snappy 3.2__cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cpython-313-x86_64-linux-gnu.so +0 -0
- snappy/SnapPy.cpython-313-x86_64-linux-gnu.so +0 -0
- snappy/SnapPy.ico +0 -0
- snappy/SnapPy.png +0 -0
- snappy/SnapPyHP.cpython-313-x86_64-linux-gnu.so +0 -0
- snappy/__init__.py +760 -0
- snappy/app.py +605 -0
- snappy/app_menus.py +372 -0
- snappy/browser.py +998 -0
- snappy/cache.py +25 -0
- snappy/canonical.py +249 -0
- snappy/cusps/__init__.py +38 -0
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/cusps/cusp_areas_from_matrix.py +173 -0
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +454 -0
- snappy/db_utilities.py +79 -0
- snappy/decorated_isosig.py +710 -0
- snappy/dev/__init__.py +0 -0
- snappy/dev/extended_ptolemy/__init__.py +8 -0
- snappy/dev/extended_ptolemy/closed.py +106 -0
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +149 -0
- snappy/dev/extended_ptolemy/direct.py +42 -0
- snappy/dev/extended_ptolemy/extended.py +406 -0
- snappy/dev/extended_ptolemy/giac_helper.py +43 -0
- snappy/dev/extended_ptolemy/giac_rur.py +129 -0
- snappy/dev/extended_ptolemy/gluing.py +46 -0
- snappy/dev/extended_ptolemy/phc_wrapper.py +220 -0
- snappy/dev/extended_ptolemy/printMatrices.py +70 -0
- snappy/dev/vericlosed/__init__.py +1 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureNew.py +159 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +90 -0
- snappy/dev/vericlosed/computeVerifiedHyperbolicStructure.py +111 -0
- snappy/dev/vericlosed/gimbalLoopFinder.py +130 -0
- snappy/dev/vericlosed/hyperbolicStructure.py +313 -0
- snappy/dev/vericlosed/krawczykCertifiedEdgeLengthsEngine.py +165 -0
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +122 -0
- snappy/dev/vericlosed/orb/__init__.py +1 -0
- snappy/dev/vericlosed/orb/orb_solution_for_snappea_finite_triangulation_mac +0 -0
- snappy/dev/vericlosed/parseVertexGramMatrixFile.py +47 -0
- snappy/dev/vericlosed/polishApproxHyperbolicStructure.py +61 -0
- snappy/dev/vericlosed/test.py +54 -0
- snappy/dev/vericlosed/truncatedComplex.py +176 -0
- snappy/dev/vericlosed/verificationError.py +58 -0
- snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +177 -0
- snappy/doc/_images/SnapPy-196.png +0 -0
- snappy/doc/_images/geodesics.jpg +0 -0
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/mac.png +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_images/plink-action.png +0 -0
- snappy/doc/_images/ubuntu.png +0 -0
- snappy/doc/_images/win7.png +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +40 -0
- snappy/doc/_sources/bugs.rst.txt +14 -0
- snappy/doc/_sources/censuses.rst.txt +51 -0
- snappy/doc/_sources/credits.rst.txt +75 -0
- snappy/doc/_sources/development.rst.txt +259 -0
- snappy/doc/_sources/index.rst.txt +182 -0
- snappy/doc/_sources/installing.rst.txt +247 -0
- snappy/doc/_sources/manifold.rst.txt +6 -0
- snappy/doc/_sources/manifoldhp.rst.txt +46 -0
- snappy/doc/_sources/news.rst.txt +355 -0
- snappy/doc/_sources/other.rst.txt +25 -0
- snappy/doc/_sources/platonic_census.rst.txt +20 -0
- snappy/doc/_sources/plink.rst.txt +102 -0
- snappy/doc/_sources/ptolemy.rst.txt +66 -0
- snappy/doc/_sources/ptolemy_classes.rst.txt +42 -0
- snappy/doc/_sources/ptolemy_examples1.rst.txt +298 -0
- snappy/doc/_sources/ptolemy_examples2.rst.txt +363 -0
- snappy/doc/_sources/ptolemy_examples3.rst.txt +301 -0
- snappy/doc/_sources/ptolemy_examples4.rst.txt +61 -0
- snappy/doc/_sources/ptolemy_prelim.rst.txt +105 -0
- snappy/doc/_sources/screenshots.rst.txt +21 -0
- snappy/doc/_sources/snap.rst.txt +87 -0
- snappy/doc/_sources/snappy.rst.txt +28 -0
- snappy/doc/_sources/spherogram.rst.txt +103 -0
- snappy/doc/_sources/todo.rst.txt +47 -0
- snappy/doc/_sources/triangulation.rst.txt +11 -0
- snappy/doc/_sources/tutorial.rst.txt +49 -0
- snappy/doc/_sources/verify.rst.txt +210 -0
- snappy/doc/_sources/verify_internals.rst.txt +79 -0
- snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
- snappy/doc/_static/SnapPy.ico +0 -0
- snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
- snappy/doc/_static/basic.css +925 -0
- snappy/doc/_static/css/badge_only.css +1 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
- snappy/doc/_static/css/theme.css +4 -0
- snappy/doc/_static/doctools.js +156 -0
- snappy/doc/_static/documentation_options.js +13 -0
- snappy/doc/_static/file.png +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/jquery.js +2 -0
- snappy/doc/_static/js/badge_only.js +1 -0
- snappy/doc/_static/js/theme.js +1 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +199 -0
- snappy/doc/_static/minus.png +0 -0
- snappy/doc/_static/plus.png +0 -0
- snappy/doc/_static/pygments.css +75 -0
- snappy/doc/_static/searchtools.js +620 -0
- snappy/doc/_static/snappy_furo.css +33 -0
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
- snappy/doc/_static/sphinx_highlight.js +154 -0
- snappy/doc/additional_classes.html +1500 -0
- snappy/doc/bugs.html +132 -0
- snappy/doc/censuses.html +427 -0
- snappy/doc/credits.html +181 -0
- snappy/doc/development.html +384 -0
- snappy/doc/genindex.html +1331 -0
- snappy/doc/index.html +262 -0
- snappy/doc/installing.html +346 -0
- snappy/doc/manifold.html +3452 -0
- snappy/doc/manifoldhp.html +180 -0
- snappy/doc/news.html +388 -0
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +161 -0
- snappy/doc/platonic_census.html +375 -0
- snappy/doc/plink.html +210 -0
- snappy/doc/ptolemy.html +254 -0
- snappy/doc/ptolemy_classes.html +1144 -0
- snappy/doc/ptolemy_examples1.html +409 -0
- snappy/doc/ptolemy_examples2.html +471 -0
- snappy/doc/ptolemy_examples3.html +414 -0
- snappy/doc/ptolemy_examples4.html +195 -0
- snappy/doc/ptolemy_prelim.html +248 -0
- snappy/doc/py-modindex.html +165 -0
- snappy/doc/screenshots.html +141 -0
- snappy/doc/search.html +135 -0
- snappy/doc/searchindex.js +1 -0
- snappy/doc/snap.html +202 -0
- snappy/doc/snappy.html +181 -0
- snappy/doc/spherogram.html +1211 -0
- snappy/doc/todo.html +166 -0
- snappy/doc/triangulation.html +1584 -0
- snappy/doc/tutorial.html +159 -0
- snappy/doc/verify.html +330 -0
- snappy/doc/verify_internals.html +1235 -0
- snappy/drilling/__init__.py +456 -0
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +5 -0
- snappy/drilling/crush.py +270 -0
- snappy/drilling/cusps.py +125 -0
- snappy/drilling/debug.py +242 -0
- snappy/drilling/epsilons.py +6 -0
- snappy/drilling/exceptions.py +55 -0
- snappy/drilling/moves.py +620 -0
- snappy/drilling/peripheral_curves.py +210 -0
- snappy/drilling/perturb.py +188 -0
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +274 -0
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +351 -0
- snappy/exceptions.py +26 -0
- snappy/export_stl.py +120 -0
- snappy/exterior_to_link/__init__.py +2 -0
- snappy/exterior_to_link/barycentric_geometry.py +463 -0
- snappy/exterior_to_link/exceptions.py +6 -0
- snappy/exterior_to_link/geodesic_map.json +14408 -0
- snappy/exterior_to_link/hyp_utils.py +112 -0
- snappy/exterior_to_link/link_projection.py +323 -0
- snappy/exterior_to_link/main.py +197 -0
- snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
- snappy/exterior_to_link/mcomplex_with_link.py +687 -0
- snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
- snappy/exterior_to_link/pl_utils.py +491 -0
- snappy/exterior_to_link/put_in_S3.py +156 -0
- snappy/exterior_to_link/rational_linear_algebra.py +123 -0
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
- snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
- snappy/exterior_to_link/stored_moves.py +475 -0
- snappy/exterior_to_link/test.py +31 -0
- snappy/filedialog.py +28 -0
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/geometric_structure/geodesic/fixed_points.py +93 -0
- snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +121 -0
- snappy/horoviewer.py +443 -0
- snappy/hyperboloid/__init__.py +212 -0
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/info_icon.gif +0 -0
- snappy/infowindow.py +65 -0
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/manifolds/HTWKnots/alternating.gz +0 -0
- snappy/manifolds/HTWKnots/nonalternating.gz +0 -0
- snappy/manifolds/__init__.py +3 -0
- snappy/math_basics.py +176 -0
- snappy/matrix.py +525 -0
- snappy/number.py +657 -0
- snappy/numeric_output_checker.py +345 -0
- snappy/pari.py +41 -0
- snappy/phone_home.py +57 -0
- snappy/polyviewer.py +259 -0
- snappy/ptolemy/__init__.py +17 -0
- snappy/ptolemy/component.py +103 -0
- snappy/ptolemy/coordinates.py +2290 -0
- snappy/ptolemy/fieldExtensions.py +153 -0
- snappy/ptolemy/findLoops.py +473 -0
- snappy/ptolemy/geometricRep.py +59 -0
- snappy/ptolemy/homology.py +165 -0
- snappy/ptolemy/magma/default.magma_template +229 -0
- snappy/ptolemy/magma/radicalsOfPrimaryDecomposition.magma_template +79 -0
- snappy/ptolemy/manifoldMethods.py +395 -0
- snappy/ptolemy/matrix.py +350 -0
- snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +113 -0
- snappy/ptolemy/polynomial.py +857 -0
- snappy/ptolemy/processComponents.py +173 -0
- snappy/ptolemy/processFileBase.py +247 -0
- snappy/ptolemy/processFileDispatch.py +46 -0
- snappy/ptolemy/processMagmaFile.py +392 -0
- snappy/ptolemy/processRurFile.py +150 -0
- snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +102 -0
- snappy/ptolemy/ptolemyObstructionClass.py +64 -0
- snappy/ptolemy/ptolemyVariety.py +1029 -0
- snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +140 -0
- snappy/ptolemy/reginaWrapper.py +698 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/rur.py +545 -0
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +277 -0
- snappy/ptolemy/test.py +1126 -0
- snappy/ptolemy/testing_files/3_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/3_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c0.magma_out +95 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c1.magma_out +95 -0
- snappy/ptolemy/testing_files/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_rur/m052__sl3_c0.rur.bz2 +0 -0
- snappy/ptolemy/utilities.py +236 -0
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +197 -0
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +237 -0
- snappy/raytracing/finite_viewer.py +590 -0
- snappy/raytracing/geodesic_tube_info.py +174 -0
- snappy/raytracing/geodesics.py +246 -0
- snappy/raytracing/geodesics_window.py +258 -0
- snappy/raytracing/gui_utilities.py +293 -0
- snappy/raytracing/hyperboloid_navigation.py +556 -0
- snappy/raytracing/hyperboloid_utilities.py +234 -0
- snappy/raytracing/ideal_raytracing_data.py +592 -0
- snappy/raytracing/inside_viewer.py +974 -0
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +126 -0
- snappy/raytracing/raytracing_view.py +454 -0
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +101 -0
- snappy/raytracing/shaders/fragment.glsl +1744 -0
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +98 -0
- snappy/raytracing/view_scale_controller.py +98 -0
- snappy/raytracing/zoom_slider/__init__.py +263 -0
- snappy/raytracing/zoom_slider/inward.png +0 -0
- snappy/raytracing/zoom_slider/inward18.png +0 -0
- snappy/raytracing/zoom_slider/outward.png +0 -0
- snappy/raytracing/zoom_slider/outward18.png +0 -0
- snappy/raytracing/zoom_slider/test.py +20 -0
- snappy/sage_helper.py +117 -0
- snappy/settings.py +409 -0
- snappy/shell.py +53 -0
- snappy/snap/__init__.py +114 -0
- snappy/snap/character_varieties.py +375 -0
- snappy/snap/find_field.py +372 -0
- snappy/snap/fundamental_polyhedron.py +569 -0
- snappy/snap/generators.py +39 -0
- snappy/snap/interval_reps.py +81 -0
- snappy/snap/kernel_structures.py +128 -0
- snappy/snap/mcomplex_base.py +18 -0
- snappy/snap/nsagetools.py +702 -0
- snappy/snap/peripheral/__init__.py +1 -0
- snappy/snap/peripheral/dual_cellulation.py +219 -0
- snappy/snap/peripheral/link.py +127 -0
- snappy/snap/peripheral/peripheral.py +159 -0
- snappy/snap/peripheral/surface.py +522 -0
- snappy/snap/peripheral/test.py +35 -0
- snappy/snap/polished_reps.py +335 -0
- snappy/snap/shapes.py +152 -0
- snappy/snap/slice_obs_HKL.py +668 -0
- snappy/snap/t3mlite/__init__.py +2 -0
- snappy/snap/t3mlite/arrow.py +243 -0
- snappy/snap/t3mlite/corner.py +22 -0
- snappy/snap/t3mlite/edge.py +172 -0
- snappy/snap/t3mlite/face.py +37 -0
- snappy/snap/t3mlite/files.py +211 -0
- snappy/snap/t3mlite/homology.py +53 -0
- snappy/snap/t3mlite/linalg.py +419 -0
- snappy/snap/t3mlite/mcomplex.py +1499 -0
- snappy/snap/t3mlite/perm4.py +320 -0
- snappy/snap/t3mlite/setup.py +12 -0
- snappy/snap/t3mlite/simplex.py +199 -0
- snappy/snap/t3mlite/spun.py +297 -0
- snappy/snap/t3mlite/surface.py +519 -0
- snappy/snap/t3mlite/test.py +20 -0
- snappy/snap/t3mlite/test_vs_regina.py +86 -0
- snappy/snap/t3mlite/tetrahedron.py +109 -0
- snappy/snap/t3mlite/vertex.py +42 -0
- snappy/snap/test.py +134 -0
- snappy/snap/utilities.py +288 -0
- snappy/test.py +209 -0
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +920 -0
- snappy/twister/__init__.py +20 -0
- snappy/twister/main.py +646 -0
- snappy/twister/surfaces/S_0_1 +3 -0
- snappy/twister/surfaces/S_0_2 +3 -0
- snappy/twister/surfaces/S_0_4 +7 -0
- snappy/twister/surfaces/S_0_4_Lantern +8 -0
- snappy/twister/surfaces/S_1 +3 -0
- snappy/twister/surfaces/S_1_1 +4 -0
- snappy/twister/surfaces/S_1_2 +5 -0
- snappy/twister/surfaces/S_1_2_5 +6 -0
- snappy/twister/surfaces/S_2 +6 -0
- snappy/twister/surfaces/S_2_1 +8 -0
- snappy/twister/surfaces/S_2_heeg +10 -0
- snappy/twister/surfaces/S_3 +8 -0
- snappy/twister/surfaces/S_3_1 +10 -0
- snappy/twister/surfaces/S_4_1 +12 -0
- snappy/twister/surfaces/S_5_1 +14 -0
- snappy/twister/surfaces/heeg_fig8 +9 -0
- snappy/twister/twister_core.cpython-313-x86_64-linux-gnu.so +0 -0
- snappy/upper_halfspace/__init__.py +146 -0
- snappy/upper_halfspace/ideal_point.py +26 -0
- snappy/verify/__init__.py +13 -0
- snappy/verify/canonical.py +542 -0
- snappy/verify/complex_volume/__init__.py +18 -0
- snappy/verify/complex_volume/adjust_torsion.py +86 -0
- snappy/verify/complex_volume/closed.py +168 -0
- snappy/verify/complex_volume/compute_ptolemys.py +90 -0
- snappy/verify/complex_volume/cusped.py +56 -0
- snappy/verify/complex_volume/extended_bloch.py +201 -0
- snappy/verify/cusp_translations.py +85 -0
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +254 -0
- snappy/verify/hyperbolicity.py +224 -0
- snappy/verify/interval_newton_shapes_engine.py +523 -0
- snappy/verify/interval_tree.py +400 -0
- snappy/verify/krawczyk_shapes_engine.py +518 -0
- snappy/verify/maximal_cusp_area_matrix/__init__.py +46 -0
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +419 -0
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +153 -0
- snappy/verify/real_algebra.py +286 -0
- snappy/verify/shapes.py +25 -0
- snappy/verify/short_slopes.py +200 -0
- snappy/verify/square_extensions.py +1005 -0
- snappy/verify/test.py +78 -0
- snappy/verify/upper_halfspace/__init__.py +9 -0
- snappy/verify/upper_halfspace/extended_matrix.py +100 -0
- snappy/verify/upper_halfspace/finite_point.py +283 -0
- snappy/verify/upper_halfspace/ideal_point.py +426 -0
- snappy/verify/volume.py +128 -0
- snappy/version.py +2 -0
- snappy-3.2.dist-info/METADATA +58 -0
- snappy-3.2.dist-info/RECORD +503 -0
- snappy-3.2.dist-info/WHEEL +6 -0
- snappy-3.2.dist-info/entry_points.txt +2 -0
- snappy-3.2.dist-info/top_level.txt +28 -0
@@ -0,0 +1,1005 @@
|
|
1
|
+
"""
|
2
|
+
The square_extensions module provides
|
3
|
+
two special classes to give exact representations of the values
|
4
|
+
involved when computing a cusp cross section.
