snowflake-ml-python 1.0.1__py3-none-any.whl → 1.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (174) hide show
  1. snowflake/ml/_internal/file_utils.py +8 -35
  2. snowflake/ml/_internal/utils/identifier.py +74 -7
  3. snowflake/ml/model/_core_requirements.py +1 -1
  4. snowflake/ml/model/_deploy_client/warehouse/deploy.py +5 -26
  5. snowflake/ml/model/_deploy_client/warehouse/infer_template.py +2 -2
  6. snowflake/ml/model/_handlers/_base.py +3 -1
  7. snowflake/ml/model/_handlers/sklearn.py +1 -0
  8. snowflake/ml/model/_handlers/xgboost.py +1 -1
  9. snowflake/ml/model/_model.py +24 -19
  10. snowflake/ml/model/_model_meta.py +24 -15
  11. snowflake/ml/model/type_hints.py +5 -11
  12. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +28 -17
  13. snowflake/ml/modeling/cluster/affinity_propagation.py +28 -17
  14. snowflake/ml/modeling/cluster/agglomerative_clustering.py +28 -17
  15. snowflake/ml/modeling/cluster/birch.py +28 -17
  16. snowflake/ml/modeling/cluster/bisecting_k_means.py +28 -17
  17. snowflake/ml/modeling/cluster/dbscan.py +28 -17
  18. snowflake/ml/modeling/cluster/feature_agglomeration.py +28 -17
  19. snowflake/ml/modeling/cluster/k_means.py +28 -17
  20. snowflake/ml/modeling/cluster/mean_shift.py +28 -17
  21. snowflake/ml/modeling/cluster/mini_batch_k_means.py +28 -17
  22. snowflake/ml/modeling/cluster/optics.py +28 -17
  23. snowflake/ml/modeling/cluster/spectral_biclustering.py +28 -17
  24. snowflake/ml/modeling/cluster/spectral_clustering.py +28 -17
  25. snowflake/ml/modeling/cluster/spectral_coclustering.py +28 -17
  26. snowflake/ml/modeling/compose/column_transformer.py +28 -17
  27. snowflake/ml/modeling/compose/transformed_target_regressor.py +28 -17
  28. snowflake/ml/modeling/covariance/elliptic_envelope.py +28 -17
  29. snowflake/ml/modeling/covariance/empirical_covariance.py +28 -17
  30. snowflake/ml/modeling/covariance/graphical_lasso.py +28 -17
  31. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +28 -17
  32. snowflake/ml/modeling/covariance/ledoit_wolf.py +28 -17
  33. snowflake/ml/modeling/covariance/min_cov_det.py +28 -17
  34. snowflake/ml/modeling/covariance/oas.py +28 -17
  35. snowflake/ml/modeling/covariance/shrunk_covariance.py +28 -17
  36. snowflake/ml/modeling/decomposition/dictionary_learning.py +28 -17
  37. snowflake/ml/modeling/decomposition/factor_analysis.py +28 -17
  38. snowflake/ml/modeling/decomposition/fast_ica.py +28 -17
  39. snowflake/ml/modeling/decomposition/incremental_pca.py +28 -17
  40. snowflake/ml/modeling/decomposition/kernel_pca.py +28 -17
  41. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +28 -17
  42. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +28 -17
  43. snowflake/ml/modeling/decomposition/pca.py +28 -17
  44. snowflake/ml/modeling/decomposition/sparse_pca.py +28 -17
  45. snowflake/ml/modeling/decomposition/truncated_svd.py +28 -17
  46. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +28 -17
  47. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +28 -17
  48. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +28 -17
  49. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +28 -17
  50. snowflake/ml/modeling/ensemble/bagging_classifier.py +28 -17
  51. snowflake/ml/modeling/ensemble/bagging_regressor.py +28 -17
  52. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +28 -17
  53. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +28 -17
  54. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +28 -17
  55. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +28 -17
  56. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +28 -17
  57. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +28 -17
  58. snowflake/ml/modeling/ensemble/isolation_forest.py +28 -17
  59. snowflake/ml/modeling/ensemble/random_forest_classifier.py +28 -17
  60. snowflake/ml/modeling/ensemble/random_forest_regressor.py +28 -17
  61. snowflake/ml/modeling/ensemble/stacking_regressor.py +28 -17
  62. snowflake/ml/modeling/ensemble/voting_classifier.py +28 -17
  63. snowflake/ml/modeling/ensemble/voting_regressor.py +28 -17
  64. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +28 -17
  65. snowflake/ml/modeling/feature_selection/select_fdr.py +28 -17
  66. snowflake/ml/modeling/feature_selection/select_fpr.py +28 -17
  67. snowflake/ml/modeling/feature_selection/select_fwe.py +28 -17
  68. snowflake/ml/modeling/feature_selection/select_k_best.py +28 -17
  69. snowflake/ml/modeling/feature_selection/select_percentile.py +28 -17
  70. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +28 -17
  71. snowflake/ml/modeling/feature_selection/variance_threshold.py +28 -17
  72. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +28 -17
  73. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +28 -17
  74. snowflake/ml/modeling/impute/iterative_imputer.py +28 -17
  75. snowflake/ml/modeling/impute/knn_imputer.py +28 -17
  76. snowflake/ml/modeling/impute/missing_indicator.py +28 -17
  77. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +28 -17
  78. snowflake/ml/modeling/kernel_approximation/nystroem.py +28 -17
  79. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +28 -17
  80. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +28 -17
  81. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +28 -17
  82. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +28 -17
  83. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +28 -17
  84. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +28 -17
  85. snowflake/ml/modeling/linear_model/ard_regression.py +28 -17
  86. snowflake/ml/modeling/linear_model/bayesian_ridge.py +28 -17
  87. snowflake/ml/modeling/linear_model/elastic_net.py +28 -17
  88. snowflake/ml/modeling/linear_model/elastic_net_cv.py +28 -17
  89. snowflake/ml/modeling/linear_model/gamma_regressor.py +28 -17
  90. snowflake/ml/modeling/linear_model/huber_regressor.py +28 -17
  91. snowflake/ml/modeling/linear_model/lars.py +28 -17
  92. snowflake/ml/modeling/linear_model/lars_cv.py +28 -17
  93. snowflake/ml/modeling/linear_model/lasso.py +28 -17
  94. snowflake/ml/modeling/linear_model/lasso_cv.py +28 -17
  95. snowflake/ml/modeling/linear_model/lasso_lars.py +28 -17
  96. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +28 -17
