snappy 3.2__cp313-cp313-macosx_10_13_x86_64.whl
Sign up to get free protection for your applications and to get access to all the features.
- snappy/CyOpenGL.cpython-313-darwin.so +0 -0
- snappy/SnapPy.cpython-313-darwin.so +0 -0
- snappy/SnapPy.ico +0 -0
- snappy/SnapPy.png +0 -0
- snappy/SnapPyHP.cpython-313-darwin.so +0 -0
- snappy/__init__.py +760 -0
- snappy/app.py +605 -0
- snappy/app_menus.py +372 -0
- snappy/browser.py +998 -0
- snappy/cache.py +25 -0
- snappy/canonical.py +249 -0
- snappy/cusps/__init__.py +38 -0
- snappy/cusps/cusp_area_matrix.py +101 -0
- snappy/cusps/cusp_areas_from_matrix.py +173 -0
- snappy/cusps/maximal_cusp_area_matrix.py +136 -0
- snappy/cusps/test.py +21 -0
- snappy/cusps/trig_cusp_area_matrix.py +63 -0
- snappy/database.py +454 -0
- snappy/db_utilities.py +79 -0
- snappy/decorated_isosig.py +710 -0
- snappy/dev/__init__.py +0 -0
- snappy/dev/extended_ptolemy/__init__.py +8 -0
- snappy/dev/extended_ptolemy/closed.py +106 -0
- snappy/dev/extended_ptolemy/complexVolumesClosed.py +149 -0
- snappy/dev/extended_ptolemy/direct.py +42 -0
- snappy/dev/extended_ptolemy/extended.py +406 -0
- snappy/dev/extended_ptolemy/giac_helper.py +43 -0
- snappy/dev/extended_ptolemy/giac_rur.py +129 -0
- snappy/dev/extended_ptolemy/gluing.py +46 -0
- snappy/dev/extended_ptolemy/phc_wrapper.py +220 -0
- snappy/dev/extended_ptolemy/printMatrices.py +70 -0
- snappy/dev/vericlosed/__init__.py +1 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureNew.py +159 -0
- snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +90 -0
- snappy/dev/vericlosed/computeVerifiedHyperbolicStructure.py +111 -0
- snappy/dev/vericlosed/gimbalLoopFinder.py +130 -0
- snappy/dev/vericlosed/hyperbolicStructure.py +313 -0
- snappy/dev/vericlosed/krawczykCertifiedEdgeLengthsEngine.py +165 -0
- snappy/dev/vericlosed/oneVertexTruncatedComplex.py +122 -0
- snappy/dev/vericlosed/orb/__init__.py +1 -0
- snappy/dev/vericlosed/orb/orb_solution_for_snappea_finite_triangulation_mac +0 -0
- snappy/dev/vericlosed/parseVertexGramMatrixFile.py +47 -0
- snappy/dev/vericlosed/polishApproxHyperbolicStructure.py +61 -0
- snappy/dev/vericlosed/test.py +54 -0
- snappy/dev/vericlosed/truncatedComplex.py +176 -0
- snappy/dev/vericlosed/verificationError.py +58 -0
- snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +177 -0
- snappy/doc/_images/SnapPy-196.png +0 -0
- snappy/doc/_images/geodesics.jpg +0 -0
- snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
- snappy/doc/_images/m125_paper_plane.jpg +0 -0
- snappy/doc/_images/mac.png +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
- snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
- snappy/doc/_images/plink-action.png +0 -0
- snappy/doc/_images/ubuntu.png +0 -0
- snappy/doc/_images/win7.png +0 -0
- snappy/doc/_sources/additional_classes.rst.txt +40 -0
- snappy/doc/_sources/bugs.rst.txt +14 -0
- snappy/doc/_sources/censuses.rst.txt +51 -0
- snappy/doc/_sources/credits.rst.txt +75 -0
- snappy/doc/_sources/development.rst.txt +259 -0
- snappy/doc/_sources/index.rst.txt +182 -0
- snappy/doc/_sources/installing.rst.txt +247 -0
- snappy/doc/_sources/manifold.rst.txt +6 -0
- snappy/doc/_sources/manifoldhp.rst.txt +46 -0
- snappy/doc/_sources/news.rst.txt +355 -0
- snappy/doc/_sources/other.rst.txt +25 -0
- snappy/doc/_sources/platonic_census.rst.txt +20 -0
- snappy/doc/_sources/plink.rst.txt +102 -0
- snappy/doc/_sources/ptolemy.rst.txt +66 -0
- snappy/doc/_sources/ptolemy_classes.rst.txt +42 -0
- snappy/doc/_sources/ptolemy_examples1.rst.txt +298 -0
- snappy/doc/_sources/ptolemy_examples2.rst.txt +363 -0
- snappy/doc/_sources/ptolemy_examples3.rst.txt +301 -0
- snappy/doc/_sources/ptolemy_examples4.rst.txt +61 -0
- snappy/doc/_sources/ptolemy_prelim.rst.txt +105 -0
- snappy/doc/_sources/screenshots.rst.txt +21 -0
- snappy/doc/_sources/snap.rst.txt +87 -0
- snappy/doc/_sources/snappy.rst.txt +28 -0
- snappy/doc/_sources/spherogram.rst.txt +103 -0
- snappy/doc/_sources/todo.rst.txt +47 -0
- snappy/doc/_sources/triangulation.rst.txt +11 -0
- snappy/doc/_sources/tutorial.rst.txt +49 -0
- snappy/doc/_sources/verify.rst.txt +210 -0
- snappy/doc/_sources/verify_internals.rst.txt +79 -0
- snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
- snappy/doc/_static/SnapPy.ico +0 -0
- snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
- snappy/doc/_static/basic.css +925 -0
- snappy/doc/_static/css/badge_only.css +1 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
- snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
- snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
- snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
- snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
- snappy/doc/_static/css/theme.css +4 -0
- snappy/doc/_static/doctools.js +156 -0
- snappy/doc/_static/documentation_options.js +13 -0
- snappy/doc/_static/file.png +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
- snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
- snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
- snappy/doc/_static/jquery.js +2 -0
- snappy/doc/_static/js/badge_only.js +1 -0
- snappy/doc/_static/js/theme.js +1 -0
- snappy/doc/_static/js/versions.js +228 -0
- snappy/doc/_static/language_data.js +199 -0
- snappy/doc/_static/minus.png +0 -0
- snappy/doc/_static/plus.png +0 -0
- snappy/doc/_static/pygments.css +75 -0
- snappy/doc/_static/searchtools.js +620 -0
- snappy/doc/_static/snappy_furo.css +33 -0
- snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
- snappy/doc/_static/sphinx_highlight.js +154 -0
- snappy/doc/additional_classes.html +1500 -0
- snappy/doc/bugs.html +132 -0
- snappy/doc/censuses.html +427 -0
- snappy/doc/credits.html +181 -0
- snappy/doc/development.html +384 -0
- snappy/doc/genindex.html +1331 -0
- snappy/doc/index.html +262 -0
- snappy/doc/installing.html +346 -0
- snappy/doc/manifold.html +3452 -0
- snappy/doc/manifoldhp.html +180 -0
- snappy/doc/news.html +388 -0
- snappy/doc/objects.inv +0 -0
- snappy/doc/other.html +161 -0
- snappy/doc/platonic_census.html +375 -0
- snappy/doc/plink.html +210 -0
- snappy/doc/ptolemy.html +254 -0
- snappy/doc/ptolemy_classes.html +1144 -0
- snappy/doc/ptolemy_examples1.html +409 -0
- snappy/doc/ptolemy_examples2.html +471 -0
- snappy/doc/ptolemy_examples3.html +414 -0
- snappy/doc/ptolemy_examples4.html +195 -0
- snappy/doc/ptolemy_prelim.html +248 -0
- snappy/doc/py-modindex.html +165 -0
- snappy/doc/screenshots.html +141 -0
- snappy/doc/search.html +135 -0
- snappy/doc/searchindex.js +1 -0
- snappy/doc/snap.html +202 -0
- snappy/doc/snappy.html +181 -0
- snappy/doc/spherogram.html +1211 -0
- snappy/doc/todo.html +166 -0
- snappy/doc/triangulation.html +1584 -0
- snappy/doc/tutorial.html +159 -0
- snappy/doc/verify.html +330 -0
- snappy/doc/verify_internals.html +1235 -0
- snappy/drilling/__init__.py +456 -0
- snappy/drilling/barycentric.py +103 -0
- snappy/drilling/constants.py +5 -0
- snappy/drilling/crush.py +270 -0
- snappy/drilling/cusps.py +125 -0
- snappy/drilling/debug.py +242 -0
- snappy/drilling/epsilons.py +6 -0
- snappy/drilling/exceptions.py +55 -0
- snappy/drilling/moves.py +620 -0
- snappy/drilling/peripheral_curves.py +210 -0
- snappy/drilling/perturb.py +188 -0
- snappy/drilling/shorten.py +36 -0
- snappy/drilling/subdivide.py +274 -0
- snappy/drilling/test.py +23 -0
- snappy/drilling/test_cases.py +126 -0
- snappy/drilling/tracing.py +351 -0
- snappy/exceptions.py +26 -0
- snappy/export_stl.py +120 -0
- snappy/exterior_to_link/__init__.py +2 -0
- snappy/exterior_to_link/barycentric_geometry.py +463 -0
- snappy/exterior_to_link/exceptions.py +6 -0
- snappy/exterior_to_link/geodesic_map.json +14408 -0
- snappy/exterior_to_link/hyp_utils.py +112 -0
- snappy/exterior_to_link/link_projection.py +323 -0
- snappy/exterior_to_link/main.py +197 -0
- snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
- snappy/exterior_to_link/mcomplex_with_link.py +687 -0
- snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
- snappy/exterior_to_link/pl_utils.py +491 -0
- snappy/exterior_to_link/put_in_S3.py +156 -0
- snappy/exterior_to_link/rational_linear_algebra.py +123 -0
- snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
- snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
- snappy/exterior_to_link/stored_moves.py +475 -0
- snappy/exterior_to_link/test.py +31 -0
- snappy/filedialog.py +28 -0
- snappy/geometric_structure/__init__.py +212 -0
- snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
- snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
- snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
- snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
- snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
- snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
- snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
- snappy/geometric_structure/geodesic/__init__.py +0 -0
- snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
- snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
- snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
- snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
- snappy/geometric_structure/geodesic/constants.py +6 -0
- snappy/geometric_structure/geodesic/exceptions.py +22 -0
- snappy/geometric_structure/geodesic/fixed_points.py +93 -0
- snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
- snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
- snappy/geometric_structure/geodesic/line.py +30 -0
- snappy/geometric_structure/geodesic/multiplicity.py +127 -0
- snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
- snappy/geometric_structure/test.py +22 -0
- snappy/gui.py +121 -0
- snappy/horoviewer.py +443 -0
- snappy/hyperboloid/__init__.py +212 -0
- snappy/hyperboloid/distances.py +245 -0
- snappy/hyperboloid/horoball.py +19 -0
- snappy/hyperboloid/line.py +35 -0
- snappy/hyperboloid/point.py +9 -0
- snappy/hyperboloid/triangle.py +29 -0
- snappy/info_icon.gif +0 -0
- snappy/infowindow.py +65 -0
- snappy/isometry_signature.py +382 -0
- snappy/len_spec/__init__.py +596 -0
- snappy/len_spec/geodesic_info.py +110 -0
- snappy/len_spec/geodesic_key_info_dict.py +117 -0
- snappy/len_spec/geodesic_piece.py +143 -0
- snappy/len_spec/geometric_structure.py +182 -0
- snappy/len_spec/geometry.py +80 -0
- snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
- snappy/len_spec/spine.py +206 -0
- snappy/len_spec/test.py +24 -0
- snappy/len_spec/test_cases.py +69 -0
- snappy/len_spec/tile.py +275 -0
- snappy/len_spec/word.py +86 -0
- snappy/manifolds/HTWKnots/alternating.gz +0 -0
- snappy/manifolds/HTWKnots/nonalternating.gz +0 -0
- snappy/manifolds/__init__.py +3 -0
- snappy/math_basics.py +176 -0
- snappy/matrix.py +525 -0
- snappy/number.py +657 -0
- snappy/numeric_output_checker.py +345 -0
- snappy/pari.py +41 -0
- snappy/phone_home.py +57 -0
- snappy/polyviewer.py +259 -0
- snappy/ptolemy/__init__.py +17 -0
- snappy/ptolemy/component.py +103 -0
- snappy/ptolemy/coordinates.py +2290 -0
- snappy/ptolemy/fieldExtensions.py +153 -0
- snappy/ptolemy/findLoops.py +473 -0
- snappy/ptolemy/geometricRep.py +59 -0
- snappy/ptolemy/homology.py +165 -0
- snappy/ptolemy/magma/default.magma_template +229 -0
- snappy/ptolemy/magma/radicalsOfPrimaryDecomposition.magma_template +79 -0
- snappy/ptolemy/manifoldMethods.py +395 -0
- snappy/ptolemy/matrix.py +350 -0
- snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +113 -0
- snappy/ptolemy/polynomial.py +857 -0
- snappy/ptolemy/processComponents.py +173 -0
- snappy/ptolemy/processFileBase.py +247 -0
- snappy/ptolemy/processFileDispatch.py +46 -0
- snappy/ptolemy/processMagmaFile.py +392 -0
- snappy/ptolemy/processRurFile.py +150 -0
- snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +102 -0
- snappy/ptolemy/ptolemyObstructionClass.py +64 -0
- snappy/ptolemy/ptolemyVariety.py +1029 -0
- snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +140 -0
- snappy/ptolemy/reginaWrapper.py +698 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/rur.py +545 -0
- snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +277 -0
- snappy/ptolemy/test.py +1126 -0
- snappy/ptolemy/testing_files/3_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/3_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/4_1__sl4_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/5_2__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c0.magma_out +95 -0
- snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c1.magma_out +95 -0
- snappy/ptolemy/testing_files/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c4.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c5.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c6.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/m135__sl2_c7.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/s000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/t00000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c2.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files/v0000__sl2_c3.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m004__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
- snappy/ptolemy/testing_files_rur/m052__sl3_c0.rur.bz2 +0 -0
- snappy/ptolemy/utilities.py +236 -0
- snappy/raytracing/__init__.py +64 -0
- snappy/raytracing/additional_horospheres.py +64 -0
- snappy/raytracing/additional_len_spec_choices.py +63 -0
- snappy/raytracing/cohomology_fractal.py +197 -0
- snappy/raytracing/eyeball.py +123 -0
- snappy/raytracing/finite_raytracing_data.py +237 -0
- snappy/raytracing/finite_viewer.py +590 -0
- snappy/raytracing/geodesic_tube_info.py +174 -0
- snappy/raytracing/geodesics.py +246 -0
- snappy/raytracing/geodesics_window.py +258 -0
- snappy/raytracing/gui_utilities.py +293 -0
- snappy/raytracing/hyperboloid_navigation.py +556 -0
- snappy/raytracing/hyperboloid_utilities.py +234 -0
- snappy/raytracing/ideal_raytracing_data.py +592 -0
- snappy/raytracing/inside_viewer.py +974 -0
- snappy/raytracing/pack.py +22 -0
- snappy/raytracing/raytracing_data.py +126 -0
- snappy/raytracing/raytracing_view.py +454 -0
- snappy/raytracing/shaders/Eye.png +0 -0
- snappy/raytracing/shaders/NonGeometric.png +0 -0
- snappy/raytracing/shaders/__init__.py +101 -0
- snappy/raytracing/shaders/fragment.glsl +1744 -0
- snappy/raytracing/test.py +29 -0
- snappy/raytracing/tooltip.py +146 -0
- snappy/raytracing/upper_halfspace_utilities.py +98 -0
- snappy/raytracing/view_scale_controller.py +98 -0
- snappy/raytracing/zoom_slider/__init__.py +263 -0
- snappy/raytracing/zoom_slider/inward.png +0 -0
- snappy/raytracing/zoom_slider/inward18.png +0 -0
- snappy/raytracing/zoom_slider/outward.png +0 -0
- snappy/raytracing/zoom_slider/outward18.png +0 -0
- snappy/raytracing/zoom_slider/test.py +20 -0
- snappy/sage_helper.py +117 -0
- snappy/settings.py +409 -0
- snappy/shell.py +53 -0
- snappy/snap/__init__.py +114 -0
- snappy/snap/character_varieties.py +375 -0
- snappy/snap/find_field.py +372 -0
- snappy/snap/fundamental_polyhedron.py +569 -0
- snappy/snap/generators.py +39 -0
- snappy/snap/interval_reps.py +81 -0
- snappy/snap/kernel_structures.py +128 -0
- snappy/snap/mcomplex_base.py +18 -0
