snappy 3.2__cp312-cp312-macosx_10_13_x86_64.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (503) hide show
  1. snappy/CyOpenGL.cpython-312-darwin.so +0 -0
  2. snappy/SnapPy.cpython-312-darwin.so +0 -0
  3. snappy/SnapPy.ico +0 -0
  4. snappy/SnapPy.png +0 -0
  5. snappy/SnapPyHP.cpython-312-darwin.so +0 -0
  6. snappy/__init__.py +760 -0
  7. snappy/app.py +605 -0
  8. snappy/app_menus.py +372 -0
  9. snappy/browser.py +998 -0
  10. snappy/cache.py +25 -0
  11. snappy/canonical.py +249 -0
  12. snappy/cusps/__init__.py +38 -0
  13. snappy/cusps/cusp_area_matrix.py +101 -0
  14. snappy/cusps/cusp_areas_from_matrix.py +173 -0
  15. snappy/cusps/maximal_cusp_area_matrix.py +136 -0
  16. snappy/cusps/test.py +21 -0
  17. snappy/cusps/trig_cusp_area_matrix.py +63 -0
  18. snappy/database.py +454 -0
  19. snappy/db_utilities.py +79 -0
  20. snappy/decorated_isosig.py +710 -0
  21. snappy/dev/__init__.py +0 -0
  22. snappy/dev/extended_ptolemy/__init__.py +8 -0
  23. snappy/dev/extended_ptolemy/closed.py +106 -0
  24. snappy/dev/extended_ptolemy/complexVolumesClosed.py +149 -0
  25. snappy/dev/extended_ptolemy/direct.py +42 -0
  26. snappy/dev/extended_ptolemy/extended.py +406 -0
  27. snappy/dev/extended_ptolemy/giac_helper.py +43 -0
  28. snappy/dev/extended_ptolemy/giac_rur.py +129 -0
  29. snappy/dev/extended_ptolemy/gluing.py +46 -0
  30. snappy/dev/extended_ptolemy/phc_wrapper.py +220 -0
  31. snappy/dev/extended_ptolemy/printMatrices.py +70 -0
  32. snappy/dev/vericlosed/__init__.py +1 -0
  33. snappy/dev/vericlosed/computeApproxHyperbolicStructureNew.py +159 -0
  34. snappy/dev/vericlosed/computeApproxHyperbolicStructureOrb.py +90 -0
  35. snappy/dev/vericlosed/computeVerifiedHyperbolicStructure.py +111 -0
  36. snappy/dev/vericlosed/gimbalLoopFinder.py +130 -0
  37. snappy/dev/vericlosed/hyperbolicStructure.py +313 -0
  38. snappy/dev/vericlosed/krawczykCertifiedEdgeLengthsEngine.py +165 -0
  39. snappy/dev/vericlosed/oneVertexTruncatedComplex.py +122 -0
  40. snappy/dev/vericlosed/orb/__init__.py +1 -0
  41. snappy/dev/vericlosed/orb/orb_solution_for_snappea_finite_triangulation_mac +0 -0
  42. snappy/dev/vericlosed/parseVertexGramMatrixFile.py +47 -0
  43. snappy/dev/vericlosed/polishApproxHyperbolicStructure.py +61 -0
  44. snappy/dev/vericlosed/test.py +54 -0
  45. snappy/dev/vericlosed/truncatedComplex.py +176 -0
  46. snappy/dev/vericlosed/verificationError.py +58 -0
  47. snappy/dev/vericlosed/verifyHyperbolicStructureEngine.py +177 -0
  48. snappy/doc/_images/SnapPy-196.png +0 -0
  49. snappy/doc/_images/geodesics.jpg +0 -0
  50. snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
  51. snappy/doc/_images/m125_paper_plane.jpg +0 -0
  52. snappy/doc/_images/mac.png +0 -0
  53. snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
  54. snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
  55. snappy/doc/_images/plink-action.png +0 -0
  56. snappy/doc/_images/ubuntu.png +0 -0
  57. snappy/doc/_images/win7.png +0 -0
  58. snappy/doc/_sources/additional_classes.rst.txt +40 -0
  59. snappy/doc/_sources/bugs.rst.txt +14 -0
  60. snappy/doc/_sources/censuses.rst.txt +51 -0
  61. snappy/doc/_sources/credits.rst.txt +75 -0
  62. snappy/doc/_sources/development.rst.txt +259 -0
  63. snappy/doc/_sources/index.rst.txt +182 -0
  64. snappy/doc/_sources/installing.rst.txt +247 -0
  65. snappy/doc/_sources/manifold.rst.txt +6 -0
  66. snappy/doc/_sources/manifoldhp.rst.txt +46 -0
  67. snappy/doc/_sources/news.rst.txt +355 -0
  68. snappy/doc/_sources/other.rst.txt +25 -0
  69. snappy/doc/_sources/platonic_census.rst.txt +20 -0
  70. snappy/doc/_sources/plink.rst.txt +102 -0
  71. snappy/doc/_sources/ptolemy.rst.txt +66 -0
  72. snappy/doc/_sources/ptolemy_classes.rst.txt +42 -0
  73. snappy/doc/_sources/ptolemy_examples1.rst.txt +298 -0
  74. snappy/doc/_sources/ptolemy_examples2.rst.txt +363 -0
  75. snappy/doc/_sources/ptolemy_examples3.rst.txt +301 -0
  76. snappy/doc/_sources/ptolemy_examples4.rst.txt +61 -0
  77. snappy/doc/_sources/ptolemy_prelim.rst.txt +105 -0
  78. snappy/doc/_sources/screenshots.rst.txt +21 -0
  79. snappy/doc/_sources/snap.rst.txt +87 -0
  80. snappy/doc/_sources/snappy.rst.txt +28 -0
  81. snappy/doc/_sources/spherogram.rst.txt +103 -0
  82. snappy/doc/_sources/todo.rst.txt +47 -0
  83. snappy/doc/_sources/triangulation.rst.txt +11 -0
  84. snappy/doc/_sources/tutorial.rst.txt +49 -0
  85. snappy/doc/_sources/verify.rst.txt +210 -0
  86. snappy/doc/_sources/verify_internals.rst.txt +79 -0
  87. snappy/doc/_static/SnapPy-horizontal-128.png +0 -0
  88. snappy/doc/_static/SnapPy.ico +0 -0
  89. snappy/doc/_static/_sphinx_javascript_frameworks_compat.js +123 -0
  90. snappy/doc/_static/basic.css +925 -0
  91. snappy/doc/_static/css/badge_only.css +1 -0
  92. snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff +0 -0
  93. snappy/doc/_static/css/fonts/Roboto-Slab-Bold.woff2 +0 -0
  94. snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff +0 -0
  95. snappy/doc/_static/css/fonts/Roboto-Slab-Regular.woff2 +0 -0
  96. snappy/doc/_static/css/fonts/fontawesome-webfont.eot +0 -0
  97. snappy/doc/_static/css/fonts/fontawesome-webfont.svg +2671 -0
  98. snappy/doc/_static/css/fonts/fontawesome-webfont.ttf +0 -0
  99. snappy/doc/_static/css/fonts/fontawesome-webfont.woff +0 -0
  100. snappy/doc/_static/css/fonts/fontawesome-webfont.woff2 +0 -0
  101. snappy/doc/_static/css/fonts/lato-bold-italic.woff +0 -0
  102. snappy/doc/_static/css/fonts/lato-bold-italic.woff2 +0 -0
  103. snappy/doc/_static/css/fonts/lato-bold.woff +0 -0
  104. snappy/doc/_static/css/fonts/lato-bold.woff2 +0 -0
  105. snappy/doc/_static/css/fonts/lato-normal-italic.woff +0 -0
  106. snappy/doc/_static/css/fonts/lato-normal-italic.woff2 +0 -0
  107. snappy/doc/_static/css/fonts/lato-normal.woff +0 -0
  108. snappy/doc/_static/css/fonts/lato-normal.woff2 +0 -0
  109. snappy/doc/_static/css/theme.css +4 -0
  110. snappy/doc/_static/doctools.js +156 -0
  111. snappy/doc/_static/documentation_options.js +13 -0
  112. snappy/doc/_static/file.png +0 -0
  113. snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
  114. snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
  115. snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
  116. snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
  117. snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
  118. snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
  119. snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
  120. snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
  121. snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
  122. snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
  123. snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
  124. snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