  97. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +28 -17
  98. snowflake/ml/modeling/linear_model/linear_regression.py +28 -17
  99. snowflake/ml/modeling/linear_model/logistic_regression.py +28 -17
  100. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +28 -17
  101. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +28 -17
  102. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +28 -17
  103. snowflake/ml/modeling/linear_model/multi_task_lasso.py +28 -17
  104. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +28 -17
  105. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +28 -17
  106. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +28 -17
  107. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +28 -17
  108. snowflake/ml/modeling/linear_model/perceptron.py +28 -17
  109. snowflake/ml/modeling/linear_model/poisson_regressor.py +28 -17
  110. snowflake/ml/modeling/linear_model/ransac_regressor.py +28 -17
  111. snowflake/ml/modeling/linear_model/ridge.py +28 -17
  112. snowflake/ml/modeling/linear_model/ridge_classifier.py +28 -17
  113. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +28 -17
  114. snowflake/ml/modeling/linear_model/ridge_cv.py +28 -17
  115. snowflake/ml/modeling/linear_model/sgd_classifier.py +28 -17
  116. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +28 -17
  117. snowflake/ml/modeling/linear_model/sgd_regressor.py +28 -17
  118. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +28 -17
  119. snowflake/ml/modeling/linear_model/tweedie_regressor.py +28 -17
  120. snowflake/ml/modeling/manifold/isomap.py +28 -17
  121. snowflake/ml/modeling/manifold/mds.py +28 -17
  122. snowflake/ml/modeling/manifold/spectral_embedding.py +28 -17
  123. snowflake/ml/modeling/manifold/tsne.py +28 -17
  124. snowflake/ml/modeling/metrics/classification.py +6 -1
  125. snowflake/ml/modeling/metrics/regression.py +517 -9
  126. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +28 -17
  127. snowflake/ml/modeling/mixture/gaussian_mixture.py +28 -17
  128. snowflake/ml/modeling/model_selection/grid_search_cv.py +28 -17
  129. snowflake/ml/modeling/model_selection/randomized_search_cv.py +28 -17
  130. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +28 -17
  131. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +28 -17
  132. snowflake/ml/modeling/multiclass/output_code_classifier.py +28 -17
  133. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +28 -17
  134. snowflake/ml/modeling/naive_bayes/categorical_nb.py +28 -17
  135. snowflake/ml/modeling/naive_bayes/complement_nb.py +28 -17
  136. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +28 -17
  137. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +28 -17
  138. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +28 -17
  139. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +28 -17
  140. snowflake/ml/modeling/neighbors/kernel_density.py +28 -17
  141. snowflake/ml/modeling/neighbors/local_outlier_factor.py +28 -17
  142. snowflake/ml/modeling/neighbors/nearest_centroid.py +28 -17
  143. snowflake/ml/modeling/neighbors/nearest_neighbors.py +28 -17
  144. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +28 -17
  145. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +28 -17
  146. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +28 -17
  147. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +28 -17
  148. snowflake/ml/modeling/neural_network/mlp_classifier.py +28 -17
  149. snowflake/ml/modeling/neural_network/mlp_regressor.py +28 -17
  150. snowflake/ml/modeling/pipeline/pipeline.py +24 -0
  151. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +18 -19
  152. snowflake/ml/modeling/preprocessing/polynomial_features.py +28 -17
  153. snowflake/ml/modeling/semi_supervised/label_propagation.py +28 -17
  154. snowflake/ml/modeling/semi_supervised/label_spreading.py +28 -17
  155. snowflake/ml/modeling/svm/linear_svc.py +28 -17
  156. snowflake/ml/modeling/svm/linear_svr.py +28 -17
  157. snowflake/ml/modeling/svm/nu_svc.py +28 -17
  158. snowflake/ml/modeling/svm/nu_svr.py +28 -17
  159. snowflake/ml/modeling/svm/svc.py +28 -17
  160. snowflake/ml/modeling/svm/svr.py +28 -17
  161. snowflake/ml/modeling/tree/decision_tree_classifier.py +28 -17
  162. snowflake/ml/modeling/tree/decision_tree_regressor.py +28 -17
  163. snowflake/ml/modeling/tree/extra_tree_classifier.py +28 -17
  164. snowflake/ml/modeling/tree/extra_tree_regressor.py +28 -17
  165. snowflake/ml/modeling/xgboost/xgb_classifier.py +28 -17
  166. snowflake/ml/modeling/xgboost/xgb_regressor.py +28 -17
  167. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +28 -17
  168. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +28 -17
  169. snowflake/ml/registry/model_registry.py +49 -65
  170. snowflake/ml/version.py +1 -1
  171. {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.2.dist-info}/METADATA +24 -1
  172. snowflake_ml_python-1.0.2.dist-info/RECORD +246 -0
  173. snowflake_ml_python-1.0.1.dist-info/RECORD +0 -246
  174. {snowflake_ml_python-1.0.1.dist-info → snowflake_ml_python-1.0.2.dist-info}/WHEEL +0 -0
@@ -8,7 +8,6 @@ import zipfile
8
8
  from typing import TYPE_CHECKING, Any, Dict, List, Optional, cast
9
9
  from uuid import uuid1
10
10
 
11
- import cloudpickle as cp
12
11
  from absl import logging
13
12
 
14
13
  from snowflake import connector, snowpark
@@ -1453,6 +1452,8 @@ class ModelRegistry:
1453
1452
  pip_requirements: Optional[List[str]] = None,
1454
1453
  signatures: Optional[Dict[str, model_signature.ModelSignature]] = None,
1455
1454
  sample_input_data: Optional[Any] = None,
1455
+ code_paths: Optional[List[str]] = None,
1456
+ options: Optional[model_types.ModelSaveOption] = None,
1456
1457
  ) -> str:
1457
1458
  """Uploads and register a model to the Model Registry.
1458
1459
 
@@ -1472,6 +1473,8 @@ class ModelRegistry:
1472
1473
  signatures: Signatures of the model, which is a mapping from target method name to signatures of input and
1473
1474
  output, which could be inferred by calling `infer_signature` method with sample input data.
1474
1475
  sample_input_data: Sample of the input data for the model.
1476
+ code_paths: Directory of code to import when loading and deploying the model.
1477
+ options: Additional options when saving the model.
