snowflake-ml-python 1.0.1__py3-none-any.whl → 1.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/file_utils.py +8 -35
- snowflake/ml/_internal/utils/identifier.py +74 -7
- snowflake/ml/model/_core_requirements.py +1 -1
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +5 -26
- snowflake/ml/model/_deploy_client/warehouse/infer_template.py +2 -2
- snowflake/ml/model/_handlers/_base.py +3 -1
- snowflake/ml/model/_handlers/sklearn.py +1 -0
- snowflake/ml/model/_handlers/xgboost.py +1 -1
- snowflake/ml/model/_model.py +24 -19
- snowflake/ml/model/_model_meta.py +24 -15
- snowflake/ml/model/type_hints.py +5 -11
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +28 -17
- snowflake/ml/modeling/cluster/affinity_propagation.py +28 -17
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +28 -17
- snowflake/ml/modeling/cluster/birch.py +28 -17
- snowflake/ml/modeling/cluster/bisecting_k_means.py +28 -17
- snowflake/ml/modeling/cluster/dbscan.py +28 -17
- snowflake/ml/modeling/cluster/feature_agglomeration.py +28 -17
- snowflake/ml/modeling/cluster/k_means.py +28 -17
- snowflake/ml/modeling/cluster/mean_shift.py +28 -17
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +28 -17
- snowflake/ml/modeling/cluster/optics.py +28 -17
- snowflake/ml/modeling/cluster/spectral_biclustering.py +28 -17
- snowflake/ml/modeling/cluster/spectral_clustering.py +28 -17
- snowflake/ml/modeling/cluster/spectral_coclustering.py +28 -17
- snowflake/ml/modeling/compose/column_transformer.py +28 -17
- snowflake/ml/modeling/compose/transformed_target_regressor.py +28 -17
- snowflake/ml/modeling/covariance/elliptic_envelope.py +28 -17
- snowflake/ml/modeling/covariance/empirical_covariance.py +28 -17
- snowflake/ml/modeling/covariance/graphical_lasso.py +28 -17
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +28 -17
- snowflake/ml/modeling/covariance/ledoit_wolf.py +28 -17
- snowflake/ml/modeling/covariance/min_cov_det.py +28 -17
- snowflake/ml/modeling/covariance/oas.py +28 -17
- snowflake/ml/modeling/covariance/shrunk_covariance.py +28 -17
- snowflake/ml/modeling/decomposition/dictionary_learning.py +28 -17
- snowflake/ml/modeling/decomposition/factor_analysis.py +28 -17
- snowflake/ml/modeling/decomposition/fast_ica.py +28 -17
- snowflake/ml/modeling/decomposition/incremental_pca.py +28 -17
- snowflake/ml/modeling/decomposition/kernel_pca.py +28 -17
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +28 -17
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +28 -17
- snowflake/ml/modeling/decomposition/pca.py +28 -17
- snowflake/ml/modeling/decomposition/sparse_pca.py +28 -17
- snowflake/ml/modeling/decomposition/truncated_svd.py +28 -17
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +28 -17
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +28 -17
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +28 -17
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +28 -17
- snowflake/ml/modeling/ensemble/bagging_classifier.py +28 -17
- snowflake/ml/modeling/ensemble/bagging_regressor.py +28 -17
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +28 -17
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +28 -17
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +28 -17
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +28 -17
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +28 -17
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +28 -17
- snowflake/ml/modeling/ensemble/isolation_forest.py +28 -17
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +28 -17
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +28 -17
- snowflake/ml/modeling/ensemble/stacking_regressor.py +28 -17
- snowflake/ml/modeling/ensemble/voting_classifier.py +28 -17
- snowflake/ml/modeling/ensemble/voting_regressor.py +28 -17
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +28 -17
- snowflake/ml/modeling/feature_selection/select_fdr.py +28 -17
- snowflake/ml/modeling/feature_selection/select_fpr.py +28 -17
- snowflake/ml/modeling/feature_selection/select_fwe.py +28 -17
- snowflake/ml/modeling/feature_selection/select_k_best.py +28 -17
- snowflake/ml/modeling/feature_selection/select_percentile.py +28 -17
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +28 -17
- snowflake/ml/modeling/feature_selection/variance_threshold.py +28 -17
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +28 -17
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +28 -17
- snowflake/ml/modeling/impute/iterative_imputer.py +28 -17
- snowflake/ml/modeling/impute/knn_imputer.py +28 -17
- snowflake/ml/modeling/impute/missing_indicator.py +28 -17
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +28 -17
- snowflake/ml/modeling/kernel_approximation/nystroem.py +28 -17
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +28 -17
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +28 -17
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +28 -17
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +28 -17
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +28 -17
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +28 -17
- snowflake/ml/modeling/linear_model/ard_regression.py +28 -17
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +28 -17
- snowflake/ml/modeling/linear_model/elastic_net.py +28 -17
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +28 -17
- snowflake/ml/modeling/linear_model/gamma_regressor.py +28 -17
- snowflake/ml/modeling/linear_model/huber_regressor.py +28 -17
- snowflake/ml/modeling/linear_model/lars.py +28 -17
- snowflake/ml/modeling/linear_model/lars_cv.py +28 -17
- snowflake/ml/modeling/linear_model/lasso.py +28 -17
- snowflake/ml/modeling/linear_model/lasso_cv.py +28 -17
- snowflake/ml/modeling/linear_model/lasso_lars.py +28 -17
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +28 -17
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +28 -17
- snowflake/ml/modeling/linear_model/linear_regression.py +28 -17
- snowflake/ml/modeling/linear_model/logistic_regression.py +28 -17
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +28 -17
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +28 -17
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +28 -17
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +28 -17
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +28 -17
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +28 -17
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +28 -17
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +28 -17
- snowflake/ml/modeling/linear_model/perceptron.py +28 -17
- snowflake/ml/modeling/linear_model/poisson_regressor.py +28 -17
- snowflake/ml/modeling/linear_model/ransac_regressor.py +28 -17