|
5
|
+
|
6
|
+
The method find_shapes_as_complex_sqrt_lin_combinations returns a list of
|
7
|
+
shapes as ComplexSqrtLinCombination's. This can be used as input to
|
8
|
+
CuspCrossSection. The outputs of CuspCrossSection, including the tilts, will
|
9
|
+
then be of type SqrtLinCombination.
|
10
|
+
|
11
|
+
Consider the real number field N generated by the real and imaginary part of
|
12
|
+
the shapes. The edge lengths and the factors used to normalize the cusp areas
|
13
|
+
will be square roots in N and thus the tilts will be N-linear combinations of
|
14
|
+
square roots in N. To avoid computing in a massive tower of square extensions
|
15
|
+
of N, we implement SqrtLinCombination here that provides a special
|
16
|
+
implementation of the == operator.
|
17
|
+
"""
|
18
|
+
|
19
|
+
import operator
|
20
|
+
from functools import reduce
|
21
|
+
from ..math_basics import prod
|
22
|
+
from ..sage_helper import _within_sage, sage_method, SageNotAvailable
|
23
|
+
|
24
|
+
__all__ = ['find_shapes_as_complex_sqrt_lin_combinations',
|
25
|
+
'SqrtLinCombination',
|
26
|
+
'ComplexSqrtLinCombination']
|
27
|
+
|
28
|
+
if _within_sage:
|
29
|
+
from sage.rings.complex_interval_field import ComplexIntervalField
|
30
|
+
from sage.rings.real_mpfi import RealIntervalField
|
31
|
+
from sage.rings.integer import Integer
|
32
|
+
from sage.rings.rational import Rational
|
33
|
+
from sage.rings.number_field.number_field_element import NumberFieldElement
|
34
|
+
from sage.functions.other import sqrt
|
35
|
+
from ..sage_helper import create_ComplexNumber
|
36
|
+
|
37
|
+
_Zero = Integer(0)
|
38
|
+
_One = Integer(1)
|
39
|
+
|
40
|
+
from ..snap import find_field
|
41
|
+
|
42
|
+
from .real_algebra import field_containing_real_and_imaginary_part_of_number_field
|
43
|
+
|
44
|
+
|
45
|
+
def eval_number_field_elt(elt, root):
|
46
|
+
# SageMath 7.6 can no longer evaluate a rational polynomial on an
|
47
|
+
# arbitrary type that supports the basic arithmetic
|
48
|
+
# operations. Rather, one can only evaluate on inputs that have
|
49
|
+
# been registered into its coercion model. Thus we have to
|
50
|
+
# evaluate things manually.
|
51
|
+
if elt.is_zero():
|
52
|
+
return _Zero
|
53
|
+
poly = elt.lift()
|
54
|
+
R = poly.base_ring()
|
55
|
+
coeffs = poly.coefficients()
|
56
|
+
exps = poly.exponents()
|
57
|
+
powers = [R(1)]
|
58
|
+
for i in range(max(exps)):
|
59
|
+
powers.append(powers[-1]*root)
|
60
|
+
return sum(c*powers[e] for (c, e) in zip(coeffs, exps))
|
61
|
+
|
62
|
+
# One problem in verifying canonical cell decomposition is that we need to do
|
63
|
+
# computations in the real field which contains the real and imaginary part
|
64
|
+
# of the shape field.
|
65
|
+
#
|
66
|
+
# Our first try was using Sage's QQbar which was suggested here:
|
67
|
+
# http://ask.sagemath.org/question/25822/number-field-containing-realimaginary-part-of-algebraic-number/
|
68
|
+
# But turns out way too slow.
|
69
|
+
#
|
70
|
+
# Next, we tried to use the LLL-algorithm applied to the real and imaginary part
|
71
|
+
# of the generator of the shape field (effectively applying LLL twice, once to
|
72
|
+
# find the shape field and then the field containing the real and imaginary part
|
73
|
+
# of the shape field).
|
74
|
+
# This is implemented in
|
75
|
+
# _field_containing_real_and_imaginary_part_of_algebraic_number_LLL.
|
76
|
+
# This was still very slow and failed on t11669 and 9 manifolds with 9 tetrahedra.
|
77
|
+
#
|
78
|
+
# The fastest implementation so far is in real_algebra. The implementation there
|
79
|
+
# turns the one complex equation p(z) = 0 defining the number field into two
|
80
|
+
# real equations for the real and imaginary part of the complex equation and
|
81
|
+
# then uses the resultant to find exact solutions.
|
82
|
+
|
83
|
+
|
84
|
+
@sage_method
|
85
|
+
def find_shapes_as_complex_sqrt_lin_combinations(M, prec, degree):
|
86
|
+
"""
|
87
|
+
Given a manifold M, use snap (which uses LLL-algorithm) with the given
|
88
|
+
decimal precision and maximal degree to find exact values for the shapes'
|
89
|
+
real and imaginary part. Return the shapes as list of
|
90
|
+
ComplexSqrtLinCombination's. Return None on failure.
|
91
|
+
|
92
|
+
Example::
|
93
|
+
|
94
|
+
sage: from snappy import Manifold
|
95
|
+
sage: M=Manifold("m412")
|
96
|
+
sage: find_shapes_as_complex_sqrt_lin_combinations(M, 200, 10)
|
97
|
+
[ComplexSqrtLinCombination((1/2) * sqrt(1), (x - 1/2) * sqrt(1)), ComplexSqrtLinCombination((1/2) * sqrt(1), (x - 1/2) * sqrt(1)), ComplexSqrtLinCombination((1/2) * sqrt(1), (x - 1/2) * sqrt(1)), ComplexSqrtLinCombination((1/2) * sqrt(1), (x - 1/2) * sqrt(1)), ComplexSqrtLinCombination((1/2) * sqrt(1), (x - 1/2) * sqrt(1))]
|
98
|
+
"""
|
99
|
+
|
100
|
+
# We need to find the NumberField that contains the real and imaginary
|
101
|
+
# parts of all shapes.
|
102
|
+
|
103
|
+
# First we try to find the field containing the complex shapes:
|
104
|
+
complex_data = M.tetrahedra_field_gens().find_field(prec, degree)
|
105
|
+
if not complex_data:
|
106
|
+
return None
|
107
|
+
|
108
|
+
# Split Snap's result
|
109
|
+
# complex_root is an ApproximateAlgebraicNumber, the root of the
|
110
|
+
# NumberField's defining polynomial
|
111
|
+
# exact_complex_shapes are elements in a Sage NumberField
|
112
|
+
complex_number_field, complex_root, exact_complex_shapes = complex_data
|
113
|
+
|
114
|
+
# We now have a generator (complex_root) for the NumberField
|
115
|
+
# containing the shapes.
|
116
|
+
# Next, we need to find the NumberField containing the real and imaginary
|
117
|
+
# part of this generator.
|
118
|
+
|
119
|
+
real_result = field_containing_real_and_imaginary_part_of_number_field(
|
120
|
+
complex_number_field)
|
121
|
+
|
122
|
+
if not real_result:
|
123
|
+
return None
|
124
|
+
|
125
|
+
real_number_field, real_part, imag_part = real_result
|
126
|
+
|
127
|
+
# Caches the values of
|
128
|
+
# nf.gen_embedding()
|
129
|
+
# and RealIntervalField(prec)(nf.gen_embedding())
|
130
|
+
# for different precision prec where nf is the NumberField real_number_field
|
131
|
+
# in which real_part and imag_part live.
|
132
|
+
#
|
133
|
+
# This is for speed only. See _get_interval_embedding_from_cache for
|
134
|
+
# details.
|
135
|
+
embed_cache = {}
|
136
|
+
|
137
|
+
# The generator of the shape field as the desired return type
|
138
|
+
exact_complex_root = ComplexSqrtLinCombination(real_part, imag_part,
|
139
|
+
embed_cache=embed_cache)
|
140
|
+
|
141
|
+
# All shapes are given as polynomials in the generator,
|
142
|
+
# so translate them to be of the desired return type
|
143
|
+
return [ eval_number_field_elt(exact_complex_shape, exact_complex_root)
|
144
|
+
for exact_complex_shape in exact_complex_shapes ]
|
145
|
+
|
146
|
+
|
147
|
+
class SqrtLinCombination():
|
148
|
+
"""
|
149
|
+
A class representing a linear combination
|
150
|
+
|
151
|
+
c_1 * sqrt(r_1) + c_2 * sqrt(r_2) + ... + c_n * sqrt(r_n)
|
152
|
+
|
153
|
+
where c_i and r_i have to be of type Integer, Rational or elements
|
154
|
+
of the same Sage NumberField with a real embedding (Caution: this is
|
155
|
+
assumed but not checked!) such that all r_i are positive (Caution: this is
|
156
|
+
not checked during construction!).