- snappy/snap/nsagetools.py +702 -0
- snappy/snap/peripheral/__init__.py +1 -0
- snappy/snap/peripheral/dual_cellulation.py +219 -0
- snappy/snap/peripheral/link.py +127 -0
- snappy/snap/peripheral/peripheral.py +159 -0
- snappy/snap/peripheral/surface.py +522 -0
- snappy/snap/peripheral/test.py +35 -0
- snappy/snap/polished_reps.py +335 -0
- snappy/snap/shapes.py +152 -0
- snappy/snap/slice_obs_HKL.py +668 -0
- snappy/snap/t3mlite/__init__.py +2 -0
- snappy/snap/t3mlite/arrow.py +243 -0
- snappy/snap/t3mlite/corner.py +22 -0
- snappy/snap/t3mlite/edge.py +172 -0
- snappy/snap/t3mlite/face.py +37 -0
- snappy/snap/t3mlite/files.py +211 -0
- snappy/snap/t3mlite/homology.py +53 -0
- snappy/snap/t3mlite/linalg.py +419 -0
- snappy/snap/t3mlite/mcomplex.py +1499 -0
- snappy/snap/t3mlite/perm4.py +320 -0
- snappy/snap/t3mlite/setup.py +12 -0
- snappy/snap/t3mlite/simplex.py +199 -0
- snappy/snap/t3mlite/spun.py +297 -0
- snappy/snap/t3mlite/surface.py +519 -0
- snappy/snap/t3mlite/test.py +20 -0
- snappy/snap/t3mlite/test_vs_regina.py +86 -0
- snappy/snap/t3mlite/tetrahedron.py +109 -0
- snappy/snap/t3mlite/vertex.py +42 -0
- snappy/snap/test.py +134 -0
- snappy/snap/utilities.py +288 -0
- snappy/test.py +209 -0
- snappy/test_cases.py +263 -0
- snappy/testing.py +131 -0
- snappy/tiling/__init__.py +2 -0
- snappy/tiling/canonical_key_dict.py +59 -0
- snappy/tiling/dict_based_set.py +79 -0
- snappy/tiling/floor.py +49 -0
- snappy/tiling/hyperboloid_dict.py +54 -0
- snappy/tiling/iter_utils.py +78 -0
- snappy/tiling/lifted_tetrahedron.py +22 -0
- snappy/tiling/lifted_tetrahedron_set.py +54 -0
- snappy/tiling/real_hash_dict.py +164 -0
- snappy/tiling/test.py +23 -0
- snappy/tiling/tile.py +215 -0
- snappy/tiling/triangle.py +33 -0
- snappy/tkterminal.py +920 -0
- snappy/twister/__init__.py +20 -0
- snappy/twister/main.py +646 -0
- snappy/twister/surfaces/S_0_1 +3 -0
- snappy/twister/surfaces/S_0_2 +3 -0
- snappy/twister/surfaces/S_0_4 +7 -0
- snappy/twister/surfaces/S_0_4_Lantern +8 -0
- snappy/twister/surfaces/S_1 +3 -0
- snappy/twister/surfaces/S_1_1 +4 -0
- snappy/twister/surfaces/S_1_2 +5 -0
- snappy/twister/surfaces/S_1_2_5 +6 -0
- snappy/twister/surfaces/S_2 +6 -0
- snappy/twister/surfaces/S_2_1 +8 -0
- snappy/twister/surfaces/S_2_heeg +10 -0
- snappy/twister/surfaces/S_3 +8 -0
- snappy/twister/surfaces/S_3_1 +10 -0
- snappy/twister/surfaces/S_4_1 +12 -0
- snappy/twister/surfaces/S_5_1 +14 -0
- snappy/twister/surfaces/heeg_fig8 +9 -0
- snappy/twister/twister_core.cpython-313-darwin.so +0 -0
- snappy/upper_halfspace/__init__.py +146 -0
- snappy/upper_halfspace/ideal_point.py +26 -0
- snappy/verify/__init__.py +13 -0
- snappy/verify/canonical.py +542 -0
- snappy/verify/complex_volume/__init__.py +18 -0
- snappy/verify/complex_volume/adjust_torsion.py +86 -0
- snappy/verify/complex_volume/closed.py +168 -0
- snappy/verify/complex_volume/compute_ptolemys.py +90 -0
- snappy/verify/complex_volume/cusped.py +56 -0
- snappy/verify/complex_volume/extended_bloch.py +201 -0
- snappy/verify/cusp_translations.py +85 -0
- snappy/verify/edge_equations.py +80 -0
- snappy/verify/exceptions.py +254 -0
- snappy/verify/hyperbolicity.py +224 -0
- snappy/verify/interval_newton_shapes_engine.py +523 -0
- snappy/verify/interval_tree.py +400 -0
- snappy/verify/krawczyk_shapes_engine.py +518 -0
- snappy/verify/maximal_cusp_area_matrix/__init__.py +46 -0
- snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +419 -0
- snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +153 -0
- snappy/verify/real_algebra.py +286 -0
- snappy/verify/shapes.py +25 -0
- snappy/verify/short_slopes.py +200 -0
- snappy/verify/square_extensions.py +1005 -0
- snappy/verify/test.py +78 -0
- snappy/verify/upper_halfspace/__init__.py +9 -0
- snappy/verify/upper_halfspace/extended_matrix.py +100 -0
- snappy/verify/upper_halfspace/finite_point.py +283 -0
- snappy/verify/upper_halfspace/ideal_point.py +426 -0
- snappy/verify/volume.py +128 -0
- snappy/version.py +2 -0
- snappy-3.2.dist-info/METADATA +58 -0
- snappy-3.2.dist-info/RECORD +503 -0
- snappy-3.2.dist-info/WHEEL +5 -0
- snappy-3.2.dist-info/entry_points.txt +2 -0
- snappy-3.2.dist-info/top_level.txt +28 -0
@@ -0,0 +1,1235 @@
|
|
1
|
+
|
2
|
+
|
3
|
+
<!DOCTYPE html>
|
4
|
+
<html class="writer-html5" lang="en" data-content_root="./">
|
5
|
+
<head>
|
6
|
+
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
|
7
|
+
|
8
|
+
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
9
|
+
<title>Internals of verified computations — SnapPy 3.2 documentation</title>
|
10
|
+
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=fa44fd50" />
|
11
|
+
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=e59714d7" />
|
12
|
+
<link rel="stylesheet" type="text/css" href="_static/snappy_sphinx_rtd_theme.css?v=1b8ec2a8" />
|
13
|
+
|
14
|
+
|
15
|
+
<link rel="shortcut icon" href="_static/SnapPy.ico"/>
|
16
|
+
<script src="_static/jquery.js?v=5d32c60e"></script>
|
17
|
+
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
|
18
|
+
<script src="_static/documentation_options.js?v=828ea960"></script>
|
19
|
+
<script src="_static/doctools.js?v=9a2dae69"></script>
|
20
|
+
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
|
21
|
+
<script src="_static/js/theme.js"></script>
|
22
|
+
<link rel="index" title="Index" href="genindex.html" />
|
23
|
+
<link rel="search" title="Search" href="search.html" />
|
24
|
+
<link rel="next" title="Other components" href="other.html" />
|
25
|
+
<link rel="prev" title="Verified computations" href="verify.html" />
|
26
|
+
</head>
|
27
|
+
|
28
|
+
<body class="wy-body-for-nav">
|
29
|
+
<div class="wy-grid-for-nav">
|
30
|
+
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
31
|
+
<div class="wy-side-scroll">
|
32
|
+
<div class="wy-side-nav-search" >
|
33
|
+
|
34
|
+
|
35
|
+
|
36
|
+
<a href="index.html" class="icon icon-home">
|
37
|
+
SnapPy
|
38
|
+
<img src="_static/SnapPy-horizontal-128.png" class="logo" alt="Logo"/>
|
39
|
+
</a>
|
40
|
+
<div role="search">
|
41
|
+
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
|
42
|
+
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
|
43
|
+
<input type="hidden" name="check_keywords" value="yes" />
|
44
|
+
<input type="hidden" name="area" value="default" />
|
45
|
+
</form>
|
46
|
+
</div>
|
47
|
+
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
|
48
|
+
<ul class="current">
|
49
|
+
<li class="toctree-l1"><a class="reference internal" href="installing.html">Installing SnapPy</a></li>
|
50
|
+
<li class="toctree-l1"><a class="reference internal" href="screenshots.html">Screenshots: SnapPy in action</a></li>
|
51
|
+
<li class="toctree-l1"><a class="reference internal" href="tutorial.html">Tutorial</a></li>
|
52
|
+
<li class="toctree-l1"><a class="reference internal" href="snappy.html">The snappy module and its classes</a></li>
|
53
|
+
<li class="toctree-l1"><a class="reference internal" href="plink.html">Using SnapPy’s link editor</a></li>
|
54
|
+
<li class="toctree-l1"><a class="reference internal" href="spherogram.html">Links: planar diagrams and invariants</a></li>
|
55
|
+
<li class="toctree-l1"><a class="reference internal" href="snap.html">Number theory of hyperbolic 3-manifolds</a></li>
|
56
|
+
<li class="toctree-l1 current"><a class="reference internal" href="verify.html">Verified computations</a><ul class="current">
|
57
|
+
<li class="toctree-l2"><a class="reference internal" href="verify.html#introduction">Introduction</a></li>
|
58
|
+
<li class="toctree-l2"><a class="reference internal" href="verify.html#overview">Overview</a></li>
|
59
|
+
<li class="toctree-l2 current"><a class="reference internal" href="verify.html#verified-computation-topics">Verified computation topics</a><ul class="current">
|
60
|
+
<li class="toctree-l3 current"><a class="current reference internal" href="#">Internals of verified computations</a><ul>
|
61
|
+
<li class="toctree-l4"><a class="reference internal" href="#naming">Naming</a></li>
|
62
|
+
<li class="toctree-l4"><a class="reference internal" href="#generating-certified-shape-intervals">Generating certified shape intervals</a><ul>
|
63
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.CertifiedShapesEngine"><code class="docutils literal notranslate"><span class="pre">CertifiedShapesEngine</span></code></a></li>
|
64
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.IntervalNewtonShapesEngine"><code class="docutils literal notranslate"><span class="pre">IntervalNewtonShapesEngine</span></code></a></li>
|
65
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.KrawczykShapesEngine"><code class="docutils literal notranslate"><span class="pre">KrawczykShapesEngine</span></code></a></li>
|
66
|
+
</ul>
|
67
|
+
</li>
|
68
|
+
<li class="toctree-l4"><a class="reference internal" href="#verification-of-hyperbolicity">Verification of hyperbolicity</a><ul>
|
69
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.hyperbolicity.check_logarithmic_gluing_equations_and_positively_oriented_tets"><code class="docutils literal notranslate"><span class="pre">check_logarithmic_gluing_equations_and_positively_oriented_tets()</span></code></a></li>
|
70
|
+
</ul>
|
71
|
+
</li>
|
72
|
+
<li class="toctree-l4"><a class="reference internal" href="#verified-canonical-cell-decompositions">Verified canonical cell decompositions</a><ul>
|
73
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.canonical.interval_checked_canonical_triangulation"><code class="docutils literal notranslate"><span class="pre">interval_checked_canonical_triangulation()</span></code></a></li>
|
74
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.canonical.exactly_checked_canonical_retriangulation"><code class="docutils literal notranslate"><span class="pre">exactly_checked_canonical_retriangulation()</span></code></a></li>
|
75
|
+
</ul>
|
76
|
+
</li>
|
77
|
+
<li class="toctree-l4"><a class="reference internal" href="#module-snappy.verify.square_extensions">Exact computations for cusp cross sections</a><ul>
|
78
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.square_extensions.find_shapes_as_complex_sqrt_lin_combinations"><code class="docutils literal notranslate"><span class="pre">find_shapes_as_complex_sqrt_lin_combinations()</span></code></a></li>
|
79
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.square_extensions.SqrtLinCombination"><code class="docutils literal notranslate"><span class="pre">SqrtLinCombination</span></code></a></li>
|
80
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.square_extensions.ComplexSqrtLinCombination"><code class="docutils literal notranslate"><span class="pre">ComplexSqrtLinCombination</span></code></a></li>
|
81
|
+
</ul>
|
82
|
+
</li>
|
83
|
+
<li class="toctree-l4"><a class="reference internal" href="#module-snappy.verify.exceptions">Exceptions</a><ul>
|
84
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.CuspConsistencyType"><code class="docutils literal notranslate"><span class="pre">CuspConsistencyType</span></code></a></li>
|
85
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.CuspEquationExactVerifyError"><code class="docutils literal notranslate"><span class="pre">CuspEquationExactVerifyError</span></code></a></li>
|
86
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.CuspEquationLogLiftNumericalVerifyError"><code class="docutils literal notranslate"><span class="pre">CuspEquationLogLiftNumericalVerifyError</span></code></a></li>
|
87
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.CuspEquationType"><code class="docutils literal notranslate"><span class="pre">CuspEquationType</span></code></a></li>
|
88
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.EdgeEquationExactVerifyError"><code class="docutils literal notranslate"><span class="pre">EdgeEquationExactVerifyError</span></code></a></li>
|
89
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.EdgeEquationLogLiftNumericalVerifyError"><code class="docutils literal notranslate"><span class="pre">EdgeEquationLogLiftNumericalVerifyError</span></code></a></li>
|
90
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.EdgeEquationType"><code class="docutils literal notranslate"><span class="pre">EdgeEquationType</span></code></a></li>
|
91
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.EquationType"><code class="docutils literal notranslate"><span class="pre">EquationType</span></code></a></li>
|
92
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.ExactVerifyError"><code class="docutils literal notranslate"><span class="pre">ExactVerifyError</span></code></a></li>
|
93
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.InequalityNumericalVerifyError"><code class="docutils literal notranslate"><span class="pre">InequalityNumericalVerifyError</span></code></a></li>
|
94
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.IsZeroExactVerifyError"><code class="docutils literal notranslate"><span class="pre">IsZeroExactVerifyError</span></code></a></li>
|
95
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.LogLiftNumericalVerifyError"><code class="docutils literal notranslate"><span class="pre">LogLiftNumericalVerifyError</span></code></a></li>
|
96
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.NumericalVerifyError"><code class="docutils literal notranslate"><span class="pre">NumericalVerifyError</span></code></a></li>
|
97
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.ShapePositiveImaginaryPartNumericalVerifyError"><code class="docutils literal notranslate"><span class="pre">ShapePositiveImaginaryPartNumericalVerifyError</span></code></a></li>
|
98
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.ShapeType"><code class="docutils literal notranslate"><span class="pre">ShapeType</span></code></a></li>
|
99
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.TiltInequalityNumericalVerifyError"><code class="docutils literal notranslate"><span class="pre">TiltInequalityNumericalVerifyError</span></code></a></li>
|
100
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.TiltIsZeroExactVerifyError"><code class="docutils literal notranslate"><span class="pre">TiltIsZeroExactVerifyError</span></code></a></li>
|
101
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.TiltProvenPositiveNumericalVerifyError"><code class="docutils literal notranslate"><span class="pre">TiltProvenPositiveNumericalVerifyError</span></code></a></li>
|
102
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.TiltType"><code class="docutils literal notranslate"><span class="pre">TiltType</span></code></a></li>
|
103
|
+
<li class="toctree-l5"><a class="reference internal" href="#snappy.verify.exceptions.VerifyErrorBase"><code class="docutils literal notranslate"><span class="pre">VerifyErrorBase</span></code></a></li>
|
104
|
+
</ul>
|
105
|
+
</li>
|
106
|
+
</ul>
|
107
|
+
</li>
|
108
|
+
</ul>
|
109
|
+
</li>
|
110
|
+
</ul>
|
111
|
+
</li>
|
112
|
+
<li class="toctree-l1"><a class="reference internal" href="other.html">Other components</a></li>
|
113
|
+
<li class="toctree-l1"><a class="reference internal" href="news.html">News</a></li>
|
114
|
+
<li class="toctree-l1"><a class="reference internal" href="credits.html">Credits</a></li>