1475
1478
 
1476
1479
  Raises:
1477
1480
  TypeError: Raised when both signatures and sample_input_data is not presented. Will be captured locally.
@@ -1490,60 +1493,50 @@ class ModelRegistry:
1490
1493
  raise connector.DataError(f"Model {model_name}/{model_version} already exists. Unable to log the model.")
1491
1494
  with tempfile.TemporaryDirectory() as tmpdir:
1492
1495
  model = cast(model_types.SupportedModelType, model)
1493
- try:
1494
- if signatures:
1495
- model_api.save_model(
1496
- name=model_name,
1497
- model_dir_path=tmpdir,
1498
- model=model,
1499
- signatures=signatures,
1500
- metadata=tags,
1501
- conda_dependencies=conda_dependencies,
1502
- pip_requirements=pip_requirements,
1503
- )
1504
- elif sample_input_data is not None:
1505
- model_api.save_model(
1506
- name=model_name,
1507
- model_dir_path=tmpdir,
1508
- model=model,
1509
- metadata=tags,
1510
- conda_dependencies=conda_dependencies,
1511
- pip_requirements=pip_requirements,
1512
- sample_input=sample_input_data,
1513
- )
1514
- elif isinstance(model, base.BaseEstimator):
1515
- model_api.save_model(
1516
- name=model_name,
1517
- model_dir_path=tmpdir,
1518
- model=model,
1519
- metadata=tags,
1520
- conda_dependencies=conda_dependencies,
1521
- pip_requirements=pip_requirements,
1522
- )
1523
- else:
1524
- raise TypeError("Either signature or sample input data should exist for native model packaging.")
1525
- return self._log_model_path(
1526
- model_name=model_name,
1527
- model_version=model_version,
1528
- path=tmpdir,
1529
- type="snowflake_native",
1530
- description=description,
1531
- tags=tags, # TODO: Inherent model type enum.
1496
+ if signatures:
1497
+ model_metadata = model_api.save_model(
1498
+ name=model_name,
1499
+ model_dir_path=tmpdir,
1500
+ model=model,
1501
+ signatures=signatures,
1502
+ metadata=tags,
1503
+ conda_dependencies=conda_dependencies,
1504
+ pip_requirements=pip_requirements,
1505
+ code_paths=code_paths,
1506
+ options=options,
1532
1507
  )
1533
- except (AttributeError, TypeError):
1534
- pass
1535
-
1536
- with tempfile.NamedTemporaryFile(delete=True) as local_model_file:
1537
- cp.dump(model, local_model_file)
1538
- local_model_file.flush()
1539
-
1508
+ elif sample_input_data is not None:
1509
+ model_metadata = model_api.save_model(
1510
+ name=model_name,
1511
+ model_dir_path=tmpdir,
1512
+ model=model,
1513
+ metadata=tags,
1514
+ conda_dependencies=conda_dependencies,
1515
+ pip_requirements=pip_requirements,
1516
+ sample_input=sample_input_data,
1517
+ code_paths=code_paths,
1518
+ options=options,
1519
+ )
1520
+ elif isinstance(model, base.BaseEstimator):
1521
+ model_metadata = model_api.save_model(
1522
+ name=model_name,
1523
+ model_dir_path=tmpdir,
1524
+ model=model,
1525
+ metadata=tags,
1526
+ conda_dependencies=conda_dependencies,
1527
+ pip_requirements=pip_requirements,
1528
+ code_paths=code_paths,
1529
+ options=options,
1530
+ )
1531
+ else:
1532
+ raise TypeError("Either signature or sample input data should exist for native model packaging.")
1540
1533
  return self._log_model_path(
1541
1534
  model_name=model_name,
1542
1535
  model_version=model_version,
1543
- path=local_model_file.name,
1544
- type=model.__class__.__name__,
1536
+ path=tmpdir,
1537
+ type=model_metadata.model_type,
1545
1538
  description=description,
1546
- tags=tags,
1539
+ tags=tags, # TODO: Inherent model type enum.
1547
1540
  )
1548
1541
 
1549
1542
  @telemetry.send_api_usage_telemetry(
@@ -1565,22 +1558,13 @@ class ModelRegistry:
1565
1558
  restored_model = None
1566
1559
  with tempfile.TemporaryDirectory() as local_model_directory:
1567
1560
  self._session.file.get(remote_model_path, local_model_directory)
1568
- is_native_model_format = False
1569
1561
  local_path = os.path.join(local_model_directory, os.path.basename(remote_model_path))
1570
- try:
1571
- if zipfile.is_zipfile(local_path):
1572
- extracted_dir = os.path.join(local_model_directory, "extracted")
1573
- with zipfile.ZipFile(local_path, "r") as myzip:
1574
- if len(myzip.namelist()) > 1:
1575
- myzip.extractall(extracted_dir)
1576
- restored_model, _meta = model_api.load_model(model_dir_path=extracted_dir)
1577
- is_native_model_format = True
1578
- except TypeError:
1579
- pass
1580
- if not is_native_model_format:
1581
- file_path = os.path.join(local_model_directory, os.path.basename(os.path.basename(remote_model_path)))
1582
- with open(file_path, mode="r+b") as model_file:
1583
- restored_model = cp.load(model_file)
1562
+ if zipfile.is_zipfile(local_path):
1563
+ extracted_dir = os.path.join(local_model_directory, "extracted")
1564
+ with zipfile.ZipFile(local_path, "r") as myzip:
1565
+ if len(myzip.namelist()) > 1:
1566
+ myzip.extractall(extracted_dir)
1567
+ restored_model, _ = model_api.load_model(model_dir_path=extracted_dir)
1584
1568
 
1585
1569
  return restored_model
1586
1570
 
snowflake/ml/version.py CHANGED
@@ -1 +1 @@
1
- VERSION="1.0.1"
1
+ VERSION="1.0.2"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: snowflake-ml-python
3
- Version: 1.0.1
3
+ Version: 1.0.2
4
4
  Description-Content-Type: text/markdown
5
5
  Author: Snowflake, Inc
6
6
  Author-email: support@snowflake.com
@@ -96,6 +96,29 @@ pip install snowflake-ml-python
96
96
  ```
97
97
  # Release History
98
98
 
99
+ ## 1.0.2 (2023-06-22)
100
+
101
+ ### Behavior Changes
102
+ - Model Registry: Prohibit non-snowflake-native models from being logged.
103
+ - Model Registry: `_use_local_snowml` parameter in options of `deploy()` has been removed.
