snowflake-ml-python 1.1.2__py3-none-any.whl → 1.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (215) hide show
  1. snowflake/ml/{model/_deploy_client/utils → _internal/container_services/image_registry}/imagelib.py +3 -1
  2. snowflake/ml/{model/_deploy_client/utils/image_registry_client.py → _internal/container_services/image_registry/registry_client.py} +4 -2
  3. snowflake/ml/_internal/env_utils.py +31 -52
  4. snowflake/ml/_internal/file_utils.py +17 -0
  5. snowflake/ml/_internal/telemetry.py +19 -0
  6. snowflake/ml/_internal/utils/query_result_checker.py +8 -5
  7. snowflake/ml/_internal/utils/snowflake_env.py +95 -0
  8. snowflake/ml/fileset/parquet_parser.py +31 -1
  9. snowflake/ml/model/__init__.py +6 -0
  10. snowflake/ml/model/_client/model/model_impl.py +172 -13
  11. snowflake/ml/model/_client/model/model_version_impl.py +96 -52
  12. snowflake/ml/model/_client/ops/metadata_ops.py +1 -3
  13. snowflake/ml/model/_client/ops/model_ops.py +155 -9
  14. snowflake/ml/model/_client/sql/model.py +55 -10
  15. snowflake/ml/model/_client/sql/model_version.py +72 -61
  16. snowflake/ml/model/_client/sql/stage.py +10 -4
  17. snowflake/ml/model/_client/sql/tag.py +118 -0
  18. snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +2 -2
  19. snowflake/ml/model/_deploy_client/image_builds/docker_context.py +8 -8
  20. snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +4 -6
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +6 -7
  22. snowflake/ml/model/_deploy_client/snowservice/deploy.py +4 -5
  23. snowflake/ml/model/_deploy_client/snowservice/instance_types.py +9 -1
  24. snowflake/ml/model/_deploy_client/warehouse/deploy.py +20 -11
  25. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +45 -1
  26. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +30 -0
  27. snowflake/ml/model/_model_composer/model_method/function_generator.py +2 -1
  28. snowflake/ml/model/_model_composer/model_runtime/_runtime_requirements.py +10 -1
  29. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +10 -7
  30. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +1 -1
  31. snowflake/ml/model/_packager/model_handlers/xgboost.py +13 -2
  32. snowflake/ml/model/_packager/model_meta/_core_requirements.py +11 -1
  33. snowflake/ml/model/_packager/model_meta/_packaging_requirements.py +3 -0
  34. snowflake/ml/model/_packager/model_meta/model_meta.py +17 -3
  35. snowflake/ml/model/_signatures/core.py +20 -17
  36. snowflake/ml/model/custom_model.py +30 -27
  37. snowflake/ml/model/model_signature.py +16 -17
  38. snowflake/ml/model/type_hints.py +3 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +185 -98
  40. snowflake/ml/modeling/_internal/estimator_utils.py +21 -0
  41. snowflake/ml/modeling/_internal/model_specifications.py +3 -10
  42. snowflake/ml/modeling/_internal/model_trainer_builder.py +55 -11
  43. snowflake/ml/modeling/_internal/snowpark_handlers.py +9 -6
  44. snowflake/ml/modeling/_internal/snowpark_trainer.py +10 -2
  45. snowflake/ml/modeling/_internal/xgboost_external_memory_trainer.py +444 -0
  46. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +51 -16
  47. snowflake/ml/modeling/cluster/affinity_propagation.py +51 -16
  48. snowflake/ml/modeling/cluster/agglomerative_clustering.py +51 -16
  49. snowflake/ml/modeling/cluster/birch.py +51 -16
  50. snowflake/ml/modeling/cluster/bisecting_k_means.py +51 -16
  51. snowflake/ml/modeling/cluster/dbscan.py +51 -16
  52. snowflake/ml/modeling/cluster/feature_agglomeration.py +51 -16
  53. snowflake/ml/modeling/cluster/k_means.py +51 -16
  54. snowflake/ml/modeling/cluster/mean_shift.py +51 -16
  55. snowflake/ml/modeling/cluster/mini_batch_k_means.py +51 -16
  56. snowflake/ml/modeling/cluster/optics.py +51 -16
  57. snowflake/ml/modeling/cluster/spectral_biclustering.py +51 -16
  58. snowflake/ml/modeling/cluster/spectral_clustering.py +51 -16
  59. snowflake/ml/modeling/cluster/spectral_coclustering.py +51 -16
  60. snowflake/ml/modeling/compose/column_transformer.py +51 -16
  61. snowflake/ml/modeling/compose/transformed_target_regressor.py +51 -16
  62. snowflake/ml/modeling/covariance/elliptic_envelope.py +51 -16
  63. snowflake/ml/modeling/covariance/empirical_covariance.py +51 -16
  64. snowflake/ml/modeling/covariance/graphical_lasso.py +51 -16
  65. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +51 -16
  66. snowflake/ml/modeling/covariance/ledoit_wolf.py +51 -16
  67. snowflake/ml/modeling/covariance/min_cov_det.py +51 -16
  68. snowflake/ml/modeling/covariance/oas.py +51 -16
  69. snowflake/ml/modeling/covariance/shrunk_covariance.py +51 -16
  70. snowflake/ml/modeling/decomposition/dictionary_learning.py +51 -16
  71. snowflake/ml/modeling/decomposition/factor_analysis.py +51 -16
  72. snowflake/ml/modeling/decomposition/fast_ica.py +51 -16
  73. snowflake/ml/modeling/decomposition/incremental_pca.py +51 -16
  74. snowflake/ml/modeling/decomposition/kernel_pca.py +51 -16
  75. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +51 -16
  76. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +51 -16
  77. snowflake/ml/modeling/decomposition/pca.py +51 -16
  78. snowflake/ml/modeling/decomposition/sparse_pca.py +51 -16
  79. snowflake/ml/modeling/decomposition/truncated_svd.py +51 -16
  80. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +51 -16
  81. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +51 -16
  82. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +51 -16
  83. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +51 -16
  84. snowflake/ml/modeling/ensemble/bagging_classifier.py +51 -16
  85. snowflake/ml/modeling/ensemble/bagging_regressor.py +51 -16
  86. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +51 -16
  87. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +51 -16
  88. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +51 -16
  89. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +51 -16
  90. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +51 -16
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +51 -16
  92. snowflake/ml/modeling/ensemble/isolation_forest.py +51 -16
  93. snowflake/ml/modeling/ensemble/random_forest_classifier.py +51 -16
  94. snowflake/ml/modeling/ensemble/random_forest_regressor.py +51 -16
  95. snowflake/ml/modeling/ensemble/stacking_regressor.py +51 -16