|
115
|
+
<li class="toctree-l1"><a class="reference internal" href="bugs.html">Reporting bugs and other problems</a></li>
|
116
|
+
<li class="toctree-l1"><a class="reference internal" href="todo.html">To Do List</a></li>
|
117
|
+
<li class="toctree-l1"><a class="reference internal" href="development.html">Development Basics</a></li>
|
118
|
+
</ul>
|
119
|
+
|
120
|
+
</div>
|
121
|
+
</div>
|
122
|
+
</nav>
|
123
|
+
|
124
|
+
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
|
125
|
+
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
126
|
+
<a href="index.html">SnapPy</a>
|
127
|
+
</nav>
|
128
|
+
|
129
|
+
<div class="wy-nav-content">
|
130
|
+
<div class="rst-content">
|
131
|
+
<div role="navigation" aria-label="Page navigation">
|
132
|
+
<ul class="wy-breadcrumbs">
|
133
|
+
<li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
|
134
|
+
<li class="breadcrumb-item"><a href="verify.html">Verified computations</a></li>
|
135
|
+
<li class="breadcrumb-item active">Internals of verified computations</li>
|
136
|
+
<li class="wy-breadcrumbs-aside">
|
137
|
+
</li>
|
138
|
+
</ul>
|
139
|
+
<hr/>
|
140
|
+
</div>
|
141
|
+
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
142
|
+
<div itemprop="articleBody">
|
143
|
+
|
144
|
+
<section id="internals-of-verified-computations">
|
145
|
+
<h1>Internals of verified computations<a class="headerlink" href="#internals-of-verified-computations" title="Link to this heading"></a></h1>
|
146
|
+
<section id="naming">
|
147
|
+
<h2>Naming<a class="headerlink" href="#naming" title="Link to this heading"></a></h2>
|
148
|
+
<p>The names of methods containing <code class="docutils literal notranslate"><span class="pre">check</span></code> will raise an exception if
|
149
|
+
the desired property cannot be certified. There are different types of
|
150
|
+
Exceptions to indicate how the certification failed. This type can be
|
151
|
+
used by other methods to perform some action such as changing the
|
152
|
+
triangulation or increasing precision or to give up.</p>
|
153
|
+
<p>The user-facing methods have names starting with <code class="docutils literal notranslate"><span class="pre">verify</span></code> or
|
154
|
+
<code class="docutils literal notranslate"><span class="pre">verified</span></code> and will fail more gracefully returning <code class="docutils literal notranslate"><span class="pre">False</span></code> or
|
155
|
+
<code class="docutils literal notranslate"><span class="pre">None</span></code> in such a case.</p>
|
156
|
+
</section>
|
157
|
+
<section id="generating-certified-shape-intervals">
|
158
|
+
<h2>Generating certified shape intervals<a class="headerlink" href="#generating-certified-shape-intervals" title="Link to this heading"></a></h2>
|
159
|
+
<p>The recommended way to obtain certified intervals for the shapes is via
|
160
|
+
<code class="docutils literal notranslate"><span class="pre">manifold.tetrahedra_shapes(intervals=True)</span></code> as <a class="reference internal" href="verify.html"><span class="doc">described
|
161
|
+
earlier</span></a>. Here we document the <code class="docutils literal notranslate"><span class="pre">KrawczykShapesEngine</span></code> and
|
162
|
+
<code class="docutils literal notranslate"><span class="pre">IntervalNewtonShapesEngine</span></code> which is implemented internally to
|
163
|
+
generate the intervals. It is of interest for those users who want to
|
164
|
+
understand the underlying interval math and experiment with the Newton
|
165
|
+
interval method or the Krawczyk test. <code class="docutils literal notranslate"><span class="pre">CertifiedShapesEngine</span></code> is an
|
166
|
+
alias of either <code class="docutils literal notranslate"><span class="pre">KrawczykShapesEngine</span></code> or
|
167
|
+
<code class="docutils literal notranslate"><span class="pre">IntervalNewtonShapesEngine</span></code> to determine the default method used by
|
168
|
+
verify.</p>
|
169
|
+
<dl class="py attribute" id="module-snappy.verify">
|
170
|
+
<dt class="sig sig-object py" id="snappy.verify.CertifiedShapesEngine">
|
171
|
+
<span class="sig-prename descclassname"><span class="pre">snappy.verify.</span></span><span class="sig-name descname"><span class="pre">CertifiedShapesEngine</span></span><a class="headerlink" href="#snappy.verify.CertifiedShapesEngine" title="Link to this definition"></a></dt>
|
172
|
+
<dd><p>alias of <a class="reference internal" href="#snappy.verify.KrawczykShapesEngine" title="snappy.verify.krawczyk_shapes_engine.KrawczykShapesEngine"><code class="xref py py-class docutils literal notranslate"><span class="pre">KrawczykShapesEngine</span></code></a></p>
|
173
|
+
</dd></dl>
|
174
|
+
|
175
|
+
<dl class="py class">
|
176
|
+
<dt class="sig sig-object py" id="snappy.verify.IntervalNewtonShapesEngine">
|
177
|
+
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.</span></span><span class="sig-name descname"><span class="pre">IntervalNewtonShapesEngine</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">M</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">initial_shapes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bits_prec</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dec_prec</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.IntervalNewtonShapesEngine" title="Link to this definition"></a></dt>
|
178
|
+
<dd><p>An engine that is initialized with an approximated candidate solution to
|
179
|
+
the rectangular gluing equations and produces intervals certified to
|
180
|
+
contain a true solution. After the engine is successfully run, the
|
181
|
+
resulting intervals are stored in certified_shapes which is a vector of
|
182
|
+
elements in a Sage’s ComplexIntervalField.</p>
|
183
|
+
<p>A simple example to obtain certified shape intervals that uses
|
184
|
+
KrawczykShapesEngine or IntervalNewtonShapesEngine under the hood:</p>
|
185
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: from snappy import Manifold
|
186
|
+
sage: M = Manifold("m015")
|
187
|
+
sage: M.tetrahedra_shapes('rect', bits_prec = 80, intervals = True) # doctest: +NUMERIC15 +NORMALIZE_WHITESPACE
|
188
|
+
[0.6623589786223730129805? + 0.5622795120623012438992?*I,
|
189
|
+
0.6623589786223730129805? + 0.5622795120623012438992?*I,
|
190
|
+
0.6623589786223730129805? + 0.5622795120623012438992?*I]
|
191
|
+
</pre></div>
|
192
|
+
</div>
|
193
|
+
<p>Its objective is thus the same as HIKMOT and it is certainly HIKMOT
|
194
|
+
inspired. However, it conceptually differs in that:</p>
|
195
|
+
<ol class="arabic">
|
196
|
+
<li><p>It uses the Newton interval method instead of the Krawczyk
|
197
|
+
test (we implement Gaussian elimination in interval arithmetic to
|
198
|
+
compute the inverse of an interval matrix having interval arithmetic
|
199
|
+
semantics, see mat_solve).</p></li>
|
200
|
+
<li><p>It uses complex numbers in it’s Newton interval method.
|
201
|
+
We simply use Sage’s complex interval type avoiding the need of
|
202
|
+
converting n x n complex matrices into 2n x 2n real matrices as
|
203
|
+
described Section 3.4 of the HIKMOT paper.</p></li>
|
204
|
+
<li><p>We avoid automatic differentiation. We pick an independent set of
|
205
|
+
equations of the following form and try to solve them:</p>
|
206
|
+
<blockquote>
|
207
|
+
<div><p>log(LHS) = 0</p>
|
208
|
+
</div></blockquote>
|
209
|
+
<p>where</p>
|
210
|
+
<blockquote>
|
211
|
+
<div><p>LHS = c * z0^a0 * (1-z0)^b0 * z1^a1 * (1-z1)^b1 * …</p>
|
212
|
+
</div></blockquote>
|
213
|
+
<p>with a, b and c’s as returned by Manifold.gluing_equations(‘rect’).</p>
|
214
|
+
<p>The derivative of log (LHS) with respect to zj is simply given by</p>
|
215
|
+
<blockquote>
|
216
|
+
<div><p>aj/zj - bj/(1-zj)</p>
|
217
|
+
</div></blockquote>
|
218
|
+
<p>and thus no need for automatic differentiation.</p>
|
219
|
+
</li>
|
220
|
+
</ol>
|
221
|
+
<p>In contrast to HIKMOT, we use and return Sage’s native implementation of
|
222
|
+
(complex) interval arithmetic here, which allows for increased interoperability.
|
223
|
+
Another advantage is that Sage supports arbitrary precision. Unfortunately,
|
224
|
+
performance suffers and this implementation is 5-10 times slower than HIKMOT.</p>
|
225
|
+
<p>Here is an example how to explicitly invoke the IntervalNewtonShapesEngine:</p>
|
226
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: shapes = M.tetrahedra_shapes('rect', bits_prec = 80)
|
227
|
+
sage: C = IntervalNewtonShapesEngine(M, shapes, bits_prec = 80)
|
228
|
+
sage: C.expand_until_certified()
|
229
|
+
True
|
230
|
+
sage: C.certified_shapes # doctest: +ELLIPSIS
|
231
|
+
(0.662358978622373012981? + 0.562279512062301243...?*I, 0.66235897862237301298...? + 0.562279512062301243...?*I, 0.66235897862237301298...? + 0.562279512062301243...?*I)
|
232
|
+
</pre></div>
|
233
|
+
</div>
|
234
|
+
<dl class="py method">
|
235
|
+
<dt class="sig sig-object py" id="snappy.verify.IntervalNewtonShapesEngine.certified_newton_iteration">
|
236
|
+
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">certified_newton_iteration</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">equations</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shape_intervals</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">point_in_intervals</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">interval_value_at_point</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.IntervalNewtonShapesEngine.certified_newton_iteration" title="Link to this definition"></a></dt>
|
237
|
+
<dd><p>Given shape intervals z, performs a Newton interval iteration N(z)
|
238
|
+
as described in newton_iteration. Returns a pair (boolean, N(z)) where
|
239
|
+
the boolean is True if N(z) is contained in z.</p>
|
240
|
+
<p>If the boolean is True, it is certified that N(z) contains a true
|
241
|
+
solution, e.g., a point for which f is truly zero.</p>
|
242
|
+
<p>See newton_iteration for the other parameters.</p>
|
243
|
+
<p>This follows from Theorem 1 of <a class="reference external" href="http://ww2.ii.uj.edu.pl/~zgliczyn/cap07/krawczyk.pdf">Zgliczynski’s notes</a>.</p>
|
244
|
+
<p>Some examples:</p>
|
245
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">Manifold</span>
|
246
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m019"</span><span class="p">)</span>
|
247
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">C</span> <span class="o">=</span> <span class="n">IntervalNewtonShapesEngine</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">M</span><span class="o">.</span><span class="n">tetrahedra_shapes</span><span class="p">(</span><span class="s1">'rect'</span><span class="p">),</span>
|
248
|
+
<span class="o">...</span> <span class="n">bits_prec</span> <span class="o">=</span> <span class="mi">80</span><span class="p">)</span>
|
249
|
+
</pre></div>
|
250
|
+
</div>
|
251
|
+
<p>Intervals containing the true solution:</p>
|
252
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: from sage.all import vector
|
253
|
+
sage: good_shapes = vector([
|
254
|
+
... C.CIF(C.RIF(0.78055, 0.78056), C.RIF(0.91447, 0.91448)),
|
255
|
+
... C.CIF(C.RIF(0.78055, 0.78056), C.RIF(0.91447, 0.91448)),
|
256
|
+
... C.CIF(C.RIF(0.46002, 0.46003), C.RIF(0.63262, 0.63263))])
|
257
|
+
sage: is_certified, shapes = IntervalNewtonShapesEngine.certified_newton_iteration(C.equations, good_shapes)
|
258
|
+
|
259
|
+
sage: is_certified
|
260
|
+
True
|
261
|
+
sage: shapes # doctest: +ELLIPSIS
|
262
|
+
(0.78055253? + 0.91447366...?*I, 0.7805525...? + 0.9144736...?*I, 0.4600211...? + 0.632624...?*I)
|
263
|
+
</pre></div>
|
264
|
+
</div>
|
265
|
+
<p>This means that a true solution to the rectangular gluing equations is
|
266
|
+
contained in both the given intervals (good_shapes) and the returned
|
267
|
+
intervals (shapes) which are a refinement of the given intervals.</p>
|
268
|
+
<p>Intervals not containing a true solution:</p>
|
269
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="kn">from</span> <span class="nn">sage.all</span> <span class="kn">import</span> <span class="n">vector</span>
|
270
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">bad_shapes</span> <span class="o">=</span> <span class="n">vector</span><span class="p">([</span>
|
271
|
+
<span class="o">...</span> <span class="n">C</span><span class="o">.</span><span class="n">CIF</span><span class="p">(</span><span class="n">C</span><span class="o">.</span><span class="n">RIF</span><span class="p">(</span><span class="mf">0.78054</span><span class="p">,</span> <span class="mf">0.78055</span><span class="p">),</span> <span class="n">C</span><span class="o">.</span><span class="n">RIF</span><span class="p">(</span><span class="mf">0.91447</span><span class="p">,</span> <span class="mf">0.91448</span><span class="p">)),</span>
|
272
|
+
<span class="o">...</span> <span class="n">C</span><span class="o">.</span><span class="n">CIF</span><span class="p">(</span><span class="n">C</span><span class="o">.</span><span class="n">RIF</span><span class="p">(</span><span class="mf">0.78055</span><span class="p">,</span> <span class="mf">0.78056</span><span class="p">),</span> <span class="n">C</span><span class="o">.</span><span class="n">RIF</span><span class="p">(</span><span class="mf">0.91447</span><span class="p">,</span> <span class="mf">0.91448</span><span class="p">)),</span>
|
273
|
+
<span class="o">...</span> <span class="n">C</span><span class="o">.</span><span class="n">CIF</span><span class="p">(</span><span class="n">C</span><span class="o">.</span><span class="n">RIF</span><span class="p">(</span><span class="mf">0.46002</span><span class="p">,</span> <span class="mf">0.46003</span><span class="p">),</span> <span class="n">C</span><span class="o">.</span><span class="n">RIF</span><span class="p">(</span><span class="mf">0.63262</span><span class="p">,</span> <span class="mf">0.63263</span><span class="p">))])</span>
|
274
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">is_certified</span><span class="p">,</span> <span class="n">shapes</span> <span class="o">=</span> <span class="n">IntervalNewtonShapesEngine</span><span class="o">.</span><span class="n">certified_newton_iteration</span><span class="p">(</span><span class="n">C</span><span class="o">.</span><span class="n">equations</span><span class="p">,</span> <span class="n">bad_shapes</span><span class="p">)</span>
|
275
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">is_certified</span>
|
276
|
+
<span class="kc">False</span>
|
277
|
+
</pre></div>
|
278
|
+
</div>
|
279
|
+
</dd></dl>
|
280
|
+
|
281
|
+
<dl class="py method">
|
282
|
+
<dt class="sig sig-object py" id="snappy.verify.IntervalNewtonShapesEngine.expand_until_certified">
|
283
|
+
<span class="sig-name descname"><span class="pre">expand_until_certified</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.IntervalNewtonShapesEngine.expand_until_certified" title="Link to this definition"></a></dt>
|
284
|
+
<dd><p>Try Newton interval iterations, expanding the shape intervals
|
285
|
+
until we can certify they contain a true solution.
