snowflake/cortex/_translate.py,sha256=9ZGjvAnJFisbzJ_bXnt4pyug5UzhHJRXW8AhGQEersM,1652
12
12
  snowflake/cortex/_util.py,sha256=krNTpbkFLXwdFqy1bd0xi7ZmOzOHRnIfHdQCPiLZJxk,3288
13
- snowflake/ml/version.py,sha256=wzImQ4oymKajm6ceymlVQpiY0JE0h0m59Li3mBS-xlE,99
13
+ snowflake/ml/version.py,sha256=zo4wv3_2on676LLh7nL4I4AC6CM54PzfNBPoXameD38,99
14
14
  snowflake/ml/_internal/env.py,sha256=EY_2KVe8oR3LgKWdaeRb5rRU-NDNXJppPDsFJmMZUUY,265
15
15
  snowflake/ml/_internal/env_utils.py,sha256=x6ID94g6FYoMX3afp0zoUHzBvuvPyiE2F6RDpxx5Cq0,30967
16
16
  snowflake/ml/_internal/file_utils.py,sha256=7sA6loOeSfmGP4yx16P4usT9ZtRqG3ycnXu7_Tk7dOs,14206
17
17
  snowflake/ml/_internal/init_utils.py,sha256=WhrlvS-xcmKErSpwg6cUk6XDQ5lQcwDqPJnU7cooMIg,2672
18
18
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
19
- snowflake/ml/_internal/platform_capabilities.py,sha256=HkTr2RI5oR54QNmwg3FTrqs0ygOV-fwGkKsWb30WKvQ,7344
19
+ snowflake/ml/_internal/platform_capabilities.py,sha256=5cpeKpsxCObjOsPIz38noIusWw4n5KXOvPqRPiF3Kj4,7627
20
20
  snowflake/ml/_internal/relax_version_strategy.py,sha256=MYEIZrx1HfKNhl9Na3GN50ipX8c0MKIj9nwxjB0IC0Y,484
21
21
  snowflake/ml/_internal/telemetry.py,sha256=GCut6xG7SvAV8JRCxuQjvno9t7cLGLByECpMNUY1q30,31867
22
22
  snowflake/ml/_internal/type_utils.py,sha256=bNNW0I9rOvwhx-Y274vGd0qWA0fMIPA3SGnaDE09wvc,2198
@@ -34,13 +34,13 @@ snowflake/ml/_internal/human_readable_id/animals.txt,sha256=GDLzMwzxiL07PhIMxw4t
34
34
  snowflake/ml/_internal/human_readable_id/hrid_generator.py,sha256=LYWB86qZgsVBvnc6Q5VjfDOmnGSQU3cTRKfId_nJSPY,1341
35
35
  snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=_Egc-L0DKWgug1WaJebLCayKcljr2WdPuqH5uIoR1Kg,4469
36
36
  snowflake/ml/_internal/lineage/lineage_utils.py,sha256=-_PKuznsL_w38rVj3wXgbPdm6XkcbnABrU4v4GwZQcg,3426
37
- snowflake/ml/_internal/utils/connection_params.py,sha256=ejtI-_vYt7tpxCZKjOBzuGyrOxh251xc-ekahQP9XZ4,8196
37
+ snowflake/ml/_internal/utils/connection_params.py,sha256=u-o4KTg4GnA6qVJgnN5mJQ9RS0TPu6Lw_ehkpB949Ok,8222
38
38
  snowflake/ml/_internal/utils/db_utils.py,sha256=HlxdMrgV8UpnxvfKDM-ZR5N566eWZLC-mE291ByrPEQ,1662
39
39
  snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
40
40
  snowflake/ml/_internal/utils/identifier.py,sha256=HrcCBOyn93fRjMj4K1YJG37ONtw7e3EZnt29LzhEgLA,12586
41
41
  snowflake/ml/_internal/utils/import_utils.py,sha256=msvUDaCcJpAcNCS-5Ynz4F1CvUhXjRsuZyOv1rN6Yhk,3213
42
- snowflake/ml/_internal/utils/jwt_generator.py,sha256=bj7Ltnw68WjRcxtV9t5xrTRvV5ETnvovB-o3Y8QWNBg,5357
43
- snowflake/ml/_internal/utils/mixins.py,sha256=YSdf7UzpiR2N6Xv2Rbjw_BpIt8vsyd9Rlc3DJSXWGNM,3139
42
+ snowflake/ml/_internal/utils/jwt_generator.py,sha256=X8D_bjVRnpcSCuJFjrA71KBJDRFXD_73tVu4VL9agpE,5441
43
+ snowflake/ml/_internal/utils/mixins.py,sha256=0_jJN_-iNvLim0-GsJ4geqK4Ja91O-M527uWzj3vBtw,3511
44
44
  snowflake/ml/_internal/utils/parallelize.py,sha256=l8Zjo-hp8zqoLgHxBlpz9Zmn2Z-MRQ0fS_NnrR4jWR8,4522
45
45
  snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=EaY_3IsVOZ9BCH28F5VLjp-0AiEqDlL7L715vkPsgrY,5149
46
46
  snowflake/ml/_internal/utils/query_result_checker.py,sha256=1PR41Xn9BUIXvp-UmJ9FgEbj8WfgU7RUhz3PqvvVQ5E,10656
@@ -50,7 +50,7 @@ snowflake/ml/_internal/utils/snowflake_env.py,sha256=k4ddzs8iJpRpVvgbbOtU8j4fUvq
50
50
  snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=tm2leAu_oDTNUQZJ98UpKtS79k-A-c72pKxd-8AE-tg,6353
51
51
  snowflake/ml/_internal/utils/sql_identifier.py,sha256=YHIwXpb8E1U6LVUVpT8q7s9ZygONAXKPVMD4IucwXx8,4669
52
52
  snowflake/ml/_internal/utils/table_manager.py,sha256=Wf3JXLUzdCiffKF9PJj7edHY7usCXNNZf1P0jRWff-E,4963
53
- snowflake/ml/_internal/utils/temp_file_utils.py,sha256=0-HTjXdxVt0kE6XcgyvRvY0btflWlmotP2bMXVpFJPA,1553
53
+ snowflake/ml/_internal/utils/temp_file_utils.py,sha256=eHyyvxHfj4Z3FIS6VWgNyw5bFjNi5cSGYmY1hzyqzwY,1534
54
54
  snowflake/ml/data/__init__.py,sha256=nm5VhN98Lzxr4kb679kglQfqbDbHhd9zYsnFJiQiThg,351
55
55
  snowflake/ml/data/data_connector.py,sha256=4k1QmwsRBbydr-2HUgNIIclo-4-U22jbIWm6g4OAxs0,10560
56
56
  snowflake/ml/data/data_ingestor.py,sha256=0TFc8qo4TZwdHMaBUBTZ7T8kkZfLGVmStvEx9KrXPHU,1165
@@ -65,14 +65,14 @@ snowflake/ml/dataset/dataset_metadata.py,sha256=lcNvugBkP8YEkGMQqaV8SlHs5mwUKsUS
65
65
  snowflake/ml/dataset/dataset_reader.py,sha256=mZsG9HyWUGgfotrGkLrunyEsOm_659mH-Sn2OyG6A-Q,5036
66
66
  snowflake/ml/experiment/__init__.py,sha256=r7qdyPd3jwxzqvksim2ju5j_LrnYQrta0ZI6XpWUqmc,109
67
67
  snowflake/ml/experiment/_experiment_info.py,sha256=iaJ65x6nzBYJ5djleSOzBtMpZUJCUDlRpaDw0pu-dcU,2533
68
- snowflake/ml/experiment/experiment_tracking.py,sha256=fvn3EvkMiE9_Ls-ShiRIuvtfFUc6vVbyKioiwD38A6I,15483
68
+ snowflake/ml/experiment/experiment_tracking.py,sha256=5WEZpI19MCbqbozpWG88Ba7Kd5v7JvfNDvJA-tscMwo,17418
69
69
  snowflake/ml/experiment/utils.py,sha256=3bpbkilc5vvFjnti-kcyhhjAd9Ga3LqiKqJDwORiATY,628
70
70
  snowflake/ml/experiment/_client/artifact.py,sha256=R2WB4Y_kqv43BWLfXv8SEDINn1Bnevzgb-mH5LyvgGk,3035
71
- snowflake/ml/experiment/_client/experiment_tracking_sql_client.py,sha256=v1NwaNcBCOiff8mHShelbVl0Rm94BnwqqnG_KTEmI2E,6692
72
- snowflake/ml/experiment/_entities/__init__.py,sha256=ThrslBFuDxOUvdS8j_bVmEaEAms8nR1aY0ocYFnVPFg,155
71
+ snowflake/ml/experiment/_client/experiment_tracking_sql_client.py,sha256=0cR2aTQa9uB9D7s5AStZ9gOAJe3SL7rFebttvpqkZFk,7250
72
+ snowflake/ml/experiment/_entities/__init__.py,sha256=11XxkvAzosydf5owNmMzLwXZdQ2NtNKRM-MMra4ND2k,247
73
73
  snowflake/ml/experiment/_entities/experiment.py,sha256=lKmQj59K8fGDWVwRqeIesxorrChb-m78vX_WUmI7PV0,225
74
- snowflake/ml/experiment/_entities/run.py,sha256=_bWt1YpP8iulg5jeBXMXw8zGZHr9zSE9IVIBHcCdfto,2293
75
- snowflake/ml/experiment/_entities/run_metadata.py,sha256=j8V2N6QBAx4TP4h7MLIPXqquYI8KyNZnkW6wzm-peuY,1589
74
+ snowflake/ml/experiment/_entities/run.py,sha256=JkhiS4UZWuRm3ZSLgc2uktedeag5Voih2r02YFr6DQk,1621
75
+ snowflake/ml/experiment/_entities/run_metadata.py,sha256=25cIg8FnAYHk5SoTg_StzL10_BkomL7xrhMmWxUTU8E,366
76
76
  snowflake/ml/experiment/callback/keras.py,sha256=7oq23irYkBV7bLFBCxxKlf9pL4YuDFJDCZ8xtffVRFI,2547
77
77
  snowflake/ml/experiment/callback/lightgbm.py,sha256=5co7eR_t651cq1WTK9JCQjhSlYc2oIvxaf3aVnVOlR4,2613
78
78
  snowflake/ml/experiment/callback/xgboost.py,sha256=eZMRFAebMERwdqMFm7i6S9wkHD7_VLcwIP0OkWHDOMM,2621
@@ -111,7 +111,7 @@ snowflake/ml/fileset/stage_fs.py,sha256=V4pysouSKKDPLzuW3u_extxfvjkQa5OlwIRES9Sr
111
111
  snowflake/ml/jobs/__init__.py,sha256=v-v9-SA1Vy-M98B31-NlqJgpI6uEg9jEEghJLub1RUY,468
112
112
  snowflake/ml/jobs/decorators.py,sha256=mQgdWvvCwD7q79cSFKZHKegXGh2j1u8WM64UD3lCKr4,3428
113
113
  snowflake/ml/jobs/job.py,sha256=VFBogPXXTWa0p-Jl10lSUFyKeqGQOtbzJIgrWTPA0rQ,22222
114
- snowflake/ml/jobs/manager.py,sha256=1tOpEE66gQv36BmmYnUIQ2yjS1r-uAHxIQht6ilucO8,27276
114
+ snowflake/ml/jobs/manager.py,sha256=kRv4LyNP_dgKSpbPRfQWAOYUHxRj92PIujiJfgSf9Tc,28610
115
115
  snowflake/ml/jobs/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
116
116
  snowflake/ml/jobs/_utils/constants.py,sha256=JB8i85VbI0nIYP_c2nyAADQcmEF8BscVHHKBGhruofY,3838
117
117
  snowflake/ml/jobs/_utils/feature_flags.py,sha256=cH_NyeOncL3_tzbk0WvL1siNyodxBgn1ziPk2yBW6wY,404