  96. snowflake/ml/modeling/ensemble/voting_classifier.py +51 -16
  97. snowflake/ml/modeling/ensemble/voting_regressor.py +51 -16
  98. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +51 -16
  99. snowflake/ml/modeling/feature_selection/select_fdr.py +51 -16
  100. snowflake/ml/modeling/feature_selection/select_fpr.py +51 -16
  101. snowflake/ml/modeling/feature_selection/select_fwe.py +51 -16
  102. snowflake/ml/modeling/feature_selection/select_k_best.py +51 -16
  103. snowflake/ml/modeling/feature_selection/select_percentile.py +51 -16
  104. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +51 -16
  105. snowflake/ml/modeling/feature_selection/variance_threshold.py +51 -16
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +51 -16
  107. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +51 -16
  108. snowflake/ml/modeling/impute/iterative_imputer.py +51 -16
  109. snowflake/ml/modeling/impute/knn_imputer.py +51 -16
  110. snowflake/ml/modeling/impute/missing_indicator.py +51 -16
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +51 -16
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +51 -16
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +51 -16
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +51 -16
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +51 -16
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +51 -16
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +51 -16
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +51 -16
  119. snowflake/ml/modeling/linear_model/ard_regression.py +51 -16
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +51 -16
  121. snowflake/ml/modeling/linear_model/elastic_net.py +51 -16
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +51 -16
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +51 -16
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +51 -16
  125. snowflake/ml/modeling/linear_model/lars.py +51 -16
  126. snowflake/ml/modeling/linear_model/lars_cv.py +51 -16
  127. snowflake/ml/modeling/linear_model/lasso.py +51 -16
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +51 -16
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +51 -16
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +51 -16
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +51 -16
  132. snowflake/ml/modeling/linear_model/linear_regression.py +51 -16
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +51 -16
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +51 -16
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +51 -16
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +51 -16
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +51 -16
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +51 -16
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +51 -16
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +51 -16
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +51 -16
  142. snowflake/ml/modeling/linear_model/perceptron.py +51 -16
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +51 -16
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +51 -16
  145. snowflake/ml/modeling/linear_model/ridge.py +51 -16
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +51 -16
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +51 -16
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +51 -16
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +51 -16
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +51 -16
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +51 -16
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +51 -16
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +51 -16
  154. snowflake/ml/modeling/manifold/isomap.py +51 -16
  155. snowflake/ml/modeling/manifold/mds.py +51 -16
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +51 -16
  157. snowflake/ml/modeling/manifold/tsne.py +51 -16
  158. snowflake/ml/modeling/metrics/classification.py +5 -6
  159. snowflake/ml/modeling/metrics/metrics_utils.py +5 -3
  160. snowflake/ml/modeling/metrics/ranking.py +7 -3
  161. snowflake/ml/modeling/metrics/regression.py +6 -3
  162. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +51 -16
  163. snowflake/ml/modeling/mixture/gaussian_mixture.py +51 -16
  164. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +51 -16
  165. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +51 -16
  166. snowflake/ml/modeling/multiclass/output_code_classifier.py +51 -16
  167. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +51 -16
  168. snowflake/ml/modeling/naive_bayes/categorical_nb.py +51 -16
  169. snowflake/ml/modeling/naive_bayes/complement_nb.py +51 -16
  170. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +51 -16
  171. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +51 -16
  172. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +51 -16
  173. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +51 -16
  174. snowflake/ml/modeling/neighbors/kernel_density.py +51 -16
  175. snowflake/ml/modeling/neighbors/local_outlier_factor.py +51 -16
  176. snowflake/ml/modeling/neighbors/nearest_centroid.py +51 -16
  177. snowflake/ml/modeling/neighbors/nearest_neighbors.py +51 -16
  178. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +51 -16
  179. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +51 -16
  180. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +51 -16
  181. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +51 -16
  182. snowflake/ml/modeling/neural_network/mlp_classifier.py +51 -16
  183. snowflake/ml/modeling/neural_network/mlp_regressor.py +51 -16
  184. snowflake/ml/modeling/preprocessing/min_max_scaler.py +15 -1
  185. snowflake/ml/modeling/preprocessing/polynomial_features.py +51 -16
  186. snowflake/ml/modeling/semi_supervised/label_propagation.py +51 -16
  187. snowflake/ml/modeling/semi_supervised/label_spreading.py +51 -16
  188. snowflake/ml/modeling/svm/linear_svc.py +51 -16
  189. snowflake/ml/modeling/svm/linear_svr.py +51 -16
  190. snowflake/ml/modeling/svm/nu_svc.py +51 -16
  191. snowflake/ml/modeling/svm/nu_svr.py +51 -16
  192. snowflake/ml/modeling/svm/svc.py +51 -16
  193. snowflake/ml/modeling/svm/svr.py +51 -16
  194. snowflake/ml/modeling/tree/decision_tree_classifier.py +51 -16
  195. snowflake/ml/modeling/tree/decision_tree_regressor.py +51 -16