  125. snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
  126. snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
  127. snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
  128. snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
  129. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
  130. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
  131. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
  132. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
  133. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
  134. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
  135. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
  136. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
  137. snappy/doc/_static/jquery.js +2 -0
  138. snappy/doc/_static/js/badge_only.js +1 -0
  139. snappy/doc/_static/js/theme.js +1 -0
  140. snappy/doc/_static/js/versions.js +228 -0
  141. snappy/doc/_static/language_data.js +199 -0
  142. snappy/doc/_static/minus.png +0 -0
  143. snappy/doc/_static/plus.png +0 -0
  144. snappy/doc/_static/pygments.css +75 -0
  145. snappy/doc/_static/searchtools.js +620 -0
  146. snappy/doc/_static/snappy_furo.css +33 -0
  147. snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -0
  148. snappy/doc/_static/sphinx_highlight.js +154 -0
  149. snappy/doc/additional_classes.html +1500 -0
  150. snappy/doc/bugs.html +132 -0
  151. snappy/doc/censuses.html +427 -0
  152. snappy/doc/credits.html +181 -0
  153. snappy/doc/development.html +384 -0
  154. snappy/doc/genindex.html +1331 -0
  155. snappy/doc/index.html +262 -0
  156. snappy/doc/installing.html +346 -0
  157. snappy/doc/manifold.html +3452 -0
  158. snappy/doc/manifoldhp.html +180 -0
  159. snappy/doc/news.html +388 -0
  160. snappy/doc/objects.inv +0 -0
  161. snappy/doc/other.html +161 -0
  162. snappy/doc/platonic_census.html +375 -0
  163. snappy/doc/plink.html +210 -0
  164. snappy/doc/ptolemy.html +254 -0
  165. snappy/doc/ptolemy_classes.html +1144 -0
  166. snappy/doc/ptolemy_examples1.html +409 -0
  167. snappy/doc/ptolemy_examples2.html +471 -0
  168. snappy/doc/ptolemy_examples3.html +414 -0
  169. snappy/doc/ptolemy_examples4.html +195 -0
  170. snappy/doc/ptolemy_prelim.html +248 -0
  171. snappy/doc/py-modindex.html +165 -0
  172. snappy/doc/screenshots.html +141 -0
  173. snappy/doc/search.html +135 -0
  174. snappy/doc/searchindex.js +1 -0
  175. snappy/doc/snap.html +202 -0
  176. snappy/doc/snappy.html +181 -0
  177. snappy/doc/spherogram.html +1211 -0
  178. snappy/doc/todo.html +166 -0
  179. snappy/doc/triangulation.html +1584 -0
  180. snappy/doc/tutorial.html +159 -0
  181. snappy/doc/verify.html +330 -0
  182. snappy/doc/verify_internals.html +1235 -0
  183. snappy/drilling/__init__.py +456 -0
  184. snappy/drilling/barycentric.py +103 -0
  185. snappy/drilling/constants.py +5 -0
  186. snappy/drilling/crush.py +270 -0
  187. snappy/drilling/cusps.py +125 -0
  188. snappy/drilling/debug.py +242 -0
  189. snappy/drilling/epsilons.py +6 -0
  190. snappy/drilling/exceptions.py +55 -0
  191. snappy/drilling/moves.py +620 -0
  192. snappy/drilling/peripheral_curves.py +210 -0
  193. snappy/drilling/perturb.py +188 -0
  194. snappy/drilling/shorten.py +36 -0
  195. snappy/drilling/subdivide.py +274 -0
  196. snappy/drilling/test.py +23 -0
  197. snappy/drilling/test_cases.py +126 -0
  198. snappy/drilling/tracing.py +351 -0
  199. snappy/exceptions.py +26 -0
  200. snappy/export_stl.py +120 -0
  201. snappy/exterior_to_link/__init__.py +2 -0
  202. snappy/exterior_to_link/barycentric_geometry.py +463 -0
  203. snappy/exterior_to_link/exceptions.py +6 -0
  204. snappy/exterior_to_link/geodesic_map.json +14408 -0
  205. snappy/exterior_to_link/hyp_utils.py +112 -0
  206. snappy/exterior_to_link/link_projection.py +323 -0
  207. snappy/exterior_to_link/main.py +197 -0
  208. snappy/exterior_to_link/mcomplex_with_expansion.py +261 -0
  209. snappy/exterior_to_link/mcomplex_with_link.py +687 -0
  210. snappy/exterior_to_link/mcomplex_with_memory.py +162 -0
  211. snappy/exterior_to_link/pl_utils.py +491 -0
  212. snappy/exterior_to_link/put_in_S3.py +156 -0
  213. snappy/exterior_to_link/rational_linear_algebra.py +123 -0
  214. snappy/exterior_to_link/rational_linear_algebra_wrapped.py +135 -0
  215. snappy/exterior_to_link/simplify_to_base_tri.py +114 -0
  216. snappy/exterior_to_link/stored_moves.py +475 -0
  217. snappy/exterior_to_link/test.py +31 -0
  218. snappy/filedialog.py +28 -0
  219. snappy/geometric_structure/__init__.py +212 -0
  220. snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
  221. snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
  222. snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
  223. snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
  224. snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
  225. snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
  226. snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
  227. snappy/geometric_structure/geodesic/__init__.py +0 -0
  228. snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
  229. snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
  230. snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
  231. snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
  232. snappy/geometric_structure/geodesic/constants.py +6 -0
  233. snappy/geometric_structure/geodesic/exceptions.py +22 -0
  234. snappy/geometric_structure/geodesic/fixed_points.py +93 -0
  235. snappy/geometric_structure/geodesic/geodesic_start_point_info.py +435 -0
  236. snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
  237. snappy/geometric_structure/geodesic/line.py +30 -0
  238. snappy/geometric_structure/geodesic/multiplicity.py +127 -0
  239. snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
  240. snappy/geometric_structure/test.py +22 -0
  241. snappy/gui.py +121 -0
  242. snappy/horoviewer.py +443 -0
  243. snappy/hyperboloid/__init__.py +212 -0
  244. snappy/hyperboloid/distances.py +245 -0
  245. snappy/hyperboloid/horoball.py +19 -0
  246. snappy/hyperboloid/line.py +35 -0
  247. snappy/hyperboloid/point.py +9 -0
  248. snappy/hyperboloid/triangle.py +29 -0
  249. snappy/info_icon.gif +0 -0
  250. snappy/infowindow.py +65 -0
  251. snappy/isometry_signature.py +382 -0
  252. snappy/len_spec/__init__.py +596 -0
  253. snappy/len_spec/geodesic_info.py +110 -0
  254. snappy/len_spec/geodesic_key_info_dict.py +117 -0
  255. snappy/len_spec/geodesic_piece.py +143 -0
  256. snappy/len_spec/geometric_structure.py +182 -0
  257. snappy/len_spec/geometry.py +80 -0
  258. snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
  259. snappy/len_spec/spine.py +206 -0
  260. snappy/len_spec/test.py +24 -0
  261. snappy/len_spec/test_cases.py +69 -0
  262. snappy/len_spec/tile.py +275 -0
  263. snappy/len_spec/word.py +86 -0