|
286
|
+
If succeeded, return True and write certified shapes to
|
287
|
+
certified_shapes.
|
288
|
+
Set verbose = True for printing additional information.</p>
|
289
|
+
</dd></dl>
|
290
|
+
|
291
|
+
<dl class="py method">
|
292
|
+
<dt class="sig sig-object py" id="snappy.verify.IntervalNewtonShapesEngine.interval_vector_is_contained_in">
|
293
|
+
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">interval_vector_is_contained_in</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">vecA</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">vecB</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.IntervalNewtonShapesEngine.interval_vector_is_contained_in" title="Link to this definition"></a></dt>
|
294
|
+
<dd><p>Given two vectors of intervals, return whether the first one
|
295
|
+
is contained in the second one. Examples:</p>
|
296
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">RIF</span> <span class="o">=</span> <span class="n">RealIntervalField</span><span class="p">(</span><span class="mi">80</span><span class="p">)</span>
|
297
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">CIF</span> <span class="o">=</span> <span class="n">ComplexIntervalField</span><span class="p">(</span><span class="mi">80</span><span class="p">)</span>
|
298
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">box</span> <span class="o">=</span> <span class="n">CIF</span><span class="p">(</span><span class="n">RIF</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">),</span><span class="n">RIF</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">))</span>
|
299
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">a</span> <span class="o">=</span> <span class="p">[</span> <span class="n">CIF</span><span class="p">(</span><span class="mf">0.1</span><span class="p">),</span> <span class="n">CIF</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="n">box</span> <span class="p">]</span>
|
300
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">b</span> <span class="o">=</span> <span class="p">[</span> <span class="n">CIF</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="o">+</span> <span class="n">box</span><span class="p">,</span> <span class="n">CIF</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">box</span> <span class="p">]</span>
|
301
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">c</span> <span class="o">=</span> <span class="p">[</span> <span class="n">CIF</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">CIF</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="mi">3</span> <span class="o">*</span> <span class="n">box</span> <span class="p">]</span>
|
302
|
+
|
303
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">IntervalNewtonShapesEngine</span><span class="o">.</span><span class="n">interval_vector_is_contained_in</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">)</span>
|
304
|
+
<span class="kc">True</span>
|
305
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">IntervalNewtonShapesEngine</span><span class="o">.</span><span class="n">interval_vector_is_contained_in</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">c</span><span class="p">)</span>
|
306
|
+
<span class="kc">False</span>
|
307
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">IntervalNewtonShapesEngine</span><span class="o">.</span><span class="n">interval_vector_is_contained_in</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">a</span><span class="p">)</span>
|
308
|
+
<span class="kc">False</span>
|
309
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">IntervalNewtonShapesEngine</span><span class="o">.</span><span class="n">interval_vector_is_contained_in</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">c</span><span class="p">)</span>
|
310
|
+
<span class="kc">False</span>
|
311
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">IntervalNewtonShapesEngine</span><span class="o">.</span><span class="n">interval_vector_is_contained_in</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">a</span><span class="p">)</span>
|
312
|
+
<span class="kc">False</span>
|
313
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">IntervalNewtonShapesEngine</span><span class="o">.</span><span class="n">interval_vector_is_contained_in</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">b</span><span class="p">)</span>
|
314
|
+
<span class="kc">False</span>
|
315
|
+
</pre></div>
|
316
|
+
</div>
|
317
|
+
</dd></dl>
|
318
|
+
|
319
|
+
<dl class="py method">
|
320
|
+
<dt class="sig sig-object py" id="snappy.verify.IntervalNewtonShapesEngine.interval_vector_mid_points">
|
321
|
+
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">interval_vector_mid_points</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">vec</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.IntervalNewtonShapesEngine.interval_vector_mid_points" title="Link to this definition"></a></dt>
|
322
|
+
<dd><p>Given a vector of complex intervals, return the midpoints (as 0-length
|
323
|
+
complex intervals) of them.</p>
|
324
|
+
</dd></dl>
|
325
|
+
|
326
|
+
<dl class="py method">
|
327
|
+
<dt class="sig sig-object py" id="snappy.verify.IntervalNewtonShapesEngine.interval_vector_union">
|
328
|
+
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">interval_vector_union</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">vecA</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">vecB</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.IntervalNewtonShapesEngine.interval_vector_union" title="Link to this definition"></a></dt>
|
329
|
+
<dd><p>Given two vectors of intervals, return the vector of their unions,
|
330
|
+
i.e., the smallest interval containing both intervals.</p>
|
331
|
+
</dd></dl>
|
332
|
+
|
333
|
+
<dl class="py method">
|
334
|
+
<dt class="sig sig-object py" id="snappy.verify.IntervalNewtonShapesEngine.log_gluing_LHS_derivatives">
|
335
|
+
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">log_gluing_LHS_derivatives</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">equations</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shapes</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.IntervalNewtonShapesEngine.log_gluing_LHS_derivatives" title="Link to this definition"></a></dt>
|
336
|
+
<dd><p>Compute the Jacobian of the vector-valued function f
|
337
|
+
described in the above log_gluing_LHSs:</p>
|
338
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: from snappy import Manifold
|
339
|
+
sage: M = Manifold("m019")
|
340
|
+
sage: equations = M.gluing_equations('rect')
|
341
|
+
sage: RIF = RealIntervalField(80)
|
342
|
+
sage: CIF = ComplexIntervalField(80)
|
343
|
+
sage: shape1 = CIF(RIF(0.78055,0.78056), RIF(0.9144, 0.9145))
|
344
|
+
sage: shape2 = CIF(RIF(0.46002,0.46003), RIF(0.6326, 0.6327))
|
345
|
+
sage: shapes = [shape1, shape1, shape2]
|
346
|
+
sage: IntervalNewtonShapesEngine.log_gluing_LHS_derivatives(equations, shapes) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
|
347
|
+
[ 0.292? - 1.66...?*I 0.292? - 1.66...?*I 0.752? - 1.034...?*I]
|
348
|
+
[-0.5400? + 0.63...?*I -0.5400? + 0.63...?*I 1.561? + 1.829...?*I]
|
349
|
+
[ 0.2482? + 1.034...?*I 0.2482? + 1.034...?*I -2.313? - 0.795...?*I]
|
350
|
+
[ 0.5400? - 0.63...?*I -0.5400? + 0.63...?*I 0]
|
351
|
+
[...-0.4963? - 2.068?*I 1.0800? - 1.26...?*I 0.752? - 1.034...?*I]
|
352
|
+
</pre></div>
|
353
|
+
</div>
|
354
|
+
</dd></dl>
|
355
|
+
|
356
|
+
<dl class="py method">
|
357
|
+
<dt class="sig sig-object py" id="snappy.verify.IntervalNewtonShapesEngine.log_gluing_LHSs">
|
358
|
+
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">log_gluing_LHSs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">equations</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shapes</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.IntervalNewtonShapesEngine.log_gluing_LHSs" title="Link to this definition"></a></dt>
|
359
|
+
<dd><p>Given the result of M.gluing_equations(‘rect’) or a
|
360
|
+
subset of rows of it and shapes, return a vector of
|
361
|
+
log(LHS) where</p>
|
362
|
+
<blockquote>
|
363
|
+
<div><p>LHS = c * z0 ** a0 * (1-z0) ** b0 * z1 ** a1 * …</p>
|
364
|
+
</div></blockquote>
|
365
|
+
<p>Let f: C^n -> C^n denote the function which takes
|
366
|
+
shapes and returns the vector of log(LHS).</p>
|
367
|
+
<p>The reason we take the logarithm of the rectangular
|
368
|
+
gluing equations is because the logarithmic derivative
|
369
|
+
is of a particular nice form:</p>
|
370
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">Manifold</span>
|
371
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m019"</span><span class="p">)</span>
|
372
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">equations</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">gluing_equations</span><span class="p">(</span><span class="s1">'rect'</span><span class="p">)</span>
|
373
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">RIF</span> <span class="o">=</span> <span class="n">RealIntervalField</span><span class="p">(</span><span class="mi">80</span><span class="p">)</span>
|
374
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">CIF</span> <span class="o">=</span> <span class="n">ComplexIntervalField</span><span class="p">(</span><span class="mi">80</span><span class="p">)</span>
|
375
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">zero</span> <span class="o">=</span> <span class="n">CIF</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">center</span><span class="p">()</span>
|
376
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">shape1</span> <span class="o">=</span> <span class="n">CIF</span><span class="p">(</span><span class="n">RIF</span><span class="p">(</span><span class="mf">0.78055</span><span class="p">,</span><span class="mf">0.78056</span><span class="p">),</span> <span class="n">RIF</span><span class="p">(</span><span class="mf">0.9144</span><span class="p">,</span> <span class="mf">0.9145</span><span class="p">))</span>
|
377
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">shape2</span> <span class="o">=</span> <span class="n">CIF</span><span class="p">(</span><span class="n">RIF</span><span class="p">(</span><span class="mf">0.46002</span><span class="p">,</span><span class="mf">0.46003</span><span class="p">),</span> <span class="n">RIF</span><span class="p">(</span><span class="mf">0.6326</span><span class="p">,</span> <span class="mf">0.6327</span><span class="p">))</span>
|
378
|
+
</pre></div>
|
379
|
+
</div>
|
380
|
+
<p>An interval solution containing the true solution. The log of each
|
381
|
+
rectangular equation should be 0 for the true solution, hence the interval
|
382
|
+
should contain zero:</p>
|
383
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: shapes = [shape1, shape1, shape2]
|
384
|
+
sage: LHSs = IntervalNewtonShapesEngine.log_gluing_LHSs(equations, shapes)
|
385
|
+
sage: LHSs # doctest: +ELLIPSIS
|
386
|
+
(0.000? + 0.000?*I, 0.000? + 0.000?*I, 0.000? + 0.000?*I, 0.000...? + 0.000...?*I, 0.000? + 0.000?*I)
|
387
|
+
sage: zero in LHSs[0]
|
388
|
+
True
|
389
|
+
</pre></div>
|
390
|
+
</div>
|
391
|
+
<p>An interval not containing the true solution:</p>
|
392
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: shapes = [shape1, shape1, shape1]
|
393
|
+
sage: LHSs = IntervalNewtonShapesEngine.log_gluing_LHSs(equations, shapes)
|
394
|
+
sage: LHSs # doctest: +ELLIPSIS
|
395
|
+
(0.430? - 0.078?*I, -0.2...? + 0.942?*I, -0.1...? - 0.8...?*I, 0.000...? + 0.000...?*I, 0.430? - 0.078?*I)
|
396
|
+
sage: zero in LHSs[0]
|
397
|
+
False
|
398
|
+
</pre></div>
|
399
|
+
</div>
|
400
|
+
</dd></dl>
|
401
|
+
|
402
|
+
<dl class="py method">
|
403
|
+
<dt class="sig sig-object py" id="snappy.verify.IntervalNewtonShapesEngine.newton_iteration">
|
404
|
+
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">newton_iteration</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">equations</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shape_intervals</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">point_in_intervals</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">interval_value_at_point</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.IntervalNewtonShapesEngine.newton_iteration" title="Link to this definition"></a></dt>
|
405
|
+
<dd><p>Perform a Newton interval method of iteration for
|
406
|
+
the function f described in log_gluing_LHSs.</p>
|
407
|
+
<p>Let z denote the shape intervals.
|
408
|
+
Let z_center be a point close to the center point of the shape
|
409
|
+
intervals (in the implementation, z_center is an interval of
|
410
|
+
again, of length zero).</p>
|
411
|
+
<p>The result returned will be</p>
|
412
|
+
<blockquote>
|
413
|
+
<div><p>N(z) = z_center - ((Df)(z))^-1 f(z_center)</p>
|
414
|
+
</div></blockquote>
|
415
|
+
<p>The user can overwrite the z_center to be used by providing
|
416
|
+
point_in_intervals (which have to be 0-length complex intervals).