  196. snowflake/ml/modeling/tree/extra_tree_classifier.py +51 -16
  197. snowflake/ml/modeling/tree/extra_tree_regressor.py +51 -16
  198. snowflake/ml/modeling/xgboost/xgb_classifier.py +69 -16
  199. snowflake/ml/modeling/xgboost/xgb_regressor.py +69 -16
  200. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +69 -16
  201. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +69 -16
  202. snowflake/ml/registry/__init__.py +3 -0
  203. snowflake/ml/registry/_manager/model_manager.py +163 -0
  204. snowflake/ml/registry/model_registry.py +12 -0
  205. snowflake/ml/registry/registry.py +100 -90
  206. snowflake/ml/version.py +1 -1
  207. snowflake_ml_python-1.2.1.dist-info/LICENSE.txt +202 -0
  208. {snowflake_ml_python-1.1.2.dist-info → snowflake_ml_python-1.2.1.dist-info}/METADATA +295 -60
  209. snowflake_ml_python-1.2.1.dist-info/RECORD +355 -0
  210. {snowflake_ml_python-1.1.2.dist-info → snowflake_ml_python-1.2.1.dist-info}/WHEEL +2 -1
  211. snowflake_ml_python-1.2.1.dist-info/top_level.txt +1 -0
  212. snowflake/ml/model/_client/model/model_method_info.py +0 -19
  213. snowflake_ml_python-1.1.2.dist-info/RECORD +0 -347
  214. /snowflake/ml/_internal/{utils/spcs_image_registry.py → container_services/image_registry/credential.py} +0 -0
  215. /snowflake/ml/_internal/{utils/image_registry_http_client.py → container_services/image_registry/http_client.py} +0 -0
@@ -0,0 +1,355 @@
1
+ snowflake/cortex/__init__.py,sha256=CAUk94eXmNBXXaiLg-yNodyM2FPHvacErKtdVQYqtRM,360
2
+ snowflake/cortex/_complete.py,sha256=C2wLk5RMtg-d2bkdbQKou6U8nvR8g3vykpCkH9-gF9g,1226
3
+ snowflake/cortex/_extract_answer.py,sha256=4tiz4pUisw035ZLmCQDcGuwoT-jFpuo5dzrQYhvYHCA,1358
4
+ snowflake/cortex/_sentiment.py,sha256=7X_a8qJNFFgn-Y1tjwMDkyNJHz5yYl0PvnezVCc4TsM,1149
5
+ snowflake/cortex/_summarize.py,sha256=DJRxUrPrTVmtQNgus0ZPF1z8nPmn4Rs5oL3U25CfXxQ,1075
6
+ snowflake/cortex/_translate.py,sha256=JPMIXxHTgJPfJqT5Hw_WtYM6FZ8NuQufZ4XR-M8wnyo,1420
7
+ snowflake/cortex/_util.py,sha256=0xDaDSctenhuj59atZenZp5q9zuhji0WQ77KPjqqNoc,1557
8
+ snowflake/ml/version.py,sha256=knjbabqRMxHk5DvN0FyRcnyp78BcWPNPQB9HwpNtkws,16
9
+ snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
10
+ snowflake/ml/_internal/env_utils.py,sha256=KzD7FUTdRV3bdfvZQDr8GmS6V4eqwceKLcD15Zxo0Lo,25048
11
+ snowflake/ml/_internal/file_utils.py,sha256=S-OlwrCd3G5sP5Tr9EwNHjdFV5v3VkCg80XxfdCy1Kw,13721
12
+ snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
13
+ snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
14
+ snowflake/ml/_internal/telemetry.py,sha256=SjK5jBkSglPFJj6IVVvwUovN8wdkajrk-3lEzoQAAZo,22376
15
+ snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
16
+ snowflake/ml/_internal/container_services/image_registry/credential.py,sha256=nShNgIb2yNu9w6vceOY3aSgjpuOoi0spWWmvgEafPSk,3291
17
+ snowflake/ml/_internal/container_services/image_registry/http_client.py,sha256=_zqPPp76Vk0jQ8eVK0OJ4mJgcWsdY4suUd1P7Orqmm8,5214
18
+ snowflake/ml/_internal/container_services/image_registry/imagelib.py,sha256=Vh684uUZfwGGnxO-BZ4tRGa50l2uGM-4WfTg6QftlMY,14537
19
+ snowflake/ml/_internal/container_services/image_registry/registry_client.py,sha256=Zic4bF67DMqEZbQMHffyeNoa83-FhswpZx02iBMjyrc,9115
20
+ snowflake/ml/_internal/exceptions/error_codes.py,sha256=a6c6yTgCR-Fwqk2rpjRPS__fJjrcE2G1aj3r57uWCbY,5177
21
+ snowflake/ml/_internal/exceptions/error_messages.py,sha256=vF9XOWJoBuKvFxBkGcDelhXK1dipzTt-AdK4NkCbwTo,47
22
+ snowflake/ml/_internal/exceptions/exceptions.py,sha256=ub0fthrNTVoKhpj1pXnKRfO1Gqnmbe7wY51vaoEOp5M,1653
23
+ snowflake/ml/_internal/exceptions/fileset_error_messages.py,sha256=dqPpRu0cKyQA_0gahvbizgQBTwNhnwveN286JrJLvi8,419
24
+ snowflake/ml/_internal/exceptions/fileset_errors.py,sha256=ZJfkpeDgRIw3qA876fk9FIzxIrm-yZ8I9RXUbzaeM84,1040
25
+ snowflake/ml/_internal/exceptions/modeling_error_messages.py,sha256=cWDJHjHst8P-gPTPOY2EYapjhlB9tUm159VPBxNYefc,466
26
+ snowflake/ml/_internal/utils/formatting.py,sha256=udoXzwbgeZ6NTUeU7ywgSA4pASv3xtxm-IslW1l6ZqM,3677
27
+ snowflake/ml/_internal/utils/identifier.py,sha256=_NAW00FGtQsQESxF2b30_T4kkmzQITsdfykvJ2PqPUo,10870
28
+ snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
29
+ snowflake/ml/_internal/utils/log_stream_processor.py,sha256=pBf8ycEamhHjEzUT55Rx_tFqSkYRpD5Dt71Mx9ZdaS8,1001
30
+ snowflake/ml/_internal/utils/parallelize.py,sha256=Q6_-P2t4DoYNO8DyC1kOl7H3qNL-bUK6EgtlQ_b5ThY,4534
31
+ snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=tpu6B0HKpbT-svvU2Pbz7zNqzg-jgoSmwYvtTzXYyzw,5857
32
+ snowflake/ml/_internal/utils/query_result_checker.py,sha256=h1nbUImdB9lSNCON3uIA0xCm8_JrS-TE-jQXJJs9WfU,10668
33
+ snowflake/ml/_internal/utils/result.py,sha256=59Sz6MvhjakUNiONwg9oi2544AmORCJR3XyWTxY2vP0,2405
34
+ snowflake/ml/_internal/utils/retryable_http.py,sha256=1GCuQkTGO4sX-VRbjy31e4_VgUjqsp5Lh2v5tSJjVK8,1321
35
+ snowflake/ml/_internal/utils/session_token_manager.py,sha256=qXRlE7pyw-Gb0q_BmTdWZEu9pCq2oRNuJBoqfKD9QDQ,1727
36
+ snowflake/ml/_internal/utils/snowflake_env.py,sha256=Mrov0v95pzVUeAe7r1e1PtlIco9ytj5SGAuUWORQaKs,2927
37
+ snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=HPyWxj-SwgvWUrYR38BkBtx813eMqz5wmQosgc1sce0,5403
38
+ snowflake/ml/_internal/utils/spcs_attribution_utils.py,sha256=9XPKe1BDkWhnGuHDXBHE4FP-m3U22lTZnrQLsHGFhWU,4292
39
+ snowflake/ml/_internal/utils/sql_identifier.py,sha256=BYd0_ZNHjbpP33XeVLOcnhZXCrIschQegpE_hXXJ4bw,3502
40
+ snowflake/ml/_internal/utils/table_manager.py,sha256=jHGfl0YSqhFLL7DOOQkjUMzTmLkqFDIM7Gs0LBQw8BM,4384
41
+ snowflake/ml/_internal/utils/temp_file_utils.py,sha256=7JNib0DvjxW7Eu3bimwAHibGosf0u8W49HEc49BghF8,1402
42
+ snowflake/ml/_internal/utils/uri.py,sha256=pvskcWoeS0M66DaU2XlJzK9wce55z4J5dn5kTy_-Tqs,2828
43
+ snowflake/ml/dataset/dataset.py,sha256=OG_RonPgj86mRKRgN-xhJV0uZfa78ohVBpxsoYYnceY,6078
44
+ snowflake/ml/fileset/fileset.py,sha256=QRhxLeKf1QBqvXO4RyyRd1c8TixhYpHuBEII8Qi3C_M,26201
45
+ snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
46
+ snowflake/ml/fileset/sfcfs.py,sha256=w27A8GffBoM1oMo6IfxafUNuMOC6_qr-fOy4Vpc-nEA,11968
47
+ snowflake/ml/fileset/stage_fs.py,sha256=Qu9-yzcPqabRiDP_mUjq4NFodp_xCMP9N-0Gfc0-PiI,15908
48
+ snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx52jX8I,3849
49
+ snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPbt9WKYiBp0,2386
50
+ snowflake/ml/model/__init__.py,sha256=fk8OMvOyrSIkAhX0EcrgBBvdz1VGRsdMmfYFV2GCf14,367
51