104
+ - Model Registry: A default `False` `embed_local_ml_library` parameter has been added to the options of `log_model()`. With this set to `False` (default), the version of the local snowflake-ml-python library will be recorded and used when deploying the model. With this set to `True`, local snowflake-ml-python library will be embedded into the logged model, and will be used when you load or deploy the model.
105
+
106
+ ### New Features
107
+ - Model Registry: A new optional argument named `code_paths` has been added to the arguments of `log_model()` for users to specify additional code paths to be imported when loading and deploying the model.
108
+ - Model Registry: A new optional argument named `options` has been added to the arguments of `log_model()` to specify any additional options when saving the model.
109
+ - Model Development: Added metrics:
110
+ - d2_absolute_error_score
111
+ - d2_pinball_score
112
+ - explained_variance_score
113
+ - mean_absolute_error
114
+ - mean_absolute_percentage_error
115
+ - mean_squared_error
116
+
117
+ ### Bug Fixes
118
+
119
+ - Model Development: `accuracy_score()` now works when given label column names are lists of a single value.
120
+
121
+
99
122
  ## 1.0.1 (2023-06-16)
100
123
  ### Behavior Changes
101
124
 
@@ -0,0 +1,246 @@
1
+ snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
2
+ snowflake/ml/_internal/env_utils.py,sha256=tL-5IswRvbcuAZHvi1tIgGuuwg6_I0losgJSdAjfZPQ,14126
3
+ snowflake/ml/_internal/file_utils.py,sha256=ue1mqkjz2sxipycEfLAxkYEX34SwHJKbnkEjWgSd4c0,6353
4
+ snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
5
+ snowflake/ml/_internal/telemetry.py,sha256=CPcC6ZBbIVVkX6Ny3f4-EZ8s3A7O9u_S85H-qxJ6X4M,20238
6
+ snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
7
+ snowflake/ml/_internal/utils/formatting.py,sha256=pz3dFq11BzeHVcZugrU5lQOmPeBKmfkggEsTnDm8ggw,3678
8
+ snowflake/ml/_internal/utils/identifier.py,sha256=zA2Eoc_p8u4kphGuVUbaYt1Fl6xSTjIYu6Qu8BrDZ1c,7703
9
+ snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
10
+ snowflake/ml/_internal/utils/parallelize.py,sha256=zYtkYBq2_N7R49AvSzJynmvixNhUw3YBBZQ3uxVtTEA,4550
11
+ snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=AMR97AZCOr26Je2Q4fIePJRMf7cASr910R5-wr7ANpM,3722
12
+ snowflake/ml/_internal/utils/query_result_checker.py,sha256=IrzUJ4fJvxjJ5ma-6mejWHpxoEtwnMKo9XTJ-YsECnk,12205
13
+ snowflake/ml/_internal/utils/temp_file_utils.py,sha256=77k4ZAZJfyJBMw0IOfn4aItW2mUFGIl_3RgCNS_U4f4,1400
14
+ snowflake/ml/_internal/utils/uri.py,sha256=wi5LTs306Prcs8tL1CR19b2nUto8U2FLlOyVQrUQcn0,1841
15
+ snowflake/ml/fileset/fileset.py,sha256=hwKtNENBiNpEeHKyNra2QM11TYklzjyB_PtIQ8x5r_g,26746
16
+ snowflake/ml/fileset/fileset_errors.py,sha256=ZJfkpeDgRIw3qA876fk9FIzxIrm-yZ8I9RXUbzaeM84,1040
17
+ snowflake/ml/fileset/parquet_parser.py,sha256=yTJdYFTzaTPsgb1rGMj_jv_wDjmuwJZzbVRRmk--yA8,5915
18
+ snowflake/ml/fileset/sfcfs.py,sha256=YWL2D8P-3KcSoGmz6_nvMjQgRNTKzXbwGRhIZYYVZQo,11536
19
+ snowflake/ml/fileset/stage_fs.py,sha256=deFiXBXqab_v2WG6-A0BaepWvNxh4afpDsGbYh0jNWA,14859
20
+ snowflake/ml/fileset/tf_dataset.py,sha256=MrFtGiFu1FX3MSjAjWnZcEa5Ow4fsAHlUXW-BLqFWus,3462
21
+ snowflake/ml/fileset/torch_datapipe.py,sha256=kjfUmAqEQ55Gd1nMUFP-3crp1XG46oJ4E74Euk4HEW8,2386
22
+ snowflake/ml/model/_core_requirements.py,sha256=6HGtzvyZVGSIMYkJQ-J4TSyWwPt69uXnPXj7A4Nm34Q,197
23
+ snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=AUv7H3qQVCkaevgEMENugBYW-_eL1r21vnleM7UezbQ,7962
24
+ snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=qaGEbWhJCpdLse0KGw6kIS6gGD8iSA4j4By1wc-Lh2Y,2369
25
+ snowflake/ml/model/_deployer.py,sha256=c08kn3R6krNV0RaPGhFjQJAWxJ1zsM3kFMJ7VQ0O4OI,9548
26
+ snowflake/ml/model/_env.py,sha256=7vJHt77WusrMDDeKSRTyE-X9P1QICg-q68fxSx8scvg,4488
27
+ snowflake/ml/model/_handlers/_base.py,sha256=JUPnwTCGgMkKzqVns2zeVCF4-MtxnVKDieqNZR1X8sc,2299
28
+ snowflake/ml/model/_handlers/custom.py,sha256=Hjf_bg6LxhQWctkg6h35Knnu7-FHo2HWZLrPHRsEtWM,6084
29
+ snowflake/ml/model/_handlers/sklearn.py,sha256=OrNHd6_k7l8AbqpUCKcVeK1-ypwQUybDjYQr6IYtmBc,7558
30
+ snowflake/ml/model/_handlers/snowmlmodel.py,sha256=P35oabm3ERwGjnrREVi35a1JS1o9wdTzFJLThHt_uT8,7711
31
+ snowflake/ml/model/_handlers/xgboost.py,sha256=8WLW_tKDB7t0AjFCy8DzpCat7ojRK61h0AMFKRF0mlg,7204
32
+ snowflake/ml/model/_model.py,sha256=wBcwYjjmTlGhJcOilndqeZALsqfqR3cU30fF7ciTDm4,26448
33
+ snowflake/ml/model/_model_handler.py,sha256=a1upCULZlNuxUiFoJbK85nERGkA2VkEsn5-IIZn7pro,2101
34
+ snowflake/ml/model/_model_meta.py,sha256=FRhp90-SxVcE-_FxNZ39M_Bqycyu5h_LiNoMb61Ia_8,17684
35
+ snowflake/ml/model/custom_model.py,sha256=8qEHi8myHcp02jcpFbG9Kqscn9YRv3QnzehCrTSI8ds,8016
36
+ snowflake/ml/model/model_signature.py,sha256=Q_n1mcetW5btVYCS4VWMef29TshctoZSPC8Gk3Xqv2U,43624
37
+ snowflake/ml/model/type_hints.py,sha256=Vlpk52yXo2WcBKVdhoJM0gjnj20Tr6vwb3AOM3n35g4,4405
38
+ snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
39
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=Fh6Yq3jvpDvnQvtN9UPPo6c1p8266OwqQ77aT5ZhQGo,54140
40
+ snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
41
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=2Yco1Od7Yy0Av_4DW84VFJLs96rPJCy8xz8CMEH_O4A,52067
42