|
417
|
+
The user can also give the interval value of f(z_center) by providing
|
418
|
+
interval_value_at_point to avoid re-evaluation of f(z_center).</p>
|
419
|
+
<p>A very approximate solution:</p>
|
420
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">Manifold</span>
|
421
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m019"</span><span class="p">)</span>
|
422
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">shapes</span> <span class="o">=</span> <span class="p">[</span> <span class="mf">0.7</span><span class="o">+</span><span class="mi">1</span><span class="n">j</span><span class="p">,</span> <span class="mf">0.7</span><span class="o">+</span><span class="mi">1</span><span class="n">j</span><span class="p">,</span> <span class="mf">0.5</span><span class="o">+</span><span class="mf">0.5</span><span class="n">j</span> <span class="p">]</span>
|
423
|
+
</pre></div>
|
424
|
+
</div>
|
425
|
+
<p>Get the equations and initialize zero-length intervals from it:</p>
|
426
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: C = IntervalNewtonShapesEngine(M, shapes, bits_prec = 80)
|
427
|
+
sage: C.initial_shapes
|
428
|
+
(0.69999999999999995559107902? + 1*I, 0.69999999999999995559107902? + 1*I, 0.50000000000000000000000000? + 0.50000000000000000000000000?*I)
|
429
|
+
</pre></div>
|
430
|
+
</div>
|
431
|
+
<p>Do several Newton interval operations to get a better solution:</p>
|
432
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: shape_intervals = C.initial_shapes
|
433
|
+
sage: for i in range(4): # doctest: +ELLIPSIS
|
434
|
+
... shape_intervals = IntervalNewtonShapesEngine.newton_iteration(C.equations, shape_intervals)
|
435
|
+
... print(shape_intervals)
|
436
|
+
(0.78674683118381457770...? + 0.9208680745160821379529?*I, 0.786746831183814577703...? + 0.9208680745160821379529?*I, 0.459868058287098030934...? + 0.61940871855835167317...?*I)
|
437
|
+
(0.78056102517632648594...? + 0.9144962118446750482...?*I, 0.78056102517632648594...? + 0.9144962118446750482...?*I, 0.4599773577869384936554? + 0.63251940718694538695...?*I)
|
438
|
+
(0.78055253104531610049...? + 0.9144736621585220345231?*I, 0.780552531045316100497...? + 0.9144736621585220345231?*I, 0.460021167103732494700...? + 0.6326241909236695020810...?*I)
|
439
|
+
(0.78055252785072483256...? + 0.91447366296772644033...?*I, 0.7805525278507248325678? + 0.914473662967726440333...?*I, 0.4600211755737178641204...? + 0.6326241936052562241142...?*I)
|
440
|
+
</pre></div>
|
441
|
+
</div>
|
442
|
+
<p>For comparison:</p>
|
443
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">tetrahedra_shapes</span><span class="p">(</span><span class="s1">'rect'</span><span class="p">)</span>
|
444
|
+
<span class="p">[</span><span class="mf">0.780552527850725</span> <span class="o">+</span> <span class="mf">0.914473662967726</span><span class="o">*</span><span class="n">I</span><span class="p">,</span> <span class="mf">0.780552527850725</span> <span class="o">+</span> <span class="mf">0.914473662967726</span><span class="o">*</span><span class="n">I</span><span class="p">,</span> <span class="mf">0.460021175573718</span> <span class="o">+</span> <span class="mf">0.632624193605256</span><span class="o">*</span><span class="n">I</span><span class="p">]</span>
|
445
|
+
</pre></div>
|
446
|
+
</div>
|
447
|
+
<p>Start with a rather big interval, note that the Newton interval method is
|
448
|
+
stable in the sense that the interval size decreases:</p>
|
449
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: box = C.CIF(C.RIF(-0.0001,0.0001),C.RIF(-0.0001,0.0001))
|
450
|
+
sage: shape_intervals = C.initial_shapes.apply_map(lambda shape: shape + box)
|
451
|
+
sage: shape_intervals
|
452
|
+
(0.700? + 1.000?*I, 0.700? + 1.000?*I, 0.500? + 0.500?*I)
|
453
|
+
sage: for i in range(7):
|
454
|
+
... shape_intervals = IntervalNewtonShapesEngine.newton_iteration(C.equations, shape_intervals)
|
455
|
+
sage: print(shape_intervals) # doctest: +ELLIPSIS
|
456
|
+
(0.78055252785072483798...? + 0.91447366296772645593...?*I, 0.7805525278507248379869? + 0.914473662967726455938...?*I, 0.460021175573717872891...? + 0.632624193605256171637...?*I)
|
457
|
+
</pre></div>
|
458
|
+
</div>
|
459
|
+
</dd></dl>
|
460
|
+
|
461
|
+
</dd></dl>
|
462
|
+
|
463
|
+
<dl class="py class">
|
464
|
+
<dt class="sig sig-object py" id="snappy.verify.KrawczykShapesEngine">
|
465
|
+
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.</span></span><span class="sig-name descname"><span class="pre">KrawczykShapesEngine</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">M</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">initial_shapes</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bits_prec</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">dec_prec</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.KrawczykShapesEngine" title="Link to this definition"></a></dt>
|
466
|
+
<dd><p>An engine that is initialized with an approximated candidate solution to
|
467
|
+
the rectangular gluing equations and produces intervals certified to
|
468
|
+
contain a true solution. After the engine is successfully run, the
|
469
|
+
resulting intervals are stored in certified_shapes which is a vector of
|
470
|
+
elements in a Sage’s ComplexIntervalField.</p>
|
471
|
+
<p>A simple example to obtain certified shape intervals that uses the
|
472
|
+
KrawczykShapesEngine or IntervalNewtonShapesEngine under the hood:</p>
|
473
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: from snappy import Manifold
|
474
|
+
sage: M = Manifold("m015")
|
475
|
+
sage: M.tetrahedra_shapes('rect', bits_prec = 80, intervals = True) # doctest: +NUMERIC15 +NORMALIZE_WHITESPACE
|
476
|
+
[0.6623589786223730129805? + 0.5622795120623012438992?*I,
|
477
|
+
0.6623589786223730129805? + 0.5622795120623012438992?*I,
|
478
|
+
0.6623589786223730129805? + 0.5622795120623012438992?*I]
|
479
|
+
</pre></div>
|
480
|
+
</div>
|
481
|
+
<p>Its objective is thus the same as HIKMOT and it is certainly HIKMOT
|
482
|
+
inspired. However, it conceptually differs in that:</p>
|
483
|
+
<ol class="arabic">
|
484
|
+
<li><p>It uses complex numbers in it’s computations.
|
485
|
+
We simply use Sage’s complex interval type avoiding the need of
|
486
|
+
converting n x n complex matrices into 2n x 2n real matrices as
|
487
|
+
described Section 3.4 of the HIKMOT paper.</p></li>
|
488
|
+
<li><p>We avoid automatic differentiation. We pick an independent set of
|
489
|
+
equations of the following form and try to solve them:</p>
|
490
|
+
<blockquote>
|
491
|
+
<div><p>log(LHS) = 0</p>
|
492
|
+
</div></blockquote>
|
493
|
+
<p>where</p>
|
494
|
+
<blockquote>
|
495
|
+
<div><p>LHS = c * z0^a0 * (1-z0)^b0 * z1^a1 * (1-z1)^b1 * …</p>
|
496
|
+
</div></blockquote>
|
497
|
+
<p>with a, b and c’s as returned by Manifold.gluing_equations(‘rect’).</p>
|
498
|
+
<p>The derivative of log (LHS) with respect to zj is simply given by</p>
|
499
|
+
<blockquote>
|
500
|
+
<div><p>aj/zj - bj/(1-zj)</p>
|
501
|
+
</div></blockquote>
|
502
|
+
<p>and thus no need for automatic differentiation.</p>
|
503
|
+
</li>
|
504
|
+
<li><p>For speed-up, the approximate inverse is always computed with
|
505
|
+
double’s. Some intermediate matrix computations are performed sparsely.</p></li>
|
506
|
+
</ol>
|
507
|
+
<p>In contrast to HIKMOT, we use and return Sage’s native implementation of
|
508
|
+
(complex) interval arithmetic here, which allows for increased interoperability.
|
509
|
+
Another advantage is that Sage supports arbitrary precision.</p>
|
510
|
+
<p>Here is an example how to explicitly invoke the KrawczykShapesEngine:</p>
|
511
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: shapes = M.tetrahedra_shapes('rect', bits_prec = 80)
|
512
|
+
sage: C = KrawczykShapesEngine(M, shapes, bits_prec = 80)
|
513
|
+
sage: C.expand_until_certified()
|
514
|
+
True
|
515
|
+
sage: C.certified_shapes # doctest: +NUMERIC12
|
516
|
+
(0.6623589786223730129805? + 0.5622795120623012438992?*I, 0.6623589786223730129805? + 0.5622795120623012438992?*I, 0.6623589786223730129805? + 0.5622795120623012438992?*I)
|
517
|
+
</pre></div>
|
518
|
+
</div>
|
519
|
+
<p>And here an example where the initial solution is somewhat off:</p>
|
520
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: M = Manifold("m019")
|
521
|
+
sage: shapes = [0.780559+0.91449j, 0.780559+0.9144j, 0.46009+0.639j]
|
522
|
+
sage: C = KrawczykShapesEngine(M, shapes, bits_prec = 100)
|
523
|
+
sage: C.expand_until_certified()
|
524
|
+
True
|
525
|
+
sage: C.certified_shapes # doctest: +ELLIPSIS
|
526
|
+
(0.7806? + 0.9145?*I, 0.7806? + 0.9145?*I, 0.460...? + 0.6326?*I)
|
527
|
+
</pre></div>
|
528
|
+
</div>
|
529
|
+
<dl class="py method">
|
530
|
+
<dt class="sig sig-object py" id="snappy.verify.KrawczykShapesEngine.expand_until_certified">
|
531
|
+
<span class="sig-name descname"><span class="pre">expand_until_certified</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">verbose</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.KrawczykShapesEngine.expand_until_certified" title="Link to this definition"></a></dt>
|
532
|
+
<dd><p>Try Krawczyk iterations (i.e., expanding the shape intervals [z]
|
533
|
+
by the Krawczyk interval K(z0, [z], f)) until we can certify they
|
534
|
+
contain a true solution.</p>
|
535
|
+
<p>If succeeded, return True and write certified shapes to
|
536
|
+
certified_shapes.
|
537
|
+
Set verbose = True for printing additional information.</p>
|
538
|
+
</dd></dl>
|
539
|
+
|
540
|
+
<dl class="py method">
|
541
|
+
<dt class="sig sig-object py" id="snappy.verify.KrawczykShapesEngine.interval_vector_is_contained_in">
|
542
|
+
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">interval_vector_is_contained_in</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">vecA</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">vecB</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.KrawczykShapesEngine.interval_vector_is_contained_in" title="Link to this definition"></a></dt>
|
543
|
+
<dd><p>Given two vectors of intervals, return whether the first one
|
544
|
+
is contained in the second one. Examples:</p>
|
545
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">RIF</span> <span class="o">=</span> <span class="n">RealIntervalField</span><span class="p">(</span><span class="mi">80</span><span class="p">)</span>
|
546
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">CIF</span> <span class="o">=</span> <span class="n">ComplexIntervalField</span><span class="p">(</span><span class="mi">80</span><span class="p">)</span>
|
547
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">box</span> <span class="o">=</span> <span class="n">CIF</span><span class="p">(</span><span class="n">RIF</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">),</span><span class="n">RIF</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">))</span>
|
548
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">a</span> <span class="o">=</span> <span class="p">[</span> <span class="n">CIF</span><span class="p">(</span><span class="mf">0.1</span><span class="p">),</span> <span class="n">CIF</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="n">box</span> <span class="p">]</span>
|
549
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">b</span> <span class="o">=</span> <span class="p">[</span> <span class="n">CIF</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="o">+</span> <span class="n">box</span><span class="p">,</span> <span class="n">CIF</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">box</span> <span class="p">]</span>
|
550
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">c</span> <span class="o">=</span> <span class="p">[</span> <span class="n">CIF</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">CIF</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="mi">3</span> <span class="o">*</span> <span class="n">box</span> <span class="p">]</span>
|
551
|
+
|
552
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">KrawczykShapesEngine</span><span class="o">.</span><span class="n">interval_vector_is_contained_in</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">)</span>
|
553
|
+
<span class="kc">True</span>
|
554
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">KrawczykShapesEngine</span><span class="o">.</span><span class="n">interval_vector_is_contained_in</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">c</span><span class="p">)</span>
|
555
|
+
<span class="kc">False</span>
|
556
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">KrawczykShapesEngine</span><span class="o">.</span><span class="n">interval_vector_is_contained_in</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">a</span><span class="p">)</span>
|
557
|
+
<span class="kc">False</span>
|
558
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">KrawczykShapesEngine</span><span class="o">.</span><span class="n">interval_vector_is_contained_in</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">c</span><span class="p">)</span>
|
559
|
+
<span class="kc">False</span>
|
560
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">KrawczykShapesEngine</span><span class="o">.</span><span class="n">interval_vector_is_contained_in</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">a</span><span class="p">)</span>
|
561
|
+
<span class="kc">False</span>
|
562
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">KrawczykShapesEngine</span><span class="o">.</span><span class="n">interval_vector_is_contained_in</span><span class="p">(</span><span class="n">c</span><span class="p">,</span> <span class="n">b</span><span class="p">)</span>
|
563
|
+
<span class="kc">False</span>
|
564
|
+
</pre></div>
|
565
|
+
</div>
|
566
|
+
</dd></dl>
|
567
|
+
|
568
|
+
<dl class="py method">
|
569
|
+
<dt class="sig sig-object py" id="snappy.verify.KrawczykShapesEngine.interval_vector_mid_points">
|
570
|
+
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">interval_vector_mid_points</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">vec</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.KrawczykShapesEngine.interval_vector_mid_points" title="Link to this definition"></a></dt>
|
571
|
+
<dd><p>Given a vector of complex intervals, return the midpoints (as 0-length
|
572
|
+
complex intervals) of them.</p>
|
573
|
+
</dd></dl>
|
574
|
+
|
575
|
+
<dl class="py method">
|
576
|
+
<dt class="sig sig-object py" id="snappy.verify.KrawczykShapesEngine.interval_vector_union">
|
577
|
+
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">interval_vector_union</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">vecA</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">vecB</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.KrawczykShapesEngine.interval_vector_union" title="Link to this definition"></a></dt>
|
578
|
+
<dd><p>Given two vectors of intervals, return the vector of their unions,
|
579
|
+
i.e., the smallest interval containing both intervals.</p>
|
580
|
+
</dd></dl>
|
581
|
+
|
582
|
+
<dl class="py method">
|
583
|
+
<dt class="sig sig-object py" id="snappy.verify.KrawczykShapesEngine.krawczyk_interval">
|
584
|
+
<span class="sig-name descname"><span class="pre">krawczyk_interval</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">shape_intervals</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.KrawczykShapesEngine.krawczyk_interval" title="Link to this definition"></a></dt>
|
585
|
+
<dd><p>Compute the interval in the Krawczyk test.</p>
|
586
|
+
<p>It is given as</p>
|
587
|
+
<blockquote>
|
588
|
+
<div><p>K(z0, [z], f) := z0 - c * f(z0) + (Id - c * df([z])) * ([z] - z0)</p>
|
589
|
+
</div></blockquote>
|
590
|
+
<dl class="simple">
|
591
|
+
<dt>where</dt><dd><ul class="simple">
|
592
|
+
<li><p>z0 is the approximate candidate solution,</p></li>
|
593
|
+
<li><p>[z] are the shape_intervals we try to verify,</p></li>
|
594
|
+
<li><p>f is the function taking the shapes to the errors of the logarithmic gluing equations</p></li>
|
595
|
+
<li><p>c is an approximate inverse of df</p></li>
|
596
|
+
<li><p>df([z]) is the derivative of f (interval-)evaluated for [z]</p></li>
|
597
|
+
</ul>
|
598
|
+
</dd>
|
599
|
+
</dl>
|
600
|
+
<p>Note that z0 in self.initial_shapes which are complex intervals
|
601
|
+
containing only one value (the candidate solution given initially).</p>
|
602
|
+
<p>If K is contained in [z], then we have proven that [z] contains a solution
|
603
|
+
to the gluing equations.</p>
|
604
|
+
<p>Do several Krawczyk operations to get a better solution:</p>
|
605
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: from sage.all import vector
|
606
|
+
sage: M = Manifold("m019")
|
607
|
+
sage: shapes = vector(ComplexIntervalField(53), [ 0.5+0.8j, 0.5+0.8j, 0.5+0.8j])
|
608
|
+
sage: for i in range(15):
|
609
|
+
... penultimateShapes = shapes
|
610
|
+
... centers = [ shape.center() for shape in shapes ]
|
611
|
+
... C = KrawczykShapesEngine(M, centers, bits_prec = 53)
|
612
|
+
... shapes = C.krawczyk_interval(shapes)
|
613
|
+
sage: shapes # doctest: +NUMERIC12
|
614
|
+
(0.78055252785073? + 0.91447366296773?*I, 0.780552527850725? + 0.91447366296773?*I, 0.460021175573718? + 0.632624193605256?*I)
|
615
|
+
</pre></div>
|
616
|
+
</div>
|
617
|
+
</dd></dl>
|
618
|
+
|
619
|
+
<dl class="py method">
|
620
|
+
<dt class="sig sig-object py" id="snappy.verify.KrawczykShapesEngine.log_gluing_LHS_derivatives">
|
621
|
+
<span class="sig-name descname"><span class="pre">log_gluing_LHS_derivatives</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">shapes</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.KrawczykShapesEngine.log_gluing_LHS_derivatives" title="Link to this definition"></a></dt>
|
622
|
+
<dd><p>Compute the Jacobian of the vector-valued function f
|
623
|
+
described in the above log_gluing_LHSs:</p>
|
624
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: from snappy import Manifold
|
625
|
+
sage: M = Manifold("m019")
|
626
|
+
sage: shapes = M.tetrahedra_shapes('rect', bits_prec = 80)
|
627
|
+
sage: C = KrawczykShapesEngine(M, shapes, bits_prec = 80)
|
628
|
+
sage: RIF = RealIntervalField(80)
|
629
|
+
sage: CIF = ComplexIntervalField(80)
|
630
|
+
sage: shape1 = CIF(RIF(0.78055,0.78056), RIF(0.9144, 0.9145))
|
631
|
+
sage: shape2 = CIF(RIF(0.46002,0.46003), RIF(0.6326, 0.6327))
|
632
|
+
sage: shapes = [shape1, shape1, shape2]
|
633
|
+
sage: C.log_gluing_LHS_derivatives(shapes) # doctest: +NUMERIC3
|
634
|
+
[ 0.292? - 1.6666?*I 0.292? - 1.6666?*I 0.752? - 1.0340?*I]
|
635
|
+
[ 0.5400? - 0.6327?*I 0.5400? - 0.6327?*I -1.561? - 1.8290?*I]
|
636
|
+
[ 0.5400? - 0.6327?*I -0.5400? + 0.6327?*I 0]
|
637
|
+
</pre></div>
|
638
|
+
</div>
|
639
|
+
</dd></dl>
|
640
|
+
|
641
|
+
<dl class="py method">
|
642
|
+
<dt class="sig sig-object py" id="snappy.verify.KrawczykShapesEngine.log_gluing_LHS_derivatives_sparse">
|
643
|
+
<span class="sig-name descname"><span class="pre">log_gluing_LHS_derivatives_sparse</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">shapes</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.KrawczykShapesEngine.log_gluing_LHS_derivatives_sparse" title="Link to this definition"></a></dt>
|
644
|
+
<dd><p>A column-sparse matrix version of log_gluing_LHS_derivatives_sparse.