+ snowflake/ml/model/_api.py,sha256=nhLsrwpI3CoXMF2FcL4VSs4hub1vMLGIsRV7kZjdsow,21512
52
+ snowflake/ml/model/custom_model.py,sha256=x1RczFD4cwlHwnQmRan5M6gN-71LNWXuiEk7nMici8Y,8185
53
+ snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
54
+ snowflake/ml/model/model_signature.py,sha256=ttf3MbOx9m9G0cK8EThrFjZ73EMqUoP8GD7LvaUHj3s,26494
55
+ snowflake/ml/model/type_hints.py,sha256=7s3D1F4EWi8G2VMc_w8TXGPEtnWgk9rY86C5A8-B4BE,10874
56
+ snowflake/ml/model/_client/model/model_impl.py,sha256=ulMsgwN6mMzOSsg5BCWuzE3kcbobIob4XzjonVastOU,11993
57
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=eQmN6R_lseWydBXi-7PUET1HWdCUUMTfPFmZsfaXYpk,13001
58
+ snowflake/ml/model/_client/ops/metadata_ops.py,sha256=XFNolmueu0nC3nAjb2Lj3v1NffDAhAq0JWMek9JVO38,4094
59
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=0Hd2YMUpXPedaErZ4hdhCmK14JdQoKDxc2NrRAqELmU,17367
60
+ snowflake/ml/model/_client/sql/model.py,sha256=diuyGfFtLu1Z9yBThP-SjGOG9Zy4gflRKh6JoyUBDHk,4525
61
+ snowflake/ml/model/_client/sql/model_version.py,sha256=aJPyWqWCyw3cFFWB5mWzeWJpEH1XZP5kwyZ_nS2_JpI,8551
62
+ snowflake/ml/model/_client/sql/stage.py,sha256=4zP8aO6cv0IDrZEqhkheNWwy4qBuv1qyGLwMFSW-7EI,1497
63
+ snowflake/ml/model/_client/sql/tag.py,sha256=RYvblBfQmK4xmLF0pz0BNUd9wddqlfHtEK1JRRpJGPE,4646
64
+ snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py,sha256=clCaoO0DZam4X79UtQV1ZuMQtTezAJkhLu9ViAX18Xk,302
65
+ snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py,sha256=G74D9lV2B3d544YzFN-YrjPkaST7tbQeh-rM17dtoJc,10681
66
+ snowflake/ml/model/_deploy_client/image_builds/docker_context.py,sha256=QZt02Wd2uU31th_WUxy4JmMvbftpyE7ZfI3MTw5RJ0o,6306
67
+ snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh,sha256=1pntXgqFthW4gdomqlyWx9CJF-Wqv8VMoLkgSiTHEJ0,1578
68
+ snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=TWvjl0YYJZnxue2tQjbwtD6qoaXsgk-DYVp5xnn6SC4,9724
69
+ snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=Ltk7KrYsp-nrghMhbMWKqi3snU8inbqmKLHFFyBCeBY,11148
70
+ snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template,sha256=yzNu-yOo9wfMj5Tsky3PZLgGMRzY0da2LWwaPcC5F40,1696
71
+ snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template,sha256=g8mEvpJmwQ9OnAkZomeErPQ6h4OJ5NdtRCoylyIp7f4,1225
72
+ snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template,sha256=nEK7fqo_XHJEVKLNe--EkES4oiDm7M5E9CacxGItFU0,3633
73
+ snowflake/ml/model/_deploy_client/snowservice/deploy.py,sha256=SddWGE7_zevH53z0eXUlzgitjl1o8RdMNqw-MacvVJA,28889
74
+ snowflake/ml/model/_deploy_client/snowservice/deploy_options.py,sha256=cymya_M0r0Tekepi0j3w5_9vEyBWgZ9JvQA0rMBJhBQ,5175
75
+ snowflake/ml/model/_deploy_client/snowservice/instance_types.py,sha256=YHI5D7UXNlEbV_Bzk0Nq6nrzfv2VUJfxwchLe7hY-lA,232
76
+ snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template,sha256=hZX8XYPAlEU2R6JhZLj46js91g7XSfe2pysflCYH4HM,734
77
+ snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template_with_model,sha256=2SUfeKVOSuZJgY6HZLi0m80ZrOzofjABbnusUl_JT1U,540
78
+ snowflake/ml/model/_deploy_client/utils/constants.py,sha256=ysEBrEs0sBCGHnk9uBX-IPZ_JA3ReRyyrDTFO_FNDPw,1841
79
+ snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=lz7uvABEa8S9EbqRvTx4xOZLQo7Dqyz1Lrw2KOwj_zc,12869
80
+ snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=yZR9M76oh6JbPQJHb6t3wGO3wuD04w0zLEXiEyZW_tg,8358
81
+ snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
82
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=hpaClgvyW-_e5TYawx-c34zNzDq58qL37yPO0ubnBWM,6313
83
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=wdMTFH8St31mr88Fj8lQLTj_gvskHQu8fQOxAPQoXuQ,6677
84
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=k787AJ6CE7cMQKdh0ppp7E7a_NUYFl-M_ZB9dZ5L2EQ,1990
85
+ snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=M-yaRVT5izL4JnwqZtKKDC5QlxT8MeZXhSFJKS_wXns,1654
86
+ snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=QpQXAIKDs9cotLOL0JdI6xLet1QJU7KtaF7O10nDQcs,2291
87
+ snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=RyR7ayq0K8aqmTzJfn4jXnNa6tflE3Br8F2hfcFTwik,5351
88
+ snowflake/ml/model/_model_composer/model_runtime/_runtime_requirements.py,sha256=dSbdiP8Hu2fm-CYb7eihc5fL_8zmCMB_4KZYVypQsc0,238
89
+ snowflake/ml/model/_model_composer/model_runtime/model_runtime.py,sha256=rmIeKQh1u7bBnN_zko7tH4DCfUMazlGaIrZLmF8IgDE,4201
90
+ snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
91
+ snowflake/ml/model/_packager/model_packager.py,sha256=aw9eiFhQENNFTNc0zZHJjPG7LKy1FDmEst-eD9T0tOc,5893
92
+ snowflake/ml/model/_packager/model_env/model_env.py,sha256=MHajuZ7LnMadPImXESeEQDocgKh2E3QiKqC-fqmDKio,16640
93
+ snowflake/ml/model/_packager/model_handlers/_base.py,sha256=1K0H3Iio3r3UK5Ryd2-EvdvLGsBrH6uefop7W64ba4U,6023
94
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=gfDr6WyClxWzd0Nkg7AN8v5d2OsiatVqGqOlHHyynl4,2597
95
+ snowflake/ml/model/_packager/model_handlers/custom.py,sha256=ahpjdOU-77L5Z7QBKmIGiNpB0Y6LF3SWF3Y91TRh5CU,7280
96
+ snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=qEazh0eYMAHaZfCVQAQztSr310iAhGVJ05oyDRk_3KE,19975
97
+ snowflake/ml/model/_packager/model_handlers/llm.py,sha256=0Dod1nFNQfsF_7rIC4LLnp9eucMsracv0vVNZey1eBY,10767
98
+ snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=nyk-ty7HlmO8Q3SNJCk0bw91JiFCChdEqJ0aw459e_A,8988
99
+ snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=7kp7OobwIbbVoO8LQ2jONBgEdHbLrTkIJi0UBhiutsU,7829
100
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=mvDX7VN-J3QSI3hb2-O9WVf3tjhGviBSUNUE436l0ow,8025
101
+ snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=Ln7t_N8r3Uq57glRXXSc3vRiHJpkMFOKQK62yDNFfk0,7252
102
+ snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=xXSZfyN-zqSwTkrcUi0YZ0AUo5sC0D_Ji_ppBeqa8Ts,8134
103
+ snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=MCfrUTBNwQfnNGUrHVYRFLZLQeFATuDWs3bVeO4Rw7Q,8064
104
+ snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=Z594KEGkuIXB5ZfwmwkuJNovvPukwxOj7f3XXInW4QE,8833
105
+ snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
106
+ snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=2RvxDb8bXlEHxbbBo0_v3S76gWd8Enpa0pikxL-qM1E,264
107
+ snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
108
+ snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=qwgBneEA9xu34FBKDDhxM1igRiviUsuQSGUfKatu_Ro,1818
109
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=ReiphecYn7JKWToGEUqZ7IqJUA_SzxYcpMa2VuSlyTc,16010
110