- snowflake/ml/modeling/linear_model/ridge.py +28 -17
- snowflake/ml/modeling/linear_model/ridge_classifier.py +28 -17
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +28 -17
- snowflake/ml/modeling/linear_model/ridge_cv.py +28 -17
- snowflake/ml/modeling/linear_model/sgd_classifier.py +28 -17
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +28 -17
- snowflake/ml/modeling/linear_model/sgd_regressor.py +28 -17
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +28 -17
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +28 -17
- snowflake/ml/modeling/manifold/isomap.py +28 -17
- snowflake/ml/modeling/manifold/mds.py +28 -17
- snowflake/ml/modeling/manifold/spectral_embedding.py +28 -17
- snowflake/ml/modeling/manifold/tsne.py +28 -17
- snowflake/ml/modeling/metrics/classification.py +6 -1
- snowflake/ml/modeling/metrics/regression.py +517 -9
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +28 -17
- snowflake/ml/modeling/mixture/gaussian_mixture.py +28 -17
- snowflake/ml/modeling/model_selection/grid_search_cv.py +28 -17
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +28 -17
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +28 -17
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +28 -17
- snowflake/ml/modeling/multiclass/output_code_classifier.py +28 -17
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +28 -17
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +28 -17
- snowflake/ml/modeling/naive_bayes/complement_nb.py +28 -17
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +28 -17
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +28 -17
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +28 -17
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +28 -17
- snowflake/ml/modeling/neighbors/kernel_density.py +28 -17
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +28 -17
- snowflake/ml/modeling/neighbors/nearest_centroid.py +28 -17
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +28 -17
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +28 -17
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +28 -17
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +28 -17
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +28 -17
- snowflake/ml/modeling/neural_network/mlp_classifier.py +28 -17
- snowflake/ml/modeling/neural_network/mlp_regressor.py +28 -17
- snowflake/ml/modeling/pipeline/pipeline.py +24 -0
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +18 -19
- snowflake/ml/modeling/preprocessing/polynomial_features.py +28 -17
- snowflake/ml/modeling/semi_supervised/label_propagation.py +28 -17
- snowflake/ml/modeling/semi_supervised/label_spreading.py +28 -17
- snowflake/ml/modeling/svm/linear_svc.py +28 -17
- snowflake/ml/modeling/svm/linear_svr.py +28 -17
- snowflake/ml/modeling/svm/nu_svc.py +28 -17
- snowflake/ml/modeling/svm/nu_svr.py +28 -17
- snowflake/ml/modeling/svm/svc.py +28 -17
- snowflake/ml/modeling/svm/svr.py +28 -17
- snowflake/ml/modeling/tree/decision_tree_classifier.py +28 -17
- snowflake/ml/modeling/tree/decision_tree_regressor.py +28 -17
- snowflake/ml/modeling/tree/extra_tree_classifier.py +28 -17
- snowflake/ml/modeling/tree/extra_tree_regressor.py +28 -17
- snowflake/ml/modeling/xgboost/xgb_classifier.py +28 -17
- snowflake/ml/modeling/xgboost/xgb_regressor.py +28 -17
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +28 -17
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +28 -17
- snowflake/ml/registry/model_registry.py +49 -65
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.2.dist-info}/METADATA +24 -1
- snowflake_ml_python-1.0.2.dist-info/RECORD +246 -0
- snowflake_ml_python-1.0.1.dist-info/RECORD +0 -246
- {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.2.dist-info}/WHEEL +0 -0
@@ -8,7 +8,6 @@ import zipfile
|
|
8
8
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, cast
|
9
9
|
from uuid import uuid1
|
10
10
|
|
11
|
-
import cloudpickle as cp
|
12
11
|
from absl import logging
|
13
12
|
|
14
13
|
from snowflake import connector, snowpark
|
@@ -1453,6 +1452,8 @@ class ModelRegistry:
|
|
1453
1452
|
pip_requirements: Optional[List[str]] = None,
|
1454
1453
|
signatures: Optional[Dict[str, model_signature.ModelSignature]] = None,
|
1455
1454
|
sample_input_data: Optional[Any] = None,
|
1455
|
+
code_paths: Optional[List[str]] = None,
|
1456
|
+
options: Optional[model_types.ModelSaveOption] = None,
|
1456
1457
|
) -> str:
|
1457
1458
|
"""Uploads and register a model to the Model Registry.
|
1458
1459
|
|
@@ -1472,6 +1473,8 @@ class ModelRegistry:
|
|
1472
1473
|
signatures: Signatures of the model, which is a mapping from target method name to signatures of input and
|
1473
1474
|
output, which could be inferred by calling `infer_signature` method with sample input data.
|
1474
1475
|
sample_input_data: Sample of the input data for the model.
|
1476
|
+
code_paths: Directory of code to import when loading and deploying the model.
|
1477
|
+
options: Additional options when saving the model.
|
1475
1478
|
|
1476
1479
|
Raises:
|
1477
1480
|
TypeError: Raised when both signatures and sample_input_data is not presented. Will be captured locally.
|
@@ -1490,60 +1493,50 @@ class ModelRegistry:
|
|
1490
1493
|
raise connector.DataError(f"Model {model_name}/{model_version} already exists. Unable to log the model.")
|
1491
1494
|
with tempfile.TemporaryDirectory() as tmpdir:
|
1492
1495
|
model = cast(model_types.SupportedModelType, model)
|
1493
|
-
|
1494
|
-
|
1495
|
-
|
1496
|
-
|
1497
|
-
|
1498
|
-
|
1499
|
-
|
1500
|
-
|
1501
|
-
|
1502
|
-
|
1503
|
-
|
1504
|
-
elif sample_input_data is not None:
|
1505
|
-
model_api.save_model(
|
1506
|
-
name=model_name,
|
1507
|
-
model_dir_path=tmpdir,
|
1508
|
-
model=model,
|
1509
|
-
metadata=tags,
|
1510
|
-
conda_dependencies=conda_dependencies,
|
1511
|
-
pip_requirements=pip_requirements,
|
1512
|
-
sample_input=sample_input_data,
|
1513
|
-
)
|
1514
|
-
elif isinstance(model, base.BaseEstimator):
|
1515
|
-
model_api.save_model(
|
1516
|
-
name=model_name,
|
1517
|
-
model_dir_path=tmpdir,
|
1518
|
-
model=model,
|
1519
|
-
metadata=tags,
|
1520
|
-
conda_dependencies=conda_dependencies,
|
1521
|
-
pip_requirements=pip_requirements,
|
1522
|
-
)
|
1523
|
-
else:
|
1524
|
-
raise TypeError("Either signature or sample input data should exist for native model packaging.")
|
1525
|
-
return self._log_model_path(
|
1526
|
-
model_name=model_name,
|
1527
|
-
model_version=model_version,
|
1528
|
-
path=tmpdir,
|
1529
|
-
type="snowflake_native",
|
1530
|
-
description=description,
|
1531
|
-
tags=tags, # TODO: Inherent model type enum.