  264. snappy/manifolds/HTWKnots/alternating.gz +0 -0
  265. snappy/manifolds/HTWKnots/nonalternating.gz +0 -0
  266. snappy/manifolds/__init__.py +3 -0
  267. snappy/math_basics.py +176 -0
  268. snappy/matrix.py +525 -0
  269. snappy/number.py +657 -0
  270. snappy/numeric_output_checker.py +345 -0
  271. snappy/pari.py +41 -0
  272. snappy/phone_home.py +57 -0
  273. snappy/polyviewer.py +259 -0
  274. snappy/ptolemy/__init__.py +17 -0
  275. snappy/ptolemy/component.py +103 -0
  276. snappy/ptolemy/coordinates.py +2290 -0
  277. snappy/ptolemy/fieldExtensions.py +153 -0
  278. snappy/ptolemy/findLoops.py +473 -0
  279. snappy/ptolemy/geometricRep.py +59 -0
  280. snappy/ptolemy/homology.py +165 -0
  281. snappy/ptolemy/magma/default.magma_template +229 -0
  282. snappy/ptolemy/magma/radicalsOfPrimaryDecomposition.magma_template +79 -0
  283. snappy/ptolemy/manifoldMethods.py +395 -0
  284. snappy/ptolemy/matrix.py +350 -0
  285. snappy/ptolemy/numericalSolutionsToGroebnerBasis.py +113 -0
  286. snappy/ptolemy/polynomial.py +857 -0
  287. snappy/ptolemy/processComponents.py +173 -0
  288. snappy/ptolemy/processFileBase.py +247 -0
  289. snappy/ptolemy/processFileDispatch.py +46 -0
  290. snappy/ptolemy/processMagmaFile.py +392 -0
  291. snappy/ptolemy/processRurFile.py +150 -0
  292. snappy/ptolemy/ptolemyGeneralizedObstructionClass.py +102 -0
  293. snappy/ptolemy/ptolemyObstructionClass.py +64 -0
  294. snappy/ptolemy/ptolemyVariety.py +1029 -0
  295. snappy/ptolemy/ptolemyVarietyPrimeIdealGroebnerBasis.py +140 -0
  296. snappy/ptolemy/reginaWrapper.py +698 -0
  297. snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
  298. snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
  299. snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
  300. snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
  301. snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
  302. snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
  303. snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
  304. snappy/ptolemy/regina_testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
  305. snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
  306. snappy/ptolemy/regina_testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
  307. snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c0.magma_out.bz2 +0 -0
  308. snappy/ptolemy/regina_testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
  309. snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
  310. snappy/ptolemy/regina_testing_files_generalized/m015__sl3_c1.magma_out.bz2 +0 -0
  311. snappy/ptolemy/rur.py +545 -0
  312. snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +277 -0
  313. snappy/ptolemy/test.py +1126 -0
  314. snappy/ptolemy/testing_files/3_1__sl2_c0.magma_out.bz2 +0 -0
  315. snappy/ptolemy/testing_files/3_1__sl2_c1.magma_out.bz2 +0 -0
  316. snappy/ptolemy/testing_files/4_1__sl2_c0.magma_out.bz2 +0 -0
  317. snappy/ptolemy/testing_files/4_1__sl2_c1.magma_out.bz2 +0 -0
  318. snappy/ptolemy/testing_files/4_1__sl3_c0.magma_out.bz2 +0 -0
  319. snappy/ptolemy/testing_files/4_1__sl4_c0.magma_out.bz2 +0 -0
  320. snappy/ptolemy/testing_files/4_1__sl4_c1.magma_out.bz2 +0 -0
  321. snappy/ptolemy/testing_files/5_2__sl2_c0.magma_out.bz2 +0 -0
  322. snappy/ptolemy/testing_files/5_2__sl2_c1.magma_out.bz2 +0 -0
  323. snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c0.magma_out.bz2 +0 -0
  324. snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c1.magma_out.bz2 +0 -0
  325. snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c2.magma_out.bz2 +0 -0
  326. snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c3.magma_out.bz2 +0 -0
  327. snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c4.magma_out.bz2 +0 -0
  328. snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c5.magma_out.bz2 +0 -0
  329. snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c6.magma_out.bz2 +0 -0
  330. snappy/ptolemy/testing_files/DT_mcbbiceaibjklmdfgh__sl2_c7.magma_out.bz2 +0 -0
  331. snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c0.magma_out +95 -0
  332. snappy/ptolemy/testing_files/data/pgl2/OrientableCuspedCensus/03_tetrahedra/m019__sl2_c1.magma_out +95 -0
  333. snappy/ptolemy/testing_files/m015__sl3_c0.magma_out.bz2 +0 -0
  334. snappy/ptolemy/testing_files/m135__sl2_c0.magma_out.bz2 +0 -0
  335. snappy/ptolemy/testing_files/m135__sl2_c1.magma_out.bz2 +0 -0
  336. snappy/ptolemy/testing_files/m135__sl2_c2.magma_out.bz2 +0 -0
  337. snappy/ptolemy/testing_files/m135__sl2_c3.magma_out.bz2 +0 -0
  338. snappy/ptolemy/testing_files/m135__sl2_c4.magma_out.bz2 +0 -0
  339. snappy/ptolemy/testing_files/m135__sl2_c5.magma_out.bz2 +0 -0
  340. snappy/ptolemy/testing_files/m135__sl2_c6.magma_out.bz2 +0 -0
  341. snappy/ptolemy/testing_files/m135__sl2_c7.magma_out.bz2 +0 -0
  342. snappy/ptolemy/testing_files/s000__sl2_c0.magma_out.bz2 +0 -0
  343. snappy/ptolemy/testing_files/s000__sl2_c1.magma_out.bz2 +0 -0
  344. snappy/ptolemy/testing_files/t00000__sl2_c0.magma_out.bz2 +0 -0
  345. snappy/ptolemy/testing_files/t00000__sl2_c1.magma_out.bz2 +0 -0
  346. snappy/ptolemy/testing_files/v0000__sl2_c0.magma_out.bz2 +0 -0
  347. snappy/ptolemy/testing_files/v0000__sl2_c1.magma_out.bz2 +0 -0
  348. snappy/ptolemy/testing_files/v0000__sl2_c2.magma_out.bz2 +0 -0
  349. snappy/ptolemy/testing_files/v0000__sl2_c3.magma_out.bz2 +0 -0
  350. snappy/ptolemy/testing_files_generalized/m003__sl2_c0.magma_out.bz2 +0 -0
  351. snappy/ptolemy/testing_files_generalized/m003__sl2_c1.magma_out.bz2 +0 -0
  352. snappy/ptolemy/testing_files_generalized/m003__sl3_c0.magma_out.bz2 +0 -0
  353. snappy/ptolemy/testing_files_generalized/m003__sl3_c1.magma_out.bz2 +0 -0
  354. snappy/ptolemy/testing_files_generalized/m004__sl2_c0.magma_out.bz2 +0 -0
  355. snappy/ptolemy/testing_files_generalized/m004__sl2_c1.magma_out.bz2 +0 -0
  356. snappy/ptolemy/testing_files_generalized/m015__sl2_c1.magma_out.bz2 +0 -0
  357. snappy/ptolemy/testing_files_generalized/m015__sl3_c0.magma_out.bz2 +0 -0
  358. snappy/ptolemy/testing_files_rur/m052__sl3_c0.rur.bz2 +0 -0
  359. snappy/ptolemy/utilities.py +236 -0
  360. snappy/raytracing/__init__.py +64 -0
  361. snappy/raytracing/additional_horospheres.py +64 -0
  362. snappy/raytracing/additional_len_spec_choices.py +63 -0
  363. snappy/raytracing/cohomology_fractal.py +197 -0
  364. snappy/raytracing/eyeball.py +123 -0
  365. snappy/raytracing/finite_raytracing_data.py +237 -0
  366. snappy/raytracing/finite_viewer.py +590 -0
  367. snappy/raytracing/geodesic_tube_info.py +174 -0
  368. snappy/raytracing/geodesics.py +246 -0
  369. snappy/raytracing/geodesics_window.py +258 -0
  370. snappy/raytracing/gui_utilities.py +293 -0
  371. snappy/raytracing/hyperboloid_navigation.py +556 -0
  372. snappy/raytracing/hyperboloid_utilities.py +234 -0