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=j5b7hkh3Kz79vDaQmuCnBq5S9FvpUfDz3Ee2KmaKfBE,1897
111
+ snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
112
+ snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=czF4J_i3FPHDaaFwKF93Gr6qxVwF4IbaoCdb3G_5iH8,1034
113
+ snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
114
+ snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
115
+ snowflake/ml/model/_signatures/builtins_handler.py,sha256=0kAnTZ_-gCK0j5AiWHQhzBZsCweP_87tClsCTUJb3jE,2706
116
+ snowflake/ml/model/_signatures/core.py,sha256=VfOjMsCOKuZwFAXc_FSs2TeFjM-2MSHxQzB_LXc-gLk,17972
117
+ snowflake/ml/model/_signatures/numpy_handler.py,sha256=wE9GNuNNmC-0jLmz8lI_UhyETNkKUvftIABAuNsSe94,5858
118
+ snowflake/ml/model/_signatures/pandas_handler.py,sha256=qKDzRQ3bFa1pLo6-1ReMUOZANMkjW32-B8AqgEIx7nc,8057
119
+ snowflake/ml/model/_signatures/pytorch_handler.py,sha256=QkSiWCBSRRCnsOaONvRPOyMIi4BfUv0zrirXMPmzUD4,4568
120
+ snowflake/ml/model/_signatures/snowpark_handler.py,sha256=--EZ5gxlnFy9MOVXFiCzNZPJ4BU20HwplvTG_tq-Tmo,5923
121
+ snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=VZcws6svwupulhDodRYTn6GmlWZRqY9fW_gLkT8slxA,6082
122
+ snowflake/ml/model/_signatures/utils.py,sha256=aP5lkxiT4lY5gtN6vnupAJhXwRXFSlWFumIYNVH7AtU,12687
123
+ snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
124
+ snowflake/ml/model/models/llm.py,sha256=ofrdHH4LQEQmnxYAGwmHV2sWLPenf0WcgBLg9MPwSmY,3616
125
+ snowflake/ml/modeling/_internal/distributed_hpo_trainer.py,sha256=PPo0EIL_sWQA7rUXdD3C2Bpq9Cw-iJpgdbBelD9WT68,29344
126
+ snowflake/ml/modeling/_internal/estimator_protocols.py,sha256=JaRmP4NAPcSdYXjOIIPCUoakelf6MG_cAx_XgNeCudY,2350
127
+ snowflake/ml/modeling/_internal/estimator_utils.py,sha256=s6MsyZFHSeSgpJ_WmVvVrgJXlXinnq8pQaEbhBI68Vo,5650
128
+ snowflake/ml/modeling/_internal/model_specifications.py,sha256=-0PWh4cy-XjbejGb00RiFTnBSWiYMTNFQntXTMADgko,4725
129
+ snowflake/ml/modeling/_internal/model_trainer.py,sha256=vTv_v9kiV0I4t67hHjBp-4Wwz0U7pp7L1pJB00wJJM8,374
130
+ snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=b9gCCHfsOAKD1aqpGWZaXV4J5uqzEMdFAmoJllp6JbU,5019
131
+ snowflake/ml/modeling/_internal/pandas_trainer.py,sha256=wYhOHBuzdgKuQj5K23DEf3DZPnjp7il2br3-GOVmOHM,1960
132
+ snowflake/ml/modeling/_internal/snowpark_handlers.py,sha256=tRpAx6_vHvSioPpaAYb1p5ukGabjnGIpYGbcCsO0uCE,16330
133
+ snowflake/ml/modeling/_internal/snowpark_trainer.py,sha256=lvslpaAFo2GbgNKrrOoa7vqJwViyKNw3B6a5_Gk6f1Q,13820
134
+ snowflake/ml/modeling/_internal/xgboost_external_memory_trainer.py,sha256=1MnPZllht4BQZfnfsUEYuA5hkafCeSMyQ7v58JdwfcE,17174
135
+ snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
136
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=_XhENjxRZMccr0sd4zhvGRKo-a7lDjgqg_jxV69MA08,46469
137
+ snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
138
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=suAgiYFCiW2DUMZM00Wgib1Lqu2QpSX3_YzEkjBS-J8,44297
139
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=lyc1Od05-Sbh-Lg2vBWegK69XjPBHZpbrfWeu_Yw010,46334
140
+ snowflake/ml/modeling/cluster/birch.py,sha256=xhkCfHw5JfsroPvnOoUsCWKakI3RY5GxwFMDxzCClgg,44022
141
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=FDGQ5pPPPJXR1hXBGUM92q1iyjMbmC7w0I7rbMkHp7c,46721
142
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=tOsUiMTePcCuIG0owXbJJb_PgaAetgKTSYnY9FRbMdI,44384
143
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=Ba_xfgUQA31Fe24q0fN1BP9xM9dEv-HgiW2Iq3Qn00U,46852
144
+ snowflake/ml/modeling/cluster/k_means.py,sha256=u4tKTm14cIqmzNbJZudtgYPB8AN8yV9zXMCp5MS8dOs,46277
145
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=emb1m8Hwk_Z5y5Ftm7zLSF1xvkPxMumn5sIVNwi_9UI,44594
146
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=R-nsqxW8KVBVMksxXQep5D92WxDsrD8k4jngQ_NiGNA,47639
147
+ snowflake/ml/modeling/cluster/optics.py,sha256=dCbtCnMGQIox49lRvigXf6bsNJyaeAgoKsDvczrqllo,47698
148
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=BcsU5GisicKB4cBAbV2trvo_CfriMLNBDx2bROpVbcM,44594
149
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=NFDSquCiuii4iTQ9f1doe8x-1FoJ7mleiLtYnr2NNFE,47785
150
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=4iTuLye8sqRFzNBzxzaVfaeA64PEcQFM3dlM4HWS9wc,43727
151
+ snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
152
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=8OQqJ88rBU6jg6XUshqFp8Jwg7uqYKnInRdGpEQYRZ4,46293
153
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=9X0cXs6n_4RYaRrXoMoW6-bLIpnkbuBPzOmEda7ADKY,44281
154
+ snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
155
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=5K-mnw1sCU6Fiz9mltzgIExudPyhk-Fehprx79S4y9M,44363
156
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=5FC-yiyM0cH1PHQKbSVQSftRqC8_XXeA8Kgk5lKd7_U,42427
157
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=42FgwIgwZOFhW9Q6MpJAsFHZc07loPnAvK69kxzBWcA,44291
158
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=MrPDLLB9pfSi25oS1sFegZ-RdXlRi5LHeKXwBcWI8GU,45456
159
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=rlB1Bo82kHHBKFjL3QKvgdUqdZZg1Bb-XkNn18yKfRY,42565
160
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=5gUsZmDu2_stjR4NgygYPqcaN3SldXyQ0dm9JaSfHRo,43320
161
+ snowflake/ml/modeling/covariance/oas.py,sha256=_yWBPl9nyBgK5_6sTHyhqW3IGeX9Nn62F8gUlqVvR_4,42206
162
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=eFFSc1wnOf-9xkT1Oin0xo_NwJwAI9RcxErjOLZrKEE,42582
163
+ snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
164
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=cTqrYUWdmfCM_4xTFskc8WPOkan7M8hDnAbRLJOMTgQ,47290
165
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=0iEeVKSF_qCrHcOGaeDg60uY6h2DM9ds6VjhxCYfFyU,44737
166
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=wYP1rlaWMP-wtsLgbIqsIb_L7Mytp1VOzFbIjjg-Kc0,44936
167
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=Z3E5JkFnAbvTfKyIOcUpzT8vexFOqpCpdNV2QUHT7ok,43289
168
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=7EyyE5FjZ1n4ylu_had9C_w9RxIaOtz7NZlJ9nnMVvY,47288
169
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=fVUmz_t2sj_VGjWX1IVIKjOviToxQSUpRYiNDqQv7No,48334
170
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=_Z4HPO3jUyLf6Ji0Bl6tUNhQ7qb8UkZTfKg_NvwpLuE,45626
171
+ snowflake/ml/modeling/decomposition/pca.py,sha256=RnID9USg-lVHwi1in-qOtL21MmxN2UA8BHxabCKW2Iw,46331
172