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=-U-ZBqQpURTwAT45rTECN-udcTRdq9iWAHyla3ZRgxo,54080
43
+ snowflake/ml/modeling/cluster/birch.py,sha256=_vm0DzphdPTij-tnBNszMhjO2ryIcWTKYWU_NdS0tUE,51905
44
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=Ae2AOU1qp2J0BszoKH3OC13ua9ut3xc4DdJ_DjFNf9A,54287
45
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=n5lG9ZKq4wEnD-4-HQDFaXj7-_lk9yOAPJPEEHbLawY,52246
46
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=tK0owQ9esTy_VVSuybejL5gEsGofar70CIVrE5GI5lk,54620
47
+ snowflake/ml/modeling/cluster/k_means.py,sha256=Z0QFBDwU-aHt-ua8Cs91revqgFvMgg5tFMh3--lKpXg,53874
48
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=VIe24mRUvAk35fNISI0JBYpRjIcmsv6XjRr4uvzq8Ic,52448
49
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=-FNLzyqaYZmQ6Hh5dtL7_CW_9G9MH-0ZHjrwsPIphVc,55149
50
+ snowflake/ml/modeling/cluster/optics.py,sha256=c97yzv0KWqoOJyqk4RLggsdTqBfDl_M6WLbAMd7Wuak,55580
51
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=9-9qPdHANEnO7bwIm50M-Y_veYjmWXhrP63k9417Nao,52638
52
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=moI4NNxtXhSFze2pAmlwPVGxMbylrFJkL9w2BChFbpw,55576
53
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=vtJmPSB5RmPhBQgXWf2FqviSWsrVT9X06FMeFLbN1IY,51768
54
+ snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
55
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=6LdwUi3XcdikyqmZhQo8Q7NIAIzGg_pu2AXe77DAGh0,54351
56
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=fq48CubtxA_SbKtlxvF1ksdTIJAta3ArzaYLPWPkmok,51936
57
+ snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
58
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=kbJ0rgwMD-FBtGox7MG3ZaGkVzqOU9GGa7h1otgsgJg,51908
59
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=RMAb0G8lhSfHDkXP3lfzWFyLMJbGT9RXs99hINq2n8Y,50184
60
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=ruc4U-p-0vyC3m_2DGoXwbm8RJnnysVucv7TiLY1wAU,51458
61
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=Z8os4_OgmL-7SEad1JVbU_l_uQTPN2etjFqTTF6o-Ko,52922
62
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=Lvld0ax1YowkWBiDQs8Jmn6vfwevg4ciM_r-DaAFPEA,50386
63
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=iHBPAUBZOJMrFwuJMbpG-D6aBfZknWKz2IqJZ0xBJNU,51149
64
+ snowflake/ml/modeling/covariance/oas.py,sha256=7-KZ1KSN4Y4Gt_FAg03XE9vH6LC3gBnK2yt75PfKLRE,50075
65
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=l9afcrkEqgM2zbZuv8-Wdu_LwK6eHCxiteOyzfzFfys,50361
66
+ snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
67
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=TgyT361-kmtHHJ015svz_d_NsOShWtLT_Hqa2oSgsuE,55176
68
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=TTlDQkaAUo2bWwZM-5UmH8zWltGPVj8ZWHAb3LRlLks,52548
69
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=T9_bqJwvIe-HWebGkDwHhBAKip13QlZS8zp_H3wTJ_Y,53010
70
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=m3qmci-Q8tu6BDBybHt5gTGc91oa4tzKYieuTUH5VqA,51345
71
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=7R008lOnVyiOOE_vGBSZfSkYPnHBPeJ_IEZy2yqo8_8,55376
72
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=sdGzUim1jbwQoMbqgmK4Yt2ujnrSNovPcmwMRr5kUuY,56359
73
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=S0ypJAaODsN7QIpoxaITjLt8PujLR7duy6JRw2b-kq4,53676
74
+ snowflake/ml/modeling/decomposition/pca.py,sha256=zDw-12Xl0RVPlv1DRNej1wVZHVg4UbULL1-59XJI2JM,54220
75
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=yt9_-fHwmJly0bmrP4zF99nAFXNdOghC1tvlqe0uQ-s,52541
76
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=gyPfuP13xKVqxWxVRmfSPBsByDVip-TUmYX3JsZA82U,52113
77
+ snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
78
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=pFO9WhFbvZxtNLT-qwMu25gFOwHUlqSzXk2SUWiYFbQ,54361
79
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=dYkvp3HMhJA5BuhkLMbNCm-QqPspZwQAUfZdP1appaU,52426
80
+ snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
81
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=wI-ZlS9RxmrbdrlVhnOysyNi_HI6F3lJ0l4CXCnnBTc,53379
82
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=T2hy8Vvh8q8S2FMdwlr6gUHpasrY5hts1zqzR1ylJZU,52278
83
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=uKoQc6Wgt4vLDPHGngumU0mdOnuT9B2b7oKuR3M4Ews,54303
84
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=brIXqQWVAZOk71nLIV21GYoW9SnnmosGJRG477wa1RQ,53547
85
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=aBemY9GMjkvYlAahwx2eXaxy59WcHywUNFDvfkVN3z0,59089
86
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=6CbTrwPsrZ4Ln6H7PGd7_JFepir6lWshjKjTpw-GhV8,57700
87
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=SC00Sy4eHVXziKjoxgmK6yTNHYdZae1oPI1JIbPZd8k,60698
88
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=y9KHokK5HsfmQwoRYsNUcPQAcpGeAVYdLa9ydwmuy1w,60282
89
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=yjlgQA8MTp8lxwY_BnnLOZfGWK2zvZKUcz6nuGSdBUs,60348
90
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=lAFA9_pmShlfPaa-Pw8gKTUnrO2hcydhElUSprIxHgc,58670
91
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=RkFtwkAmIq5NAv-peoS4TuszU2MCW4wcTfyjaENyJn8,53324
92
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=831nscGhY0toqmPYdq5aSvdVdOqJ1DVcxcq7Fr4Ht8k,59044
93