|
645
|
+
The result is a list of list of pairs. Each list of pairs corresponds
|
646
|
+
to a column, a pair being (index of row, value) where the index is
|
647
|
+
increasing.</p>
|
648
|
+
</dd></dl>
|
649
|
+
|
650
|
+
<dl class="py method">
|
651
|
+
<dt class="sig sig-object py" id="snappy.verify.KrawczykShapesEngine.log_gluing_LHSs">
|
652
|
+
<span class="sig-name descname"><span class="pre">log_gluing_LHSs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">shapes</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.KrawczykShapesEngine.log_gluing_LHSs" title="Link to this definition"></a></dt>
|
653
|
+
<dd><p>Given the result of M.gluing_equations(‘rect’) or a
|
654
|
+
subset of rows of it and shapes, return a vector of
|
655
|
+
log(LHS) where</p>
|
656
|
+
<blockquote>
|
657
|
+
<div><p>LHS = c * z0 ** a0 * (1-z0) ** b0 * z1 ** a1 * …</p>
|
658
|
+
</div></blockquote>
|
659
|
+
<p>Let f: C^n -> C^n denote the function which takes
|
660
|
+
shapes and returns the vector of log(LHS).</p>
|
661
|
+
<p>The reason we take the logarithm of the rectangular
|
662
|
+
gluing equations is because the logarithmic derivative
|
663
|
+
is of a particular nice form:</p>
|
664
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">Manifold</span>
|
665
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m019"</span><span class="p">)</span>
|
666
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">equations</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">gluing_equations</span><span class="p">(</span><span class="s1">'rect'</span><span class="p">)</span>
|
667
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">RIF</span> <span class="o">=</span> <span class="n">RealIntervalField</span><span class="p">(</span><span class="mi">80</span><span class="p">)</span>
|
668
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">CIF</span> <span class="o">=</span> <span class="n">ComplexIntervalField</span><span class="p">(</span><span class="mi">80</span><span class="p">)</span>
|
669
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">zero</span> <span class="o">=</span> <span class="n">CIF</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">center</span><span class="p">()</span>
|
670
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">shape1</span> <span class="o">=</span> <span class="n">CIF</span><span class="p">(</span><span class="n">RIF</span><span class="p">(</span><span class="mf">0.78055</span><span class="p">,</span><span class="mf">0.78056</span><span class="p">),</span> <span class="n">RIF</span><span class="p">(</span><span class="mf">0.9144</span><span class="p">,</span> <span class="mf">0.9145</span><span class="p">))</span>
|
671
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">shape2</span> <span class="o">=</span> <span class="n">CIF</span><span class="p">(</span><span class="n">RIF</span><span class="p">(</span><span class="mf">0.46002</span><span class="p">,</span><span class="mf">0.46003</span><span class="p">),</span> <span class="n">RIF</span><span class="p">(</span><span class="mf">0.6326</span><span class="p">,</span> <span class="mf">0.6327</span><span class="p">))</span>
|
672
|
+
</pre></div>
|
673
|
+
</div>
|
674
|
+
<p>An interval solution containing the true solution. The log of each
|
675
|
+
rectangular equation should be 0 for the true solution, hence the interval
|
676
|
+
should contain zero:</p>
|
677
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: shapes = [shape1, shape1, shape2]
|
678
|
+
sage: C = KrawczykShapesEngine(M, [shape.center() for shape in shapes], bits_prec = 53)
|
679
|
+
sage: LHSs = C.log_gluing_LHSs(shapes)
|
680
|
+
sage: LHSs # doctest: +NUMERIC6
|
681
|
+
(0.000? + 0.000?*I, 0.000? + 0.000?*I, 0.0000? + 0.0000?*I)
|
682
|
+
sage: zero in LHSs[0]
|
683
|
+
True
|
684
|
+
</pre></div>
|
685
|
+
</div>
|
686
|
+
<p>An interval not containing the true solution:</p>
|
687
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: shapes = [shape1, shape1, shape1]
|
688
|
+
sage: LHSs = C.log_gluing_LHSs(shapes)
|
689
|
+
sage: LHSs # doctest: +NUMERIC3
|
690
|
+
(0.430? - 0.078?*I, 0.246? - 0.942?*I, 0.0000? + 0.0000?*I)
|
691
|
+
sage: zero in LHSs[0]
|
692
|
+
False
|
693
|
+
</pre></div>
|
694
|
+
</div>
|
695
|
+
</dd></dl>
|
696
|
+
|
697
|
+
<dl class="py method">
|
698
|
+
<dt class="sig sig-object py" id="snappy.verify.KrawczykShapesEngine.matrix_times_sparse">
|
699
|
+
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">matrix_times_sparse</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">m</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">sparse_m</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.KrawczykShapesEngine.matrix_times_sparse" title="Link to this definition"></a></dt>
|
700
|
+
<dd><p>Multiply a (dense) Sage matrix with a column-sparse matrix
|
701
|
+
(in the format described in log_gluing_LHS_derivatives_sparse).</p>
|
702
|
+
</dd></dl>
|
703
|
+
|
704
|
+
</dd></dl>
|
705
|
+
|
706
|
+
</section>
|
707
|
+
<section id="verification-of-hyperbolicity">
|
708
|
+
<h2>Verification of hyperbolicity<a class="headerlink" href="#verification-of-hyperbolicity" title="Link to this heading"></a></h2>
|
709
|
+
<p>Methods containing <code class="docutils literal notranslate"><span class="pre">check</span></code> will raise an exception if the desired property
|
710
|
+
cannot be certified. Methods containing <code class="docutils literal notranslate"><span class="pre">verify</span></code> or <code class="docutils literal notranslate"><span class="pre">verified</span></code> will fail
|
711
|
+
more gracefully returning <code class="docutils literal notranslate"><span class="pre">False</span></code> or <code class="docutils literal notranslate"><span class="pre">None</span></code> in such a case.</p>
|
712
|
+
<dl class="py function">
|
713
|
+
<dt class="sig sig-object py" id="snappy.verify.hyperbolicity.check_logarithmic_gluing_equations_and_positively_oriented_tets">
|
714
|
+
<span class="sig-prename descclassname"><span class="pre">snappy.verify.hyperbolicity.</span></span><span class="sig-name descname"><span class="pre">check_logarithmic_gluing_equations_and_positively_oriented_tets</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">manifold</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">shape_intervals</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.hyperbolicity.check_logarithmic_gluing_equations_and_positively_oriented_tets" title="Link to this definition"></a></dt>
|
715
|
+
<dd><p>Given a SnapPy manifold manifold and complex intervals for the shapes
|
716
|
+
shape_intervals that are certified to contain a solution to the
|
717
|
+
rectangular gluing equations, verify that the logarithmic gluing equations
|
718
|
+
are also fulfilled and that all shapes have positive imaginary part.
|
719
|
+
It will raise an exception if the verification fails.
|
720
|
+
This is sufficient to prove that the manifold is indeed hyperbolic.</p>
|
721
|
+
<p>Since the given interval are supposed to contain a true solution of
|
722
|
+
the rectangular gluing equations, the logarithmic gluing equations
|
723
|
+
are known to be fulfilled up to a multiple of 2 pi i. Thus it is enough
|
724
|
+
to certify that the absolute error of the logarithmic gluing
|
725
|
+
equations is < 0.1. Using interval arithmetic, this function certifies
|
726
|
+
this and positivity of the imaginary parts of the shapes:</p>
|
727
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">Manifold</span>
|
728
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m019"</span><span class="p">)</span>
|
729
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">check_logarithmic_gluing_equations_and_positively_oriented_tets</span><span class="p">(</span>
|
730
|
+
<span class="o">...</span> <span class="n">M</span><span class="p">,</span> <span class="n">M</span><span class="o">.</span><span class="n">tetrahedra_shapes</span><span class="p">(</span><span class="s1">'rect'</span><span class="p">,</span> <span class="n">intervals</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
|
731
|
+
</pre></div>
|
732
|
+
</div>
|
733
|
+
<p>The SnapPy triangulation of the following hyperbolic manifold contains
|
734
|
+
actually negatively oriented tetrahedra:</p>
|
735
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: M = Manifold("t02774")
|
736
|
+
sage: check_logarithmic_gluing_equations_and_positively_oriented_tets(
|
737
|
+
... M, M.tetrahedra_shapes('rect', intervals=True)) # doctest: +IGNORE_EXCEPTION_DETAIL
|
738
|
+
Traceback (most recent call last):
|
739
|
+
...
|
740
|
+
ShapePositiveImaginaryPartNumericalVerifyError: Numerical verification that shape has positive imaginary part has failed: Im(0.4800996900657? - 0.0019533695046?*I) > 0
|
741
|
+
</pre></div>
|
742
|
+
</div>
|
743
|
+
</dd></dl>
|
744
|
+
|
745
|
+
</section>
|
746
|
+
<section id="verified-canonical-cell-decompositions">
|
747
|
+
<h2>Verified canonical cell decompositions<a class="headerlink" href="#verified-canonical-cell-decompositions" title="Link to this heading"></a></h2>
|
748
|
+
<dl class="py function">
|
749
|
+
<dt class="sig sig-object py" id="snappy.verify.canonical.interval_checked_canonical_triangulation">
|
750
|
+
<span class="sig-prename descclassname"><span class="pre">snappy.verify.canonical.</span></span><span class="sig-name descname"><span class="pre">interval_checked_canonical_triangulation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">M</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bits_prec</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.canonical.interval_checked_canonical_triangulation" title="Link to this definition"></a></dt>
|
751
|
+
<dd><p>Given a canonical triangulation of a cusped (possibly non-orientable)
|
752
|
+
manifold M, return this triangulation if it has tetrahedral cells and can
|
753
|
+
be verified using interval arithmetics with the optional, given precision.
|
754
|
+
Otherwise, raises an Exception.</p>
|
755
|
+
<p>It fails when we call it on something which is not the canonical
|
756
|
+
triangulation:</p>
|
757
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: from snappy import Manifold
|
758
|
+
sage: M = Manifold("m015")
|
759
|
+
sage: interval_checked_canonical_triangulation(M) # doctest: +ELLIPSIS +IGNORE_EXCEPTION_DETAIL
|
760
|
+
Traceback (most recent call last):
|
761
|
+
...
|
762
|
+
TiltProvenPositiveNumericalVerifyError: Numerical verification that tilt is negative has failed, tilt is actually positive. This is provably not the proto-canonical triangulation: 0.164542163...? <= 0
|
763
|
+
</pre></div>
|
764
|
+
</div>
|
765
|
+
<p>It verifies the canonical triangulation:</p>
|
766
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">canonize</span><span class="p">()</span>
|
767
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">interval_checked_canonical_triangulation</span><span class="p">(</span><span class="n">M</span><span class="p">)</span>
|
768
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span>
|
769
|
+
<span class="n">m015</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">)</span>
|
770
|
+
</pre></div>
|
771
|
+
</div>
|
772
|
+
<p>Has a non-tetrahedral canonical cell:</p>
|
773
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: M = Manifold("m137")
|
774
|
+
sage: M.canonize()
|
775
|
+
sage: interval_checked_canonical_triangulation(M) # doctest: +ELLIPSIS +IGNORE_EXCEPTION_DETAIL
|
776
|
+
Traceback (most recent call last):
|
777
|
+
...
|
778
|
+
TiltInequalityNumericalVerifyError: Numerical verification that tilt is negative has failed: 0.?e-1... < 0
|
779
|
+
</pre></div>
|
780
|
+
</div>
|
781
|
+
<p>Has a cubical canonical cell:</p>
|
782
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: M = Manifold("m412")
|
783
|
+
sage: M.canonize()
|
784
|
+
sage: interval_checked_canonical_triangulation(M) # doctest: +ELLIPSIS +IGNORE_EXCEPTION_DETAIL
|
785
|
+
Traceback (most recent call last):
|
786
|
+
...
|
787
|
+
TiltInequalityNumericalVerifyError: Numerical verification that tilt is negative has failed: 0.?e-1... < 0
|
788
|
+
</pre></div>
|
789
|
+
</div>
|
790
|
+
</dd></dl>
|
791
|
+
|
792
|
+
<dl class="py function">
|
793
|
+
<dt class="sig sig-object py" id="snappy.verify.canonical.exactly_checked_canonical_retriangulation">
|
794
|
+
<span class="sig-prename descclassname"><span class="pre">snappy.verify.canonical.</span></span><span class="sig-name descname"><span class="pre">exactly_checked_canonical_retriangulation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">M</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bits_prec</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">degree</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.canonical.exactly_checked_canonical_retriangulation" title="Link to this definition"></a></dt>
|
795
|
+
<dd><p>Given a proto-canonical triangulation of a cusped (possibly non-orientable)
|
796
|
+
manifold M, return its canonical retriangulation which is computed from
|
797
|
+
exact shapes. The exact shapes are computed using snap (which uses the
|
798
|
+
LLL-algorithm). The precision (in bits) and the maximal degree need to be
|
799
|
+
specified (here 300 bits precision and polynomials of degree less than 4):</p>
|
800
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">Manifold</span>
|
801
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">"m412"</span><span class="p">)</span>
|
802
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">.</span><span class="n">canonize</span><span class="p">()</span>
|
803
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">K</span> <span class="o">=</span> <span class="n">exactly_checked_canonical_retriangulation</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="mi">300</span><span class="p">,</span> <span class="mi">4</span><span class="p">)</span>
|
804
|
+
</pre></div>
|
805
|
+
</div>
|
806
|
+
<p>M’s canonical cell decomposition has a cube, so non-tetrahedral:</p>
|
807
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">has_finite_vertices</span><span class="p">()</span>
|
808
|
+
<span class="kc">True</span>
|
809
|
+
</pre></div>
|
810
|
+
</div>
|
811
|
+
<p>Has 12 tetrahedra after the retrianglation:</p>
|
812
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="n">K</span><span class="o">.</span><span class="n">num_tetrahedra</span><span class="p">()</span>
|
813
|
+
<span class="mi">12</span>
|
814
|
+
</pre></div>
|
815
|
+
</div>
|
816
|
+
<p>Check that it fails on something which is not a proto-canonical
|
817
|
+
triangulation:</p>
|
818
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: from snappy import Manifold
|
819
|
+
sage: M = Manifold("m015")
|
820
|
+
sage: exactly_checked_canonical_retriangulation(M, 500, 6) # doctest: +IGNORE_EXCEPTION_DETAIL
|
821
|
+
Traceback (most recent call last):
|
822
|
+
...