|
157
|
+
|
158
|
+
It implements +, -, * where one of the operators is allowed to be an
|
159
|
+
integer or rational.
|
160
|
+
|
161
|
+
/ is only implemented when the denominator has only one term c_1 * sqrt(1).
|
162
|
+
sqrt is only implemented for c_1 * sqrt(1) and it is not checked that
|
163
|
+
c_1 is positive.
|
164
|
+
|
165
|
+
== is implemented, but the other comparison operators are not: casting to
|
166
|
+
a RealIntervalField is implemented instead and the user can compare the
|
167
|
+
intervals.
|
168
|
+
|
169
|
+
The == operator is implemented by first reducing A == B to D == 0 and then
|
170
|
+
converting to a different data type (_FactorizedSqrtLinCombination) that can
|
171
|
+
represent linear combinations::
|
172
|
+
|
173
|
+
D = c_1 * sqrt(r_{1,1}) * sqrt(r_{1,2}) * ... * sqrt(r_{1,k_1})
|
174
|
+
+ c_2 * sqrt(r_{2,1}) * sqrt(r_{2,2}) * ... * sqrt(r_{2,k_2})
|
175
|
+
+ ...
|
176
|
+
+ c_n * sqrt(r_{n,1}) * sqrt(r_{n,2}) * ... * sqrt(r_{n,k_n})
|
177
|
+
|
178
|
+
by just trivially setting
|
179
|
+
k_i = 0 when r_i = 1 and
|
180
|
+
r_{i,1} = r_i and k_1 = 1 otherwise.
|
181
|
+
|
182
|
+
For this data type, multiplying two sqrt(r_{i,j}) with equal r_{i,j} will
|
183
|
+
cancel the two sqrt's and apply the common r_{i,j} to the c_i of the result
|
184
|
+
instead. Thus, the following procedure for determining whether D == 0 will
|
185
|
+
eventually terminate:
|
186
|
+
|
187
|
+
- if the number of terms n is 0, return True
|
188
|
+
- if the number of terms n is 1, return c_1 == 0
|
189
|
+
- if there is a r_{i,j} common to each summand, factor it out
|
190
|
+
- pick one of the r_{i,j}, split the sum into two parts "left",
|
191
|
+
respectively, "right" of all the terms containing sqrt(r_{i,j}),
|
192
|
+
respectively, not containing sqrt(r_{i,j}).
|
193
|
+
- If left^2 - right^2 == 0 is False, return False.
|
194
|
+
(sqrt(r_{i,j})^2 simplifies to r_{i,j} and disappears, so the resulting
|
195
|
+
expression is easier and this recursion terminates eventually.)
|
196
|
+
- If left == 0 (some comment applies), return True
|
197
|
+
- Use interval arithmetic of increasing precision until it is high enough
|
198
|
+
to determine the signs of left and right.
|
199
|
+
Return True if and only if the signs differ, otherwise False.
|
200
|
+
|
201
|
+
Examples::
|
202
|
+
|
203
|
+
sage: from sage.rings.number_field.number_field import NumberField
|
204
|
+
sage: from sage.rings.integer import Integer
|
205
|
+
sage: from sage.rings.rational import Rational
|
206
|
+
sage: from sage.rings.real_mpfr import RealLiteral, RealField
|
207
|
+
sage: from sage.rings.real_mpfi import RealIntervalField
|
208
|
+
sage: from sage.calculus.var import var
|
209
|
+
sage: from sage.functions.other import sqrt
|
210
|
+
sage: x = var('x')
|
211
|
+
sage: poly = x ** 6 + Rational((3,2))*x**4 + Rational((9,16))*x**2 - Rational((23,64))
|
212
|
+
sage: nf = NumberField(poly, 'z', embedding = RealField()(0.56227951206))
|
213
|
+
sage: z = nf.gen()
|
214
|
+
|
215
|
+
sage: A = SqrtLinCombination(z)
|
216
|
+
sage: B = SqrtLinCombination(Rational((8,9))*z**4 + Rational((10,9))*z**2 + Rational((2,9)))
|
217
|
+
sage: C = SqrtLinCombination(3)
|
218
|
+
sage: D = SqrtLinCombination(Integer(5))
|
219
|
+
sage: E = SqrtLinCombination(Rational((6,7)))
|
220
|
+
|
221
|
+
sage: A + B
|
222
|
+
(8/9*z^4 + 10/9*z^2 + z + 2/9) * sqrt(1)
|
223
|
+
sage: B - E
|
224
|
+
(8/9*z^4 + 10/9*z^2 - 40/63) * sqrt(1)
|
225
|
+
sage: A + sqrt(B) * sqrt(B)
|
226
|
+
(8/9*z^4 + 10/9*z^2 + z + 2/9) * sqrt(1)
|
227
|
+
sage: A + sqrt(B) * sqrt(B) + C == A + B + C
|
228
|
+
True
|
229
|
+
sage: A / E
|
230
|
+
(7/6*z) * sqrt(1)
|
231
|
+
sage: B / A.sqrt()
|
232
|
+
(128/207*z^5 + 376/207*z^3 + 302/207*z) * sqrt(z)
|
233
|
+
sage: B / (D * A.sqrt())
|
234
|
+
(128/1035*z^5 + 376/1035*z^3 + 302/1035*z) * sqrt(z)
|
235
|
+
sage: RIF = RealIntervalField(100)
|
236
|
+
sage: RIF(B.sqrt() + E.sqrt())
|
237
|
+
1.73967449622339881238507307209?
|
238
|
+
sage: A - B == 0
|
239
|
+
False
|
240
|
+
sage: (A + B).sqrt()
|
241
|
+
(1) * sqrt(8/9*z^4 + 10/9*z^2 + z + 2/9)
|
242
|
+
sage: 3 * A.sqrt() + (4 * B).sqrt() + C + 8 == (9 * A).sqrt() + 2 * B.sqrt() + (C * C).sqrt() + 11 - 3
|
243
|
+
True
|
244
|
+
|
245
|
+
"""
|
246
|
+
|
247
|
+
def __init__(self, value=None, d={}, embed_cache=None):
|
248
|
+
# Initialize from either a value or a dictionary
|
249
|
+
|
250
|
+
# c_1 * sqrt(r_1) + c_2 * sqrt(r_2) + ... + c_n * sqrt(r_n)
|
251
|
+
#
|
252
|
+
# is encoded as dictionary
|
253
|
+
#
|
254
|
+
# { r_1 : c_1, r_2 : c_2, ..., r_n : c_n }
|
255
|
+
|
256
|
+
if value is not None:
|
257
|
+
if d:
|
258
|
+
raise TypeError("SqrtLinCombination has both value and "
|
259
|
+
"dictionary.")