  373. snappy/raytracing/ideal_raytracing_data.py +592 -0
  374. snappy/raytracing/inside_viewer.py +974 -0
  375. snappy/raytracing/pack.py +22 -0
  376. snappy/raytracing/raytracing_data.py +126 -0
  377. snappy/raytracing/raytracing_view.py +454 -0
  378. snappy/raytracing/shaders/Eye.png +0 -0
  379. snappy/raytracing/shaders/NonGeometric.png +0 -0
  380. snappy/raytracing/shaders/__init__.py +101 -0
  381. snappy/raytracing/shaders/fragment.glsl +1744 -0
  382. snappy/raytracing/test.py +29 -0
  383. snappy/raytracing/tooltip.py +146 -0
  384. snappy/raytracing/upper_halfspace_utilities.py +98 -0
  385. snappy/raytracing/view_scale_controller.py +98 -0
  386. snappy/raytracing/zoom_slider/__init__.py +263 -0
  387. snappy/raytracing/zoom_slider/inward.png +0 -0
  388. snappy/raytracing/zoom_slider/inward18.png +0 -0
  389. snappy/raytracing/zoom_slider/outward.png +0 -0
  390. snappy/raytracing/zoom_slider/outward18.png +0 -0
  391. snappy/raytracing/zoom_slider/test.py +20 -0
  392. snappy/sage_helper.py +117 -0
  393. snappy/settings.py +409 -0
  394. snappy/shell.py +53 -0
  395. snappy/snap/__init__.py +114 -0
  396. snappy/snap/character_varieties.py +375 -0
  397. snappy/snap/find_field.py +372 -0
  398. snappy/snap/fundamental_polyhedron.py +569 -0
  399. snappy/snap/generators.py +39 -0
  400. snappy/snap/interval_reps.py +81 -0
  401. snappy/snap/kernel_structures.py +128 -0
  402. snappy/snap/mcomplex_base.py +18 -0
  403. snappy/snap/nsagetools.py +702 -0
  404. snappy/snap/peripheral/__init__.py +1 -0
  405. snappy/snap/peripheral/dual_cellulation.py +219 -0
  406. snappy/snap/peripheral/link.py +127 -0
  407. snappy/snap/peripheral/peripheral.py +159 -0
  408. snappy/snap/peripheral/surface.py +522 -0
  409. snappy/snap/peripheral/test.py +35 -0
  410. snappy/snap/polished_reps.py +335 -0
  411. snappy/snap/shapes.py +152 -0
  412. snappy/snap/slice_obs_HKL.py +668 -0
  413. snappy/snap/t3mlite/__init__.py +2 -0
  414. snappy/snap/t3mlite/arrow.py +243 -0
  415. snappy/snap/t3mlite/corner.py +22 -0
  416. snappy/snap/t3mlite/edge.py +172 -0
  417. snappy/snap/t3mlite/face.py +37 -0
  418. snappy/snap/t3mlite/files.py +211 -0
  419. snappy/snap/t3mlite/homology.py +53 -0
  420. snappy/snap/t3mlite/linalg.py +419 -0
  421. snappy/snap/t3mlite/mcomplex.py +1499 -0
  422. snappy/snap/t3mlite/perm4.py +320 -0
  423. snappy/snap/t3mlite/setup.py +12 -0
  424. snappy/snap/t3mlite/simplex.py +199 -0
  425. snappy/snap/t3mlite/spun.py +297 -0
  426. snappy/snap/t3mlite/surface.py +519 -0
  427. snappy/snap/t3mlite/test.py +20 -0
  428. snappy/snap/t3mlite/test_vs_regina.py +86 -0
  429. snappy/snap/t3mlite/tetrahedron.py +109 -0
  430. snappy/snap/t3mlite/vertex.py +42 -0
  431. snappy/snap/test.py +134 -0
  432. snappy/snap/utilities.py +288 -0
  433. snappy/test.py +209 -0
  434. snappy/test_cases.py +263 -0
  435. snappy/testing.py +131 -0
  436. snappy/tiling/__init__.py +2 -0
  437. snappy/tiling/canonical_key_dict.py +59 -0
  438. snappy/tiling/dict_based_set.py +79 -0
  439. snappy/tiling/floor.py +49 -0
  440. snappy/tiling/hyperboloid_dict.py +54 -0
  441. snappy/tiling/iter_utils.py +78 -0
  442. snappy/tiling/lifted_tetrahedron.py +22 -0
  443. snappy/tiling/lifted_tetrahedron_set.py +54 -0
  444. snappy/tiling/real_hash_dict.py +164 -0
  445. snappy/tiling/test.py +23 -0
  446. snappy/tiling/tile.py +215 -0
  447. snappy/tiling/triangle.py +33 -0
  448. snappy/tkterminal.py +920 -0
  449. snappy/twister/__init__.py +20 -0
  450. snappy/twister/main.py +646 -0
  451. snappy/twister/surfaces/S_0_1 +3 -0
  452. snappy/twister/surfaces/S_0_2 +3 -0
  453. snappy/twister/surfaces/S_0_4 +7 -0
  454. snappy/twister/surfaces/S_0_4_Lantern +8 -0
  455. snappy/twister/surfaces/S_1 +3 -0
  456. snappy/twister/surfaces/S_1_1 +4 -0
  457. snappy/twister/surfaces/S_1_2 +5 -0
  458. snappy/twister/surfaces/S_1_2_5 +6 -0
  459. snappy/twister/surfaces/S_2 +6 -0
  460. snappy/twister/surfaces/S_2_1 +8 -0
  461. snappy/twister/surfaces/S_2_heeg +10 -0
  462. snappy/twister/surfaces/S_3 +8 -0
  463. snappy/twister/surfaces/S_3_1 +10 -0
  464. snappy/twister/surfaces/S_4_1 +12 -0
  465. snappy/twister/surfaces/S_5_1 +14 -0
  466. snappy/twister/surfaces/heeg_fig8 +9 -0
  467. snappy/twister/twister_core.cpython-312-darwin.so +0 -0
  468. snappy/upper_halfspace/__init__.py +146 -0
  469. snappy/upper_halfspace/ideal_point.py +26 -0
  470. snappy/verify/__init__.py +13 -0
  471. snappy/verify/canonical.py +542 -0
  472. snappy/verify/complex_volume/__init__.py +18 -0
  473. snappy/verify/complex_volume/adjust_torsion.py +86 -0
  474. snappy/verify/complex_volume/closed.py +168 -0
  475. snappy/verify/complex_volume/compute_ptolemys.py +90 -0
  476. snappy/verify/complex_volume/cusped.py +56 -0
  477. snappy/verify/complex_volume/extended_bloch.py +201 -0
  478. snappy/verify/cusp_translations.py +85 -0
  479. snappy/verify/edge_equations.py +80 -0
  480. snappy/verify/exceptions.py +254 -0
  481. snappy/verify/hyperbolicity.py +224 -0
  482. snappy/verify/interval_newton_shapes_engine.py +523 -0
  483. snappy/verify/interval_tree.py +400 -0
  484. snappy/verify/krawczyk_shapes_engine.py +518 -0
  485. snappy/verify/maximal_cusp_area_matrix/__init__.py +46 -0
  486. snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +419 -0
  487. snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +153 -0
  488. snappy/verify/real_algebra.py +286 -0
  489. snappy/verify/shapes.py +25 -0
  490. snappy/verify/short_slopes.py +200 -0
  491. snappy/verify/square_extensions.py +1005 -0
  492. snappy/verify/test.py +78 -0
  493. snappy/verify/upper_halfspace/__init__.py +9 -0
  494. snappy/verify/upper_halfspace/extended_matrix.py +100 -0
  495. snappy/verify/upper_halfspace/finite_point.py +283 -0
  496. snappy/verify/upper_halfspace/ideal_point.py +426 -0
  497. snappy/verify/volume.py +128 -0
  498. snappy/version.py +2 -0
  499. snappy-3.2.dist-info/METADATA +58 -0
  500. snappy-3.2.dist-info/RECORD +503 -0
  501. snappy-3.2.dist-info/WHEEL +5 -0
  502. snappy-3.2.dist-info/entry_points.txt +2 -0
  503. snappy-3.2.dist-info/top_level.txt +28 -0
@@ -0,0 +1,471 @@
1
+
2
+
3
+ <!DOCTYPE html>
4
+ <html class="writer-html5" lang="en" data-content_root="./">
5
+ <head>
6
+ <meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
7
+
8
+ <meta name="viewport" content="width=device-width, initial-scale=1.0" />
9
+ <title>Step-by-step examples: Part 2 &mdash; SnapPy 3.2 documentation</title>
10
+ <link rel="stylesheet" type="text/css" href="_static/pygments.css?v=fa44fd50" />
11
+ <link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=e59714d7" />
12
+ <link rel="stylesheet" type="text/css" href="_static/snappy_sphinx_rtd_theme.css?v=1b8ec2a8" />
13
+
14
+
15
+ <link rel="shortcut icon" href="_static/SnapPy.ico"/>
16