|
1496
|
+
if signatures:
|
1497
|
+
model_metadata = model_api.save_model(
|
1498
|
+
name=model_name,
|
1499
|
+
model_dir_path=tmpdir,
|
1500
|
+
model=model,
|
1501
|
+
signatures=signatures,
|
1502
|
+
metadata=tags,
|
1503
|
+
conda_dependencies=conda_dependencies,
|
1504
|
+
pip_requirements=pip_requirements,
|
1505
|
+
code_paths=code_paths,
|
1506
|
+
options=options,
|
1532
1507
|
)
|
1533
|
-
|
1534
|
-
|
1535
|
-
|
1536
|
-
|
1537
|
-
|
1538
|
-
|
1539
|
-
|
1508
|
+
elif sample_input_data is not None:
|
1509
|
+
model_metadata = model_api.save_model(
|
1510
|
+
name=model_name,
|
1511
|
+
model_dir_path=tmpdir,
|
1512
|
+
model=model,
|
1513
|
+
metadata=tags,
|
1514
|
+
conda_dependencies=conda_dependencies,
|
1515
|
+
pip_requirements=pip_requirements,
|
1516
|
+
sample_input=sample_input_data,
|
1517
|
+
code_paths=code_paths,
|
1518
|
+
options=options,
|
1519
|
+
)
|
1520
|
+
elif isinstance(model, base.BaseEstimator):
|
1521
|
+
model_metadata = model_api.save_model(
|
1522
|
+
name=model_name,
|
1523
|
+
model_dir_path=tmpdir,
|
1524
|
+
model=model,
|
1525
|
+
metadata=tags,
|
1526
|
+
conda_dependencies=conda_dependencies,
|
1527
|
+
pip_requirements=pip_requirements,
|
1528
|
+
code_paths=code_paths,
|
1529
|
+
options=options,
|
1530
|
+
)
|
1531
|
+
else:
|
1532
|
+
raise TypeError("Either signature or sample input data should exist for native model packaging.")
|
1540
1533
|
return self._log_model_path(
|
1541
1534
|
model_name=model_name,
|
1542
1535
|
model_version=model_version,
|
1543
|
-
path=
|
1544
|
-
type=
|
1536
|
+
path=tmpdir,
|
1537
|
+
type=model_metadata.model_type,
|
1545
1538
|
description=description,
|
1546
|
-
tags=tags,
|
1539
|
+
tags=tags, # TODO: Inherent model type enum.
|
1547
1540
|
)
|
1548
1541
|
|
1549
1542
|
@telemetry.send_api_usage_telemetry(
|
@@ -1565,22 +1558,13 @@ class ModelRegistry:
|
|
1565
1558
|
restored_model = None
|
1566
1559
|
with tempfile.TemporaryDirectory() as local_model_directory:
|
1567
1560
|
self._session.file.get(remote_model_path, local_model_directory)
|
1568
|
-
is_native_model_format = False
|
1569
1561
|
local_path = os.path.join(local_model_directory, os.path.basename(remote_model_path))
|
1570
|
-
|
1571
|
-
|
1572
|
-
|
1573
|
-
|
1574
|
-
|
1575
|
-
|
1576
|
-
restored_model, _meta = model_api.load_model(model_dir_path=extracted_dir)
|
1577
|
-
is_native_model_format = True
|
1578
|
-
except TypeError:
|
1579
|
-
pass
|
1580
|
-
if not is_native_model_format:
|
1581
|
-
file_path = os.path.join(local_model_directory, os.path.basename(os.path.basename(remote_model_path)))
|
1582
|
-
with open(file_path, mode="r+b") as model_file:
|
1583
|
-
restored_model = cp.load(model_file)
|
1562
|
+
if zipfile.is_zipfile(local_path):
|
1563
|
+
extracted_dir = os.path.join(local_model_directory, "extracted")
|
1564
|
+
with zipfile.ZipFile(local_path, "r") as myzip:
|
1565
|
+
if len(myzip.namelist()) > 1:
|
1566
|
+
myzip.extractall(extracted_dir)
|
1567
|
+
restored_model, _ = model_api.load_model(model_dir_path=extracted_dir)
|
1584
1568
|
|
1585
1569
|
return restored_model
|
1586
1570
|
|
snowflake/ml/version.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
VERSION="1.0.
|
1
|
+
VERSION="1.0.2"
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: snowflake-ml-python
|
3
|
-
Version: 1.0.
|
3
|
+
Version: 1.0.2
|
4
4
|
Description-Content-Type: text/markdown
|
5
5
|
Author: Snowflake, Inc
|
6
6
|
Author-email: support@snowflake.com
|
@@ -96,6 +96,29 @@ pip install snowflake-ml-python
|
|
96
96
|
```
|
97
97
|
# Release History
|
98
98
|
|
99
|
+
## 1.0.2 (2023-06-22)
|
100
|
+
|
101
|
+
### Behavior Changes
|
102
|
+
- Model Registry: Prohibit non-snowflake-native models from being logged.
|
103
|
+
- Model Registry: `_use_local_snowml` parameter in options of `deploy()` has been removed.
|
104
|
+
- Model Registry: A default `False` `embed_local_ml_library` parameter has been added to the options of `log_model()`. With this set to `False` (default), the version of the local snowflake-ml-python library will be recorded and used when deploying the model. With this set to `True`, local snowflake-ml-python library will be embedded into the logged model, and will be used when you load or deploy the model.
|
105
|
+
|
106
|
+
### New Features
|
107
|
+
- Model Registry: A new optional argument named `code_paths` has been added to the arguments of `log_model()` for users to specify additional code paths to be imported when loading and deploying the model.
|
108
|
+
- Model Registry: A new optional argument named `options` has been added to the arguments of `log_model()` to specify any additional options when saving the model.
|
109
|
+
- Model Development: Added metrics:
|
110
|
+
- d2_absolute_error_score
|
111
|
+
- d2_pinball_score
|
112
|
+
- explained_variance_score
|
113
|
+
- mean_absolute_error
|
114
|
+
- mean_absolute_percentage_error
|
115
|
+
- mean_squared_error
|
116
|
+
|
117
|
+
### Bug Fixes
|
118
|
+
|
119
|
+
- Model Development: `accuracy_score()` now works when given label column names are lists of a single value.