@@ -120,7 +120,7 @@ snowflake/ml/jobs/_utils/interop_utils.py,sha256=7mODMTjKCLXkJloACG6_9b2wvmRgjXF
120
120
  snowflake/ml/jobs/_utils/payload_utils.py,sha256=1Xon3jlBgzfv1SQgQkJ1ir3xt9PVviP8-UC6P-FOmwc,30807
121
121
  snowflake/ml/jobs/_utils/query_helper.py,sha256=1-XK-y4iukbR1693qAELprRbHmJDM4YoEBHov8IYbHU,1115
122
122
  snowflake/ml/jobs/_utils/runtime_env_utils.py,sha256=fqa3ctf_CAOSv1zT__01Qp9T058mKgMjXuEkBZqKUqA,2247
123
- snowflake/ml/jobs/_utils/spec_utils.py,sha256=_USJN0H7wjprPcS5p6SbAUQJOQjljEbLcdMrtnBkRrM,14751
123
+ snowflake/ml/jobs/_utils/spec_utils.py,sha256=dVhz4AVRqVOkULgc4PyQmtBRYw8SL21-YfpN27w4hVI,16269
124
124
  snowflake/ml/jobs/_utils/stage_utils.py,sha256=38-LsokaGx0NzlnP8CMRioClRz-3x6xhPiZIgl2CB9g,5224
125
125
  snowflake/ml/jobs/_utils/types.py,sha256=AGLu0kPTNRUki26rah_KBwWp0bBJEtUP3zcfxkj5kB0,2326
126
126
  snowflake/ml/jobs/_utils/scripts/constants.py,sha256=YyIWZqQPYOTtgCY6SfyJjk2A98I5RQVmrOuLtET5Pqg,173
@@ -130,7 +130,7 @@ snowflake/ml/jobs/_utils/scripts/signal_workers.py,sha256=AR1Pylkm4-FGh10WXfrCtc
130
130
  snowflake/ml/jobs/_utils/scripts/worker_shutdown_listener.py,sha256=SeJ8v5XDriwHAjIGpcQkwVP-f-lO9QIdVjVD7Fkgafs,7893
131
131
  snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCrzI4,65
132
132
  snowflake/ml/lineage/lineage_node.py,sha256=SA0rbbI67rMr1qTMs4bAVkvqVtuKNI4lIaO5w0S-IXE,5767
133
- snowflake/ml/model/__init__.py,sha256=S9Q77g_uxiSVkPd8fbMsP7h3y3lp0sj6UJQYH9OdeO4,467
133
+ snowflake/ml/model/__init__.py,sha256=78w63Y250_m2zsN6eamZAZ2ovPpxk2ZCYOClTwJS1-s,567
134
134
  snowflake/ml/model/custom_model.py,sha256=fDhMObqlyzD_qQG1Bq6HHkBN1w3Qzg9e81JWPiqRfc4,12249
135
135
  snowflake/ml/model/event_handler.py,sha256=pojleQVM9TPNeDvliTvon2Sfxqbf2WWxrOebo1SaEHo,7211
136
136
  snowflake/ml/model/inference_engine.py,sha256=L0nwySY2Qwp3JzuRpPS87r0--m3HTUNUgZXYyOPJjyk,66
@@ -138,39 +138,41 @@ snowflake/ml/model/model_signature.py,sha256=RH62vv4YmrQugTXLsh6kyuzfTs9_yz8a0TM
138
138
  snowflake/ml/model/openai_signatures.py,sha256=ZVnHDgaOA6RcvtSP3HIbHVgr3scJH2gG_9QvZidn41g,2630
139
139
  snowflake/ml/model/target_platform.py,sha256=H5d-wtuKQyVlq9x33vPtYZAlR5ka0ytcKRYgwlKl0bQ,390
140
140
  snowflake/ml/model/task.py,sha256=Zp5JaLB-YfX5p_HSaw81P3J7UnycQq5EMa87A35VOaQ,286
141
- snowflake/ml/model/type_hints.py,sha256=G0kp85-ksnYoAUHRdXxLFQBLq3XURuqYOpu_YeKEaNA,9847
142
- snowflake/ml/model/_client/model/batch_inference_specs.py,sha256=kzS7YfrBxZ8QTsWE4vx7jMyOjTopPOmGZSqc1t6cCqc,611
141
+ snowflake/ml/model/type_hints.py,sha256=VmP8qr60V9mBZYuTeGRWIZP3w14NXERNExrXQLx3jWI,10836
142
+ snowflake/ml/model/volatility.py,sha256=qu-wqe9oKkRwXwE2qkKygxTWzUypQYEk3UjsqOGRl_I,1144
143
+ snowflake/ml/model/_client/model/batch_inference_specs.py,sha256=FFzNvP-OHO1gFBfqXz89T5HMheFGfsx7P5_5Ze_QYvM,957
144
+ snowflake/ml/model/_client/model/inference_engine_utils.py,sha256=lOqZzySZygeWqHTNYGBYgpTRfEst9f7lX50Ku8k950g,1966
143
145
  snowflake/ml/model/_client/model/model_impl.py,sha256=Yabrbir5vPMOnsVmQJ23YN7vqhi756Jcm6pfO8Aq92o,17469
144
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=VxIekIwBCyo4tfZJ0M2DzYzDPHgRTffsMHjJD8giqUw,54380
146
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=DgdbEWkgAvfvO-xO_Bg-qFzwfAGT6tst-7sW_TZzQ3Q,53232
145
147
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=qpK6PL3OyfuhyOmpvLCpHLy6vCxbZbp1HlEvakFGwv4,4884
146
148
  snowflake/ml/model/_client/ops/model_ops.py,sha256=XGQB62Nc4ld86I7wJzuJGkmbrI38wIBm4egsZptdrM8,50394
147
- snowflake/ml/model/_client/ops/service_ops.py,sha256=qJRXYswDruVuH8e2DjQY8l6hq-x4DipA-uPfZzTDfT0,43655
148
- snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=LxdhU1m4YGc1MNyApQ0IyUetcH4IXOmwYOY9X3wjznY,19499
149
+ snowflake/ml/model/_client/ops/service_ops.py,sha256=gUmYDvXnacachE9OK92HGYbZ7ec9WEsrDRsOgOckhbI,47036
150
+ snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=Ro2kAM_rfMccMjW23RpP6qDPq090vAIUv_he-8GE68k,19487
149
151
  snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=QpDso2bjx2eCRKIG4-ppc3z46B7hgYMZehOTRoR9IJs,2425
150
152
  snowflake/ml/model/_client/sql/_base.py,sha256=Qrm8M92g3MHb-QnSLUlbd8iVKCRxLhG_zr5M2qmXwJ8,1473
151
153
  snowflake/ml/model/_client/sql/model.py,sha256=nstZ8zR7MkXVEfhqLt7PWMik6dZr06nzq7VsF5NVNow,5840
152
154
  snowflake/ml/model/_client/sql/model_version.py,sha256=QwzFlDH5laTqK2qF7SJQSbt28DgspWj3R11l-yD1Da0,23496
153
- snowflake/ml/model/_client/sql/service.py,sha256=npggGj24DnguaBEuJ7vzy-gmY5OrygyAcyhHW47icAM,10458
154
- snowflake/ml/model/_client/sql/stage.py,sha256=2gxYNtmEXricwxeACVUr63OUDCy_iQvCi-kRT4qQtBA,887
155
+ snowflake/ml/model/_client/sql/service.py,sha256=0aXyRDZIFCgBq6TEG6qdhc7wtCsmphpyBXuSoNyLmTw,11630
156
+ snowflake/ml/model/_client/sql/stage.py,sha256=1TWYIVoWIeNwhVG9uqwmNpmKcC6x45LrbxCtzJW7fi4,1214
155
157
  snowflake/ml/model/_client/sql/tag.py,sha256=9sI0VoldKmsfToWSjMQddozPPGCxYUI6n0gPBiqd6x8,4333
156
158
  snowflake/ml/model/_model_composer/model_composer.py,sha256=Xqi-sxmkBoZl383LQAXhMQkq9KsAS0A3ythC5bN3EOU,8292
157
159
  snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=y6lu1_4UC7pfosBKofc0dl-LWF8mpcTqhY5sKSkUH_I,9247
158
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=Oc_PvWG3u0E2pb35w4uMYQdDFEuHdUdOb2gnqnVLE3Q,2917
160
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=vfuZQ4YADfLcEvJYTSqVMsLfxCO-QWsFFzLXI1NoMXk,2950
159
161
  snowflake/ml/model/_model_composer/model_method/constants.py,sha256=hoJwIopSdZiYn0fGq15_NiirC0l02d5LEs2D-4J_tPk,35
160
162
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=nnUJki3bJVCTF3gZ-usZW3xQ6wwlJ08EfNsPAgsnI3s,2625
161
163
  snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=olysEb_bE2C8CjIRAhm7qdr2mtgk77Tx45gnLRVQGFw,1511
162
164
  snowflake/ml/model/_model_composer/model_method/infer_partitioned.py_template,sha256=8p8jkTOJA-mBt5cuGhcWSH4z7ySQ9xevC35UioCLkC8,1539
163
165
  snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=QT32N6akQDutLh00cXp2OD4WI6Gb7IGG1snsnrXNih8,1453
164
- snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=NhTAkjRlfHqOEfDtm2U6LdkiVDUufwP9cC7sjsJiUwA,7167
166
+ snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=4H1-1N8lQpkqgHXWlzvj7u8joF5okt1cwais08BUm7k,8229
165
167
  snowflake/ml/model/_model_composer/model_user_file/model_user_file.py,sha256=dYNgg8P9p6nRH47-OLxZIbt_Ja3t1VPGNQ0qJtpGuAw,1018
166
168
  snowflake/ml/model/_packager/model_handler.py,sha256=qZB5FVRWZD5wDdm6vuuoXnDFar7i2nHarbe8iZRCLPo,2630
167
- snowflake/ml/model/_packager/model_packager.py,sha256=FBuepy_W8ZTd4gsQHLnCj-EhO0H2wvjL556YRKOKsO8,6061
168
- snowflake/ml/model/_packager/model_env/model_env.py,sha256=tWZVz0KOt5CixAk5P317XzdejNPbN3EG_oWlIg-9EC0,19571
169
+ snowflake/ml/model/_packager/model_packager.py,sha256=6-1MnGUR8nxB86A13nCZcWbET_Q6fSEOlyfcbTv7xCI,6087
170
+ snowflake/ml/model/_packager/model_env/model_env.py,sha256=sQeElFH7qW3-dXTHWO48xCtlBrKCNJgeNEorad4t2cU,20231
169
171
  snowflake/ml/model/_packager/model_handlers/_base.py,sha256=OZhGv7nyej3PqaoBz021uGa40T06d9rv-kDcKUY3VnM,7152
170
- snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=8y-LfiBfoj2txQD4Yh_GM0eEEOrm1S0R1149J5z31O0,12572
172