|
260
|
+
|
261
|
+
# Write value as
|
262
|
+
# value * sqrt(1)
|
263
|
+
#
|
264
|
+
# Use empty dictionary when value is zero.
|
265
|
+
|
266
|
+
self._dict = _filter_zero(
|
267
|
+
{ _One : _convert_to_allowed_type(value) })
|
268
|
+
else:
|
269
|
+
# Filter out zero elements
|
270
|
+
self._dict = _filter_zero(d)
|
271
|
+
|
272
|
+
# Set embed cache, see _get_interval_embedding_from_cache for details
|
273
|
+
self._embed_cache = embed_cache
|
274
|
+
|
275
|
+
def parent(self):
|
276
|
+
return SqrtLinCombination
|
277
|
+
|
278
|
+
def __add__(self, other):
|
279
|
+
# Try to convert other term to SqrtLinCombination if necessary
|
280
|
+
if not isinstance(other, SqrtLinCombination):
|
281
|
+
return self + SqrtLinCombination(
|
282
|
+
other, embed_cache=_get_embed_cache(self, other))
|
283
|
+
|
284
|
+
# Add
|
285
|
+
d = {}
|
286
|
+
for k, v in self._dict.items():
|
287
|
+
d[k] = d.get(k, 0) + v
|
288
|
+
for k, v in other._dict.items():
|
289
|
+
d[k] = d.get(k, 0) + v
|
290
|
+
return SqrtLinCombination(
|
291
|
+
d=d,
|
292
|
+
embed_cache=_get_embed_cache(self, other))
|
293
|
+
|
294
|
+
def __neg__(self):
|
295
|
+
# Negate
|
296
|
+
return SqrtLinCombination(
|
297
|
+
d={ k: -v for k, v in self._dict.items() },
|
298
|
+
embed_cache=self._embed_cache)
|
299
|
+
|
300
|
+
def __sub__(self, other):
|
301
|
+
# Subtract
|
302
|
+
return self + (-other)
|
303
|
+
|
304
|
+
def __mul__(self, other):
|
305
|
+
# Try to convert other term to SqrtLinCombination if necessary
|
306
|
+
if not isinstance(other, SqrtLinCombination):
|
307
|
+
return self * SqrtLinCombination(
|
308
|
+
other,
|
309
|
+
embed_cache=_get_embed_cache(self, other))
|
310
|
+
|
311
|
+
# Result
|
312
|
+
d = {}
|
313
|
+
|
314
|
+
# Multiply each term with each term
|
315
|
+
for k1, v1 in self._dict.items():
|
316
|
+
for k2, v2 in other._dict.items():
|
317
|
+
# multiply c_i * sqrt(r_i) * c_j * sqrt(r_j)
|
318
|
+
|
319
|
+
# c_i * c_j
|
320
|
+
p = v1 * v2
|
321
|
+
|
322
|
+
# Multiplying the two roots sqrt(r_i) sqrt(r_j)
|
323
|
+
if k1 == k2:
|
324
|
+
# Case r_i = r_j
|
325
|
+
# The term becomes (r_i * c_i * c_j) * sqrt(1)
|
326
|
+
d[_One] = d.get(_One, 0) + k1 * p
|
327
|
+
else:
|
328
|
+
# Case r_i != r_j
|
329
|
+
# The term becomes (c_i * c_j) * sqrt(r_i * r_j)
|
330
|
+
m = k1 * k2
|
331
|
+
d[m] = d.get(m, 0) + p
|
332
|
+
return SqrtLinCombination(
|
333
|
+
d=d, embed_cache=_get_embed_cache(self, other))
|
334
|
+
|
335
|
+
def inverse(self):
|
336
|
+
# The inverse element of c_1 * sqrt(r_1)
|
337
|
+
# is (1 / (c_1 * r_1)) * sqrt(r_1)
|
338
|
+
l = len(self._dict)
|
339
|
+
if l != 1:
|
340
|
+
# Do not implement other elements.
|
341
|
+
if l == 0:
|
342
|
+
# In particular, do not invert 0
|
343
|
+
raise ZeroDivisionError('SqrtLinCombination division by zero')
|
344
|
+
raise TypeError('SqrtLinCombination division not fully '
|
345
|
+
'implemented')
|
346
|
+
|
347
|
+
# Iteration over the only term
|
348
|
+
for k, v in self._dict.items():
|
349
|
+
return SqrtLinCombination(
|
350
|
+
d={ k : 1 / (v * k) },
|
351
|
+
embed_cache=self._embed_cache)
|
352
|
+
|
353
|
+
def __div__(self, other):
|
354
|
+
# Try to convert other term to SqrtLinCombination if necessary
|
355
|
+
if not isinstance(other, SqrtLinCombination):
|
356
|
+
return self / SqrtLinCombination(
|
357
|
+
other, embed_cache=_get_embed_cache(self, other))
|
358
|
+
return self * other.inverse()
|
359
|
+
|
360
|
+
def __truediv__(self, other):
|
361
|
+
return self.__div__(other)
|
362
|
+
|
363
|
+
def __radd__(self, other):
|
364
|
+
return self + other
|
365
|
+
|
366
|
+
def __rsub__(self, other):
|
367
|
+
return (-self) + other
|
368
|
+
|
369
|
+
def __rmul__(self, other):
|
370
|
+
return self * other
|
371
|
+
|
372
|
+
def __rdiv__(self, other):
|
373
|
+
return self.inverse() * other
|
374
|
+
|
375
|
+
def __rtruediv__(self, other):
|
376
|
+
return self.__rdiv__(other)
|
377
|
+
|
378
|
+
def sqrt(self):
|
379
|
+
# Implement sqrt of 0 and c_1 * sqrt(1)
|
380
|
+
l = len(self._dict)
|
381
|
+
if l == 0:
|
382
|
+
# sqrt of 0
|
383
|
+
return SqrtLinCombination(
|
384
|
+
embed_cache=self._embed_cache)
|
385
|
+
if l == 1:
|
386
|
+
# Iterate through only term
|
387
|
+
for k, v in self._dict.items():
|
388
|
+
# Make sure expression in sqrt is 1
|
389
|
+
if k != 1:
|
390
|
+
raise TypeError('SqrtLinCombination sqrt not fully '
|
391
|
+
'implemented')
|
392
|
+
return SqrtLinCombination(
|
393
|
+
d={ v: _One},
|
394
|
+
embed_cache=self._embed_cache)
|
395
|
+
raise TypeError('SqrtLinCombination sqrt not fully implemented')
|
396
|
+
|
397
|
+
def __repr__(self):
|
398
|
+
if self._dict:
|
399
|
+
return '+'.join(
|
400
|
+
['(%r) * sqrt(%r)' % (v, k) for k, v in self._dict.items()])
|
401
|
+
return '0'
|
402
|
+
|
403
|
+
def __eq__(self, other):
|
404
|
+
"""
|
405
|
+
Implements the == operator as described above.
|
406
|
+
"""
|
407
|
+
diff = self - other
|
408
|
+
|
409
|
+
# Convert to type holding linear combinations of factorized
|
410
|
+
# sqrts.
|
411
|
+
f = _FactorizedSqrtLinCombination.from_sqrt_lin_combination(diff)
|
412
|
+
return f.is_zero()
|
413
|
+
|
414
|
+
def __lt__(self, other):
|
415
|
+
raise Exception('Not implemented')
|
416
|
+
|
417
|
+
def __le__(self, other):
|
418
|
+
raise Exception('Not implemented')
|
419
|
+
|
420
|
+
def __gt__(self, other):
|
421
|
+
raise Exception('Not implemented')
|
422
|
+
|
423
|
+
def __ge__(self, other):
|
424
|
+
raise Exception('Not implemented')
|
425
|
+
|
426
|
+
def _real_mpfi_(self, RIF):
|
427
|
+
"""
|
428
|
+
Convert to interval in given RealIntervalField instance.
|
429
|
+
"""
|
430
|
+
|
431
|
+
def eval_term(k, v):
|
432
|
+
# Evaluate one term c_i * sqrt(r_i)
|
433
|
+
# where c_i = k, r_i = v
|
434
|
+
s = _to_RIF(k, RIF, self._embed_cache)
|
435
|
+
if not s > 0:
|
436
|
+
raise _SqrtException()
|
437
|
+
return _to_RIF(v, RIF, self._embed_cache) * s.sqrt()
|
438
|
+
|
439
|
+
# Sum over all terms
|
440
|
+
return sum([eval_term(k, v) for k, v in self._dict.items()], RIF(0))
|
441
|
+
|
442
|
+
def _sign_numerical(self, prec):
|
443
|
+
"""
|
444
|
+
Use interval arithmetics with precision prec to try to determine the
|
445
|
+
sign. If we could not certify the sign, return None.
|
446
|
+
The result is a pair (sign, interval).