|
823
|
+
TiltProvenPositiveNumericalVerifyError: Numerical verification that tilt is negative has failed, tilt is actually positive. This is provably not the proto-canonical triangulation: 0.1645421638874662848910671879? <= 0
|
824
|
+
</pre></div>
|
825
|
+
</div>
|
826
|
+
</dd></dl>
|
827
|
+
|
828
|
+
</section>
|
829
|
+
<section id="module-snappy.verify.square_extensions">
|
830
|
+
<span id="exact-computations-for-cusp-cross-sections"></span><h2>Exact computations for cusp cross sections<a class="headerlink" href="#module-snappy.verify.square_extensions" title="Link to this heading"></a></h2>
|
831
|
+
<p>The square_extensions module provides
|
832
|
+
two special classes to give exact representations of the values
|
833
|
+
involved when computing a cusp cross section.</p>
|
834
|
+
<p>The method find_shapes_as_complex_sqrt_lin_combinations returns a list of
|
835
|
+
shapes as ComplexSqrtLinCombination’s. This can be used as input to
|
836
|
+
CuspCrossSection. The outputs of CuspCrossSection, including the tilts, will
|
837
|
+
then be of type SqrtLinCombination.</p>
|
838
|
+
<p>Consider the real number field N generated by the real and imaginary part of
|
839
|
+
the shapes. The edge lengths and the factors used to normalize the cusp areas
|
840
|
+
will be square roots in N and thus the tilts will be N-linear combinations of
|
841
|
+
square roots in N. To avoid computing in a massive tower of square extensions
|
842
|
+
of N, we implement SqrtLinCombination here that provides a special
|
843
|
+
implementation of the == operator.</p>
|
844
|
+
<dl class="py function">
|
845
|
+
<dt class="sig sig-object py" id="snappy.verify.square_extensions.find_shapes_as_complex_sqrt_lin_combinations">
|
846
|
+
<span class="sig-prename descclassname"><span class="pre">snappy.verify.square_extensions.</span></span><span class="sig-name descname"><span class="pre">find_shapes_as_complex_sqrt_lin_combinations</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">M</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">prec</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">degree</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.square_extensions.find_shapes_as_complex_sqrt_lin_combinations" title="Link to this definition"></a></dt>
|
847
|
+
<dd><p>Given a manifold M, use snap (which uses LLL-algorithm) with the given
|
848
|
+
decimal precision and maximal degree to find exact values for the shapes’
|
849
|
+
real and imaginary part. Return the shapes as list of
|
850
|
+
ComplexSqrtLinCombination’s. Return None on failure.</p>
|
851
|
+
<p>Example:</p>
|
852
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">sage</span><span class="p">:</span> <span class="kn">from</span> <span class="nn">snappy</span> <span class="kn">import</span> <span class="n">Manifold</span>
|
853
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">M</span><span class="o">=</span><span class="n">Manifold</span><span class="p">(</span><span class="s2">"m412"</span><span class="p">)</span>
|
854
|
+
<span class="n">sage</span><span class="p">:</span> <span class="n">find_shapes_as_complex_sqrt_lin_combinations</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="mi">200</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
|
855
|
+
<span class="p">[</span><span class="n">ComplexSqrtLinCombination</span><span class="p">((</span><span class="mi">1</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="mi">1</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="mi">1</span><span class="p">)),</span> <span class="n">ComplexSqrtLinCombination</span><span class="p">((</span><span class="mi">1</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="mi">1</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="mi">1</span><span class="p">)),</span> <span class="n">ComplexSqrtLinCombination</span><span class="p">((</span><span class="mi">1</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="mi">1</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="mi">1</span><span class="p">)),</span> <span class="n">ComplexSqrtLinCombination</span><span class="p">((</span><span class="mi">1</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="mi">1</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="mi">1</span><span class="p">)),</span> <span class="n">ComplexSqrtLinCombination</span><span class="p">((</span><span class="mi">1</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="mi">1</span><span class="o">/</span><span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="mi">1</span><span class="p">))]</span>
|
856
|
+
</pre></div>
|
857
|
+
</div>
|
858
|
+
</dd></dl>
|
859
|
+
|
860
|
+
<dl class="py class">
|
861
|
+
<dt class="sig sig-object py" id="snappy.verify.square_extensions.SqrtLinCombination">
|
862
|
+
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.square_extensions.</span></span><span class="sig-name descname"><span class="pre">SqrtLinCombination</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">value</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">d</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">{}</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">embed_cache</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.square_extensions.SqrtLinCombination" title="Link to this definition"></a></dt>
|
863
|
+
<dd><p>A class representing a linear combination</p>
|
864
|
+
<blockquote>
|
865
|
+
<div><p>c_1 * sqrt(r_1) + c_2 * sqrt(r_2) + … + c_n * sqrt(r_n)</p>
|
866
|
+
</div></blockquote>
|
867
|
+
<p>where c_i and r_i have to be of type Integer, Rational or elements
|
868
|
+
of the same Sage NumberField with a real embedding (Caution: this is
|
869
|
+
assumed but not checked!) such that all r_i are positive (Caution: this is
|
870
|
+
not checked during construction!).</p>
|
871
|
+
<p>It implements +, -, * where one of the operators is allowed to be an
|
872
|
+
integer or rational.</p>
|
873
|
+
<p>/ is only implemented when the denominator has only one term c_1 * sqrt(1).
|
874
|
+
sqrt is only implemented for c_1 * sqrt(1) and it is not checked that
|
875
|
+
c_1 is positive.</p>
|
876
|
+
<p>== is implemented, but the other comparison operators are not: casting to
|
877
|
+
a RealIntervalField is implemented instead and the user can compare the
|
878
|
+
intervals.</p>
|
879
|
+
<p>The == operator is implemented by first reducing A == B to D == 0 and then
|
880
|
+
converting to a different data type (_FactorizedSqrtLinCombination) that can
|
881
|
+
represent linear combinations:</p>
|
882
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">D</span> <span class="o">=</span> <span class="n">c_1</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">r_</span><span class="p">{</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">})</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">r_</span><span class="p">{</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">})</span> <span class="o">*</span> <span class="o">...</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">r_</span><span class="p">{</span><span class="mi">1</span><span class="p">,</span><span class="n">k_1</span><span class="p">})</span>
|
883
|
+
<span class="o">+</span> <span class="n">c_2</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">r_</span><span class="p">{</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">})</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">r_</span><span class="p">{</span><span class="mi">2</span><span class="p">,</span><span class="mi">2</span><span class="p">})</span> <span class="o">*</span> <span class="o">...</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">r_</span><span class="p">{</span><span class="mi">2</span><span class="p">,</span><span class="n">k_2</span><span class="p">})</span>
|
884
|
+
<span class="o">+</span> <span class="o">...</span>
|
885
|
+
<span class="o">+</span> <span class="n">c_n</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">r_</span><span class="p">{</span><span class="n">n</span><span class="p">,</span><span class="mi">1</span><span class="p">})</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">r_</span><span class="p">{</span><span class="n">n</span><span class="p">,</span><span class="mi">2</span><span class="p">})</span> <span class="o">*</span> <span class="o">...</span> <span class="o">*</span> <span class="n">sqrt</span><span class="p">(</span><span class="n">r_</span><span class="p">{</span><span class="n">n</span><span class="p">,</span><span class="n">k_n</span><span class="p">})</span>
|
886
|
+
</pre></div>
|
887
|
+
</div>
|
888
|
+
<dl class="simple">
|
889
|
+
<dt>by just trivially setting</dt><dd><p>k_i = 0 when r_i = 1 and
|
890
|
+
r_{i,1} = r_i and k_1 = 1 otherwise.</p>
|
891
|
+
</dd>
|
892
|
+
</dl>
|
893
|
+
<p>For this data type, multiplying two sqrt(r_{i,j}) with equal r_{i,j} will
|
894
|
+
cancel the two sqrt’s and apply the common r_{i,j} to the c_i of the result
|
895
|
+
instead. Thus, the following procedure for determining whether D == 0 will
|
896
|
+
eventually terminate:</p>
|
897
|
+
<ul class="simple">
|
898
|
+
<li><p>if the number of terms n is 0, return True</p></li>
|
899
|
+
<li><p>if the number of terms n is 1, return c_1 == 0</p></li>
|
900
|
+
<li><p>if there is a r_{i,j} common to each summand, factor it out</p></li>
|
901
|
+
<li><p>pick one of the r_{i,j}, split the sum into two parts “left”,
|
902
|
+
respectively, “right” of all the terms containing sqrt(r_{i,j}),
|
903
|
+
respectively, not containing sqrt(r_{i,j}).</p></li>
|
904
|
+
<li><p>If left^2 - right^2 == 0 is False, return False.
|
905
|
+
(sqrt(r_{i,j})^2 simplifies to r_{i,j} and disappears, so the resulting
|
906
|
+
expression is easier and this recursion terminates eventually.)</p></li>
|
907
|
+
<li><p>If left == 0 (some comment applies), return True</p></li>
|
908
|
+
<li><p>Use interval arithmetic of increasing precision until it is high enough
|
909
|
+
to determine the signs of left and right.
|
910
|
+
Return True if and only if the signs differ, otherwise False.</p></li>
|
911
|
+
</ul>
|
912
|
+
<p>Examples:</p>
|
913
|
+
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>sage: from sage.rings.number_field.number_field import NumberField
|
914
|
+
sage: from sage.rings.integer import Integer
|
915
|
+
sage: from sage.rings.rational import Rational
|
916
|
+
sage: from sage.rings.real_mpfr import RealLiteral, RealField
|
917
|
+
sage: from sage.rings.real_mpfi import RealIntervalField
|
918
|
+
sage: from sage.calculus.var import var
|
919
|
+
sage: from sage.functions.other import sqrt
|
920
|
+
sage: x = var('x')
|
921
|
+
sage: poly = x ** 6 + Rational((3,2))*x**4 + Rational((9,16))*x**2 - Rational((23,64))
|
922
|
+
sage: nf = NumberField(poly, 'z', embedding = RealField()(0.56227951206))
|
923
|
+
sage: z = nf.gen()
|
924
|
+
|
925
|
+
sage: A = SqrtLinCombination(z)
|
926
|
+
sage: B = SqrtLinCombination(Rational((8,9))*z**4 + Rational((10,9))*z**2 + Rational((2,9)))
|
927
|
+
sage: C = SqrtLinCombination(3)
|
928
|
+
sage: D = SqrtLinCombination(Integer(5))
|
929
|
+
sage: E = SqrtLinCombination(Rational((6,7)))
|
930
|
+
|
931
|
+
sage: A + B
|
932
|
+
(8/9*z^4 + 10/9*z^2 + z + 2/9) * sqrt(1)
|
933
|
+
sage: B - E
|
934
|
+
(8/9*z^4 + 10/9*z^2 - 40/63) * sqrt(1)
|
935
|
+
sage: A + sqrt(B) * sqrt(B)
|
936
|
+
(8/9*z^4 + 10/9*z^2 + z + 2/9) * sqrt(1)
|
937
|
+
sage: A + sqrt(B) * sqrt(B) + C == A + B + C
|
938
|
+
True
|
939
|
+
sage: A / E
|
940
|
+
(7/6*z) * sqrt(1)
|
941
|
+
sage: B / A.sqrt()
|
942
|
+
(128/207*z^5 + 376/207*z^3 + 302/207*z) * sqrt(z)
|
943
|
+
sage: B / (D * A.sqrt())
|
944
|
+
(128/1035*z^5 + 376/1035*z^3 + 302/1035*z) * sqrt(z)
|
945
|
+
sage: RIF = RealIntervalField(100)
|
946
|
+
sage: RIF(B.sqrt() + E.sqrt())
|
947
|
+
1.73967449622339881238507307209?