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=DIN1oKCl4DytNcH1xP3fGl4BHaEmQ_RGoKuysFiWz7s,12599
171
173
  snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=dbI2QizGZS04l6ehgXb3oy5YSXrlwRHz8YENVefEbms,10676
172
174
  snowflake/ml/model/_packager/model_handlers/custom.py,sha256=fM_13N5ejT0Ta0-M_Uzsqr_TwGVk_3jSjsLJiMEfyR4,8514
173
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=iIYDJljLRW22XNQn8fLCSHTZfMW5x8m-7hyO40mMSPA,37045
175
+ snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=4k05ouWc7qxTMX-tXJ4z9KJHWPcVF62vIkoM1XwBTAc,37246
174
176
  snowflake/ml/model/_packager/model_handlers/keras.py,sha256=JKBCiJEjc41zaoEhsen7rnlyPo2RBuEqG9Vq6JR_Cq0,8696
175
177
  snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=DAFMiqpXEUmKqeq5rgn5j6rtuwScNnuiMUBwS4OyC7Q,11074
176
178
  snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=xSpoXO0UOfBUpzx2W1O8P2WF0Xi1vrZ_J-DdgzQG0o8,9177
@@ -192,7 +194,7 @@ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=UGPTjzxLBUKn
192
194
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=8zTgq3n6TBXv7Vcwmf7b9wjK3m-9HHMsY0Qy1Rs-sZ4,1305
193
195
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=5butM-lyaDRhCAO2BaCOIQufpAxAfSAinsNuGqbbjMU,1029
194
196
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=cyZVvBGM3nF1IVqDKfYstLCchNO-ZhSkPvLM4aU7J5c,2066
195
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=LEhIRVHqSrSWzc5B1g_sPknbyjv1-JrE4sXUqBQ_tM4,936
197
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=xtyKWzGDR9IrUsS1p63RCdFifP0bZqKR-Re8Hq6ZkB8,912
196
198
  snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=xEf-S9QurEOeQzrNxlc-4-S_VkHsVO1eNS4UR0hWwHU,5495
197
199
  snowflake/ml/model/_packager/model_task/model_task_utils.py,sha256=_nm3Irl5W6Oa8_OnJyp3bLeA9QAbV9ygGCsgHI70GX4,6641
198
200
  snowflake/ml/model/_signatures/base_handler.py,sha256=4CTZKKbg4WIz_CmXjyVy8tKZW-5OFcz0J8XVPHm2dfQ,1269
@@ -204,8 +206,8 @@ snowflake/ml/model/_signatures/pandas_handler.py,sha256=Gz2olwWzT4Kb3yBH0uYn3o92
204
206
  snowflake/ml/model/_signatures/pytorch_handler.py,sha256=Xy-ITCCX_EgHcyIIqeYSDUIvE2kiqECa8swy1hmohyc,5036
205
207
  snowflake/ml/model/_signatures/snowpark_handler.py,sha256=aNGPa2v0kTMuSZ80NBdHeAWYva0Nc1vo17ZjQwIjf2E,7621
206
208
  snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=_yrvMg-w_jJoYuyrGXKPX4Dv7Vt8z1e6xIKiWGuZcc4,5660
207
- snowflake/ml/model/_signatures/utils.py,sha256=RY4ZNWKCQhEJ80N5fb4TdjZLQ7ktYTzUqjpwbtZgtX4,17285
208
- snowflake/ml/model/models/huggingface_pipeline.py,sha256=jSUihxi6TygN-nsf0wy70fg349buQghlJZVSItJ-TOA,20783
209
+ snowflake/ml/model/_signatures/utils.py,sha256=NYZwDtuMV91ryJflBhfrRnu1sq45ej30uEo9_scNbhg,16387
210
+ snowflake/ml/model/models/huggingface_pipeline.py,sha256=zx5OXigB6La6GDJxjsy4PkZtE2eIkZ2cbSBBxlmqyfU,22601
209
211
  snowflake/ml/modeling/_internal/estimator_utils.py,sha256=dfPPWO-RHf5C3Tya3VQ4KEqoa32pm-WKwRrjzjDInLk,13956
210
212
  snowflake/ml/modeling/_internal/model_specifications.py,sha256=3wFMcKPCSoiEzU7Mx6RVem89BRlBBENpX__-Rd7GwdU,4851
211
213
  snowflake/ml/modeling/_internal/model_trainer.py,sha256=5Ck1lbdyzcd-TpzAxEyovIN9fjaaVIqugyMHXt0wzH0,971
@@ -220,135 +222,135 @@ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sh
220
222
  snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=xem3xtoOHi_HFoi85wvSx7F1BhzxVrGYqMhuyrFz4Ik,32919
221
223
  snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=Cu_ywcFzlkflbUvJ5C8rNk1H3YwRDEhVdsyngNcjE2Q,17282
222
224
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
223
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=4h420OqHN2JYG7FKYwAwT3RG03sOh8u9vdTnabRr-cY,54177
225
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=UfQ3LkyxPC2F8USLcofkiCPz_7uFXWx69pzr81JfE18,54177
224
226
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
225
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=hhEEDmf_7Rcd0_nh4PKhQuLEbOcq6F5Q7UgaxIBoxE0,52430
226
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=P88_8O5B9BijnAwkUErVIk59go3tTNC1qlNAnAyAx3M,54343
227
- snowflake/ml/modeling/cluster/birch.py,sha256=1tqVZGRHa44TT-Q15eBYa4pfBkMq2aOtM_T5zw5AFBY,52343
228
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=muIuhv-fC-rAAN-Q4eT9Lz2vmYYY4f6owfhyy441MBA,55112
229
- snowflake/ml/modeling/cluster/dbscan.py,sha256=lP3GhtEm4SvZKfzLRFUMIohDQORmgYTEeRX3xt3hEls,52684
230
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=b2KooSg3jLLOazr9itI6txGi2EhWb0DmR2nZJk7TjOU,54637
231
- snowflake/ml/modeling/cluster/k_means.py,sha256=TvMN2o8xqxTVHmaONgHIeEylSUyX1eYGAkxLrlJmK_s,54838
232
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=bwZNCGb12LWReRI5dIXlT0CY2frdCB9wI1-rPTWPL8g,52717
233
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=xSeHFzoXTUAWQfr0ekaXZ7-POh9_bzc6kl2oD0sRvKg,56035
234
- snowflake/ml/modeling/cluster/optics.py,sha256=0EeDzyeRR28SyQSS5t-bLgWbnwilN7OzR5cJ26D2QPE,55894
235
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=fs57CErGTlvZqxVrAESBHj3IuaMbJsZX9GZG1hDS39U,52727
236
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=qzZe8QUOTCCjx975p5Xg7J8i6L_DQep6RETCTRvpNE8,56011
237
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=uYuiIBFR1T44tXuSZdQVPam8eUNSBrcXDSw4e36yRco,51860
227
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=hadj1D4P2aopYF8fvMW5NQs9rRxwixUbPh7DglAwNjY,52430
228
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=r_ee-8Ut1efRT00tzp_A0AzzOZVQm9qsO2fsp9eYZb4,54343
229
+ snowflake/ml/modeling/cluster/birch.py,sha256=XUAi_HEbnyODFE0sQN5ApoqU2xazKTYOTz-pivktTiM,52343
230
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=8KBcfC5saYxf9JdlF9ArDfQGXc9Te3ghwSNPZxB7rfE,55112
231
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=6ylpEDWucFLKNhIA40U9kjnjCUIocW1fYLSNnciQf_E,52684
232
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=n5jlCJ5I7DrsTQ5Hu7vLhlbLe5sY9Ujw3gPu8x3qibo,54637
233
+ snowflake/ml/modeling/cluster/k_means.py,sha256=jYKJRZx0H2YEzS4srU-Gm33qxdFqODkqDjRrwhqiIOQ,54838
234
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=3Wb4_3fNn7Md9MtGMvk8j4DQJQBHxgoCzJX0MnTG7YE,52717
235
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=g6mc-aod2dZ6HEo_AbAxRnKnxSnppY2t36F_zEYI9_M,56035
236
+ snowflake/ml/modeling/cluster/optics.py,sha256=6y5UNdBsr0_iFGZfC283d4jzigdHIUh4mVnNX8LCJDQ,55894
237
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=W0pfmV1nqeEgwCbQHfCiCmlR-uLbqqkQt6DsOiEz3hE,52727
238
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=BaWzosF4klydr4-dUi-k5-VsF297lSD13WejrL247eQ,56011
239
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=CfcDKKo4m-CrxySNnNWpCXVUGRzYjdXFogjqFna43VY,51860
238
240
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
239
- snowflake/ml/modeling/compose/column_transformer.py,sha256=LHcJ39mmAwlqryf2-8pXVdP8kuXeIwC9S8tDvUaLAG8,55185
240
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=TCYzw4WkdQBmyOBbDI3dWUWq3qta4Foiqw7enLl7f_s,52472
241
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=wHZzO0uMokTNZod5Bl13AAK-jUqxP7sdVjHA-Lr33jQ,55185
242
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=x4GsmeSeMT4eUTIzAnmtNocFVbJ8V07vmoMb2Q5-2Qk,52472
241
243
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
242