|
447
|
+
"""
|
448
|
+
|
449
|
+
# Evaluate as interval
|
450
|
+
RIF = RealIntervalField(prec)
|
451
|
+
try:
|
452
|
+
interval_val = RIF(self)
|
453
|
+
except _SqrtException:
|
454
|
+
# This exception happens if we try to take the square root of an
|
455
|
+
# interval that contains negative numbers.
|
456
|
+
# This is not supposed to happen but if we take the square of a small
|
457
|
+
# number and the precision is low, it might happen.
|
458
|
+
# It just means we need to use higher precision.
|
459
|
+
# So just return "None" to indicate failed certification.
|
460
|
+
return None, None
|
461
|
+
|
462
|
+
# Interval certifies positive sign
|
463
|
+
if interval_val > 0:
|
464
|
+
return +1, interval_val
|
465
|
+
# Interval certified negative sign
|
466
|
+
if interval_val < 0:
|
467
|
+
return -1, interval_val
|
468
|
+
# Interval contains zero and we can't say.
|
469
|
+
return None, interval_val
|
470
|
+
|
471
|
+
def sign_with_interval(self):
|
472
|
+
"""
|
473
|
+
Similar to sign, but for the non-zero case, also return the interval
|
474
|
+
certifying the sign - useful for debugging.
|
475
|
+
"""
|
476
|
+
# First try to determine the sign using interval arithmetics in twice
|
477
|
+
# the double precision. This is for performance: the exact case can
|
478
|
+
# be slow so we try numerically first.
|
479
|
+
prec = 106
|
480
|
+
numerical_sign, interval_val = self._sign_numerical(prec)
|
481
|
+
if numerical_sign is not None:
|
482
|
+
# We could determine the sign using interval arithmetics
|
483
|
+
# Return the result.
|
484
|
+
return numerical_sign, interval_val
|
485
|
+
|
486
|
+
# Now try to determine whether it is zero using exact arithmetics.
|
487
|
+
if self == 0:
|
488
|
+
# It is zero
|
489
|
+
return 0, 0
|
490
|
+
|
491
|
+
# We know that the value is non-zero. Increase precision until we have
|
492
|
+
# determined the sign using interval arithmetics.
|
493
|
+
while True:
|
494
|
+
prec *= 2
|
495
|
+
numerical_sign, interval_val = self._sign_numerical(prec)
|
496
|
+
if numerical_sign is not None:
|
497
|
+
return numerical_sign, interval_val
|
498
|
+
|
499
|
+
def sign(self):
|
500
|
+
"""
|
501
|
+
Returns the +1, 0, -1 depending on whether the value is positive,
|
502
|
+
zero or negative. For the zero case, exact arithmetic is used to
|
503
|
+
certify. Otherwise, interval arithmetic is used.
|
504
|
+
"""
|
505
|
+
return self.sign_with_interval()[0]
|
506
|
+
|
507
|
+
|
508
|
+
class ComplexSqrtLinCombination():
|
509
|
+
"""
|
510
|
+
A pair (real, imag) of SqrtLinCombinations representing the complex number
|
511
|
+
real + imag * I. Supports ``real()``, ``imag()``, ``+``, ``-``, ``*``, ``/``,
|
512
|
+
``abs``, ``conjugate()`` and ``==``.
|
513
|
+
"""
|
514
|
+
|
515
|
+
def __init__(self, real, imag=0, embed_cache=None):
|
516
|
+
if isinstance(real, SqrtLinCombination):
|
517
|
+
self._real = real
|
518
|
+
else:
|
519
|
+
self._real = SqrtLinCombination(
|
520
|
+
real,
|
521
|
+
embed_cache=embed_cache)
|
522
|
+
|
523
|
+
if isinstance(imag, SqrtLinCombination):
|
524
|
+
self._imag = imag
|
525
|
+
else:
|
526
|
+
self._imag = SqrtLinCombination(
|
527
|
+
imag,
|
528
|
+
embed_cache=embed_cache)
|
529
|
+
|
530
|
+
def __repr__(self):
|
531
|
+
return "ComplexSqrtLinCombination(%r, %r)" % (self._real, self._imag)
|
532
|
+
|
533
|
+
def real(self):
|
534
|
+
"""
|
535
|
+
Real part.
|
536
|
+
"""
|
537
|
+
return self._real
|
538
|
+
|
539
|
+
def imag(self):
|
540
|
+
"""
|
541
|
+
Imaginary part.
|
542
|
+
"""
|
543
|
+
return self._imag
|
544
|
+
|
545
|
+
def __abs__(self):
|
546
|
+
"""
|
547
|
+
Absolute value.
|
548
|
+
"""
|
549
|
+
|
550
|
+
return sqrt(self._real * self._real + self._imag * self._imag)
|
551
|
+
|
552
|
+
def __add__(self, other):
|
553
|
+
if not isinstance(other, ComplexSqrtLinCombination):
|
554
|
+
return self + ComplexSqrtLinCombination(other)
|
555
|
+
|
556
|
+
return ComplexSqrtLinCombination(self._real + other._real,
|
557
|
+
self._imag + other._imag)
|
558
|
+
|
559
|
+
def __neg__(self):
|
560
|
+
return ComplexSqrtLinCombination(-self._real, -self._imag)
|
561
|
+
|
562
|
+
def __sub__(self, other):
|
563
|
+
return self + (-other)
|
564
|
+
|
565
|
+
def __mul__(self, other):
|
566
|
+
if not isinstance(other, ComplexSqrtLinCombination):
|
567
|
+
return self * ComplexSqrtLinCombination(other)
|
568
|
+
|
569
|
+
return ComplexSqrtLinCombination(
|
570
|
+
self._real * other._real - self._imag * other._imag,
|
571
|
+
self._real * other._imag + self._imag * other._real)
|
572
|
+
|
573
|
+
def __div__(self, other):
|
574
|
+
if not isinstance(other, ComplexSqrtLinCombination):
|
575
|
+
return self / ComplexSqrtLinCombination(other)
|
576
|
+
|
577
|
+
num = 1 / (other._real * other._real + other._imag * other._imag)
|
578
|
+
|
579
|
+
return ComplexSqrtLinCombination(
|
580
|
+
(self._real * other._real + self._imag * other._imag) * num,
|
581
|
+
(other._real * self._imag - self._real * other._imag) * num)
|
582
|
+
|
583
|
+
def __truediv__(self, other):
|
584
|
+
return self.__div__(other)
|
585
|
+
|
586
|
+
def conjugate(self):
|
587
|
+
return ComplexSqrtLinCombination(self._real, -self._imag)
|
588
|
+
|
589
|
+
def __radd__(self, other):
|
590
|
+
return self + other
|
591
|
+
|
592
|
+
def __rsub__(self, other):
|
593
|
+
return (-self) + other
|
594
|
+
|
595
|
+
def __rmul__(self, other):
|
596
|
+
return self * other
|
597
|
+
|
598
|
+
def __rdiv__(self, other):
|
599
|
+
return ComplexSqrtLinCombination(other) / self
|
600
|
+
|
601
|
+
def __rtruediv__(self, other):
|
602
|
+
return self.__rdiv__(other)
|
603
|
+
|
604
|
+
def __eq__(self, other):
|
605
|
+
if not isinstance(other, ComplexSqrtLinCombination):
|
606
|
+
return self == ComplexSqrtLinCombination(other)
|
607
|
+
|
608
|
+
return (self._real == other._real) and (self._imag == other._imag)
|
609
|
+
|
610
|
+
def __ne__(self, other):
|
611
|
+
return not (self == other)
|
612
|
+
|
613
|
+
def __lt__(self, other):
|
614
|
+
raise TypeError('No order on complex numbers.')
|
615
|
+
|
616
|
+
def __le__(self, other):
|
617
|
+
raise TypeError('No order on complex numbers.')
|
618
|
+
|
619
|
+
def __gt__(self, other):
|
620
|
+
raise TypeError('No order on complex numbers.')
|
621
|
+
|
622
|
+
def __ge__(self, other):
|
623
|
+
raise TypeError('No order on complex numbers.')
|
624
|
+
|
625
|
+
def _complex_mpfi_(self, CIF):
|
626
|
+
"""
|
627
|
+
Convert to complex interval in given ComplexIntervalField instance.