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=sg02LHDwaUoKIYAQf_7OEvLcuEYuZCd9tGowoiZOGz8,44458
173
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=3tZwcY8fJs1OO3wa_TduabXjLxQJd3YnnE1s710ml3A,44046
174
+ snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
175
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=6ar7vQ2LSMROg_sCG-dHCrsexzaSyD81jN87uyx5Py0,46761
176
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=GdjY5hWfk3JosgasO6iDV9Irx7ltMbn4mfAU529MdsA,44850
177
+ snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
178
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=-dKiDfryeJpp_nqeKiDnXsHQY4TIBR-MFNrcPoS5lJQ,45668
179
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=9YKFE4eDiT8d8cLnjuiJdAARNzKOH_CElWHNHtyo5Vs,44559
180
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=SC76L_tDRhnRJS5F_1m1OubGM09XdHabJQKymIX_hNw,46579
181
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=JMc-JWWXQ-w6IcM6YkT_LXuPwsQEm2xQEC4SIPpAs6Y,45815
182
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=eMmcgLskTSW2Hj4Q01jFPWKaweYzxFL4I6xir4KK6AY,51499
183
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=_ysEXx7b7UdHqtd9ND1NDrfrxT8dyxAAVEZ_vNgH_X0,50103
184
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=YM6Vky4P2pLggEXvgGKeEfxLVyls2BsQi3O5LiIo2EU,52954
185
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=Zk30my6twITahFkqtJHrEkT3kCfm7aMWZAsbGNz2-3A,52547
186
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=oPsxzcx9HOwb6VJ1rP7Nnf4GCiOSPGdwpdzeK7SGqn0,52788
187
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=ZNITW02ZzvjajNeykYJZ3i-L0lWfft4CEbjDRUFmDsk,51273
188
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=IWDV0vJeoUbVKApJVsgbd-_8xOZoOFEGS6iej5QXKys,45503
189
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=YIqXMA0ISmZjsHPvbVUciq98EHaOMlDePVhZwnYld2g,51482
190
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=sERTA-XRHtbqRFOI6IhD0Z5XtENy1MrgpWN6f1V5q5s,50074
191
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=GLtphzVLHWBB7nZIi-poOOvZYZOm_nRVUldKteAeACU,45512
192
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=qiWdNwAZoDvNQSO3c9Xe7fkX0E5gLGubk3WfcYmUw_Y,45083
193
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=x6TFhhnhAuEUGJTxnF7h-Os_4EzMnMn9Rza-sIa0-do,43612
194
+ snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
195
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=w07fP7M8qyD_S7dq5kxpZ-xaHHn1esUdgFWhR2_ca94,42923
196
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=IAm_TimRqitTgCMoM-I4-ahqzJoPtvk57RV9U7PMKGY,42566
197
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=tJyLgppE3XrftGgkI43gYBIj9C390V_re5MI7GUXdOg,42560
198
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=hY_DllyRJ48yjmPleKRl6amJW1LD5A1C0JNIdQKGjXQ,42568
199
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=XvuXNOeCXwrOtxtdHpoFu6ooY6DdWNnxWvIW8e36hS4,42653
200
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=ageTBgnOq4KQ6kRDt6oaarXRNf4cjWAuMkqNwYgi-p0,42693
201
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=gJarTYrkCw14LMsLmMLo8f0aiykK0BcyONg_p-R7sd0,45286
202
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=qnPxeNBg3cpX5DDGBgMST3-BTJ2g1uysSTT17AnRIWk,42246
203
+ snowflake/ml/modeling/framework/_utils.py,sha256=85q83_QVwAQmnzMYefSE5FaxiGMYnOpRatyvdpemU6w,9974
204
+ snowflake/ml/modeling/framework/base.py,sha256=eT0baNs7Iqe4tG0Ax4fivvlk0ugmrFrUBlHkwA3BA9M,27776
205
+ snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
206
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=HOS5f7gymGuduBhwZ0ibe1VRY_1OARSJdlrP13XlHo0,48220
207
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=2PXnB9eQutmH5k_GmHcINf_QKC7jUBi3qDzJ2V2A6eE,47285
208
+ snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
209
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=SbL5lUyUKsKIxGi3tn49n7hn9mh4ochn0G7IffIb29A,48783
210
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=Sw_yuXJ2ak1nBjbmgbTH6k9LrcPGWxj7JsCcFlsLlQk,44540
211
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=0Ud2DGN5QsVZUdAeuS9Yx2HE4_De8QZsyqWK2I230e8,43368
212
+ snowflake/ml/modeling/impute/simple_imputer.py,sha256=eC9CRhHMmsylm7oi5LGiukRlP6HIN6r3IP1DVpYrwmg,19258
213
+ snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
214
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=YS-YO2qwdAbyMS2Q0US7VDH2FnwA07v1TaV9_iOBobM,42359
215
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=zUIC2-sAhokQNA0n5hf4C_wuyG_SGYf08RFYJdbrrEM,44163
216
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=9JlgCEJaV-dQaJqy1RNTUG_OG2x7cMcxumiYYMnd6lo,43372
217
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=6uBY5QUJP0IZKKiRo0cD4gTxzodqbeGA5pt3WAdX56c,42759
218
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=zuvzquiP_D6GTQf6y4KBQ_9dF_a5UFpBw0PBDkFFiYo,42786
219
+ snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
220
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=YdLE4DmuAWnRHz2vph9ztstWDRTwC4aEi0uIScVGafk,44599
221
+ snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
222
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=64GqqUguuIYXKa1yeRXlW0fCn0mouaTDOESow8BZzo4,44101
223
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=W_YL1657vJV-wwuJBHfL2RMntNc459m5KKuAYCMwm5M,43604
224
+ snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
225
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=_aoC9N27o-5LqUwI3B9brHdr0TTPKd3oYG9zpcUeMlI,44544
226
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=UM-1VMt_IxClG8V25YnEYgSSigWRtqucNFK1LwjCBXY,44960
227
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=r5vcwM4fpb8jCRE7z-Ym_RfaBW1w0xiUlLc7sv-4RFo,45532
228
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=2h3aWG6CWr2mZ3R342Brm6dU7sRdCO45Ce-dvUzoeKs,46800
229
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=H_COk1G7U7tbWzbjCaiRMU3_ZgEgZ7p6SQYSGCN4cFw,44612
230
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=1eKvG_h2F_H0naE2sZWSdnvylnto4TIID553RUrwfPU,43809
231
+ snowflake/ml/modeling/linear_model/lars.py,sha256=YBcOfl_u6JJwwp8Hm16FxhfuMCyiLi0Y3C3cfYd9Mss,45032
232
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=wyQVIZUyKRrKj1HIOVIwGYeyxcLKcNLrupllivLp8iE,45253
233
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=JDvI-NQJdbQMl7Bhvwg2vXpd31kgOR7a8t-umLIG7I4,45138
234
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=fp-Jrm7JHx2LAiFwQZ9lhaBAwQr1tzByiDuIKsMLWO4,45923
235