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=udQIgxCcl7UI0wg81Jt6n0gw-CqZ6430g-biGXM31j8,52761
243
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=UpR2fJ4tVAn2_FKqQKsfYptOY1t3hEnZfweVMp2drtU,50559
244
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=IjvlmpKDQXsnXRmTypisGVKAjfYMOT-7nwcatmrGY80,52418
245
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=E5ZQB1Lu7vt9wdEtHBJlX0IpLb_fyeVFXdQqEqISHg8,53610
246
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=GO83MDcAFqxHu2IANpSghyTV7AM0d2Y-97BBqiNK0-Q,50688
247
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=sPOYsy80WTsriKmrZUii097Ok7O9jMsRfmDEpNizLzs,51455
248
- snowflake/ml/modeling/covariance/oas.py,sha256=LlGWvL00tQaSku23a1_PZCivln8KmwXX8N37v6fREJE,50302
249
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=nrU72bUxnhuyZ5q_DV5mvhk40FJmjjREd-sTtAzLuik,50711
244
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=dpoDhSNtQXyqPUjpWm1qu8LyCy84_JUlugElWV3DrQU,52761
245
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=SqMBF3G3jhGCtr45e7HucK_F8NXrtJ8WOgQKw3XU8r8,50559
246
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=5mrYpgYaplXAn9iUwiDvJfyRnw8p2iY7sS0KM47GlSk,52418
247
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=-jpQ9bxodaCg9cAj8GlNCjaSSuDafpJajAyTIWIBv3E,53610
248
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=OFXGlTXDBflRvhMlc82SH2vZfRbH5M0M5QxwkSFDYSg,50688
249
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=Tq9SBSIW9IsOiUU1f5THMgvOgkwvXRLXHWxfOoaVheY,51455
250
+ snowflake/ml/modeling/covariance/oas.py,sha256=rUneEzX-bh81RlO9KYjSOKymGJrLjoedOcTVBJvafUc,50302
251
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=GvCkQ43XTlMTwARnmznEZFQ6ggMidZDEuoTKReVVYyo,50711
250
252
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
251
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=4BCi3SpwYLXtkT9tltU8MeDEGK8OnZ0HY6QOtleWLS4,55710
252
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=OiR42u5l2FfX1gmr9hNtxczwzSS4azf_LX7g8k4jg3s,53369
253
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=bKK3xDuichdh11HWHy3od1feEqL0nJXU0b3SWk_GypA,53296
254
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=KH_qcARGUK16j-cHWC9nOoyWRYfTVX1wWdo2XCq0T-s,51663
255
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=nuxqk1FLSJEY8YqJgcLFelG46fcRP6vr_HUDDXeMEx0,55653
256
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=9egcKgnjZOxR71x-7Kg06-U4Bz1pCjSU2zWvVEe6_WU,56442
257
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=oV9ajBzClXmWKYrrEC0KfyohI0SwBsMAuwxl99fpu7k,53705
258
- snowflake/ml/modeling/decomposition/pca.py,sha256=_ybuLQHLf-nueGRY1UJt9ICmL1X3bOvH-c-PRTJewqw,55873
259
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=VI3xl-hXhPqiqS-2n9O8Z60WrkLfROJ-fkcrsm1s1vM,52812
260
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=EdCwIHZbriYswrb5DZ0spWTQ2z2JXwzWWqa2PO_Mabs,52438
253
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=KFQIq5SSHZJB8WkYdBg6Pz_3kc7hW5ayP-NiRyMEPTI,55710
254
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=tqCtzp0_KGwyzZDntUvtDim-jnFyzIjn9EqnN9LEghM,53369
255
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=LMdy8unD_uZuUp19dOUwMJb1bSO7KGrckFz2lRduASk,53296
256
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=3TxugnCnnzkvn7KPTWSwRhWN7q0iwDZOfM31SolQwWI,51663
257
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=PO_cBLyuWIEkwxYn6HcL8_fRB1lp4AKZv-PYmQ2MJzE,55653
258
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=pWEH8s_fx3RfUxMJ9kjPQxDYkoYfRd403eV6T2BadyY,56442
259
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=UsEF3Gx-mLBSTZ0TdbDPzOnYy7Dg4d4ilMjElB4kPnc,53705
260
+ snowflake/ml/modeling/decomposition/pca.py,sha256=-jr-tqa8hjH9eQCakOF494rYQLCEZx84I0xiA27Rf4w,55873
261
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=ZxzfWAX9MU3MpHlRmXv1Vucq5djT27UfLtBv2Z7O6GM,52812
262
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=whEN3QTQtLIqr9grcWgrtu3T74s5ZjYtaDEdWVhRJ4g,52438
261
263
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
262
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=_OG85UPee-TMgmj-cozucFwMRs0AmDnA6yHkBtSjTbM,55329
263
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=cqWVxZzmm0eZbqwseotsVLeXWHeVoue9t0wBUfTTfAw,52908
264
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=vReAbbyJmFOYOIDGevUMy3EmYVKodAoXfdIc4Zc0vqU,55329
265
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=GqxuN0NfakfJFCfbzhxUc1zzewJI9xcUwL8E6zVoKXw,52908
264
266
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
265
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=X6OnK0zNWQ0awL1B9wqLd713OsiSSRmXmOaEaeIWlx0,53110
266
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=8ETFFsCb1UjeC8-smV7alpPz3gx_PNuEczsnmsJ-DfE,52113
267
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=rtc5OKzthDFd9LrT-3v1iDX5NjPnResPbNqJBZyiadk,54302
268
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=G4hMysxv8WmdK7Ng7skgljUIQqUVy-zJNeEQ515i898,53537
269
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=RrC6X3K5KurJl_QTF_Fq9MCn7RPikidDk1sQlEc3Dxw,60351
270
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=eM42h5z0pj7At5xASxs_Dq4Sgfkj8GaGaqQurXzIKqI,58804
271
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=H4pv_EMvoX0vwowg0Zy26zvJYFK1ILji-HGDFjTNaX8,61110
272
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=sY43QWkOhyH0C_70ASi-BoN_zv7UnIozxXf9scM1iT0,60702
273
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=JHWxXKtuAGN6ZZt5XQLxQBpm9eWYsFOQ8YrDYzG2rKE,61596
274
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=UDCLnxaGN657vPWsUS7n8FuOTIHP9BXhJj1Gr6m-lHo,59931
275
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=u7dSxs_iFN-7a3Wy2RTymUBkSbEAyBjE24o4rJy1aiQ,53895
276
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=nmjQDX__xwZfHWDEXKbfSFj0IdhhYugMQQcDXv9SwvE,60324
277
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=g45YEEvmzgWR4IDFINcJ8drHHeoCgvFiI3duciFxwqI,58777
278
- snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=ho6T70nctk2mvMk4gqcScqBSuuI0AHhogmSLcl6lsBQ,53839
279
- snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=5ol0kwo9QxsRew7oMoxd70tjdseomR4hX-AL-e54CQg,53391
280
- snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=yKsAYuM3gEqzhJg-h5bpu_ynv6gGNbmEj_j9kJIyjKs,51916
267
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=6IJdYNzatIu8lszix4rR9cw5RYIIwP-mZKrwTI7ncqY,53110
268
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=l0x1Be5suxu3qp_Lh6HdUDd-IMImwU_QtNPnyepafaM,52113
269
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=n6o0QHxasJq2Ow73dvtTIOKtVauuLdRuFcIb4NYneNo,54302
270
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=ZXEPFxr7-Dz0HPrc9q2nS2Llzf75gq0_JMDkgG39lx0,53537
271
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=tAzYm74a7b8y1vwXWmWda8M5Zvdplb44HsKrJ6Z9Quk,60351
272
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=g3gRPHvRebgMB8SOgboZ8wpdilrkNQVLbM463H7MaH0,58804
273
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=ybndeYIft3GFmK0VxV5yTI4UonsHOk6km0w29KDpP-s,61110
274
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=jGWYuMnsz55dry8F3WY-DTSPTM9VMZwtpINePA8HGro,60702
275