+ <script src="_static/jquery.js?v=5d32c60e"></script>
17
+ <script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
18
+ <script src="_static/documentation_options.js?v=828ea960"></script>
19
+ <script src="_static/doctools.js?v=9a2dae69"></script>
20
+ <script src="_static/sphinx_highlight.js?v=dc90522c"></script>
21
+ <script src="_static/js/theme.js"></script>
22
+ <link rel="index" title="Index" href="genindex.html" />
23
+ <link rel="search" title="Search" href="search.html" />
24
+ <link rel="next" title="Step-by-step examples: Part 3" href="ptolemy_examples3.html" />
25
+ <link rel="prev" title="Step-by-step examples: Part 1" href="ptolemy_examples1.html" />
26
+ </head>
27
+
28
+ <body class="wy-body-for-nav">
29
+ <div class="wy-grid-for-nav">
30
+ <nav data-toggle="wy-nav-shift" class="wy-nav-side">
31
+ <div class="wy-side-scroll">
32
+ <div class="wy-side-nav-search" >
33
+
34
+
35
+
36
+ <a href="index.html" class="icon icon-home">
37
+ SnapPy
38
+ <img src="_static/SnapPy-horizontal-128.png" class="logo" alt="Logo"/>
39
+ </a>
40
+ <div role="search">
41
+ <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
42
+ <input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
43
+ <input type="hidden" name="check_keywords" value="yes" />
44
+ <input type="hidden" name="area" value="default" />
45
+ </form>
46
+ </div>
47
+ </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
48
+ <ul class="current">
49
+ <li class="toctree-l1"><a class="reference internal" href="installing.html">Installing SnapPy</a></li>
50
+ <li class="toctree-l1"><a class="reference internal" href="screenshots.html">Screenshots: SnapPy in action</a></li>
51
+ <li class="toctree-l1"><a class="reference internal" href="tutorial.html">Tutorial</a></li>
52
+ <li class="toctree-l1"><a class="reference internal" href="snappy.html">The snappy module and its classes</a></li>
53
+ <li class="toctree-l1"><a class="reference internal" href="plink.html">Using SnapPy’s link editor</a></li>
54
+ <li class="toctree-l1"><a class="reference internal" href="spherogram.html">Links: planar diagrams and invariants</a></li>
55
+ <li class="toctree-l1"><a class="reference internal" href="snap.html">Number theory of hyperbolic 3-manifolds</a></li>
56
+ <li class="toctree-l1"><a class="reference internal" href="verify.html">Verified computations</a></li>
57
+ <li class="toctree-l1 current"><a class="reference internal" href="other.html">Other components</a><ul class="current">
58
+ <li class="toctree-l2 current"><a class="reference internal" href="other.html#ptolemy-module">Ptolemy module</a><ul class="current">
59
+ <li class="toctree-l3 current"><a class="reference internal" href="ptolemy.html">The ptolemy module</a><ul class="current">
60
+ <li class="toctree-l4"><a class="reference internal" href="ptolemy.html#what-is-the-ptolemy-module">What is the ptolemy module?</a></li>
61
+ <li class="toctree-l4 current"><a class="reference internal" href="ptolemy.html#documentation">Documentation</a><ul class="current">
62
+ <li class="toctree-l5"><a class="reference internal" href="ptolemy_prelim.html">Mathematical preliminaries</a></li>
63
+ <li class="toctree-l5"><a class="reference internal" href="ptolemy_examples1.html">Step-by-step examples: Part 1</a></li>
64
+ <li class="toctree-l5 current"><a class="current reference internal" href="#">Step-by-step examples: Part 2</a></li>
65
+ <li class="toctree-l5"><a class="reference internal" href="ptolemy_examples3.html">Step-by-step examples: Part 3</a></li>
66
+ <li class="toctree-l5"><a class="reference internal" href="ptolemy_examples4.html">Step-by-step examples: Part 4</a></li>
67
+ <li class="toctree-l5"><a class="reference internal" href="ptolemy_classes.html">Classes</a></li>
68
+ </ul>
69
+ </li>
70
+ </ul>
71
+ </li>
72
+ </ul>
73
+ </li>
74
+ <li class="toctree-l2"><a class="reference internal" href="other.html#twister">Twister</a></li>
75
+ </ul>
76
+ </li>
77
+ <li class="toctree-l1"><a class="reference internal" href="news.html">News</a></li>
78
+ <li class="toctree-l1"><a class="reference internal" href="credits.html">Credits</a></li>
79
+ <li class="toctree-l1"><a class="reference internal" href="bugs.html">Reporting bugs and other problems</a></li>
80
+ <li class="toctree-l1"><a class="reference internal" href="todo.html">To Do List</a></li>
81
+ <li class="toctree-l1"><a class="reference internal" href="development.html">Development Basics</a></li>
82
+ </ul>
83
+
84
+ </div>
85
+ </div>
86
+ </nav>
87
+
88
+ <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
89
+ <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
90
+ <a href="index.html">SnapPy</a>
91
+ </nav>
92
+
93
+ <div class="wy-nav-content">
94
+ <div class="rst-content">
95
+ <div role="navigation" aria-label="Page navigation">
96
+ <ul class="wy-breadcrumbs">
97
+ <li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
98
+ <li class="breadcrumb-item"><a href="other.html">Other components</a></li>
99
+ <li class="breadcrumb-item"><a href="ptolemy.html">The ptolemy module</a></li>
100
+ <li class="breadcrumb-item active">Step-by-step examples: Part 2</li>
101
+ <li class="wy-breadcrumbs-aside">
102
+ </li>
103
+ </ul>
104
+ <hr/>
105
+ </div>
106
+ <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
107
+ <div itemprop="articleBody">
108
+
109
+ <section id="step-by-step-examples-part-2">
110
+ <h1>Step-by-step examples: Part 2<a class="headerlink" href="#step-by-step-examples-part-2" title="Link to this heading"></a></h1>
111
+ <section id="the-ptolemy-list-type">
112
+ <span id="ptolemy-example-smart-lists"></span><h2>The Ptolemy list type<a class="headerlink" href="#the-ptolemy-list-type" title="Link to this heading"></a></h2>
113
+ <p>Recall that <code class="docutils literal notranslate"><span class="pre">ptolemy_variety</span></code> with <code class="docutils literal notranslate"><span class="pre">obstruction_class='all'</span></code> returns a list of varieties, one for each obstruction class:</p>
114
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span>
115
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="s1">&#39;all&#39;</span><span class="p">)</span>
116
+ <span class="go">[Ptolemy Variety for m003, N = 2, obstruction_class = 0</span>
117
+ <span class="go"> c_0011_0 * c_0101_0 + c_0011_0^2 - c_0101_0^2</span>
118
+ <span class="go"> c_0011_0 * c_0101_0 + c_0011_0^2 - c_0101_0^2</span>
119
+ <span class="go"> - 1 + c_0011_0,</span>
120
+ <span class="go"> Ptolemy Variety for m003, N = 2, obstruction_class = 1</span>
121
+ <span class="go"> - c_0011_0 * c_0101_0 - c_0011_0^2 - c_0101_0^2</span>
122
+ <span class="go"> - c_0011_0 * c_0101_0 - c_0011_0^2 - c_0101_0^2</span>
123
+ <span class="go"> - 1 + c_0011_0]</span>
124
+ </pre></div>
125
+ </div>
126