|
628
|
+
"""
|
629
|
+
|
630
|
+
# Get corresponding RealIntervalField
|
631
|
+
RIF = CIF(0).real().parent()
|
632
|
+
# And just pair
|
633
|
+
return CIF(RIF(self._real), RIF(self._imag))
|
634
|
+
|
635
|
+
|
636
|
+
class _SqrtException(Exception):
|
637
|
+
pass
|
638
|
+
|
639
|
+
|
640
|
+
class _FactorizedSqrtLinCombination():
|
641
|
+
def __init__(self, d={}, embed_cache=None):
|
642
|
+
# c_1 * sqrt(r_{1,1}) * sqrt(r_{1,2}) * ... * sqrt(r_{1,k_1})
|
643
|
+
# + c_2 * sqrt(r_{2,1}) * sqrt(r_{2,2}) * ... * sqrt(r_{2,k_2})
|
644
|
+
# + ...
|
645
|
+
# + c_n * sqrt(r_{n,1}) * sqrt(r_{n,2}) * ... * sqrt(r_{n,k_n})
|
646
|
+
#
|
647
|
+
# is encoded by a dictionary
|
648
|
+
#
|
649
|
+
# { frozenset([r_{1,1}, r_{1,2}, ..., r_{1,k_1}]) : c_1,
|
650
|
+
# frozenset([r_{2,1}, r_{2,2}, ..., r_{2,k_2}]) : c_2,
|
651
|
+
# ...,
|
652
|
+
# frozenset([r_{n,1}, r_{n,2}, ..., r_{n,k_n}]) : c_n }
|
653
|
+
|
654
|
+
self._dict = _filter_zero(d)
|
655
|
+
|
656
|
+
# Set embed cache, see _get_interval_embedding_from_cache for details
|
657
|
+
self._embed_cache = embed_cache
|
658
|
+
|
659
|
+
def _real_mpfi_(self, RIF):
|
660
|
+
|
661
|
+
def eval_term(k, v):
|
662
|
+
# Evaluate one term
|
663
|
+
# c_i * sqrt(r_{i,1}) * sqrt(r_{i,2}) * ... * sqrt(r_{i,k_2})
|
664
|
+
# where c_i is stored in v
|
665
|
+
# and k is the set of r_{i,j}
|
666
|
+
|
667
|
+
# Take the product of all r_{i,j} after converting to intervals
|
668
|
+
pr = prod([_to_RIF(t, RIF, self._embed_cache) for t in k],
|
669
|
+
RIF(1))
|
670
|
+
|
671
|
+
# Raise exception if interval isn't positive
|
672
|
+
if not pr > 0:
|
673
|
+
raise _SqrtException()
|
674
|
+
|
675
|
+
# Return interval for term
|
676
|
+
return pr.sqrt() * _to_RIF(v, RIF, self._embed_cache)
|
677
|
+
|
678
|
+
# Sum over all terms
|
679
|
+
return sum([eval_term(k, v) for k, v in self._dict.items()], RIF(0))
|
680
|
+
|
681
|
+
def __repr__(self):
|
682
|
+
if not self._dict:
|
683
|
+
return '0'
|
684
|
+
|
685
|
+
def term(item):
|
686
|
+
k, v = item
|
687
|
+
b = '(%r)' % v
|
688
|
+
for s in k:
|
689
|
+
b += ' * sqrt(%r)' % s
|
690
|
+
return b
|
691
|
+
|
692
|
+
return '+'.join([term(item) for item in self._dict.items()])
|
693
|
+
|
694
|
+
@staticmethod
|
695
|
+
def from_sqrt_lin_combination(l):
|
696
|
+
"""
|
697
|
+
Construct from a SqrtLinCombination.
|
698
|
+
"""
|
699
|
+
|
700
|
+
# Need to change encoding, see __init__
|
701
|
+
def to_set(k):
|
702
|
+
if k == _One:
|
703
|
+
return frozenset()
|
704
|
+
else:
|
705
|
+
return frozenset([k])
|
706
|
+
|
707
|
+
return _FactorizedSqrtLinCombination({
|
708
|
+
to_set(k): v for k, v in l._dict.items()},
|
709
|
+
embed_cache=l._embed_cache)
|
710
|
+
|
711
|
+
def __add__(self, other):
|
712
|
+
# Add
|
713
|
+
d = {}
|
714
|
+
for k, v in self._dict.items():
|
715
|
+
d[k] = d.get(k, 0) + v
|
716
|
+
for k, v in other._dict.items():
|
717
|
+
d[k] = d.get(k, 0) + v
|
718
|
+
return _FactorizedSqrtLinCombination(
|
719
|
+
d,
|
720
|
+
embed_cache=_get_embed_cache(self, other))
|
721
|
+
|
722
|
+
def __neg__(self):
|
723
|
+
return _FactorizedSqrtLinCombination(
|
724
|
+
{k: -v for k, v in self._dict.items()},
|
725
|
+
embed_cache=self._embed_cache)
|
726
|
+
|
727
|
+
def __sub__(self, other):
|
728
|
+
return self + (-other)
|
729
|
+
|
730
|
+
def __mul__(self, other):
|
731
|
+
d = {}
|
732
|
+
# Multiply each term with each
|
733
|
+
for k1, v1 in self._dict.items():
|
734
|
+
for k2, v2 in other._dict.items():
|
735
|
+
# Multiply
|
736
|
+
# c_i * sqrt(r_{i,1}) * ... * sqrt(r_{i,k_i})
|
737
|
+
# with
|
738
|
+
# c'_i' * sqrt(r'_{i',1}) * ... * sqrt(r'_{i',k'_i'})
|
739
|
+
#
|
740
|
+
# If sqrt(r) appears in both terms, it becomes
|
741
|
+
# sqrt(r) * sqrt(r) = r and is multiplied into the coefficient
|
742
|
+
# (this is done by prod(k1 & k2), _One).
|
743
|
+
# A sqrt(r) appearing only appearing in one term survives
|
744
|
+
# (k1^k2)
|
745
|
+
|
746
|
+
k = k1 ^ k2
|
747
|
+
v = v1 * v2 * prod(k1 & k2, _One)
|
748
|
+
d[k] = d.get(k, 0) + v
|
749
|
+
return _FactorizedSqrtLinCombination(
|
750
|
+
d, embed_cache=_get_embed_cache(self, other))
|
751
|
+
|
752
|
+
def is_zero(self):
|
753
|
+
"""
|
754
|
+
Returns True if it is zero, False otherwise.
|
755
|
+
"""
|
756
|
+
|
757
|
+
# Implements the algorithm for operator == described in
|
758
|
+
# SqrtLinCombination
|
759
|
+
|
760
|
+
# The case of no terms n = 0
|
761
|
+
if not self._dict:
|
762
|
+
return True
|
763
|
+
|
764
|
+
# Case of one term n = 1
|
765
|
+
if len(self._dict) == 1:
|
766
|
+
return _first(self._dict.values()) == 0
|
767
|
+
|
768
|
+
# Find all r_{i,j} common to all summands
|
769
|
+
common_terms = reduce(
|
770
|
+
operator.and_, self._dict.keys())
|
771
|
+
|
772
|
+
# Factor them out
|
773
|
+
d = {k - common_terms: v for k, v in self._dict.items()}
|
774
|
+
|
775
|
+
# Pick one r_{i,j}
|
776
|
+
term = _firstfirst(d.keys())
|
777
|
+
|
778
|
+
# Split the summands into "left" and "right"
|
779
|
+
left = _FactorizedSqrtLinCombination(
|
780
|
+
{ k: v for k, v in d.items() if term in k },
|
781
|
+
embed_cache=self._embed_cache)
|
782
|
+
right = _FactorizedSqrtLinCombination(
|
783
|
+
{ k: v for k, v in d.items() if term not in k},
|
784
|
+
embed_cache=self._embed_cache)
|
785
|
+
|
786
|
+
# Check left^2 - right^2 == 0
|
787
|
+
if not (left * left - right * right).is_zero():
|
788
|
+
return False
|
789
|
+
|
790
|
+
# Check left == 0
|
791
|
+
if left.is_zero():
|
792
|
+
return True
|
793
|
+
|
794
|
+
# Start with double precision and then increase until we could
|
795
|
+
# determine the signs of left and right
|
796
|
+
prec = 53
|
797
|
+
while True:
|
798
|
+
# Determine signs, None indicates the signs couldn't be certified
|
799
|
+
opposite_signs = _opposite_signs(left, right, prec)
|
800
|
+
if opposite_signs is not None:
|
801
|
+
# Done
|
802
|
+
return opposite_signs
|
803
|
+
|
804
|
+
# Otherwise, increase precision
|
805
|
+
prec *= 2
|
806
|
+
|
807
|
+
|
808
|
+
def _opposite_signs(left, right, prec):
|
809
|
+
"""
|
810
|
+
Given two objects left and right that can be coerced to real interval of
|
811
|
+
the given precision, try to certify their signs. If succeed, return True
|
812
|
+
if the signs are opposite and False otherwise. If failed, return None.