|
120
|
+
|
121
|
+
|
99
122
|
## 1.0.1 (2023-06-16)
|
100
123
|
### Behavior Changes
|
101
124
|
|
@@ -0,0 +1,246 @@
|
|
1
|
+
snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
|
2
|
+
snowflake/ml/_internal/env_utils.py,sha256=tL-5IswRvbcuAZHvi1tIgGuuwg6_I0losgJSdAjfZPQ,14126
|
3
|
+
snowflake/ml/_internal/file_utils.py,sha256=ue1mqkjz2sxipycEfLAxkYEX34SwHJKbnkEjWgSd4c0,6353
|
4
|
+
snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
|
5
|
+
snowflake/ml/_internal/telemetry.py,sha256=CPcC6ZBbIVVkX6Ny3f4-EZ8s3A7O9u_S85H-qxJ6X4M,20238
|
6
|
+
snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
|
7
|
+
snowflake/ml/_internal/utils/formatting.py,sha256=pz3dFq11BzeHVcZugrU5lQOmPeBKmfkggEsTnDm8ggw,3678
|
8
|
+
snowflake/ml/_internal/utils/identifier.py,sha256=zA2Eoc_p8u4kphGuVUbaYt1Fl6xSTjIYu6Qu8BrDZ1c,7703
|
9
|
+
snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
|
10
|
+
snowflake/ml/_internal/utils/parallelize.py,sha256=zYtkYBq2_N7R49AvSzJynmvixNhUw3YBBZQ3uxVtTEA,4550
|
11
|
+
snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=AMR97AZCOr26Je2Q4fIePJRMf7cASr910R5-wr7ANpM,3722
|
12
|
+
snowflake/ml/_internal/utils/query_result_checker.py,sha256=IrzUJ4fJvxjJ5ma-6mejWHpxoEtwnMKo9XTJ-YsECnk,12205
|
13
|
+
snowflake/ml/_internal/utils/temp_file_utils.py,sha256=77k4ZAZJfyJBMw0IOfn4aItW2mUFGIl_3RgCNS_U4f4,1400
|
14
|
+
snowflake/ml/_internal/utils/uri.py,sha256=wi5LTs306Prcs8tL1CR19b2nUto8U2FLlOyVQrUQcn0,1841
|
15
|
+
snowflake/ml/fileset/fileset.py,sha256=hwKtNENBiNpEeHKyNra2QM11TYklzjyB_PtIQ8x5r_g,26746
|
16
|
+
snowflake/ml/fileset/fileset_errors.py,sha256=ZJfkpeDgRIw3qA876fk9FIzxIrm-yZ8I9RXUbzaeM84,1040
|
17
|
+
snowflake/ml/fileset/parquet_parser.py,sha256=yTJdYFTzaTPsgb1rGMj_jv_wDjmuwJZzbVRRmk--yA8,5915
|
18
|
+
snowflake/ml/fileset/sfcfs.py,sha256=YWL2D8P-3KcSoGmz6_nvMjQgRNTKzXbwGRhIZYYVZQo,11536
|
19
|
+
snowflake/ml/fileset/stage_fs.py,sha256=deFiXBXqab_v2WG6-A0BaepWvNxh4afpDsGbYh0jNWA,14859
|
20
|
+
snowflake/ml/fileset/tf_dataset.py,sha256=MrFtGiFu1FX3MSjAjWnZcEa5Ow4fsAHlUXW-BLqFWus,3462
|
21
|
+
snowflake/ml/fileset/torch_datapipe.py,sha256=kjfUmAqEQ55Gd1nMUFP-3crp1XG46oJ4E74Euk4HEW8,2386
|
22
|
+
snowflake/ml/model/_core_requirements.py,sha256=6HGtzvyZVGSIMYkJQ-J4TSyWwPt69uXnPXj7A4Nm34Q,197
|
23
|
+
snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=AUv7H3qQVCkaevgEMENugBYW-_eL1r21vnleM7UezbQ,7962
|
24
|
+
snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=qaGEbWhJCpdLse0KGw6kIS6gGD8iSA4j4By1wc-Lh2Y,2369
|
25
|
+
snowflake/ml/model/_deployer.py,sha256=c08kn3R6krNV0RaPGhFjQJAWxJ1zsM3kFMJ7VQ0O4OI,9548
|
26
|
+
snowflake/ml/model/_env.py,sha256=7vJHt77WusrMDDeKSRTyE-X9P1QICg-q68fxSx8scvg,4488
|
27
|
+
snowflake/ml/model/_handlers/_base.py,sha256=JUPnwTCGgMkKzqVns2zeVCF4-MtxnVKDieqNZR1X8sc,2299
|
28
|
+
snowflake/ml/model/_handlers/custom.py,sha256=Hjf_bg6LxhQWctkg6h35Knnu7-FHo2HWZLrPHRsEtWM,6084
|
29
|
+
snowflake/ml/model/_handlers/sklearn.py,sha256=OrNHd6_k7l8AbqpUCKcVeK1-ypwQUybDjYQr6IYtmBc,7558
|
30
|
+
snowflake/ml/model/_handlers/snowmlmodel.py,sha256=P35oabm3ERwGjnrREVi35a1JS1o9wdTzFJLThHt_uT8,7711
|
31
|
+
snowflake/ml/model/_handlers/xgboost.py,sha256=8WLW_tKDB7t0AjFCy8DzpCat7ojRK61h0AMFKRF0mlg,7204
|
32
|
+
snowflake/ml/model/_model.py,sha256=wBcwYjjmTlGhJcOilndqeZALsqfqR3cU30fF7ciTDm4,26448
|
33
|
+
snowflake/ml/model/_model_handler.py,sha256=a1upCULZlNuxUiFoJbK85nERGkA2VkEsn5-IIZn7pro,2101
|
34
|
+
snowflake/ml/model/_model_meta.py,sha256=FRhp90-SxVcE-_FxNZ39M_Bqycyu5h_LiNoMb61Ia_8,17684
|
35
|
+
snowflake/ml/model/custom_model.py,sha256=8qEHi8myHcp02jcpFbG9Kqscn9YRv3QnzehCrTSI8ds,8016
|
36
|
+
snowflake/ml/model/model_signature.py,sha256=Q_n1mcetW5btVYCS4VWMef29TshctoZSPC8Gk3Xqv2U,43624
|
37
|
+
snowflake/ml/model/type_hints.py,sha256=Vlpk52yXo2WcBKVdhoJM0gjnj20Tr6vwb3AOM3n35g4,4405
|
38
|
+
snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
39
|
+
snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=Fh6Yq3jvpDvnQvtN9UPPo6c1p8266OwqQ77aT5ZhQGo,54140
|
40
|
+
snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
41
|
+
snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=2Yco1Od7Yy0Av_4DW84VFJLs96rPJCy8xz8CMEH_O4A,52067
|
42
|
+
snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=-U-ZBqQpURTwAT45rTECN-udcTRdq9iWAHyla3ZRgxo,54080
|
43
|
+
snowflake/ml/modeling/cluster/birch.py,sha256=_vm0DzphdPTij-tnBNszMhjO2ryIcWTKYWU_NdS0tUE,51905
|
44
|
+
snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=Ae2AOU1qp2J0BszoKH3OC13ua9ut3xc4DdJ_DjFNf9A,54287
|
45
|
+
snowflake/ml/modeling/cluster/dbscan.py,sha256=n5lG9ZKq4wEnD-4-HQDFaXj7-_lk9yOAPJPEEHbLawY,52246
|
46
|
+
snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=tK0owQ9esTy_VVSuybejL5gEsGofar70CIVrE5GI5lk,54620
|
47
|
+
snowflake/ml/modeling/cluster/k_means.py,sha256=Z0QFBDwU-aHt-ua8Cs91revqgFvMgg5tFMh3--lKpXg,53874
|
48
|
+
snowflake/ml/modeling/cluster/mean_shift.py,sha256=VIe24mRUvAk35fNISI0JBYpRjIcmsv6XjRr4uvzq8Ic,52448
|
49
|
+
snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=-FNLzyqaYZmQ6Hh5dtL7_CW_9G9MH-0ZHjrwsPIphVc,55149
|
50
|
+
snowflake/ml/modeling/cluster/optics.py,sha256=c97yzv0KWqoOJyqk4RLggsdTqBfDl_M6WLbAMd7Wuak,55580
|
51
|
+
snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=9-9qPdHANEnO7bwIm50M-Y_veYjmWXhrP63k9417Nao,52638