|
948
|
+
sage: A - B == 0
|
949
|
+
False
|
950
|
+
sage: (A + B).sqrt()
|
951
|
+
(1) * sqrt(8/9*z^4 + 10/9*z^2 + z + 2/9)
|
952
|
+
sage: 3 * A.sqrt() + (4 * B).sqrt() + C + 8 == (9 * A).sqrt() + 2 * B.sqrt() + (C * C).sqrt() + 11 - 3
|
953
|
+
True
|
954
|
+
</pre></div>
|
955
|
+
</div>
|
956
|
+
<dl class="py method">
|
957
|
+
<dt class="sig sig-object py" id="snappy.verify.square_extensions.SqrtLinCombination.sign">
|
958
|
+
<span class="sig-name descname"><span class="pre">sign</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.square_extensions.SqrtLinCombination.sign" title="Link to this definition"></a></dt>
|
959
|
+
<dd><p>Returns the +1, 0, -1 depending on whether the value is positive,
|
960
|
+
zero or negative. For the zero case, exact arithmetic is used to
|
961
|
+
certify. Otherwise, interval arithmetic is used.</p>
|
962
|
+
</dd></dl>
|
963
|
+
|
964
|
+
<dl class="py method">
|
965
|
+
<dt class="sig sig-object py" id="snappy.verify.square_extensions.SqrtLinCombination.sign_with_interval">
|
966
|
+
<span class="sig-name descname"><span class="pre">sign_with_interval</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.square_extensions.SqrtLinCombination.sign_with_interval" title="Link to this definition"></a></dt>
|
967
|
+
<dd><p>Similar to sign, but for the non-zero case, also return the interval
|
968
|
+
certifying the sign - useful for debugging.</p>
|
969
|
+
</dd></dl>
|
970
|
+
|
971
|
+
</dd></dl>
|
972
|
+
|
973
|
+
<dl class="py class">
|
974
|
+
<dt class="sig sig-object py" id="snappy.verify.square_extensions.ComplexSqrtLinCombination">
|
975
|
+
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.square_extensions.</span></span><span class="sig-name descname"><span class="pre">ComplexSqrtLinCombination</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">real</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">imag</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">embed_cache</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.square_extensions.ComplexSqrtLinCombination" title="Link to this definition"></a></dt>
|
976
|
+
<dd><p>A pair (real, imag) of SqrtLinCombinations representing the complex number
|
977
|
+
real + imag * I. Supports <code class="docutils literal notranslate"><span class="pre">real()</span></code>, <code class="docutils literal notranslate"><span class="pre">imag()</span></code>, <code class="docutils literal notranslate"><span class="pre">+</span></code>, <code class="docutils literal notranslate"><span class="pre">-</span></code>, <code class="docutils literal notranslate"><span class="pre">*</span></code>, <code class="docutils literal notranslate"><span class="pre">/</span></code>,
|
978
|
+
<code class="docutils literal notranslate"><span class="pre">abs</span></code>, <code class="docutils literal notranslate"><span class="pre">conjugate()</span></code> and <code class="docutils literal notranslate"><span class="pre">==</span></code>.</p>
|
979
|
+
<dl class="py method">
|
980
|
+
<dt class="sig sig-object py" id="snappy.verify.square_extensions.ComplexSqrtLinCombination.imag">
|
981
|
+
<span class="sig-name descname"><span class="pre">imag</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.square_extensions.ComplexSqrtLinCombination.imag" title="Link to this definition"></a></dt>
|
982
|
+
<dd><p>Imaginary part.</p>
|
983
|
+
</dd></dl>
|
984
|
+
|
985
|
+
<dl class="py method">
|
986
|
+
<dt class="sig sig-object py" id="snappy.verify.square_extensions.ComplexSqrtLinCombination.real">
|
987
|
+
<span class="sig-name descname"><span class="pre">real</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.square_extensions.ComplexSqrtLinCombination.real" title="Link to this definition"></a></dt>
|
988
|
+
<dd><p>Real part.</p>
|
989
|
+
</dd></dl>
|
990
|
+
|
991
|
+
</dd></dl>
|
992
|
+
|
993
|
+
</section>
|
994
|
+
<section id="module-snappy.verify.exceptions">
|
995
|
+
<span id="exceptions"></span><h2>Exceptions<a class="headerlink" href="#module-snappy.verify.exceptions" title="Link to this heading"></a></h2>
|
996
|
+
<p>All final exceptions are deriving from two base classes:</p>
|
997
|
+
<ul class="simple">
|
998
|
+
<li><p>a subclass of VerifyErrorBase to indicate whether a numerical or exact
|
999
|
+
verification failed</p></li>
|
1000
|
+
<li><p>a subclass of EquationType to indicate the type of equation of
|
1001
|
+
inequality for which the verification failed.</p></li>
|
1002
|
+
</ul>
|
1003
|
+
<p>Intermediate subclasses (those without __init__) are not supposed to be
|
1004
|
+
raised.</p>
|
1005
|
+
<p>The hierarchy is as follows:</p>
|
1006
|
+
<ul class="simple">
|
1007
|
+
<li><p>VerifyErrorBase(RuntimeError)</p>
|
1008
|
+
<ul>
|
1009
|
+
<li><p>NumericalVerifyError</p>
|
1010
|
+
<ul>
|
1011
|
+
<li><p>InequalityNumericalVerifyError</p></li>
|
1012
|
+
<li><p>LogLiftNumericalVerifyError</p></li>
|
1013
|
+
</ul>
|
1014
|
+
</li>
|
1015
|
+
<li><p>ExactVerifyError</p>
|
1016
|
+
<ul>
|
1017
|
+
<li><p>IsZeroExactVerifyError</p></li>
|
1018
|
+
</ul>
|
1019
|
+
</li>
|
1020
|
+
</ul>
|
1021
|
+
</li>
|
1022
|
+
<li><p>EquationType</p>
|
1023
|
+
<ul>
|
1024
|
+
<li><p>EdgeEquationType</p>
|
1025
|
+
<ul>
|
1026
|
+
<li><p>EdgeEquationExactVerifyError</p></li>
|
1027
|
+
<li><p>EdgeEquationLogLiftNumericalVerifyError</p></li>
|
1028
|
+
</ul>
|
1029
|
+
</li>
|
1030
|
+
<li><p>CuspConsistencyType</p>
|
1031
|
+
<ul>
|
1032
|
+
<li><p>CuspEquationType</p>
|
1033
|
+
<ul>
|
1034
|
+
<li><p>CuspEquationExactVerifyError</p></li>
|
1035
|
+
<li><p>CuspEquationLogLiftNumericalVerifyError</p></li>
|
1036
|
+
</ul>
|
1037
|
+
</li>
|
1038
|
+
</ul>
|
1039
|
+
</li>
|
1040
|
+
<li><p>TiltType</p>
|
1041
|
+
<ul>
|
1042
|
+
<li><p>TiltInequalityNumericalVerifyError</p>
|
1043
|
+
<ul>
|
1044
|
+
<li><p>TiltProvenPositiveNumericalVerifyError</p></li>
|
1045
|
+
</ul>
|
1046
|
+
</li>
|
1047
|
+
<li><p>TiltIsZeroExactVerifyError</p></li>
|
1048
|
+
</ul>
|
1049
|
+
</li>
|
1050
|
+
<li><p>ShapeType</p>
|
1051
|
+
<ul>
|
1052
|
+
<li><p>ShapePositiveImaginaryPartNumericalVerifyError</p></li>
|
1053
|
+
</ul>
|
1054
|
+
</li>
|
1055
|
+
</ul>
|
1056
|
+
</li>
|
1057
|
+
</ul>
|
1058
|
+
<dl class="py class">
|
1059
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.CuspConsistencyType">
|
1060
|
+
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">CuspConsistencyType</span></span><a class="headerlink" href="#snappy.verify.exceptions.CuspConsistencyType" title="Link to this definition"></a></dt>
|
1061
|
+
<dd><p>A base class indicating that verificatin of an equation involving a cusp
|
1062
|
+
failed.</p>
|
1063
|
+
</dd></dl>
|
1064
|
+
|
1065
|
+
<dl class="py exception">
|
1066
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.CuspEquationExactVerifyError">
|
1067
|
+
<em class="property"><span class="pre">exception</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">CuspEquationExactVerifyError</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">value</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">expected_value</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.exceptions.CuspEquationExactVerifyError" title="Link to this definition"></a></dt>
|
1068
|
+
<dd><p>Exception for failed verification of a polynomial cusp gluing equation
|
1069
|
+
using exact arithmetics.</p>
|
1070
|
+
</dd></dl>
|
1071
|
+
|
1072
|
+
<dl class="py exception">
|
1073
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.CuspEquationLogLiftNumericalVerifyError">
|
1074
|
+
<em class="property"><span class="pre">exception</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">CuspEquationLogLiftNumericalVerifyError</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">value</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">expected_value</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.exceptions.CuspEquationLogLiftNumericalVerifyError" title="Link to this definition"></a></dt>
|
1075
|
+
<dd><p>Exception for failed numerical verification that a logarithmic cusp
|
1076
|
+
equation has error bound by epsilon.</p>
|
1077
|
+
</dd></dl>
|
1078
|
+
|
1079
|
+
<dl class="py class">
|
1080
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.CuspEquationType">
|
1081
|
+
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">CuspEquationType</span></span><a class="headerlink" href="#snappy.verify.exceptions.CuspEquationType" title="Link to this definition"></a></dt>
|
1082
|
+
<dd><p>A base class indicating that a cusp gluing equation (involving the
|
1083
|
+
shapes) failed.</p>
|
1084
|
+
</dd></dl>
|
1085
|
+
|
1086
|
+
<dl class="py exception">
|
1087
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.EdgeEquationExactVerifyError">
|
1088
|
+
<em class="property"><span class="pre">exception</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">EdgeEquationExactVerifyError</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">value</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.exceptions.EdgeEquationExactVerifyError" title="Link to this definition"></a></dt>
|
1089
|
+
<dd><p>Exception for failed verification of a polynomial edge equation
|
1090
|
+
using exact arithmetics.</p>
|
1091
|
+
</dd></dl>
|
1092
|
+
|
1093
|
+
<dl class="py exception">
|
1094
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.EdgeEquationLogLiftNumericalVerifyError">
|
1095
|
+
<em class="property"><span class="pre">exception</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">EdgeEquationLogLiftNumericalVerifyError</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">value</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.exceptions.EdgeEquationLogLiftNumericalVerifyError" title="Link to this definition"></a></dt>
|
1096
|
+
<dd><p>Exception for failed numerical verification that a logarithmic edge
|
1097
|
+
equation has error bound by epsilon.</p>
|
1098
|
+
</dd></dl>
|
1099
|
+
|
1100
|
+
<dl class="py class">
|
1101
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.EdgeEquationType">
|
1102
|
+
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">EdgeEquationType</span></span><a class="headerlink" href="#snappy.verify.exceptions.EdgeEquationType" title="Link to this definition"></a></dt>
|
1103
|
+
<dd><p>A base class indicating that an edge equation could not be verified.</p>
|
1104
|
+
</dd></dl>
|
1105
|
+
|
1106
|
+
<dl class="py class">
|
1107
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.EquationType">
|
1108
|
+
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">EquationType</span></span><a class="headerlink" href="#snappy.verify.exceptions.EquationType" title="Link to this definition"></a></dt>
|
1109
|
+
<dd><p>A base class to derive subclasses which indicate what kind of
|
1110
|
+
equation failed to be verified.</p>
|
1111
|
+
</dd></dl>
|
1112
|
+
|
1113
|
+
<dl class="py exception">
|
1114
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.ExactVerifyError">
|
1115
|
+
<em class="property"><span class="pre">exception</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">ExactVerifyError</span></span><a class="headerlink" href="#snappy.verify.exceptions.ExactVerifyError" title="Link to this definition"></a></dt>
|
1116
|
+
<dd><p>The base for all exceptions resulting from a failed verification of an
|
1117
|
+
equation using exact arithmetics.</p>
|
1118
|
+
</dd></dl>
|
1119
|
+
|
1120
|
+
<dl class="py exception">
|
1121
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.InequalityNumericalVerifyError">
|
1122
|
+
<em class="property"><span class="pre">exception</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">InequalityNumericalVerifyError</span></span><a class="headerlink" href="#snappy.verify.exceptions.InequalityNumericalVerifyError" title="Link to this definition"></a></dt>
|
1123
|
+
<dd><p>The base for all exceptions resulting from a failed numerical
|
1124
|
+
verification of an inequality (typically by interval arithmetics).</p>
|
1125
|
+
</dd></dl>
|
1126
|
+
|
1127
|
+
<dl class="py exception">
|
1128
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.IsZeroExactVerifyError">
|
1129
|
+
<em class="property"><span class="pre">exception</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">IsZeroExactVerifyError</span></span><a class="headerlink" href="#snappy.verify.exceptions.IsZeroExactVerifyError" title="Link to this definition"></a></dt>
|
1130
|
+
<dd><p>The base for all exceptions resulting from verifying that a desired
|
1131
|
+
quantity is zero using exact arithmetics.</p>
|
1132
|
+
</dd></dl>
|
1133
|
+
|
1134
|
+
<dl class="py exception">
|
1135
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.LogLiftNumericalVerifyError">
|
1136
|
+
<em class="property"><span class="pre">exception</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">LogLiftNumericalVerifyError</span></span><a class="headerlink" href="#snappy.verify.exceptions.LogLiftNumericalVerifyError" title="Link to this definition"></a></dt>
|
1137
|
+
<dd><p>To verify a logarithmic gluing equation, the verify module will usually
|
1138
|
+
first verify the corresponding polynomial gluing equation.
|
1139
|
+
This means that the logarithmic gluing equation will be fulfilled up
|
1140
|
+
to a multiple of 2 Pi I.
|
1141
|
+
It then computes the logarithms and numerically checks that the result
|
1142
|
+
is close (by some epsilon) to the right value. Because we already know
|
1143
|
+
that the difference is a multiple of 2 Pi I, checking closeness is enough.</p>
|
1144
|
+
<p>This exception is supposed to be raised if the polynomial gluing equations
|
1145
|
+
have passed but checking the logarithmic equation is epsilon-close has
|
1146
|
+
failed.</p>
|
1147
|
+
</dd></dl>
|
1148
|
+
|
1149
|
+
<dl class="py exception">
|
1150
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.NumericalVerifyError">
|
1151
|
+
<em class="property"><span class="pre">exception</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">NumericalVerifyError</span></span><a class="headerlink" href="#snappy.verify.exceptions.NumericalVerifyError" title="Link to this definition"></a></dt>
|
1152
|
+
<dd><p>The base for all exceptions resulting from a failed numerical
|
1153
|
+
verification of an equality (using some epsilon) or inequality
|
1154
|
+
(typically by interval arithmetics).</p>
|
1155
|
+
</dd></dl>
|
1156
|
+
|
1157
|
+
<dl class="py exception">
|
1158
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.ShapePositiveImaginaryPartNumericalVerifyError">
|
1159
|
+
<em class="property"><span class="pre">exception</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">ShapePositiveImaginaryPartNumericalVerifyError</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">value</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.exceptions.ShapePositiveImaginaryPartNumericalVerifyError" title="Link to this definition"></a></dt>
|
1160
|
+
<dd><p>Failed numerical verification of a shape having positive imaginary part.</p>
|
1161
|
+
</dd></dl>
|
1162
|
+
|
1163
|
+
<dl class="py class">
|
1164
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.ShapeType">
|
1165
|
+
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">ShapeType</span></span><a class="headerlink" href="#snappy.verify.exceptions.ShapeType" title="Link to this definition"></a></dt>
|
1166
|
+
<dd><p>Base class for failed verification of legal shapes.</p>
|
1167
|
+
</dd></dl>
|
1168
|
+
|
1169
|
+
<dl class="py exception">
|
1170
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.TiltInequalityNumericalVerifyError">
|
1171
|
+
<em class="property"><span class="pre">exception</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">TiltInequalityNumericalVerifyError</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">value</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.exceptions.TiltInequalityNumericalVerifyError" title="Link to this definition"></a></dt>
|
1172
|
+
<dd><p>Numerically verifying that a tilt is negative has failed.</p>
|
1173
|
+
</dd></dl>
|
1174
|
+
|
1175
|
+
<dl class="py exception">
|
1176
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.TiltIsZeroExactVerifyError">
|
1177
|
+
<em class="property"><span class="pre">exception</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">TiltIsZeroExactVerifyError</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">value</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.exceptions.TiltIsZeroExactVerifyError" title="Link to this definition"></a></dt>
|
1178
|
+
<dd><p>Verifying that a tilt is zero has failed using exact arithmetic.</p>
|
1179
|
+
</dd></dl>
|
1180
|
+
|
1181
|
+
<dl class="py exception">
|
1182
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.TiltProvenPositiveNumericalVerifyError">
|
1183
|
+
<em class="property"><span class="pre">exception</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">TiltProvenPositiveNumericalVerifyError</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">value</span></span></em><span class="sig-paren">)</span><a class="headerlink" href="#snappy.verify.exceptions.TiltProvenPositiveNumericalVerifyError" title="Link to this definition"></a></dt>
|
1184
|
+
<dd><p>Numerically verifying that a tilt is negative has not only failed, we
|
1185
|
+
proved that the tilt is positive and thus that this cannot be a
|
1186
|
+
proto-canonical triangulation.</p>
|
1187
|
+
</dd></dl>
|
1188
|
+
|
1189
|
+
<dl class="py class">
|
1190
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.TiltType">
|
1191
|
+
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">TiltType</span></span><a class="headerlink" href="#snappy.verify.exceptions.TiltType" title="Link to this definition"></a></dt>
|
1192
|
+
<dd><p>A base class relating to tilts.</p>
|
1193
|
+
</dd></dl>
|
1194
|
+
|
1195
|
+
<dl class="py exception">
|
1196
|
+
<dt class="sig sig-object py" id="snappy.verify.exceptions.VerifyErrorBase">
|
1197
|
+
<em class="property"><span class="pre">exception</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">snappy.verify.exceptions.</span></span><span class="sig-name descname"><span class="pre">VerifyErrorBase</span></span><a class="headerlink" href="#snappy.verify.exceptions.VerifyErrorBase" title="Link to this definition"></a></dt>
|
1198
|
+
<dd><p>The base for all exceptions related to verification.</p>
|
1199
|
+
</dd></dl>
|
1200
|
+
|
1201
|
+
</section>
|
1202
|
+
</section>
|
1203
|
+
|
1204
|
+
|
1205
|
+
</div>
|
1206
|
+
</div>
|
1207
|
+
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
|
1208
|
+
<a href="verify.html" class="btn btn-neutral float-left" title="Verified computations" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
|
1209
|
+
<a href="other.html" class="btn btn-neutral float-right" title="Other components" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
|
1210
|
+
</div>
|
1211
|
+
|
1212
|
+
<hr/>
|
1213
|
+
|
1214
|
+
<div role="contentinfo">
|
1215
|
+
<p>© Copyright 2009-2025, by Marc Culler, Nathan Dunfield, Matthias Goerner, Jeffrey Weeks and others.</p>
|
1216
|
+
</div>
|
1217
|
+
|
1218
|
+
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
|
1219
|
+
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
|
1220
|
+
provided by <a href="https://readthedocs.org">Read the Docs</a>.
|
1221
|
+
|
1222
|
+
|
1223
|
+
</footer>
|
1224
|
+
</div>
|
1225
|
+
</div>
|
1226
|
+
</section>
|
1227
|
+
</div>
|
1228
|
+
<script>
|
1229
|
+
jQuery(function () {
|
1230
|
+
SphinxRtdTheme.Navigation.enable(true);
|
1231
|
+
});
|
1232
|
+
</script>
|
1233
|
+
|
1234
|
+
</body>
|
1235
|
+
</html>
|