+ <p>Also recall that <code class="docutils literal notranslate"><span class="pre">retrieve_solutions</span></code> was a method of a <code class="docutils literal notranslate"><span class="pre">PtolemyVariety</span></code>. Assume we want to call <code class="docutils literal notranslate"><span class="pre">retrieve_solutions</span></code> for each Ptolemy variety. As in the previous example, we could write a loop such as:</p>
127
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="p">[</span><span class="n">p</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span> <span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="s1">&#39;all&#39;</span><span class="p">)]</span>
128
+ </pre></div>
129
+ </div>
130
+ <p>The ptolemy module allows to do this in a much shorter way:</p>
131
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
132
+ <span class="go">[[PtolemyCoordinates(</span>
133
+ <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
134
+ <span class="go"> &#39;c_0011_1&#39;: -1,</span>
135
+ <span class="go"> &#39;c_0101_0&#39;: Mod(x, x^2 - x - 1),</span>
136
+ <span class="go"> ...,</span>
137
+ <span class="go"> &#39;s_3_1&#39;: 1},</span>
138
+ <span class="go"> is_numerical = False, ...)],</span>
139
+ <span class="go"> [PtolemyCoordinates(</span>
140
+ <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
141
+ <span class="go"> &#39;c_0011_1&#39;: -1,</span>
142
+ <span class="go"> &#39;c_0101_0&#39;: Mod(x, x^2 + x + 1),</span>
143
+ <span class="go"> ...,</span>
144
+ <span class="go"> &#39;s_3_1&#39;: 1},</span>
145
+ <span class="go"> is_numerical = False, ...)]]</span>
146
+ </pre></div>
147
+ </div>
148
+ <p>This behavior is specific to the ptolemy module. It works with many methods of the ptolemy module that
149
+ can potentially return more than one object. These methods return a special kind of list (usually
150
+ <code class="docutils literal notranslate"><span class="pre">MethodMappingList</span></code>, a subclass of python <code class="docutils literal notranslate"><span class="pre">list</span></code>) that tries to call the method of the given name (here <code class="docutils literal notranslate"><span class="pre">retrieve_solutions</span></code>) with
151
+ the given arguments (here <code class="docutils literal notranslate"><span class="pre">verbose=False</span></code>) on each element in the list (here the two Ptolemy varieties).</p>
152
+ <p>Since <code class="docutils literal notranslate"><span class="pre">retrieve_solutions</span></code> itself actually returns a list, the result is a list of lists of solutions which are of type <code class="docutils literal notranslate"><span class="pre">PtolemyCoordinates</span></code>. The first level groups the solutions by obstruction class. The inner lists contain the different (non-Galois conjugate) solutions for each obstruction class (here, for <code class="docutils literal notranslate"><span class="pre">m003</span></code>, each inner lists contains only one element).</p>
153
+ </section>
154
+ <section id="using-the-ptolemy-list-type-recursively">
155
+ <h2>Using the Ptolemy list type recursively<a class="headerlink" href="#using-the-ptolemy-list-type-recursively" title="Link to this heading"></a></h2>
156
+ <p>The list type described in the previous example works recursively. Recall that an algebraic solution to a Ptolemy variety (of type <code class="docutils literal notranslate"><span class="pre">PtolemyCoordinates</span></code>) has a method <code class="docutils literal notranslate"><span class="pre">volume_numerical</span></code> that returns a list of volumes:</p>
157
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">=</span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span>
158
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">p</span><span class="o">=</span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span>
159
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span><span class="o">=</span><span class="n">p</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
160
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
161
+ <span class="go">[0.E-19, 1.88267370443418 E-14]</span>
162
+ </pre></div>
163
+ </div>
164
+ <p>We can chain these commands together to retrieve the volumes of all boundary-unipotent PSL(2, <strong>C</strong>) (that are <a class="reference internal" href="ptolemy_prelim.html#ptolemy-generically-decorated"><span class="std std-ref">generically decorated</span></a> with respect to the triangulation) in just one line:</p>
165
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
166
+ <span class="go">[[[0.E-19, 1.88267370443418 E-14]], [[2.02988321281931, -2.02988321281931]]]</span>
167
+ </pre></div>
168
+ </div>
169
+ <p>Note that the volumes of the representations are in a list of lists of lists. At the first level the volumes are grouped by obstruction class, then by Galois conjugacy.</p>
170
+ <p><strong>Remark:</strong> There might be an extra level for witness points.</p>
171
+ <p><strong>Remark:</strong> Unfortunately, this is not compatible with tab-autocompletion, see <a class="reference internal" href="#ptolemy-example-missing-auto-completion"><span class="std std-ref">later</span></a>.</p>
172
+ </section>
173
+ <section id="a-comparison-of-m003-and-m004">
174
+ <h2>A comparison of <code class="docutils literal notranslate"><span class="pre">m003</span></code> and <code class="docutils literal notranslate"><span class="pre">m004</span></code><a class="headerlink" href="#a-comparison-of-m003-and-m004" title="Link to this heading"></a></h2>
175
+ <p>We can now compare the set of volumes of <code class="docutils literal notranslate"><span class="pre">m003</span></code> and <code class="docutils literal notranslate"><span class="pre">m004</span></code>:</p>
176
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
177
+ <span class="go">[[[0.E-19, 1.88267370443418 E-14]], [[2.02988321281931, -2.02988321281931]]]</span>
178
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
179
+ <span class="go">[[], [[-2.02988321281931, 2.02988321281931]]]</span>
180
+ </pre></div>
181
+ </div>
182
+ <p>We see that the two manifolds are distinguished by their volumes of boundary-unipotent representations: <code class="docutils literal notranslate"><span class="pre">m004</span></code> has no representation with trivial volume (this is not a proof as in theory, there could be such a representation which is not <a class="reference internal" href="ptolemy_prelim.html#ptolemy-generically-decorated"><span class="std std-ref">generically decorated</span></a> with respect to the given triangulation) and no representation that can be lifted to a boundary-unipotent SL(2, <strong>C</strong>)-representation.</p>
183
+ </section>
184
+ <section id="a-non-hyperbolic-example">
185
+ <h2>A non-hyperbolic example<a class="headerlink" href="#a-non-hyperbolic-example" title="Link to this heading"></a></h2>