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=KTZVh4R1zLdILlKQD3WPo4hFP2DINNgvuPQrgZGnoI8,57643
94
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=xjeZPZIN0AOcXSg14lQOrB60Ah8E24ODQJpcOF2aS5U,53231
95
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=W-8z2EwwmgqHNm72aZCO_qeiB4PTGt9e5ok5T_hGTFc,52806
96
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=bnwzchGtAvU4VzgwvePCd0luAQrUYqAC2DRVbQyNZ7c,51341
97
+ snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
98
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=2Zpf6cTF5Q1Qxmp4VhDU-Bw1NhcApNbr2zUvXu1cfLI,50854
99
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=zit_0nZp5bPXaac18IWC-6_tI8791ayR-ENTH-fdHZA,50552
100
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=tzP0ae_1EFjaKG5AV4RzzfSJkKiiK7EA0fyro9GAb8o,50546
101
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=MZpzDF57EWhQYNUIHB6q22RbUNcKhhhDIs6SfNXcl64,50554
102
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=b4jGwVHFlYG1MBh-TKqVAvLv3Gjnb7mHeP2rAC7NvKI,50631
103
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=5CbzG9cHWj1IeGQGPWsomLXAY3IfO9q-IYJnLycVPs8,50651
104
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=YEzSgY5_WX96DBXNQAu_u4F_PjEysmw9HScHvkqlZaI,53304
105
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=4YDgM5XGpigBA0wOIdmkp1Qpd-i6gyQsjZs2tepIM14,50283
106
+ snowflake/ml/modeling/framework/_utils.py,sha256=So72kQZXXP0U9D47rXx0U5mxbkkRujKwmCh-f2OVf3E,9110
107
+ snowflake/ml/modeling/framework/base.py,sha256=hxRwBOKQtQFVZtHopgj_bgBUIU5TK9vJj4p4ZDynFWc,21900
108
+ snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
109
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=1SCwt_cR_NSOl8K38GDHgbZZ9urFfOcKeW4Iq5qe5Go,55849
110
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=bPuQg6EA5zfEylQgC7jnMsWKozVzDiR5PlyeM1zywBI,54541
111
+ snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
112
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=lEPVoxZaWd1NXp2WeiaWJduLeIVmzVK7WF3LdHGMpXI,56404
113
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=QR_-MNV6v2XC7BMgNxICUMjgOVwLTq6kZdFIPeIFRnk,52626
114
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=VwmisPgtu_uUA_5_5i1fbDVlXzhUxUcJSfJrygG9q0g,51423
115
+ snowflake/ml/modeling/impute/simple_imputer.py,sha256=AuqGFxRvVEuIdhTNhmk6T0Uz5K-k1RCKCTnQFCNQxWA,18118
116
+ snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
117
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=VqNhJGP4xuqMmHOCLwAMivpcvGs_MBSavRGi84mXuYc,50367
118
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=wE8KrYZOBHDqFdZMVdxLj_B_PVEjrivZDxHrJr_Ow7Q,52240
119
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=iGlxvqAjZDgJ5_C8LGcip7Tp_9Ug1WAEr4a5KfjN-Po,51394
120
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=_5PE-_HRtbdi4Nd_cOu5vJIkZXVx5o4dMQDCXIoDpOo,50823
121
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=uZvRARvLG1NI_VPFMS25o_IboKxA8UtgMXaNZ8niSC8,50822
122
+ snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
123
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=K5rwm_PEU_U8nFGfEeUIWx0q4z0sGC8P_D-3PZkXZZo,52340
124
+ snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
125
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=p8WVRLf-_VnwpqLxW6dnVrj-2wxPm43TwyYnpvsaS-o,51862
126
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=HgV0YR1OoahM9qdBIslU8JTV3c3811npxITla-3WVog,51373
127
+ snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
128
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=dggAjhWDP60kbKiOAJojAQXtg3Wo9Dm0bYVtYrggnXk,52088
129
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=ibrYuablj-vfo82qLxX_CMye93HcI3N1CGxJXscLI2Y,52401
130
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=DYLFUV5om3RAGM9ksDQXUKsilxZtjm03a5fyW55VQqg,53285
131
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=lyioafMUyXvkYg7irIKNvNpM9O4EDnZaDZ-Ke7TNkDU,54543
132
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=GSfFfwvgD9_FnEm4kvSCeNqRz0opwS90cO8vFPkKz_A,52341
133
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=bcFYgj993IaUgcJLFhglTK2yI7z5b9fMu2d4H2Gd4ag,51529
134
+ snowflake/ml/modeling/linear_model/lars.py,sha256=mtwe3OdWTqhHOfRrjfNABKz4UMUuDOJQ-dSlzF34q7Y,52826
135
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=SRwQj4xDW0iOzxeitBEcvN80LIhnpVfcCmb5DbMNLH0,53033
136
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=3iLGhBze1F7t-BfN5-Vylr9hkVDAaLac-_vuscKd2Ys,52925
137
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=bx1ujpMUGVpqKiXQCmdA9Zn8jOExB55yArAI6TCq82Y,53700
138
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=lVZrQFB1Aglg2knrP85nPsohPPy-KFNMoU9gf7ttnMw,53929
139
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=FRRH0rb-MeC2SCuzvbh8vNdVP9_LDxzv9ROW2D6Xu3U,53875
140
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=bpzkYt94SMLgdlQXc92ecGF-j2y2LjlyKcZYUMqsNX8,53220
141
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=fPJuWbciS2kVXduXxGcuEdyiV2_2QZaHpdp7EYijtg8,51055
142
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=zxGgjDlyEzMoffE4L-55CZXa7BB3wnRKg9thAdg2snQ,57306
143
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=nDyKdYdCRUQ_9hgVTvSPmy3ABUEaOgcuv4jbNhj-GNw,58326
144