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=6-W9aOGHxtJhOetfI_hUuz2K8Xegx2I4LevxRHchaQs,61596
276
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=VH38-J59oal0fPMLm5AU-pjEngwvHUAqt-4f7mnD17o,59931
277
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=KUB8KYDqQEYUr0xILteLRHZIwOc4wAt7Y-kiNzAevO0,53895
278
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=d4fyJwoUf8iC-mf5djW8bTDBxbn7CZoVKVmn5IbFlD8,60324
279
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=0fMOVAlISm4rXSMeJZ_HyIoNtaifFpNQd9M56mh44ns,58777
280
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=XLSNj1P7Ag_3b4cMC0k3Kc0b8TZIAV8mmbFnm4-PCyM,53839
281
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=Le_bB-WEopBqUQqYzMux2wuUOmNcg_CpW-yGa4dr7ew,53391
282
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=7BgxytdhCWP7YWldyg-AYgJxMdkyH0CBKjOsEBc6yLg,51916
281
283
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
282
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=nix50a4yDR4z7FX4dEeT3TBSZRf66sHYWumITcEJ4UY,51386
283
- snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=61qkpUUTKUWVNIMK7sC-elUNzfr6FtMi5Fr9Z3srY-I,50848
284
- snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=a0O0NGClsBQrbC7--p9vIfF6D-zuogyF8TxHAIJsCs0,50842
285
- snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=pexrtxanFshhlfRL1GbOPRHp2Kw4n0ex1-FTKbLgzIw,50850
286
- snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=avMa179Pmb5eaU0U43AFJegbC5BDxxPnhl3Vi5oBE7I,50943
287
- snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=wRxpUQr4k2fm8O7YYRoeB1BrRyXvQh72j67n4sNsP90,51003
288
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=TnbKMWYj4ui8L1AjxXVUelcbhHg0aANZRe_r9Ov44uk,53782
289
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=i-CJH0XQbp_yqmmBQW8jMGqsKBJir38PQoZvUYloyLQ,50644
284
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=_i8BPYZQuD5LijKTxZOEy8n-8HXY4apJ8XfIkOja260,51386
285
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=XBGincwqKekefrb0bdCsyQTaKl_7xFd7r4M6HQZGEUI,50848
286
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=YFgNj8yg5dhDKHgLn7MFgXVy287FfkkadCNHR_XxGA8,50842
287
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=-lZ3pN_5xsHWwR8_9aZKclM37iTJR3IC0TjEMFyAzp4,50850
288
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=Ki51hfJQpQTDmyZB-LPyf1IApvHVBlK4YIMRX6XIqsE,50943
289
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=0nWnpn3vDlUEvekYP0wIakoVlD2jvlP337jfSSdtLDY,51003
290
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=Wm-zRXQaWe_CGjeOpG0QgLNupA1LcqO_LiZqB-ZPt80,53782
291
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=W4jZp49Km7ZMB9Xjch1V2qLn0G6_D7_FdLu6O0kBh2o,50644
290
292
  snowflake/ml/modeling/framework/_utils.py,sha256=UvB9hlvvUl_N6qQM-xIDcbtMr0oJQnlV1aTZCRUveQg,10197
291
293
  snowflake/ml/modeling/framework/base.py,sha256=DZAsRuPDV_NX7Epqfu2kHuT0oBdAVKPIX43L2Z63NP0,31943
292
294
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
293
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=aduPyn2geozr8vKsP5q0tZIjBf2Q3xUPAt2bkbzEmvI,56274
294
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=pQUdutVW3SUNFZhDIynvPKnhrW5ib8LcCbz3UNOkM3Y,55338
295
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=YXJ59B8PxPloA_PIDChaGhp5Xxt_SFFv6xWGfKkzFbE,56274
296
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=N-hZNj_getC9dRsMAn5nR3PZMHaiOuPN39-QwwDQYeA,55338
295
297
  snowflake/ml/modeling/impute/__init__.py,sha256=AUAyMIRsAF9Ocf7zDnGPYSvKgGfkR8LInyFvkC-7MiU,281
296
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=oCLli0ZSsYWxUE19anmPnoOvDFMzclWR-gXZpiaTVZU,57167
297
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=4H-9PI-wHPSvBkisyViyskkeH1yNxBGPcdsfRzAIf4M,52877
298
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=oIAoFiwpaYVYGGmUKFrOwvXzT69u-RvP7I8tiX7jTXc,51740
298
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=XbJhDI0YPWszcTOHPXeNjHNnfRgngOGb1E3Ms3GF9Wk,57167
299
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=MRCYvV-b6qsjDybRixBflzonYxchfeIylBQJt2R4oiw,52877
300
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=HPbwrS-JEdDklBcwiFjM3KDEqZ9bOJzhjChcNLgwWA8,51740
299
301
  snowflake/ml/modeling/impute/simple_imputer.py,sha256=Tznj3hrPZQSy6nnaOAWoWYuMcz1AwtzmtToG2l5t-d4,20934
300
302
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
301
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=3Gm_Vve-EI4kJQPLWC0OeCWSeJ0h6hWcx5dI2KEQ7r4,50774
302
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=uDivdkvNa0sFeEQncGx6AtaUO3VlnV-_o1Q76UjmIGw,52534
303
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=Pji_6I_IVABShOWXYb5tukclCzF4VZV1n9I06id3Xm8,51795
304
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=QuKDIYu4bntOnSG8Q9geB2fyD5wQx1jcx2bL5bSohuw,51138
305
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=iNOduIbLkC3F1WI_UNkTGFjIpojPX_5fsH6DotJuEx4,51193
303
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=_KY1t2lYWrO5bwxmB4Yuxys5_Lxn_GoZ3Haip3yLpBg,50774
304
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=Ep2To6H2NtEbvOZ0y3wleDck80H2jSS3uw7m07GnPWI,52534
305
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=wOxgRJX-sENWlW9bc1oy_kUlQq-JJiC4BiD4HBnYYd4,51795
306
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=KgJ16UlwvPuEiShUoYrSvo1d1DYbuE9lo9p1Pmpx1e0,51138
307
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=W0ZiXv5LWtazsKUX4j18kHEXDOyn74IDobKVT7VXncc,51193
306
308
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
307
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=gId-qhl4Enp3rlNb_1KfvP3SqSj-NNuMu1lwTeI9VdI,52642
309
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=vi-MtHMqKoBwZASDA_NeI7ADRRtdtJMDMMPfsFslEUM,52642
308
310
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
309
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=PSCx7L__aH4tnPAlxoYGcf1iSXRuAb-QqFdnjwYtScM,52145
310
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=SYTj57vjjgSV8awExIRIxtc5b8pwBJMOU9pTyyw6Mdo,51647
311
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=grssUaFzpCtljXEF2tMHQwtRF-ngeCzQQrl9epn6u5U,52145
312
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=Cm5tSfEvNvaajh6tJ_Zew3kongbz-HMRcoU-4NO47hk,51647
311
313
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
312
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=Gw4gyVGrMlPvkkzyOfPhs5JcRWR1Xke5gp5iXQ7jIbI,52402
313
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=-1o1eak3QCAuj4TxuzUSovxbt5TB9c5pq_hKQnaYEeg,52772
314
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=zQh4KoiP3LRJAI4rpfFBL3Wm-0OaO08NxllPaKlrPSQ,53790
315
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=Vnvhk7Kqa0-E2UAj8Fnz4uddF8WusaV7HYlLHQ0BTOM,54866
316
- snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=oFJgET3M0somaOMiqXSeqkWlLT7IDYPq3aK4-5Fgnkw,52655
317
- snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=t1XJjA4IJOxuwCtHNBmUlRQC4GMLMao1z0fYy7WjsmY,51852
318
- snowflake/ml/modeling/linear_model/lars.py,sha256=9EWnmtoXtQ7qfPDysIEscYI0URVW7Erz87faNHWSnB8,52558
319
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=MOVCchqvi3ig51Mdj4fxgIOnFQPT4IiOQwyNy994POI,52806
320
- snowflake/ml/modeling/linear_model/lasso.py,sha256=P4J8YiQGhce2aEQ3-Dt6zhJDi_435PUuRc6-AND20b0,53172