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=WB_zG1_OzGsQ39T2NWUkG181qd6e5sFDh7crNxNEjHI,46168
236
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=4XpDU7spRW_ErYMuIkgCv6CRTWL8nXMVl5MU2vdXVo0,46129
237
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=c1ZMDb5sZTEn4Fmo0OlBfLoCpHmiaIUU7CPKB2OuMt8,45475
238
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=LOyhVtvM-YQd-e07TiN9Ig3lysQWuIyI9QUmpIX0nbw,43351
239
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=CHhSAO2yVoX71RM7BLz9PrxzBwkNVTqIW1o4MqnLPm8,49606
240
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=TdJXDMFgJUA-Jm2hLLTQ8zDgpNVepqQceDXUuLwgWq4,50646
241
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=hCt1TwrXd4yRHIjtwaWEMUufAl1k0BGJST4JITgAWNE,44823
242
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=FwhfLi-CGM_ITCZLUbWALiqasFtLMIayNs44VHjDfzE,46461
243
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=aMw2t58ohNrLg304Gj_Eo-1zXZzyktt7cyJkukwuCrc,44371
244
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=GNDil1dVl7NE2HLbz80KhO23fvb_j_eZI2GVpRLzVPM,45633
245
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=fqWJokyblnOIFE7fVsI0e6XToyanGa6QfQRI6wm01ps,43978
246
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=tEiIyc9TyXuJhXaxbrhltiDtQ3SxEpiwUU8VeGAFhv4,47334
247
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=24Wjf269GXHSM84PG4MElXzK_NFhUBJ8kawSFVCEh2I,46401
248
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=1nWk7XQc55INPZ5UnnHzokVsCrtyEmmT9LLdcglzkPU,46718
249
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=UpFkhGvwSAKZLQ4IngSDm8aIejeBd5N0nU6zXI7md2w,44657
250
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=PbNVech1WYuly5MVKxHrZLDT46R_BOtbIuqklG4-9ts,47776
251
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=Qez0QK6EfFq833jHC9haTdziS8wn0gMRZTuAbc5FkyQ,46682
252
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=uXLgVQniVjpBAsj_j4pjNimZufFrWvyshtsgIW-2Ovs,47070
253
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=oI1K_AodG2_5bGuBJcp3RPj6o4-DPsD9KcWVKiKVCeM,45065
254
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=78xUs4J2uU_2XUW0OkdDdlDIBbdRG-k-rKojSFP32dc,45766
255
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=Y9TrBc-_X0OT28B83FfLrlPuAFVec6YRe6r93TvjPPs,52143
256
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=qHvBnzlAVn3y2JkUdCkCGGlWRqfPaqJRrfKWvwFIIbM,46692
257
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=oO6MWadZDENE0N_xLcbHwMGSKi-OTFG4YgPfi6888mE,49614
258
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=ru3f46xNu-tpt5uZx7duG0ytEX7zF-o8Qzwz5lFZUAg,45092
259
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=k61UUJ1NzLjQx6kZ8xk5PZ9a2s1U2vNo-jlNkb7Xt98,46048
260
+ snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
261
+ snowflake/ml/modeling/manifold/isomap.py,sha256=d2gMufZ0V1gxCDwgyglEIfNk0qhz7uut8YuKVzH6D_I,45052
262
+ snowflake/ml/modeling/manifold/mds.py,sha256=6E-hkZMHjgTEmZ4h14SI1399teLdCrhOy1b48I0H2VY,44266
263
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=src1MnIzBrTsF3x1LuK-UxrqazureBfqzLe8_6KfGlk,45090
264
+ snowflake/ml/modeling/manifold/tsne.py,sha256=Dx8MPR3Yor-qH0H4aHepi8agms84BXTwsaJYLGL9opE,48049
265
+ snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
266
+ snowflake/ml/modeling/metrics/classification.py,sha256=ZWizjYJTogw9iSMXHfKJlMJgbPbKOBjGG3TwG91YROE,63241
267
+ snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
268
+ snowflake/ml/modeling/metrics/covariance.py,sha256=HxJK1mwyt6lMSg8yonHFQ8IxAEa62MHeb1M3eHEtqlk,4672
269
+ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=NETSOkhP9m_GZSywiDydCQXKuXOp3qltNgbabROtJAw,13114
270
+ snowflake/ml/modeling/metrics/ranking.py,sha256=gA1R1x1jUXA9bRrYn8IfJPM5BDY4DK1JCtoPQVsz5z4,17569
271
+ snowflake/ml/modeling/metrics/regression.py,sha256=OEawjdiMZHYlycQFXM_h2czIZmmGe5GKciEQD9MSWx4,25845
272
+ snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
273
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=hOSVxk6-Aq3zZKYauz_xJNAE8ABR_mwzt9SNzAdBnfU,49581
274
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=7wqZQshXByj_iivUC8vIE7hijJTKZ65jEkjkMR0GRUU,47506
275
+ snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
276
+ snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=KNrM2z1H5Cbg4Lb6GV1yNOEHjm2xcSgDWCeymBF51ws,36020
277
+ snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=i8AxF6XzwEiRpvYuvFtAUB0p5m0fT67jVrXfIyE0EI8,36752
278
+ snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
279
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=N191soVLy-4zbELld2vMsmN5JhiNZ8-H9U5GI33VEwE,43351
280
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=1GQTuY4pnGgZ7b04sifcLC5Ulf8e2WYz5Rpz5pGElls,44285
281
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=hTIoTAKjMQbQ4_0LmOY5NHtSwl81uF-JkY35jHjDhSc,43621
282
+ snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
283
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=GufAyLQ0nU1PL2W_ZlKVN44UqjTfi2texHOmP1BNbqo,43890
284
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=n98XdtpnTR1mUqDCVE7gkkfiGkRpuV2aClv8v7wGozs,44225
285
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=F61CrgcV0k1mFukpm7LDLdFjns1ZlaBlV0U_vCM-0zc,43905
286
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=cGnMpZGOKxRaG2Qz94uQkynhIjiprIqc6czlUV5woog,43034
287
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=VkXjDDeVWg2O5fFo9cZaJJFATFEFI-yeCjg8ziV25sI,43670
288
+ snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
289
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=4_FR3Gh-GjfFmpTn0SOv-A9aNa6YEL8DlJ9TbtH009g,46739
290
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=KZ9IqGGEM2towFPTjQJG9pMCA1dsac9vl6fq-smIYLQ,46210
291
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=F3Dg6aaYeBp-fbZsc9LYZfJtzgepRG70AA5YJujYBqc,44309
292
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=MroGfIwGlev9vCZELnY6rDuteuYSY8TjSJNWyQdz3ew,46888
293
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=jqlq4dGz8Ox-nBk4p7l_fB2SCKus0JbUrzj7005PIxs,43228
294
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=Tg-GwZpETpuGJbukPW6M8tCbrLP8iqtLI_xOfS5nDO8,45037
295
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=nxO8xW-57l4U3hkLd91iWE2SCCKjZYzgPqXPIYGadeE,46417
296
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=aLHMAJ3M3Nj9UgTDL6MLWWwKa_NVaI5qHJIRkIND2eI,47152
297