|
813
|
+
"""
|
814
|
+
|
815
|
+
# Try to cast the elements to real intervals
|
816
|
+
RIF = RealIntervalField(prec)
|
817
|
+
try:
|
818
|
+
left_interval = RIF(left)
|
819
|
+
right_interval = RIF(right)
|
820
|
+
except _SqrtException:
|
821
|
+
# This exception happens if we try to take the square root of an
|
822
|
+
# interval that contains negative numbers.
|
823
|
+
# This is not supposed to happen but if we take the square of a small
|
824
|
+
# number and the precision is low, it might happen.
|
825
|
+
# It just means we need to use higher precision.
|
826
|
+
# So just return "None" to indicate failed certification.
|
827
|
+
return None
|
828
|
+
|
829
|
+
# Try to determine sign of left expression.
|
830
|
+
left_negative = bool(left_interval < 0)
|
831
|
+
left_positive = bool(left_interval > 0)
|
832
|
+
left_determined = left_negative or left_positive
|
833
|
+
|
834
|
+
# Try to determine sign of right expression
|
835
|
+
right_negative = bool(right_interval < 0)
|
836
|
+
right_positive = bool(right_interval > 0)
|
837
|
+
right_determined = right_negative or right_positive
|
838
|
+
|
839
|
+
# If both signs could be determined
|
840
|
+
if left_determined and right_determined:
|
841
|
+
# Return true if and only if signs are opposite
|
842
|
+
return left_positive ^ right_positive
|
843
|
+
|
844
|
+
# At least one sign couldn't be determined.
|
845
|
+
return None
|
846
|
+
|
847
|
+
|
848
|
+
def _first(iterable):
|
849
|
+
"""
|
850
|
+
Return first element of iterable.
|
851
|
+
"""
|
852
|
+
for i in iterable:
|
853
|
+
return i
|
854
|
+
|
855
|
+
|
856
|
+
def _firstfirst(iterable):
|
857
|
+
"""
|
858
|
+
Given a nested iterable, i.e., list of lists, return the first element
|
859
|
+
of the first non-empty element.
|
860
|
+
"""
|
861
|
+
for i in iterable:
|
862
|
+
for j in i:
|
863
|
+
return j
|
864
|
+
|
865
|
+
|
866
|
+
def _filter_zero(d):
|
867
|
+
"""
|
868
|
+
Given a dict, filter out all items where the value is 0.
|
869
|
+
"""
|
870
|
+
return {k: v for k, v in d.items() if v != 0}
|
871
|
+
|
872
|
+
|
873
|
+
def _convert_to_allowed_type(number):
|
874
|
+
"""
|
875
|
+
When given a Python int, convert to Sage Integer (so that
|
876
|
+
division of two integers gives a Rational). Otherwise,
|
877
|
+
check that the type is allowed.
|
878
|
+
"""
|
879
|
+
|
880
|
+
if isinstance(number, int):
|
881
|
+
return Integer(number)
|
882
|
+
if isinstance(number, Integer):
|
883
|
+
return number
|
884
|
+
if isinstance(number, Rational):
|
885
|
+
return number
|
886
|
+
if isinstance(number, NumberFieldElement):
|
887
|
+
return number
|
888
|
+
|
889
|
+
raise Exception("Not an allowed type")
|
890
|
+
|
891
|
+
|
892
|
+
def _get_embed_cache(l1, l2):
|
893
|
+
"""
|
894
|
+
Given objects of type SqrtLinCombination or _FactorizedSqrtLinCombination
|
895
|
+
return the first _embed_cache that is not None.
|
896
|
+
For example, one SqrtLinCombination might be instantiated from an
|
897
|
+
Integer and the other from an element in the number field that we are
|
898
|
+
currently working in. Then only the latter one has an _embed_cache. Thus,
|
899
|
+
the need for this function when adding, multiplying, ... those two
|
900
|
+
instances.
|
901
|
+
"""
|
902
|
+
for l in [l1, l2]:
|
903
|
+
if ((isinstance(l, SqrtLinCombination) or
|
904
|
+
isinstance(l, _FactorizedSqrtLinCombination)) and
|
905
|
+
l._embed_cache is not None):
|
906
|
+
return l._embed_cache
|
907
|
+
|
908
|
+
return None
|
909
|
+
|
910
|
+
|
911
|
+
def _get_interval_embedding_from_cache(nf, RIF, cache):
|
912
|
+
"""
|
913
|
+
Evaluate RIF(nf.gen_embedding()) where RIF is a RealIntervalField with
|
914
|
+
some precision. This is a real interval that is guaranteed to contain the
|
915
|
+
preferred root of the defining polynomial of the number field.
|
916
|
+
|
917
|
+
To avoid re-evaluation, use cache which is (a reference) to a python
|
918
|
+
dictionary.
|
919
|
+
|
920
|
+
The idea is that while working over one number field, all instances of
|
921
|
+
(_Factorized)SqrtLinCombination have a reference to the same (shared) python
|
922
|
+
dictionary and fill it in as needed.
|
923
|
+
|
924
|
+
Unfortunately, the reference to the cache needs to passed down along a lot
|
925
|
+
of places. There might be a nicer mechanism for doing this.
|
926
|
+
"""
|
927
|
+
|
928
|
+
# Cache is None (vs an empty dictionary) means that we do not wish to use
|
929
|
+
# a cache.
|
930
|
+
|
931
|
+
# Uncomment to debug performance problems that are suspected to come
|
932
|
+
# from the reference to the cache not being passed along
|
933
|
+
# if cache is None:
|
934
|
+
# print("Warning: No cache used")
|
935
|
+
|
936
|
+
# The key 'gen_embedding' holds the value of nf.gen_embedding()
|
937
|
+
if cache is not None and 'gen_embedding' in cache:
|
938
|
+
# We can read it from cache
|
939
|
+
gen_embedding = cache['gen_embedding']
|
940
|
+
else:
|
941
|
+
# We need to evaluate it
|
942
|
+
gen_embedding = nf.gen_embedding()
|
943
|
+
if cache is not None:
|
944
|
+
# Save in cache for future use
|
945
|
+
cache['gen_embedding'] = gen_embedding
|
946
|
+
|
947
|
+
# Get the desired precision of the RealIntervalField
|
948
|
+
prec = RIF.prec()
|
949
|
+
# The precision (which is an int) is the key into the cache
|
950
|
+
if cache is not None and prec in cache:
|
951
|
+
# RIF(nf.gen_embedding()) is in the cache
|
952
|
+
# We can just return the result
|
953
|
+
return cache[prec]
|
954
|
+
|
955
|
+
# We need to actually compute it.
|
956
|
+
interval = RIF(gen_embedding)
|
957
|
+
if cache is not None:
|
958
|
+
# Save in cache for future use.
|
959
|
+
cache[prec] = interval
|
960
|
+
|
961
|
+
return interval
|
962
|
+
|
963
|
+
|
964
|
+
def _to_RIF(x, RIF, embed_cache=None):
|
965
|
+
"""
|
966
|
+
Given a Sage Integer, Rational or an element x in a
|
967
|
+
Sage NumberField with a real embedding and an instance
|
968
|
+
of a RealIntervalField to specify the desired precision,
|
969
|
+
return a real interval containing the true value of x.
|
970
|
+
|
971
|
+
Warning: one can actually call RIF(x) and get an interval, but I have
|
972
|
+
found examples where that interval does not contain the true value!
|
973
|
+
Seems a bug in Sage. CIF(x) doesn't work, so maybe there is just some
|
974
|
+
sequence of casts going on to convert x to an interval that wasn't
|
975
|
+
anticipated.
|
976
|
+
"""
|
977
|
+
# Handle Integer and Rational case
|
978
|
+
if isinstance(x, Integer) or isinstance(x, Rational):
|
979
|
+
return RIF(x)
|
980
|
+
|
981
|
+
# Get the number field
|
982
|
+
nf = x.parent()
|
983
|
+
|
984
|
+
# Get the generator of number field as interval
|
985
|
+
# The code is equivalent to root = RIF(nf.gen_embedding()) but
|
986
|
+
# caches the result.
|
987
|
+
root = _get_interval_embedding_from_cache(nf, RIF, embed_cache)
|
988
|
+
|
989
|
+
# Sanity check on the root. The polynomial should be
|
990
|
+
# zero at it, so the interval has to contain zero.
|
991
|
+
# This does not certify it. To certify, we would need
|
992
|
+
# to take each end point of the interval, evaluate
|
993
|
+
# it using interval arithmetics and check for opposite
|
994
|
+
# signs
|
995
|
+
if not nf.defining_polynomial()(root).contains_zero():
|
996
|
+
raise Exception("Root failed test.")
|
997
|
+
|
998
|
+
# Evaluate the polynomial representing the element in the number field
|
999
|
+
# at the root
|
1000
|
+
return x.lift()(root)
|
1001
|
+
|
1002
|
+
|
1003
|
+
if __name__ == '__main__':
|
1004
|
+
import doctest
|
1005
|
+
doctest.testmod()
|