186
+ <p>We can also compute the volumes for a manifold that might be non-hyperbolic, here the complement of the 5<sub>1</sub> knot:</p>
187
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;5_1&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
188
+ <span class="go">[[], [[1.52310839130992 E-14, 0.E-37]]]</span>
189
+ </pre></div>
190
+ </div>
191
+ <p>Note that one of the Ptolemy varieties is non-empty which proves that all edges of the triangulation are essential. We also see that all volumes are 0 and thus smaller than the volume 2.029883… of the figure-eight knot complement that is proven to be the smallest volume of any orientable cusped manifold. Thus, it follows from Theorem 1.3 and Remark 1.4 of <a class="reference internal" href="ptolemy_prelim.html#ggz2014" id="id1"><span>[GGZ2014]</span></a> that 5<sub>1</sub> is not hyperbolic.</p>
192
+ <p><strong>Remark:</strong> The ptolemy module does not (yet) support interval arithmetics, otherwise, this would be a proof that 5<sub>1</sub> is not hyperbolic.</p>
193
+ </section>
194
+ <section id="flattening-nested-structures">
195
+ <h2>Flattening nested structures<a class="headerlink" href="#flattening-nested-structures" title="Link to this heading"></a></h2>
196
+ <p>If we want to loose some of the grouping, we can call <code class="docutils literal notranslate"><span class="pre">flatten</span></code> on the results. Here the grouping by obstruction class is lost:</p>
197
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span><span class="o">.</span><span class="n">flatten</span><span class="p">()</span>
198
+ <span class="go">[[0.E-19, 1.88267370443418 E-14], [2.02988321281931, -2.02988321281931]]</span>
199
+ </pre></div>
200
+ </div>
201
+ <p>And now, the grouping by Galois conjugacy is lost as well, resulting in a flat list:</p>
202
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span><span class="o">.</span><span class="n">flatten</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
203
+ <span class="go">[0.E-19, 1.88267370443418 E-14, 2.02988321281931, -2.02988321281931]</span>
204
+ </pre></div>
205
+ </div>
206
+ <p>So the result is just a flat list.</p>
207
+ <p><strong>Remark:</strong> We cannot <cite>overflatten</cite>. If we give an even larger argument to flatten, the result will just stay a flat list.</p>
208
+ </section>
209
+ <section id="lack-of-tab-autocompletion-for-nested-structures">
210
+ <span id="ptolemy-example-missing-auto-completion"></span><h2>Lack of tab-autocompletion for nested structures<a class="headerlink" href="#lack-of-tab-autocompletion-for-nested-structures" title="Link to this heading"></a></h2>
211
+ <p>Unfortunately, the autocompletion does not list all the desired results when we have a nested structure. For example:</p>
212
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
213
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span><span class="o">.</span>
214
+ </pre></div>
215
+ </div>
216
+ <p>When we now hit the tab key:</p>
217
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span><span class="o">.</span>
218
+ <span class="go">sols.append sols.extend sols.index sols.pop sols.reverse</span>
219
+ <span class="go">sols.count sols.flatten sols.insert sols.remove sols.sort</span>
220
+ </pre></div>
221
+ </div>
222
+ <p>… we only get <code class="docutils literal notranslate"><span class="pre">list</span></code> methods, but not the desired <code class="docutils literal notranslate"><span class="pre">volume_numerical</span></code>. One way to discover the available methods is to pick a leaf of the nested structure and hit the tab key:</p>
223
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span> <span class="o">=</span> <span class="n">sols</span><span class="o">.</span><span class="n">flatten</span><span class="p">(</span><span class="mi">100</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
224
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span><span class="o">.</span>
225
+ <span class="go">sol.N sol.keys</span>
226
+ <span class="go">sol.check_against_manifold sol.long_edge</span>
227
+ <span class="go">...</span>
228
+ <span class="go">sol.itervalues sol.volume_numerical</span>
229
+ </pre></div>
230
+ </div>
231
+ <p>The overview diagram might also be helpful.</p>
232
+ </section>
233
+ <section id="converting-exact-solutions-into-numerical-solutions">
234
+ <h2>Converting exact solutions into numerical solutions<a class="headerlink" href="#converting-exact-solutions-into-numerical-solutions" title="Link to this heading"></a></h2>
235
+ <p>We can turn exact solutions into numerical solutions by calling <code class="docutils literal notranslate"><span class="pre">numerical</span></code>:</p>
236
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
237
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span>
238
+ <span class="go">PtolemyCoordinates(</span>
239
+ <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
240
+ <span class="go"> &#39;c_0011_1&#39;: -1,</span>
241
+ <span class="go"> &#39;c_0101_0&#39;: Mod(x, x^2 + x + 1),</span>
242
+ <span class="go"> ...</span>
243
+ <span class="go"> &#39;s_3_1&#39;: 1},</span>
244
+ <span class="go"> is_numerical = False, ...)</span>
245
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span><span class="o">.</span><span class="n">numerical</span><span class="p">()</span>
246
+ <span class="go">[PtolemyCoordinates(</span>
247
+ <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
248
+ <span class="go"> &#39;c_0011_1&#39;: -1,</span>
249
+ <span class="go"> &#39;c_0101_0&#39;: -0.500000000000000 - 0.866025403784439*I,</span>
250
+ <span class="go"> ...,</span>
251
+ <span class="go"> &#39;s_3_1&#39;: 1},</span>
252
+ <span class="go"> is_numerical = True, ...),</span>
253
+ <span class="go"> PtolemyCoordinates(</span>
254
+ <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
255
+ <span class="go"> &#39;c_0011_1&#39;: -1,</span>
256
+ <span class="go"> &#39;c_0101_0&#39;: -0.500000000000000 + 0.866025403784439*I,</span>
257
+ <span class="go"> ...,</span>
258
+ <span class="go"> &#39;s_3_1&#39;: 1},</span>
259
+ <span class="go"> is_numerical = True, ...)]</span>
260
+ </pre></div>
261
+ </div>
262
+ <p>Note that the one exact (algebraic) solution turns into a list of numerical solutions which are Galois conjugates.</p>
263
+ <p><strong>Remark:</strong> This uses the current pari precision. See the <a class="reference internal" href="ptolemy_examples1.html#ptolemy-example-increase-precision"><span class="std std-ref">above example</span></a>, in particular, the comment about interval arithmetics.</p>
264
+ <p><strong>Remark:</strong> Calling <code class="docutils literal notranslate"><span class="pre">numerical()</span></code> on a numerical solution does nothing.</p>