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=CGOn8vgTrLABtCCyGbndbCNUVzub-tlup6OZ_Il22qc,52511
145
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=yow9Tmcfgl1uVBcDbJ44nbu2RKP0hWIrgW3fmYvvgF0,54139
146
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=onLqMztO07DHdhweQ0Lr3huLRLDblFzMjYH1h_679tI,52093
147
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=B-kNPTuK9OcNVsg39taYRJiHchzE4rzkJLYAQiCVfEQ,53345
148
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=iDBwlSFe3A3rTnYCoMhQtPDt1luK9oZ2kXQjeE8ZrXY,51620
149
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=ZVRUYCkTqnyxVh5I28Lxir-wbillRSZErEfuk0zCl38,54971
150
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=77JuwJf8YLQXhbMOkBozT1cZgpjklzxQ7LG11P3esA4,54046
151
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=npzkWzJhgzBvl6YDCu3ouxRhcH8NM9mY3D6WmvTfS8E,54476
152
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=G_9YM6RWmGptMNvOsz1yaU_MoyjYLiPLyuWDmFOHnn0,52372
153
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=Eooggs-DyzKWikkF_-oJrkTJVqBGbcTnEGuIGQHMhPc,55846
154
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=JeTgVVpjBJdoaAFIoSMCc1dp1t0ylPCdKUZuwt21AIA,53906
155
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=RVvzPvAiuM0-4neplIU9O6zP-ORDF3NfMGilwbFprGc,54224
156
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=H_kE-ZRnaqhTVbIYdqSX2MB-K4tGStNjll-FuruM9Sc,52763
157
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=IgH-7EtxjFfTI7Wih80NIk9EdZTug5nWvTQUBxe4XCY,53539
158
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=Fx68BRRQ7nXhEi7UCd1osFvtebWs0ZsY90wI9G2jKI0,59892
159
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=URNcQGuY6xEazEbL5SxOLE-msOVHR1HwAHvu82ylJQk,54506
160
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=DJqvXt6gYgvlWn4i2ilrlT7N4GPdEiWbprOhOH6T3fo,57361
161
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=jSoeUvjm-Iih83byRAP6Non9_d7HiiOgSi-fjuD8lRI,52794
162
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=FH1yc3D1_dZ-NeVXtoDhQZDL9fC47nz9Qt9eDzqT4ok,53765
163
+ snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
164
+ snowflake/ml/modeling/manifold/isomap.py,sha256=Y9I0ZBAtgF2wdChAday86N4FqSnACAlVBZ8zUuy55XM,53160
165
+ snowflake/ml/modeling/manifold/mds.py,sha256=8PxHji0zRLZEzKm6crf7zhPe0lHy0PPx6b4a4wVsBFU,52378
166
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=aJSl5NC_ygakrOhsT_-dlKxd2ELuOLASJ2suwaf0kdU,53149
167
+ snowflake/ml/modeling/manifold/tsne.py,sha256=gwEXvNWqzPxBLX5ID9BVHJylNE35nMmRlM8a1Q4iToE,56421
168
+ snowflake/ml/modeling/metrics/__init__.py,sha256=wp2LehkoLtyt4u_HBhglrKrV6E-dKt5vr-0N3MkJFaY,304
169
+ snowflake/ml/modeling/metrics/classification.py,sha256=ZtTQ3ziMMglimNW1hG7oGDhAW5a6HBXOfQq8g3iptC8,40077
170
+ snowflake/ml/modeling/metrics/correlation.py,sha256=4cjKDl07C3PGcx_VPwOqSFYjuBEA266btKuw9wd5D7w,4921
171
+ snowflake/ml/modeling/metrics/covariance.py,sha256=hS_yILgo3OUjBVrPCL-NXR7cSyPjXOFftXlZJ1xaLus,4757
172
+ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=jvjOabIwGi02I1aEiSo_3NfgXLAIU7ggShQXDAAjCFs,12037
173
+ snowflake/ml/modeling/metrics/ranking.py,sha256=KzRbI1bZf3G1U3wlSnvpX1GMTkddfGwy9y2gopxoW6E,15397
174
+ snowflake/ml/modeling/metrics/regression.py,sha256=yqTiBnbFc1GtBR4LJfUiEGE8Pv3uNT2ZuFiaEyzxyhM,23144
175
+ snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
176
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=Q9-C2JHJtOFuI70qqMe4jXpL3xqZakD90d9gsdTMDzE,57065
177
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=LkqMA3cxhIoHnbJeYbcECNUIbuxTLZnfkFQ_08IaQoY,55067
178
+ snowflake/ml/modeling/model_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
179
+ snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=1LuLtTFpd0Qeuv91xsMvY3uO2Dj8ePEYH5NjWc4id-M,57616
180
+ snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=iLacSg4kt-NyJE4pRFX4F5nW8iZlRieXQhsgcrmUAjs,58460
181
+ snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
182
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=m49bTRLKzJHPj3_4hmPEdWPeHk_JADgnmdxTJz2t4Gs,51048
183
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=c8uxnEPim_ez3Fe3pAMqdy9sHUJGBpm4iPvZS7yi2xQ,51976
184
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=jUc8xYU1rW3T21IJDITK8Ju04ZA702CyMEb7Yhj5MtY,51306
185
+ snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
186
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=r-jo5zsBrHEJTJF_yqxVMTkcJ_UyHt03Vl5Jg9pdAwY,51633
187
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=rbzfzn1CbhWP0NUb_HuuJPqDXoGOh0q-U6pv1bQXJTQ,51954
188
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=sKFvVuVtZ5YkM9sn9hhSiJYPhu1XgfIpFlWCUZL6keo,51641
189
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=IJ_cLm2e1j9fIIJEuEqs73ErG5bTQadTyoXRPQdLSiA,50781
190
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=nw33nrEnVLho0AnOaP2X2wxQ9Sf7OFgzec1KIY153do,51398
191
+ snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
192
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=7slt_NxYYctTAtwfieDxAYnYl9ckZs4Q1UOizvdEBaE,54185
193
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=17ofYkVFAIgbvXGMpNDg7ygvdBMXtxIDNp6QeJygdTI,53667
194
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=g1reFsR1aWBrsbSCzwGzifS4rCqKJY3H5MqRbnqjp9s,52144