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=SYjAtzyQa3ZiLm34ycJ7Aq8-CGipNYuiGUlxaiCvYPA,46033
298
+ snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
299
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=sm-20EQqNj1edtaNDD9fFLlehCWMlrzuCLFiKvihH94,43284
300
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=pl8rP_i8vRFkNMDERcRPJCXELKZcEHzSkPwHP2dkNSU,51112
301
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=BGz2NrBK4rTjchHqeDgdWEg8RAUaN0tTOFo_YKlwAnY,50381
302
+ snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
303
+ snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
304
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=iVewRZJVNHP0F8dvISy2u52cUq2oeSPQqEiyZDZywRM,24810
305
+ snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
306
+ snowflake/ml/modeling/preprocessing/binarizer.py,sha256=jc2ZhVaW6R6SH12di4W3J8Awgb8GhDBjCQbaH4bnaqc,7111
307
+ snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=XUCGQlitkx3Tv794D4dLKu758EHN_PU6HWPh6U-_Eko,21082
308
+ snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=z95P3umu9L4Uk4UlAGDOkRRs5h33RPVNeCHbJ1oqjdw,7517
309
+ snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=U_QUzDVS6W4gd_uvt5iBZUQuDu60yFRHZvpk7Vqq1kY,8880
310
+ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=SRPvTPZtNKdpWFpX9eyRp9F11seFASPLzCuhX-BlUYU,11987
311
+ snowflake/ml/modeling/preprocessing/normalizer.py,sha256=rSn1c8n7sbIswlDrFdq1eaWRvW0nTrX1LF0IIHBWTJM,6696
312
+ snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=0kX_H6dhjPiycUW0axCb_-Wbz37MhoAuMq33HHnuwWU,71691
313
+ snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=rkY_9ANjLAfn1VNm3aowppLJBnHVDsAJRthtWCKFcTA,33388
314
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=rHiXRIjJGk38qeiP7gkNIFRAzjSpTB0R-Zhi9_3C_DE,43443
315
+ snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=SrQgRixonU2pwqfy3DVeBC3OiQ_0UeQpqNtEkn4Hr74,12510
316
+ snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=Wol8YEr2JjqsbFrLk5A4MKcpXvLDScVtflnspOB-PSg,11197
317
+ snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
318
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=jg-UassDXOtyJXVow9XmfsXoqoDdPFOhEPXqtsqTIYg,44127
319
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=F8DVIgRP8mw6IQrOEsk0vJE2CI2h6D5Tg0kEFlwr53E,44476
320
+ snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
321
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=9S91Bz5ygfTpOtJaoGvmYZ1S3eoSaUn2xc88l6DPdYI,46937
322
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=3Ki2lz1Xd_G4P2aStDnCWO1KST9r6cHOTI8XpQD2iks,45290
323
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=GTp9igGbdBAehki45tJ7q0jGM3U-hrr9sOMP1mtlZ4A,47249
324
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=u-OEg2odORCDAT_GQlZFpY2kzfmcn46FhakPVGn8RDw,44328
325
+ snowflake/ml/modeling/svm/svc.py,sha256=fHxzLtK0yKlS2JG6fLC2EV2fUEgs2U2BY13JG1eYOEo,47398
326
+ snowflake/ml/modeling/svm/svr.py,sha256=6zNSrWE8Gs87dkLWTFi9BLvboZ83cw3GgCvsqGWUwbw,44517
327
+ snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
328
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=D-wP0jJ8GUE9-abamdJmwMZ2nZfCl3Vb8nhnLK1CWD4,49674
329
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=0b544Zl6rzpL6TfrL9fhpopiAeVppPOnwDfIGFwfm6w,48373
330
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=9pLfJc0xjJLNNuzqgKkfdsr-PVvmBoUx6i4FtUSFH84,49016
331
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=4tGcgid5UsSZeXrYKxhQ-DOg18NuXUKOR4QH8LIDdIE,47724
332
+ snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
333
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=_BFxw9K9tEQQJ9g45tY9UP1QKIq0tco_0qfSpXBllMg,54672
334
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=3Opr_-nUfNMKPEMzE3SMwv6zHnQzNpBLIGp390HSbl8,54171
335
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=cVbwIRnX4xpbn78C_s-VjpiXCjp9fGncFLhRUCwwPiU,54848
336
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=hUpAYUHr0U4fYFzOEvu4FI22N9n14QQVtBW4KaBrpn8,54374
337
+ snowflake/ml/monitoring/monitor.py,sha256=M9IRk6bnVwKNEvCexEJ5Rf95zEFap4O5qjbwfwdXGS0,7135
338
+ snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
339
+ snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
340
+ snowflake/ml/registry/_artifact_manager.py,sha256=Q-6cRfU-pQBNVroh1_YIhd8hQtk8lC0y9vRBCDVizGQ,5544
341
+ snowflake/ml/registry/_initial_schema.py,sha256=KusBbu0vpgCh-dPHgC90xRSfP6Z79qC-eXTqT8GXpFI,5316
342
+ snowflake/ml/registry/_schema.py,sha256=GOA427_mVKkq9RWRENHuqDimRS0SmmP4EWThNCu1Kz4,3166
343
+ snowflake/ml/registry/_schema_upgrade_plans.py,sha256=LxZNXYGjGG-NmB7w7_SxgaJpZuXUO66XVMuh04oL6SI,4209
344
+ snowflake/ml/registry/_schema_version_manager.py,sha256=-9wGH-7ELSZxp7-fW7hXTMqkJSIebXdSpwwgzdvnoYs,6922
345
+ snowflake/ml/registry/artifact.py,sha256=9JDcr4aaR0d4cp4YSRnGMFRIdu-k0tABbs6jDH4VDGQ,1263
346
+ snowflake/ml/registry/model_registry.py,sha256=I9bPGFt9ByMqOL_cPYVizp0Swn7CWnknK3OOwM6wzDU,89586
347
+ snowflake/ml/registry/registry.py,sha256=Q0URdVOeo5V6CXJzBGpIlhHfPvToPnHyzuYQ61vIAAw,9956
348
+ snowflake/ml/registry/_manager/model_manager.py,sha256=gF41jp6vqcFf7Hl9qlz-jFFo8pFMkBEoNg-Gt5m7fAQ,5573
349
+ snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
350
+ snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
351
+ snowflake_ml_python-1.2.1.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
352
+ snowflake_ml_python-1.2.1.dist-info/METADATA,sha256=uonsLrbybqfVQtD-q6CwJULZj7HuCu99MZLqio73mdY,41345
353
+ snowflake_ml_python-1.2.1.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
354
+ snowflake_ml_python-1.2.1.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
355
+ snowflake_ml_python-1.2.1.dist-info/RECORD,,
@@ -1,4 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bazel-wheelmaker 1.0
2
+ Generator: bdist_wheel (0.42.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
+
@@ -0,0 +1 @@
1
+ snowflake
@@ -1,19 +0,0 @@
1
- from typing import TypedDict
2
-
3
- from typing_extensions import Required
4
-
5
- from snowflake.ml.model import model_signature
6
-
7
-
8
- class ModelMethodInfo(TypedDict):
9
- """Method information.
10
-
11
- Attributes:
12
- name: Name of the method to be called via SQL.
13
- target_method: actual target method name to be called.
14
- signature: The signature of the model method.
15
- """
16
-
17
- name: Required[str]
18
- target_method: Required[str]
19
- signature: Required[model_signature.ModelSignature]