321
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=H301rhXQ6FLmRnllLa0Xj-bXhrqvX72iSQhtT6vnNr0,53984
322
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=i2VFYA3sDSdkxjzr0ZfP17G__AuZvF-4FSXpvq4ItIU,53699
323
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=dPOQ1taHXpEZiIxoAQM0_A60yb-h6sydB5QWpLw3yQ0,53687
324
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=laCliDcS1zCMNMXfsViJGOGnVK4c7RWrs1Lp5O-KLmQ,53008
325
- snowflake/ml/modeling/linear_model/linear_regression.py,sha256=Ff_lG_X-trFgRd1NTS8imvizRgXz4Bwcjc-E1J6DDdk,51396
326
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=ERAsDCJotCVSEZ0mV16TC2gE_jK_pCBGbEnDCZqLJzQ,58161
327
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=1EjeRpIhVOFgzEviAxMSxyQ_41frzpUAo1UixdVGX90,59225
328
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=UHtV00Q03_NC16quLOfseA4UXgh8taxnW5g41ewjqOs,52871
329
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=uDGIRgfM8igt3G7moQC7enGlxidKYvokk5aUUpioiCM,54536
330
- snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=lC1DwiYq77sIBgIN1wY0UIZgq39zlHIkzCKopzRJfqY,52414
331
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=5D7E6aQ1ai-KJAtrN3sPoOwFBz6JHUXtuSEzX7zL0UA,53703
332
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=3TX4B198YtQaOlgDQECkycdu5bHg2JDS-VKUQ_oxQmc,51619
333
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=IK6h28zVJRtM39D3aYmolORbYAN-w1pb073i1GOleIw,55443
334
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=_bTXS9tF6fLzvnuP3xl3UFtqPwc1CjjaYg8tvHufj3I,54505
335
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=TFSw4k_iVgJkCT-2mFY-iOwwQFeCcLODaVExLXWmV60,54760
336
- snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=_tHgFG75s9KWY09j0EVjYbzESVfc1n8mKcde9FoV_6Q,52702
337
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=-UbBiILWGC5QZ3ZgCJPCOWhS0rqIs5j-3f6cBRvamQk,55841
338
- snowflake/ml/modeling/linear_model/ridge.py,sha256=m44D16wifl6ddFPiTzDwvXEe5oN1T3SbRg3wznHmLuE,54716
339
- snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=poqerGrJudOW_uJ8TqWD9L7VlcMK7Ighq4-C_rI2tXE,55114
340
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=qi2FXUnAoBH9GYOCoT92DNiSLetuiASMPzpgXkK4Mz0,53579
341
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=Kp-7RKsryYRaPjOSDCi0KX3-XUX-0OxjlH30NXKlMic,54186
342
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=7paDupysLP2v9KwiLk2Kr8V7ga3m590SVX_9pPA1WCo,60171
343
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=9KnZ1bDYdxvTvBu26is0ZShldse5kzAePlmVbCg4RCs,55253
344
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=eMtVqclhBeK2SERRsSJDd9q_bKpAhFJvqVdcd0M_WUY,58148
345
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=tC-ZKgIh3jirmJQ4pz9q-gx_VAg2g1lU1W3ySBmqmUg,53138
346
- snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=n2b9wJ_JsjEP9eCtXXPVL0Zwyi8WAbcDy3Gox_x22f4,54093
314
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=qE5uEwXHMb99txngUIbv24zYuam6d_66U3c5wruNRwE,52402
315
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=qVyvtmx6JkXGkhsIfTuDi6jVBgQo4V3rD78IKeTWACM,52772
316
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=E55Ab1cZTZnWyZzQrf5gw1zLabZRbeOQtK1Umm1p8_I,53790
317
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=ffkqNL1XKp4VB4k_6kg5K1TIPoaYuRZXFnw8aHQk3Xw,54866
318
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=GM4TQsT_-D-ZyY441wuTNI568W77QDc8qFyiD1IPHrk,52655
319
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=kTIDIHetmOPhYevs-lWTXYsKmubPxK9WJHnoLcyaY9g,51852
320
+ snowflake/ml/modeling/linear_model/lars.py,sha256=Ht-c6BFl-7X4NBdMosO6gbNBrpeU9RfYeitvSWpXPrg,52558
321
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=63ql9r6AbC358Zoce9iRZMOlNGcBg4X9d2kwKKYqAaE,52806
322
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=7Pz9Cchm_SLR6hT0k-usaQu9JTtBOsDXVrO9XK7MgIQ,53172
323
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=DC0-rWFA_kkwpHG8Lpss9MKI4t7lTXUOFJhv8Kso-y0,53984
324
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=nWjowWXdYwg3HBQefxECS9HSrVzDKL0TqavmDyCJ4ak,53699
325
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=rnWvcIjhESu5oFrBNSMFUgNd1heMy2R4eBoU5uDK4vE,53687
326
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=CRKDqdSSg8e_O_xh4KpkT6ZZc5uYHcDlLO2iZ7y8GSw,53008
327
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=P7czaGDt0unf8XiGuT1kxDqs4M83cR9SXeBXBblyH-A,51396
328
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=mVsSRXF3eG7rbr413LOJnFRjdpOO5vJ3HlTvwsMteVI,58161
329
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=-dWY8Kjn1d1Ohe5kFZrIYUuImhtngAlgMmvbVHSqs2A,59225
330
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=rIuFEj5Ubh7wgu6bgr0xOTs6sGdpo6M1kqjTRGi1roA,52871
331
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=oT536Udjje2h6nUdWOBzzvyU1NDd-mGIAeCLMjOJjGo,54536
332
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=AcmJcDqJ8vd0b9-ZR_40ELuBlF43QuyR_VG69qVSGaw,52414
333
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=6vaAM-5_HoBD_7e439x77UOImJupaDqKrLRUfs5rxnc,53703
334
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=OesB3Rhay0Fk-8wR1nimTU3eCS8N54EBS414VSRhY3Q,51619
335
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=Q0sYa6R4F-jeg6RjZCn8EwhBk0rEcIsqV7PFWKpaL10,55443
336
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=bSU2Cz04zsCsjKKQflKFfYiAPiNSiTsIbyxNa1eCOEA,54505
337
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=rwwCJQP-EWcz3L_ZR1dd682fxHNU-yEjn2DPrIqlMJ0,54760
338
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=B-6XC6sesILABXKri4Wcu_v5ZJG5IfQffC7iogDEotY,52702
339
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=1lpy_diLoUHMygtnUoZzz4tWCYFAyDN897YXwGXOboI,55841
340
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=O3ZaC2f14CUEA7UEF659gAMhKtuUbDc0iRyOW9FnpxQ,54716
341
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=c5X3scInzUBMBFDSSNYXMk0ssfhcIP67rLPNWt6dNdY,55114
342
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=ehcdvzGbY_2SrGDKwToIRNjlMyEQfceFz98zZP98M1U,53579
343
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=yJ6Q0CEjouQIwEvyKxPZhK35RUJq8DdWMHWIsVKONps,54186
344
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=kKDs5UhXAy1R_5yMOVX9C5TxwV_pS2-IM1_xlonA9XU,60171
345
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=mnDNhh0w6_33DTiHmLq55fheA_DEHcM9seCxh4y0fU8,55253
346
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=wiv7LhJbv1b9h1P4P8u_3t4KeiqE9XYX80NdbI6ifGA,58148
347
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=1mF1fnSK5svvFpPhGsa9Nw0c8hA0UtocfDQHXtAVras,53138
348
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=_YqPRX01OXu0EbGSpmy5YPcK_LAQn5erYNSYHoOZJoM,54093
347
349
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
348
- snowflake/ml/modeling/manifold/isomap.py,sha256=40qlogth5GJ-OvbfwJ4uiNnAGy6toDMkgFrdhuvubv0,53396
349
- snowflake/ml/modeling/manifold/mds.py,sha256=kqtvzO4U7dMFvJyk7-dk_CO4KFqj4a52QdWqVlxC0F0,52612
350
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=3hoL1EeGhWHbskUhrqKopE6f-__TNwEBPk4FxX1fSao,53476
351
- snowflake/ml/modeling/manifold/tsne.py,sha256=LsguZKjlriDl-TGRyb7dM3LPBIhEnkzFfP8gxULJ9t8,56599