195
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=DhTrzk-WnYYXWCov8H-Bn3g8D-FoxvFkH7O_XbHHOwA,54425
196
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=0PAR1wLl8qwFTT4x44FLqOA5pj1x4twKe1ca0wkMkGQ,50948
197
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=qTNrjb-vPzYQDs-CDhGlRPLe_bYhrJ8EfQEc2RaT96k,52857
198
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=b5aaw6oF-754dVsGkizkJHgtZCetKuDxb118ke8KzQQ,54333
199
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=j5mHbaSuJqLVfR6vdNmGWXut1UNAh5IxSgiO4HgVvGY,54814
200
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=GOxeGcAVyAWCRgxJvRO25guzDin5-tryWV2vuABel0U,53700
201
+ snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
202
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=joVaKo1byI-5MRmb0MarM7JBFn6Hg4jyqd37nu06Zhg,51349
203
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=ToJzxQly6m2g_WNHxXq0jJdM6tupA9w4m-L0Gvf6GW0,58847
204
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=Xi_YG8Ce0vVkIsHN1Zk82txQKDG-iHYFi-D2d_20J-U,58124
205
+ snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
206
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=kIvKahAyF7zQoT8eYVm9dJPafYLybGZ8ELaxrBIkQ34,23381
207
+ snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
208
+ snowflake/ml/modeling/preprocessing/binarizer.py,sha256=IoGdiZwqsLYRSkifmxzfCqCeOy5ir5Gq_ls_gsPu54I,6092
209
+ snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=upW9qxntwE0vZ8foc2J3BlVdKy61M7JBspZkKqAyKW0,20422
210
+ snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=r3S_-G5OIqjeBttyIicSar_4FNO68MOvRSyAi_6gzeA,6285
211
+ snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=O2dXkX6PPJZaVbS7jIpC4DOfqUt85YFaDA-rLXz6pEc,8491
212
+ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=1LDaOp-OJU-79B36ZxBhAMQe5AXDEU5f71PNVXwtLXU,10716
213
+ snowflake/ml/modeling/preprocessing/normalizer.py,sha256=0pbgiOGqwC4Pv9MKnYfo_0vIUmBdyLFoPSd_Sr7Og4U,5951
214
+ snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=ubZCjUhPdkqn_w4nuIpgozawjcV3HvnkqiKMYqo3ljA,66998
215
+ snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=uryEQmMp45tHuuHI7k-D4CY9JCkFYJUuP6hWZcODoAQ,27848
216
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=aD_FCZlwUnGtAM5eexF8eGUqcOw6pC9TrSv_qadJ-n8,51483
217
+ snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=JGgkPZfgezS4X8YECSjeWDQIoLbU98j43qbwqP2RzZE,11981
218
+ snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=hu2VnATyizCz-QKv7aaGdATeU8Fyug8MeNxau3-CllQ,10672
219
+ snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
220
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=06dQseRmK25t9TjC06hHtG0Yx-w1QAgdg-iqofaR6FA,51820
221
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=4Y8eBB-lX8Jqo6aHSCDiAr6I392OtVknE0dis3qEtFQ,52184
222
+ snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
223
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=LLj2LrHZjcFf4A8V0MYLrQz9iWRkxE58XKoaSwMzyA0,54362
224
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=9YPXR-D_nsv8FJaZBuUACgqofeHuaQCJVLl4gKbH6V8,52777
225
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=2IlDpoENw5Q6OtKC7lK2ZLrHwVZBoSYfuF2eal18HbE,55076
226
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=zLfLSZATC_IikRI5lh3ySu_o0Rq5NmJCUeEB_0TcY-I,52152
227
+ snowflake/ml/modeling/svm/svc.py,sha256=0ptSWOd54T5A8tO_3X8cIpthu-cDWELcZlGh4fiAVYI,55239
228
+ snowflake/ml/modeling/svm/svr.py,sha256=XDymWoig3szXbPIiYyCs0sM-Q7lcCcZaD6f9-CE4lrg,52355
229
+ snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
230
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=Rej8fjFzDE4osX0waJdHjsw0DZ3Z6yg3VcfmdsA-V4Y,57438
231
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=kylQASQOkEtMWgGaTMO6vUqTImgdBhTEC5EbfZYl5i4,56134
232
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=aWV05GlwO653ndAmn3AtBmQA1R3KeVFjL3l2a8L2srQ,56801
233
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=zTo1vpjNvj65GiWCOPCv7iH93Jj8p66QPUZ0CMP0qN8,55506
234
+ snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
235
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=KqK_zKRnWoTWqW82Un7CYGEgbHsloRwwOUbvhOk9SJQ,61208
236
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=4BrG1tjYvMk3wX3aK47PDiTmeMrCSB60Ke4BWud3vuk,60714
237
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=BQel82uG1f3o1XoODm6TIMQD3zRYSuXoD2G6oGSlX_A,61372
238
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=3EYUqQgFSFkiWRxmIYAw-Cav2CJl2pEejChVqAGgLDY,60905
239
+ snowflake/ml/registry/_schema.py,sha256=7NezDozAqdbOjB9dYHSQQpxapSTKuXqnGrl394bDohc,1381
240
+ snowflake/ml/registry/model_registry.py,sha256=jkeGWntSSKYRQZqoIX3_qAbAveMwoJhYzF_jgug3bxA,84697
241
+ snowflake/ml/utils/connection_params.py,sha256=W_MwEw1xUARgrDehP_Kz5dmqt1sBXct80xQ7N56qFCc,6138
242
+ snowflake/ml/utils/sparse.py,sha256=1mI2lOm-nMQEwNfbDtHpkJ4SDkKKqsRFyGwSQJJZAiE,3893
243
+ snowflake/ml/version.py,sha256=_MuTm0ZX7Fno8rwBkHygvwK4Mr2oy6nYbO-KOyECohQ,16
244
+ snowflake_ml_python-1.0.2.dist-info/METADATA,sha256=5k_a2EQPGGkZZNUpSFLXSJ_WCEddktODr-aYUhz6gCc,11756
245
+ snowflake_ml_python-1.0.2.dist-info/RECORD,,
246
+ snowflake_ml_python-1.0.2.dist-info/WHEEL,sha256=sobxWSyDDkdg_rinUth-jxhXHqoNqlmNMJY3aTZn2Us,91