|
52
|
+
snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=moI4NNxtXhSFze2pAmlwPVGxMbylrFJkL9w2BChFbpw,55576
|
53
|
+
snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=vtJmPSB5RmPhBQgXWf2FqviSWsrVT9X06FMeFLbN1IY,51768
|
54
|
+
snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
55
|
+
snowflake/ml/modeling/compose/column_transformer.py,sha256=6LdwUi3XcdikyqmZhQo8Q7NIAIzGg_pu2AXe77DAGh0,54351
|
56
|
+
snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=fq48CubtxA_SbKtlxvF1ksdTIJAta3ArzaYLPWPkmok,51936
|
57
|
+
snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
58
|
+
snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=kbJ0rgwMD-FBtGox7MG3ZaGkVzqOU9GGa7h1otgsgJg,51908
|
59
|
+
snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=RMAb0G8lhSfHDkXP3lfzWFyLMJbGT9RXs99hINq2n8Y,50184
|
60
|
+
snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=ruc4U-p-0vyC3m_2DGoXwbm8RJnnysVucv7TiLY1wAU,51458
|
61
|
+
snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=Z8os4_OgmL-7SEad1JVbU_l_uQTPN2etjFqTTF6o-Ko,52922
|
62
|
+
snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=Lvld0ax1YowkWBiDQs8Jmn6vfwevg4ciM_r-DaAFPEA,50386
|
63
|
+
snowflake/ml/modeling/covariance/min_cov_det.py,sha256=iHBPAUBZOJMrFwuJMbpG-D6aBfZknWKz2IqJZ0xBJNU,51149
|
64
|
+
snowflake/ml/modeling/covariance/oas.py,sha256=7-KZ1KSN4Y4Gt_FAg03XE9vH6LC3gBnK2yt75PfKLRE,50075
|
65
|
+
snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=l9afcrkEqgM2zbZuv8-Wdu_LwK6eHCxiteOyzfzFfys,50361
|
66
|
+
snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
67
|
+
snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=TgyT361-kmtHHJ015svz_d_NsOShWtLT_Hqa2oSgsuE,55176
|
68
|
+
snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=TTlDQkaAUo2bWwZM-5UmH8zWltGPVj8ZWHAb3LRlLks,52548
|
69
|
+
snowflake/ml/modeling/decomposition/fast_ica.py,sha256=T9_bqJwvIe-HWebGkDwHhBAKip13QlZS8zp_H3wTJ_Y,53010
|
70
|
+
snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=m3qmci-Q8tu6BDBybHt5gTGc91oa4tzKYieuTUH5VqA,51345
|
71
|
+
snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=7R008lOnVyiOOE_vGBSZfSkYPnHBPeJ_IEZy2yqo8_8,55376
|
72
|
+
snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=sdGzUim1jbwQoMbqgmK4Yt2ujnrSNovPcmwMRr5kUuY,56359
|
73
|
+
snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=S0ypJAaODsN7QIpoxaITjLt8PujLR7duy6JRw2b-kq4,53676
|
74
|
+
snowflake/ml/modeling/decomposition/pca.py,sha256=zDw-12Xl0RVPlv1DRNej1wVZHVg4UbULL1-59XJI2JM,54220
|
75
|
+
snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=yt9_-fHwmJly0bmrP4zF99nAFXNdOghC1tvlqe0uQ-s,52541
|
76
|
+
snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=gyPfuP13xKVqxWxVRmfSPBsByDVip-TUmYX3JsZA82U,52113
|
77
|
+
snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
78
|
+
snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=pFO9WhFbvZxtNLT-qwMu25gFOwHUlqSzXk2SUWiYFbQ,54361
|
79
|
+
snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=dYkvp3HMhJA5BuhkLMbNCm-QqPspZwQAUfZdP1appaU,52426
|
80
|
+
snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
81
|
+
snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=wI-ZlS9RxmrbdrlVhnOysyNi_HI6F3lJ0l4CXCnnBTc,53379
|
82
|
+
snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=T2hy8Vvh8q8S2FMdwlr6gUHpasrY5hts1zqzR1ylJZU,52278
|
83
|
+
snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=uKoQc6Wgt4vLDPHGngumU0mdOnuT9B2b7oKuR3M4Ews,54303
|
84
|
+
snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=brIXqQWVAZOk71nLIV21GYoW9SnnmosGJRG477wa1RQ,53547
|
85
|
+
snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=aBemY9GMjkvYlAahwx2eXaxy59WcHywUNFDvfkVN3z0,59089
|
86
|
+
snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=6CbTrwPsrZ4Ln6H7PGd7_JFepir6lWshjKjTpw-GhV8,57700
|
87
|
+
snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=SC00Sy4eHVXziKjoxgmK6yTNHYdZae1oPI1JIbPZd8k,60698
|
88
|
+
snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=y9KHokK5HsfmQwoRYsNUcPQAcpGeAVYdLa9ydwmuy1w,60282
|
89
|
+
snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=yjlgQA8MTp8lxwY_BnnLOZfGWK2zvZKUcz6nuGSdBUs,60348
|
90
|
+
snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=lAFA9_pmShlfPaa-Pw8gKTUnrO2hcydhElUSprIxHgc,58670
|
91
|
+
snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=RkFtwkAmIq5NAv-peoS4TuszU2MCW4wcTfyjaENyJn8,53324
|
92
|
+
snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=831nscGhY0toqmPYdq5aSvdVdOqJ1DVcxcq7Fr4Ht8k,59044
|
93
|
+
snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=KTZVh4R1zLdILlKQD3WPo4hFP2DINNgvuPQrgZGnoI8,57643
|
94
|
+
snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=xjeZPZIN0AOcXSg14lQOrB60Ah8E24ODQJpcOF2aS5U,53231
|
95
|
+
snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=W-8z2EwwmgqHNm72aZCO_qeiB4PTGt9e5ok5T_hGTFc,52806
|
96
|
+
snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=bnwzchGtAvU4VzgwvePCd0luAQrUYqAC2DRVbQyNZ7c,51341
|
97
|
+
snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
98
|
+
snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=2Zpf6cTF5Q1Qxmp4VhDU-Bw1NhcApNbr2zUvXu1cfLI,50854
|
99
|
+
snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=zit_0nZp5bPXaac18IWC-6_tI8791ayR-ENTH-fdHZA,50552
|
100
|
+
snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=tzP0ae_1EFjaKG5AV4RzzfSJkKiiK7EA0fyro9GAb8o,50546
|
101
|
+
snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=MZpzDF57EWhQYNUIHB6q22RbUNcKhhhDIs6SfNXcl64,50554
|
102
|
+
snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=b4jGwVHFlYG1MBh-TKqVAvLv3Gjnb7mHeP2rAC7NvKI,50631
|
103
|
+
snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=5CbzG9cHWj1IeGQGPWsomLXAY3IfO9q-IYJnLycVPs8,50651
|
104
|
+
snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=YEzSgY5_WX96DBXNQAu_u4F_PjEysmw9HScHvkqlZaI,53304
|
105
|
+
snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=4YDgM5XGpigBA0wOIdmkp1Qpd-i6gyQsjZs2tepIM14,50283
|
106
|
+
snowflake/ml/modeling/framework/_utils.py,sha256=So72kQZXXP0U9D47rXx0U5mxbkkRujKwmCh-f2OVf3E,9110
|
107
|
+
snowflake/ml/modeling/framework/base.py,sha256=hxRwBOKQtQFVZtHopgj_bgBUIU5TK9vJj4p4ZDynFWc,21900
|
108
|
+
snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
109
|
+
snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=1SCwt_cR_NSOl8K38GDHgbZZ9urFfOcKeW4Iq5qe5Go,55849
|
110
|
+
snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=bPuQg6EA5zfEylQgC7jnMsWKozVzDiR5PlyeM1zywBI,54541
|
111
|
+
snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
|
112
|
+
snowflake/ml/modeling/impute/iterative_imputer.py,sha256=lEPVoxZaWd1NXp2WeiaWJduLeIVmzVK7WF3LdHGMpXI,56404
|
113
|
+
snowflake/ml/modeling/impute/knn_imputer.py,sha256=QR_-MNV6v2XC7BMgNxICUMjgOVwLTq6kZdFIPeIFRnk,52626
|
114
|
+
snowflake/ml/modeling/impute/missing_indicator.py,sha256=VwmisPgtu_uUA_5_5i1fbDVlXzhUxUcJSfJrygG9q0g,51423
|
115
|
+
snowflake/ml/modeling/impute/simple_imputer.py,sha256=AuqGFxRvVEuIdhTNhmk6T0Uz5K-k1RCKCTnQFCNQxWA,18118
|
116
|
+
snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
117
|
+
snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=VqNhJGP4xuqMmHOCLwAMivpcvGs_MBSavRGi84mXuYc,50367
|
118
|
+
snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=wE8KrYZOBHDqFdZMVdxLj_B_PVEjrivZDxHrJr_Ow7Q,52240
|
119
|
+
snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=iGlxvqAjZDgJ5_C8LGcip7Tp_9Ug1WAEr4a5KfjN-Po,51394
|
120
|
+
snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=_5PE-_HRtbdi4Nd_cOu5vJIkZXVx5o4dMQDCXIoDpOo,50823
|
121
|
+
snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=uZvRARvLG1NI_VPFMS25o_IboKxA8UtgMXaNZ8niSC8,50822
|
122
|
+
snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
123
|
+
snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=K5rwm_PEU_U8nFGfEeUIWx0q4z0sGC8P_D-3PZkXZZo,52340
|
124
|
+
snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
125
|
+
snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=p8WVRLf-_VnwpqLxW6dnVrj-2wxPm43TwyYnpvsaS-o,51862
|
126
|
+
snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=HgV0YR1OoahM9qdBIslU8JTV3c3811npxITla-3WVog,51373
|
127
|
+
snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
128
|
+
snowflake/ml/modeling/linear_model/ard_regression.py,sha256=dggAjhWDP60kbKiOAJojAQXtg3Wo9Dm0bYVtYrggnXk,52088
|
129
|
+
snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=ibrYuablj-vfo82qLxX_CMye93HcI3N1CGxJXscLI2Y,52401
|
130
|
+
snowflake/ml/modeling/linear_model/elastic_net.py,sha256=DYLFUV5om3RAGM9ksDQXUKsilxZtjm03a5fyW55VQqg,53285
|
131
|
+
snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=lyioafMUyXvkYg7irIKNvNpM9O4EDnZaDZ-Ke7TNkDU,54543
|
132
|
+
snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=GSfFfwvgD9_FnEm4kvSCeNqRz0opwS90cO8vFPkKz_A,52341
|
133
|
+
snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=bcFYgj993IaUgcJLFhglTK2yI7z5b9fMu2d4H2Gd4ag,51529
|
134
|
+
snowflake/ml/modeling/linear_model/lars.py,sha256=mtwe3OdWTqhHOfRrjfNABKz4UMUuDOJQ-dSlzF34q7Y,52826
|
135
|
+
snowflake/ml/modeling/linear_model/lars_cv.py,sha256=SRwQj4xDW0iOzxeitBEcvN80LIhnpVfcCmb5DbMNLH0,53033
|
136
|
+
snowflake/ml/modeling/linear_model/lasso.py,sha256=3iLGhBze1F7t-BfN5-Vylr9hkVDAaLac-_vuscKd2Ys,52925
|
137
|
+
snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=bx1ujpMUGVpqKiXQCmdA9Zn8jOExB55yArAI6TCq82Y,53700
|
138
|
+
snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=lVZrQFB1Aglg2knrP85nPsohPPy-KFNMoU9gf7ttnMw,53929
|
139
|
+
snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=FRRH0rb-MeC2SCuzvbh8vNdVP9_LDxzv9ROW2D6Xu3U,53875
|
140
|
+
snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=bpzkYt94SMLgdlQXc92ecGF-j2y2LjlyKcZYUMqsNX8,53220
|
141
|
+
snowflake/ml/modeling/linear_model/linear_regression.py,sha256=fPJuWbciS2kVXduXxGcuEdyiV2_2QZaHpdp7EYijtg8,51055
|
142
|
+
snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=zxGgjDlyEzMoffE4L-55CZXa7BB3wnRKg9thAdg2snQ,57306
|
143
|
+
snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=nDyKdYdCRUQ_9hgVTvSPmy3ABUEaOgcuv4jbNhj-GNw,58326
|
144
|
+
snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=CGOn8vgTrLABtCCyGbndbCNUVzub-tlup6OZ_Il22qc,52511
|
145
|
+
snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=yow9Tmcfgl1uVBcDbJ44nbu2RKP0hWIrgW3fmYvvgF0,54139
|
146
|
+
snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=onLqMztO07DHdhweQ0Lr3huLRLDblFzMjYH1h_679tI,52093
|
147
|
+
snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=B-kNPTuK9OcNVsg39taYRJiHchzE4rzkJLYAQiCVfEQ,53345
|
148
|
+
snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=iDBwlSFe3A3rTnYCoMhQtPDt1luK9oZ2kXQjeE8ZrXY,51620
|
149
|
+
snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=ZVRUYCkTqnyxVh5I28Lxir-wbillRSZErEfuk0zCl38,54971
|
150
|
+
snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=77JuwJf8YLQXhbMOkBozT1cZgpjklzxQ7LG11P3esA4,54046
|
151
|
+
snowflake/ml/modeling/linear_model/perceptron.py,sha256=npzkWzJhgzBvl6YDCu3ouxRhcH8NM9mY3D6WmvTfS8E,54476
|
152
|
+
snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=G_9YM6RWmGptMNvOsz1yaU_MoyjYLiPLyuWDmFOHnn0,52372
|
153
|
+
snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=Eooggs-DyzKWikkF_-oJrkTJVqBGbcTnEGuIGQHMhPc,55846
|
154
|
+
snowflake/ml/modeling/linear_model/ridge.py,sha256=JeTgVVpjBJdoaAFIoSMCc1dp1t0ylPCdKUZuwt21AIA,53906
|
155
|
+
snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=RVvzPvAiuM0-4neplIU9O6zP-ORDF3NfMGilwbFprGc,54224
|
156
|
+
snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=H_kE-ZRnaqhTVbIYdqSX2MB-K4tGStNjll-FuruM9Sc,52763
|
157
|
+
snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=IgH-7EtxjFfTI7Wih80NIk9EdZTug5nWvTQUBxe4XCY,53539
|
158
|
+
snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=Fx68BRRQ7nXhEi7UCd1osFvtebWs0ZsY90wI9G2jKI0,59892
|
159
|
+
snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=URNcQGuY6xEazEbL5SxOLE-msOVHR1HwAHvu82ylJQk,54506
|
160
|
+
snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=DJqvXt6gYgvlWn4i2ilrlT7N4GPdEiWbprOhOH6T3fo,57361
|
161
|
+
snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=jSoeUvjm-Iih83byRAP6Non9_d7HiiOgSi-fjuD8lRI,52794
|
162
|
+
snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=FH1yc3D1_dZ-NeVXtoDhQZDL9fC47nz9Qt9eDzqT4ok,53765
|
163
|
+
snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
164
|
+
snowflake/ml/modeling/manifold/isomap.py,sha256=Y9I0ZBAtgF2wdChAday86N4FqSnACAlVBZ8zUuy55XM,53160
|
165
|
+
snowflake/ml/modeling/manifold/mds.py,sha256=8PxHji0zRLZEzKm6crf7zhPe0lHy0PPx6b4a4wVsBFU,52378
|
166
|
+
snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=aJSl5NC_ygakrOhsT_-dlKxd2ELuOLASJ2suwaf0kdU,53149
|
167
|
+
snowflake/ml/modeling/manifold/tsne.py,sha256=gwEXvNWqzPxBLX5ID9BVHJylNE35nMmRlM8a1Q4iToE,56421
|
168
|
+
snowflake/ml/modeling/metrics/__init__.py,sha256=wp2LehkoLtyt4u_HBhglrKrV6E-dKt5vr-0N3MkJFaY,304
|
169
|
+
snowflake/ml/modeling/metrics/classification.py,sha256=ZtTQ3ziMMglimNW1hG7oGDhAW5a6HBXOfQq8g3iptC8,40077
|
170
|
+
snowflake/ml/modeling/metrics/correlation.py,sha256=4cjKDl07C3PGcx_VPwOqSFYjuBEA266btKuw9wd5D7w,4921
|
171
|
+
snowflake/ml/modeling/metrics/covariance.py,sha256=hS_yILgo3OUjBVrPCL-NXR7cSyPjXOFftXlZJ1xaLus,4757
|
172
|
+
snowflake/ml/modeling/metrics/metrics_utils.py,sha256=jvjOabIwGi02I1aEiSo_3NfgXLAIU7ggShQXDAAjCFs,12037
|
173
|
+
snowflake/ml/modeling/metrics/ranking.py,sha256=KzRbI1bZf3G1U3wlSnvpX1GMTkddfGwy9y2gopxoW6E,15397
|
174
|
+
snowflake/ml/modeling/metrics/regression.py,sha256=yqTiBnbFc1GtBR4LJfUiEGE8Pv3uNT2ZuFiaEyzxyhM,23144
|
175
|
+
snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
176
|
+
snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=Q9-C2JHJtOFuI70qqMe4jXpL3xqZakD90d9gsdTMDzE,57065
|
177
|
+
snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=LkqMA3cxhIoHnbJeYbcECNUIbuxTLZnfkFQ_08IaQoY,55067
|
178
|
+
snowflake/ml/modeling/model_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
179
|
+
snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=1LuLtTFpd0Qeuv91xsMvY3uO2Dj8ePEYH5NjWc4id-M,57616
|
180
|
+
snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=iLacSg4kt-NyJE4pRFX4F5nW8iZlRieXQhsgcrmUAjs,58460
|
181
|
+
snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
182
|
+
snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=m49bTRLKzJHPj3_4hmPEdWPeHk_JADgnmdxTJz2t4Gs,51048
|
183
|
+
snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=c8uxnEPim_ez3Fe3pAMqdy9sHUJGBpm4iPvZS7yi2xQ,51976
|
184
|
+
snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=jUc8xYU1rW3T21IJDITK8Ju04ZA702CyMEb7Yhj5MtY,51306
|
185
|
+
snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
186
|
+
snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=r-jo5zsBrHEJTJF_yqxVMTkcJ_UyHt03Vl5Jg9pdAwY,51633
|
187
|
+
snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=rbzfzn1CbhWP0NUb_HuuJPqDXoGOh0q-U6pv1bQXJTQ,51954
|
188
|
+
snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=sKFvVuVtZ5YkM9sn9hhSiJYPhu1XgfIpFlWCUZL6keo,51641
|
189
|
+
snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=IJ_cLm2e1j9fIIJEuEqs73ErG5bTQadTyoXRPQdLSiA,50781
|
190
|
+
snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=nw33nrEnVLho0AnOaP2X2wxQ9Sf7OFgzec1KIY153do,51398
|
191
|
+
snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
192
|
+
snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=7slt_NxYYctTAtwfieDxAYnYl9ckZs4Q1UOizvdEBaE,54185
|
193
|
+
snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=17ofYkVFAIgbvXGMpNDg7ygvdBMXtxIDNp6QeJygdTI,53667
|
194
|
+
snowflake/ml/modeling/neighbors/kernel_density.py,sha256=g1reFsR1aWBrsbSCzwGzifS4rCqKJY3H5MqRbnqjp9s,52144
|
195
|
+
snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=DhTrzk-WnYYXWCov8H-Bn3g8D-FoxvFkH7O_XbHHOwA,54425
|
196
|
+
snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=0PAR1wLl8qwFTT4x44FLqOA5pj1x4twKe1ca0wkMkGQ,50948