350
+ snowflake/ml/modeling/manifold/isomap.py,sha256=esYoXfVhCE974uIBS3HBrqEIl14ENK--qU7ZEm-4Y1g,53396
351
+ snowflake/ml/modeling/manifold/mds.py,sha256=PSZYcajFmeLSXz3q8ZNqXSGoKNLUxThWBcMONJ0MBXc,52612
352
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=20dNIWRVQBXdMViqC2dATxDWAAzKB4aQDFEu-5j1J5o,53476
353
+ snowflake/ml/modeling/manifold/tsne.py,sha256=ItqrwjT9tEQIMEwpyEfuKZ8vjVD25AJalwFSOsDuY_o,56599
352
354
  snowflake/ml/modeling/metrics/__init__.py,sha256=1lc1DCVNeo7D-gvvCjmpI5tFIIrOsEdEZMrQiXJnQ8E,507
353
355
  snowflake/ml/modeling/metrics/classification.py,sha256=UOc2w9iGkLzuleTpxCbfhAWpbli0HvNsGsN-r8G0ztI,66433
354
356
  snowflake/ml/modeling/metrics/correlation.py,sha256=N7GIT-EVlvyh_WMC-zOUzDUUQeKU1IXu4ocOjnx-WQo,5187
@@ -357,35 +359,35 @@ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=XuAjYfL437LCeBY8RMElunk8jg
357
359
  snowflake/ml/modeling/metrics/ranking.py,sha256=NwMdH_nubwdpIcCAZFEyafw_46uS9ULGdWkMgstGwjk,17774
358
360
  snowflake/ml/modeling/metrics/regression.py,sha256=qHUdhRkRssl2BDLyUyn5vZQqcrSVxp3TgTWa1kh1Mso,26052
359
361
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
360
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=BSU-QkKxHAhmXvvrvJNMRSD97i8big99ddn3prcG3tA,57984
361
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=LjF-eH_jVwiYHSYcYoKhAQdu1zbGh625-1wrWVOawN4,55877
362
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=HuctDH43vdnDMxQ7PDd9ULHrj6UyLkWC-e1rFlMVEAs,57984
363
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=0X6bn_ELPylzm48MTkmvyUU5kfKNH9pDYIxbfmA4m9o,55877
362
364
  snowflake/ml/modeling/model_selection/__init__.py,sha256=AUAyMIRsAF9Ocf7zDnGPYSvKgGfkR8LInyFvkC-7MiU,281
363
365
  snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=MN2ShNWFKDJYU8-ofhNfef3zAsGyPMAzfToC6EuQMs4,38358
364
366
  snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=E5i1AsL50HV9A25JkUUTEQZkX4EVJqrFP2T9EOW5B4U,39100
365
367
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
366
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=RFKcpcQ6V67zYA8B8Ie_HegCKcC7WP8mb7fw5vCLBOc,51398
367
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=jGJYLbIoGoe5YApV15c1-U66Ru5MEjjipmJWbMz1uUQ,52333
368
- snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=JzN-_s5-HB8iYn008dfRYBm0vVXUakHGp7g0F6E0yaM,51670
368
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=dHfpAxfwElq12NKUDTclfz8e0_cXKKwkNyW9M-9y5Ds,51398
369
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=PeoWfMty0HoFyCuDjqETFRCfLMztdZ-b6l4fCP9G5LM,52333
370
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=gv6LdLxlC7aUME93jgFjTqaVn7swuhy-YkTEMc9SRQ4,51670
369
371
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
370
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=FF2aeMo3SPtzPJaS3uxWtbqOe9QELkWfLKy2mr2VyL0,51925
371
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=2PZm3AjauUH6JwJV1qKkH6P4VJyx1nmA_qUc5gDKtxU,52262
372
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=m9E8wrfEWdz-nZa6YbeQ6HKEkMHvlJ9rN_gIRug-qTs,51941
373
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=MD5opflzY1Z6RkvTO__q8bz-dO1byZACNXlk8RtHuqw,51073
374
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=Rph7Qx7AaILxFiRwkmxLcq9Mp7tcB9Zldnk_TGnjM7E,51707
372
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=w9pqjMTr1FPWFpj-TfiIp9FK3iX39q3oxesvVFizZJ8,51925
373
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=thsPKeqzAVQW2UBNGPcVV7wfRQ_4GErW_5Zy6XyLmyg,52262
374
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=XSeVs1c2zUVxpdNJSG4x6GddgTAIzHqS3NIxatwbT9c,51941
375
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=j6LuA1lodgAdfNUhlhrWfLu3lp3FILFZhxYBWVFIjB0,51073
376
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=cbwK9KBIwbq54ynYTQDqjpwiWYLPHIlInCu-vKmQLlU,51707
375
377
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
376
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=DV0nOvJOON9nGjnVUQ-ZGTo6tDYZVwwZ9x0rx_F92xQ,55039
377
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=Gmm1EuNwVRP8Tg_JQgsUZQAkGV5FLAoQuXPhElBI1W8,54405
378
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=V0BvTtIbqoKLC8YxtucLOsEOhvqn3f7dk6t27Pqhnj8,52694
379
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=iMBCeK3MWsVQaTCHzpnwDykFJ01Qt6H6W7C1WvjN92M,55270
380
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=DMhr-Liybn0-xjtOamrlZDlGOFvRjXWbQcHZUpkto7k,50858
381
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=H_uFZBPw_TzQJ2ss1JUwkzawJR55SXYkChOSHwddrlU,53177
382
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=d1yhmcaF_ykTEM9l8CIOfIBvwmEig1MhDG6pPBPsznA,54759
383
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=8x2CFYZ8PJc1auXzsrfJaon1qh44N7MUk4wIw2C4XmA,55488
384
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=VVaX6vWhonNGEWozb-tvfCw1yr22lzfrNHs1PFwgHD8,54088
378
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=8JMw-E6pkwBdIbR89upDpnua3t93RY_TkHkuk-bz6A0,55039
379
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=gymYv49yXY5dgKyfKD2vcdlXDl7UucsKxEZIEE7npwM,54405
380
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=pJQ16nlowsBaJbGYQoeY59CMBoOXsbVFnscDJ7ssVIc,52694
381
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=sJAg9jov2G0ctLW6XGmVEp9da2QSdoFkPWYN9KA874c,55270
382
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=Q_vzM5pEwPT1a6fsOCKFPF_3ZjEU23fHtmBWnnHPW70,50858
383
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=UrYrKtV8wEx3IegaM1vzUqVSVpZ7826DgRQp7B_HveE,53177
384
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=ESWQNhF4V46IE2ODhG37xO5HsWkWMf0c74gZGIkfwzg,54759
385
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=aXuMzbPVLTM5kQ9dvc0QFwQiDIl-ZpA3x_A4Pu4RAr8,55488
386
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=VxqvxIO1RyoZbDQ8QR_h8zPjfyaABub1PRbArI8UWO8,54088
385
387
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
386
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=Yc-lI8mnWqrFw4eA6eDkBUcQoNRCWelefdyuI0BG5IY,51901
387
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=jqweN_4dDGdUVTWk-YbMPrgwu1HB6UJqlIo2ekX7qIM,59455
388
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=oI9lQJlJcB6YkAZz3MEpZgr-yA89XfW80JNIPqmx2aQ,58567
388
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=0nr3Oz3GdvMvxJfFrz8LtuzIs5NHugNAtodCME8Sers,51901
389
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=mEzHV5pK0bnqZRAkta2hrGDE9R9tulx7GWKKMxu_bio,59455
390
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=BNsMgfy6iKsO9yqjsWfrJo_BHoHtKKTMyhAbIz03wPc,58567
389
391
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
390
392
  snowflake/ml/modeling/parameters/disable_model_tracer.py,sha256=uj6SZz7HQpThGLs90zfUDcNMChxf0C6DKRN2xOfjmvI,203
391
393
  snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
@@ -400,29 +402,29 @@ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=NappHtB3aOPDstBFkc-
400
402
  snowflake/ml/modeling/preprocessing/normalizer.py,sha256=rVlTClMkFz2N12vlV5pbKBMLJ14FU9XOd1p064Wv1lU,6984
401
403
  snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=JWwBI5Ew1pwyMmJRmvEEnfkNn4zR-p4BbpgqGHQpFVQ,75160
402
404
  snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=FLPX9ix3dWUe2_8GdEZ9v4MWPzoYfp8Ig6B5w4svPcQ,35307
403
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=SKYrRTkTS9Jsx2l0jTRoVrWyzWqJUw7StnOlfp-3pBw,51843
405
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=tBmKu9s0Eyo9ttfOE0Nlr6yDhI3gJxNbSwjbKsA-T2w,51843
404
406
  snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=XW9d7z0JlQlmkcsNxfEgf78uOmb0T2uQd4B-vfyA8zY,12634
405
407
  snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=V-9LbiD5G-RXGayLMnsC4wh9EQx0rw3bAou1gARWtIQ,11761
406
408
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
407
- snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=swPlF0NThzMS-3bCa28R6NWh9i-lpngshdKtp6yamVc,52172
408
- snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=jkDezUzyTieSWdPj0w3xMXwePeqVeAlmPDmIylzmcBg,52519
409
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=f5tRqYgJFX9ziRgFChYmT9A6_xtWkWecc2y3O3SEYr0,52172
410
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=jJktppNOpPXp44VeMWhYT4FwLhnwfAUih3srCILC9Ew,52519
409
411
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
410
- snowflake/ml/modeling/svm/linear_svc.py,sha256=H5uBK6-hIbZ07UBuLk8cT4fOCr6IWJAAoiEl5NkoQR0,55744
411
- snowflake/ml/modeling/svm/linear_svr.py,sha256=RoT53AR6Mxf51Qz7iUiDOx9bbx6sVHj7TQuqFDuodUA,53927
412
- snowflake/ml/modeling/svm/nu_svc.py,sha256=UlEqjXs6a1nLoAew4HMRUEc44eCeKgQUM2Zzz-nE61M,55412
413
- snowflake/ml/modeling/svm/nu_svr.py,sha256=5iKVXl-VNItqx90T6LdiFfp826JpU43pXnPpCDVmTv0,52526
414
- snowflake/ml/modeling/svm/svc.py,sha256=xrz4ewWJPcuUHKddohzRdMi-jGY6CbmbiHjopf_7h9w,55726
415
- snowflake/ml/modeling/svm/svr.py,sha256=72iX4D41zCQoJzwsHVkCnILlT_DlGRwAPgAoRImgRGE,52705
412
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=UBHP70BWaYG8UF3LrP6e_m_ONzrt257HN2Yh9o4Qj3U,55744
413
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=UhncOs6t0E8n9EJWG2GlL2yVVI5IdfduqAsgXjKyc-4,53927
414
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=qhkYr0mbZykMM6BHe911BxAUDU7ALcIrIbKgpb57T4s,55412
415
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=e9xt_5Ibtv1TTEOQTyPWLeBBVuHH-BEtfAwrNGkZ0lU,52526
416
+ snowflake/ml/modeling/svm/svc.py,sha256=41cdwUsK_cEvYrcEgURuUWA3yxvzTWF5kenEse-yLx4,55726
417
+ snowflake/ml/modeling/svm/svr.py,sha256=nEXrDSEMBeAe02IjhhXt-fXSvQUqprn-uaSL7V3eXU4,52705
416
418
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
417
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=D9p2cce4dsg8LtUpWSAMXrw2zPHrzBxV4qwJPIabLhA,58512
418
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=kUCcY_Zx7s8XMbTVuEJr_DyyOQIhXBa43NVFSfFgCcg,57060
419
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=MmWQQoB1weztkYYlbqick8QLhRfihHk9oKDC8KCsJBs,57823
420
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=kbWsKxEKXpPg-5IK3K9BWTdpO49jPCANdFB5Ihn5xRw,56408
419
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=3vBtoCHWGIZN5Y_YVQMzZOvHxXAfLD9wnW4AtTetk6Y,58512
420
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=yxJXTTwuIZDqCNgDcQgMu4b3gj9dP_4p1z2HWumtRzo,57060
421
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=FclUl67xDWQkVkUdK23i-pIWYzWEFT5vMjmgAG_UU2Y,57823
422
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=bFAXk7WfzdDmomPOYiJrxabPUUEBGDguOBulWjEiOfw,56408
421
423
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
422
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=q0KnKqzxkLjg4c8FjKF343k-PyvdqpnQIkKyK7Fohwk,63977
423
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=-k0ZHkTZkVybwNTbnRkR4O0MglbPvqbyD8M58daeN04,63580
424
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=e7WgTxM3xHVxkOIhgUWnDrvFt1lZIGPJel4LhIGk46I,64253
425
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=tnCllaN_BEgRybZcxyvI3vZYzsEpCIIM7oGEPgF6y60,63778
424
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=dpJ7Y4ZRjejDxvE1vmxNUVIpg187GRnnNi-vnHQOvYk,63977
425
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=huczAVSfD5XpsXwxjC3fiaRnr_NLz1qtNyW0H_zIa6w,63580
426
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=9ZyYqcdsx7nUQsrNJFMBohySPhZpFZHkbyL66-2vOJQ,64253
427
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=Zvl3atGaaZpOjI5XizLsLqWuHWA3B-M59jGzYtjkq14,63778
426
428
  snowflake/ml/monitoring/explain_visualize.py,sha256=Vj4x7ClGvXY42HQzFcvVr1CbO_vVfZv6eZn_jV9N9gk,16145
427
429
  snowflake/ml/monitoring/model_monitor.py,sha256=m-1eeQIhAYAvFQ-8mjMQ-PTzCpnN9XEcWpdHdQuEEus,4707
428
430
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
@@ -432,16 +434,16 @@ snowflake/ml/monitoring/_client/queries/rmse.ssql,sha256=OEJiSStRz9-qKoZaFvmubtY
432
434
  snowflake/ml/monitoring/_manager/model_monitor_manager.py,sha256=Aouj5ojRk28Na7TnCDPke13MEezHdVXC7WG1CBq4LoQ,10702
433
435
  snowflake/ml/monitoring/entities/model_monitor_config.py,sha256=tKjYuzBmnpomIogmXcLyJlHfoCBgguulav8TOdzu0lQ,2053
434
436
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
435
- snowflake/ml/registry/registry.py,sha256=Ro7flVHv3FnEU9Ly3zWRnDAqWiwRSOA2uw_MSKmCBTI,32936
436
- snowflake/ml/registry/_manager/model_manager.py,sha256=QsEpIbg3FPEbDOQXb_oo41hBjojrdVibdrNPCyJ0Cb0,17650
437
- snowflake/ml/registry/_manager/model_parameter_reconciler.py,sha256=McTJSps_K2ozZhZsgPyW2k88xDOwgU2cQ36edABhYwI,14001
438
- snowflake/ml/utils/authentication.py,sha256=E1at4TIAQRDZDsMXSbrKvSJaT6_kSYJBkkr37vU9P2s,2606
439
- snowflake/ml/utils/connection_params.py,sha256=JuadbzKlgDZLZ5vJ9cnyAiSitvZT9jGSfSSNjIY9P1Q,8282
437
+ snowflake/ml/registry/registry.py,sha256=GLQCuHKbNPZH2lbT4gkhf3fbw8RfhCIn1nrnh_kWZoI,34531
438
+ snowflake/ml/registry/_manager/model_manager.py,sha256=X0a_MKcwFGAtXGCt0jeELtnfloVvESxD3ZD3D__HAv8,17657
439
+ snowflake/ml/registry/_manager/model_parameter_reconciler.py,sha256=QsnIp9bspUo7wqGwn2o78YewsNDOgYp3eQtfJ_Rf2Tc,15332
440
+ snowflake/ml/utils/authentication.py,sha256=TQV3E8YDHAPXA3dS8JWDmb_Zm8P0d9c8kCexRI4nefo,3106
441
+ snowflake/ml/utils/connection_params.py,sha256=NSBUgcs-DXPRHs1BKpxdSubbJx1yrFRlMPBp-bE3Ugc,8308
440
442
  snowflake/ml/utils/html_utils.py,sha256=L4pzpvFd20SIk4rie2kTAtcQjbxBHfjKmxonMAT2OoA,7665
441
443
  snowflake/ml/utils/sparse.py,sha256=zLBNh-ynhGpKH5TFtopk0YLkHGvv0yq1q-sV59YQKgg,3819
442
444
  snowflake/ml/utils/sql_client.py,sha256=pSe2od6Pkh-8NwG3D-xqN76_uNf-ohOtVbT55HeQg1Y,668
443
- snowflake_ml_python-1.14.0.dist-info/licenses/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
444
- snowflake_ml_python-1.14.0.dist-info/METADATA,sha256=mw74_T9nT9XU_DWlTd6ihFIG41CjQByxElsNo96Xbww,94660
445
- snowflake_ml_python-1.14.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
446
- snowflake_ml_python-1.14.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
447
- snowflake_ml_python-1.14.0.dist-info/RECORD,,
445
+ snowflake_ml_python-1.16.0.dist-info/licenses/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
446
+ snowflake_ml_python-1.16.0.dist-info/METADATA,sha256=sHObJCXSJ0RKqaUrM_jSwLZiR1VA65K_B4kumAwXIvg,95756
447
+ snowflake_ml_python-1.16.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
448
+ snowflake_ml_python-1.16.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
449
+ snowflake_ml_python-1.16.0.dist-info/RECORD,,