|
197
|
+
snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=qTNrjb-vPzYQDs-CDhGlRPLe_bYhrJ8EfQEc2RaT96k,52857
|
198
|
+
snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=b5aaw6oF-754dVsGkizkJHgtZCetKuDxb118ke8KzQQ,54333
|
199
|
+
snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=j5mHbaSuJqLVfR6vdNmGWXut1UNAh5IxSgiO4HgVvGY,54814
|
200
|
+
snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=GOxeGcAVyAWCRgxJvRO25guzDin5-tryWV2vuABel0U,53700
|
201
|
+
snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
202
|
+
snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=joVaKo1byI-5MRmb0MarM7JBFn6Hg4jyqd37nu06Zhg,51349
|
203
|
+
snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=ToJzxQly6m2g_WNHxXq0jJdM6tupA9w4m-L0Gvf6GW0,58847
|
204
|
+
snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=Xi_YG8Ce0vVkIsHN1Zk82txQKDG-iHYFi-D2d_20J-U,58124
|
205
|
+
snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
|
206
|
+
snowflake/ml/modeling/pipeline/pipeline.py,sha256=kIvKahAyF7zQoT8eYVm9dJPafYLybGZ8ELaxrBIkQ34,23381
|
207
|
+
snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
|
208
|
+
snowflake/ml/modeling/preprocessing/binarizer.py,sha256=IoGdiZwqsLYRSkifmxzfCqCeOy5ir5Gq_ls_gsPu54I,6092
|
209
|
+
snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=upW9qxntwE0vZ8foc2J3BlVdKy61M7JBspZkKqAyKW0,20422
|
210
|
+
snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=r3S_-G5OIqjeBttyIicSar_4FNO68MOvRSyAi_6gzeA,6285
|
211
|
+
snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=O2dXkX6PPJZaVbS7jIpC4DOfqUt85YFaDA-rLXz6pEc,8491
|
212
|
+
snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=1LDaOp-OJU-79B36ZxBhAMQe5AXDEU5f71PNVXwtLXU,10716
|
213
|
+
snowflake/ml/modeling/preprocessing/normalizer.py,sha256=0pbgiOGqwC4Pv9MKnYfo_0vIUmBdyLFoPSd_Sr7Og4U,5951
|
214
|
+
snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=ubZCjUhPdkqn_w4nuIpgozawjcV3HvnkqiKMYqo3ljA,66998
|
215
|
+
snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=uryEQmMp45tHuuHI7k-D4CY9JCkFYJUuP6hWZcODoAQ,27848
|
216
|
+
snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=aD_FCZlwUnGtAM5eexF8eGUqcOw6pC9TrSv_qadJ-n8,51483
|
217
|
+
snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=JGgkPZfgezS4X8YECSjeWDQIoLbU98j43qbwqP2RzZE,11981
|
218
|
+
snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=hu2VnATyizCz-QKv7aaGdATeU8Fyug8MeNxau3-CllQ,10672
|
219
|
+
snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
220
|
+
snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=06dQseRmK25t9TjC06hHtG0Yx-w1QAgdg-iqofaR6FA,51820
|
221
|
+
snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=4Y8eBB-lX8Jqo6aHSCDiAr6I392OtVknE0dis3qEtFQ,52184
|
222
|
+
snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
223
|
+
snowflake/ml/modeling/svm/linear_svc.py,sha256=LLj2LrHZjcFf4A8V0MYLrQz9iWRkxE58XKoaSwMzyA0,54362
|
224
|
+
snowflake/ml/modeling/svm/linear_svr.py,sha256=9YPXR-D_nsv8FJaZBuUACgqofeHuaQCJVLl4gKbH6V8,52777
|
225
|
+
snowflake/ml/modeling/svm/nu_svc.py,sha256=2IlDpoENw5Q6OtKC7lK2ZLrHwVZBoSYfuF2eal18HbE,55076
|
226
|
+
snowflake/ml/modeling/svm/nu_svr.py,sha256=zLfLSZATC_IikRI5lh3ySu_o0Rq5NmJCUeEB_0TcY-I,52152
|
227
|
+
snowflake/ml/modeling/svm/svc.py,sha256=0ptSWOd54T5A8tO_3X8cIpthu-cDWELcZlGh4fiAVYI,55239
|
228
|
+
snowflake/ml/modeling/svm/svr.py,sha256=XDymWoig3szXbPIiYyCs0sM-Q7lcCcZaD6f9-CE4lrg,52355
|
229
|
+
snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
230
|
+
snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=Rej8fjFzDE4osX0waJdHjsw0DZ3Z6yg3VcfmdsA-V4Y,57438
|
231
|
+
snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=kylQASQOkEtMWgGaTMO6vUqTImgdBhTEC5EbfZYl5i4,56134
|
232
|
+
snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=aWV05GlwO653ndAmn3AtBmQA1R3KeVFjL3l2a8L2srQ,56801
|
233
|
+
snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=zTo1vpjNvj65GiWCOPCv7iH93Jj8p66QPUZ0CMP0qN8,55506
|
234
|
+
snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
|
235
|
+
snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=KqK_zKRnWoTWqW82Un7CYGEgbHsloRwwOUbvhOk9SJQ,61208
|
236
|
+
snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=4BrG1tjYvMk3wX3aK47PDiTmeMrCSB60Ke4BWud3vuk,60714
|
237
|
+
snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=BQel82uG1f3o1XoODm6TIMQD3zRYSuXoD2G6oGSlX_A,61372
|
238
|
+
snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=3EYUqQgFSFkiWRxmIYAw-Cav2CJl2pEejChVqAGgLDY,60905
|
239
|
+
snowflake/ml/registry/_schema.py,sha256=7NezDozAqdbOjB9dYHSQQpxapSTKuXqnGrl394bDohc,1381
|
240
|
+
snowflake/ml/registry/model_registry.py,sha256=jkeGWntSSKYRQZqoIX3_qAbAveMwoJhYzF_jgug3bxA,84697
|
241
|
+
snowflake/ml/utils/connection_params.py,sha256=W_MwEw1xUARgrDehP_Kz5dmqt1sBXct80xQ7N56qFCc,6138
|
242
|
+
snowflake/ml/utils/sparse.py,sha256=1mI2lOm-nMQEwNfbDtHpkJ4SDkKKqsRFyGwSQJJZAiE,3893
|
243
|
+
snowflake/ml/version.py,sha256=_MuTm0ZX7Fno8rwBkHygvwK4Mr2oy6nYbO-KOyECohQ,16
|
244
|
+
snowflake_ml_python-1.0.2.dist-info/METADATA,sha256=5k_a2EQPGGkZZNUpSFLXSJ_WCEddktODr-aYUhz6gCc,11756
|
245
|
+
snowflake_ml_python-1.0.2.dist-info/RECORD,,
|
246
|
+
snowflake_ml_python-1.0.2.dist-info/WHEEL,sha256=sobxWSyDDkdg_rinUth-jxhXHqoNqlmNMJY3aTZn2Us,91
|