265
+ <p><strong>Remark:</strong> <code class="docutils literal notranslate"><span class="pre">CrossRatios</span></code> also support <code class="docutils literal notranslate"><span class="pre">numerical</span></code>.</p>
266
+ </section>
267
+ <section id="working-with-exact-vs-numerical-solutions">
268
+ <span id="ptolemy-example-numerical-matrix"></span><h2>Working with exact vs numerical solutions<a class="headerlink" href="#working-with-exact-vs-numerical-solutions" title="Link to this heading"></a></h2>
269
+ <p>Most methods such as <code class="docutils literal notranslate"><span class="pre">evaluate_word</span></code> or <code class="docutils literal notranslate"><span class="pre">cross_ratios</span></code> work just the same way on an exact solution:</p>
270
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">exact_sol</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
271
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">exact_sol</span>
272
+ <span class="go">PtolemyCoordinates(</span>
273
+ <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
274
+ <span class="go"> &#39;c_0011_1&#39;: -1,</span>
275
+ <span class="go"> &#39;c_0101_0&#39;: 1,</span>
276
+ <span class="go"> &#39;c_0101_1&#39;: Mod(x, x^2 + x + 1),</span>
277
+ <span class="go"> ...,</span>
278
+ <span class="go"> &#39;s_3_1&#39;: -1},</span>
279
+ <span class="go"> is_numerical = False, ...)</span>
280
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">exact_sol</span><span class="o">.</span><span class="n">evaluate_word</span><span class="p">(</span><span class="s1">&#39;a&#39;</span><span class="p">)</span>
281
+ <span class="go">[[Mod(-2*x, x^2 + x + 1), Mod(-x - 1, x^2 + x + 1)],</span>
282
+ <span class="go"> [Mod(x, x^2 + x + 1), Mod(x + 1, x^2 + x + 1)]]</span>
283
+ </pre></div>
284
+ </div>
285
+ <p>… as they do on a numerical solution:</p>
286
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">numerical_sol</span> <span class="o">=</span> <span class="n">sol</span><span class="o">.</span><span class="n">numerical</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
287
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">numerical_sol</span>
288
+ <span class="go">PtolemyCoordinates(</span>
289
+ <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
290
+ <span class="go"> &#39;c_0011_1&#39;: -1,</span>
291
+ <span class="go"> &#39;c_0101_0&#39;: 1,</span>
292
+ <span class="go"> &#39;c_0101_1&#39;: -0.500000000000000 - 0.866025403784439*I,</span>
293
+ <span class="go"> ...,</span>
294
+ <span class="go"> &#39;s_3_1&#39;: -1},</span>
295
+ <span class="go"> is_numerical = False, ...)</span>
296
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">numerical_sol</span><span class="o">.</span><span class="n">evaluate_word</span><span class="p">(</span><span class="s1">&#39;a&#39;</span><span class="p">)</span>
297
+ <span class="go">[[1.00000000000000 + 1.73205080756888*I,</span>
298
+ <span class="go"> -0.500000000000000 + 0.866025403784439*I],</span>
299
+ <span class="go"> [-0.500000000000000 - 0.866025403784439*I,</span>
300
+ <span class="go"> 0.500000000000000 - 0.866025403784439*I]]</span>
301
+ </pre></div>
302
+ </div>
303
+ <p>Methods with postfix <code class="docutils literal notranslate"><span class="pre">_numerical</span></code> are special: when applied to an exact solution, they implicitly convert it to a list
304
+ of Galois conjugate numerical solutions first. <code class="docutils literal notranslate"><span class="pre">volume_numerical</span></code> is an example (because volume is a transcendental function):</p>
305
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">exact_sol</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
306
+ <span class="go">[-2.02988321281931, 2.02988321281931]</span>
307
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">numerical_sol</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
308
+ <span class="go">-2.02988321281931</span>
309
+ </pre></div>
310
+ </div>
311
+ </section>
312
+ <section id="computing-numerical-solutions-directly">
313
+ <span id="ptolemy-example-retrieve-numerical-solutions"></span><h2>Computing numerical solutions directly<a class="headerlink" href="#computing-numerical-solutions-directly" title="Link to this heading"></a></h2>
314
+ <p>We can also directly compute numerical solutions:</p>
315
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span>
316
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">numerical</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
317
+ <span class="go">[[],</span>
318
+ <span class="go"> [[PtolemyCoordinates(</span>
319
+ <span class="go"> {&#39;c_0011_0&#39;: 1.00000000000000 + 0.E-19*I,</span>
320
+ <span class="go"> &#39;c_0011_1&#39;: -1.00000000000000 + 0.E-19*I,</span>
321
+ <span class="go"> &#39;c_0101_0&#39;: 1.00000000000000 + 0.E-19*I,</span>
322
+ <span class="go"> &#39;c_0101_1&#39;: -0.500000000000000 - 0.866025403784439*I,</span>
323
+ <span class="go"> ...,</span>
324
+ <span class="go"> &#39;s_3_1&#39;: -1},</span>
325
+ <span class="go"> is_numerical = True, ...),</span>
326
+ <span class="go"> PtolemyCoordinates(</span>
327
+ <span class="go"> {&#39;c_0011_0&#39;: 1.00000000000000 + 0.E-19*I,</span>
328
+ <span class="go"> &#39;c_0011_1&#39;: -1.00000000000000 + 0.E-19*I,</span>
329
+ <span class="go"> &#39;c_0101_0&#39;: 1.00000000000000 + 0.E-19*I,</span>
330
+ <span class="go"> &#39;c_0101_1&#39;: -0.500000000000000 + 0.866025403784439*I,</span>
331
+ <span class="go"> ...,</span>
332
+ <span class="go"> &#39;s_3_1&#39;: -1},</span>
333
+ <span class="go"> is_numerical = True, ...)]]]</span>
334
+ </pre></div>
335
+ </div>
336
+ <p>The structure is as described earlier, a list of lists of lists: first solutions are grouped by obstruction class, then by Galois conjugacy.</p>
337
+ <p>The advantage over going through the exact solutions is that it might be much faster
338
+ (because it can avoid computing the number field from the lexicographic Groebner basis, see later). For example, many PSL(3, <strong>C</strong>) examples only work when using <code class="docutils literal notranslate"><span class="pre">numerical</span> <span class="pre">=</span> <span class="pre">True</span></code>.</p>
339
+ </section>
340
+ <section id="computing-cross-ratios-from-ptolemy-coordinates">
341
+ <span id="ptolemy-example-cross-ratios"></span><h2>Computing cross ratios from Ptolemy coordinates<a class="headerlink" href="#computing-cross-ratios-from-ptolemy-coordinates" title="Link to this heading"></a></h2>
342
+ <p>Given exact or numerical solutions to the Ptolemy variety, we can also compute the cross ratios/shape parameters:</p>
343
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
344
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">zs</span><span class="o">=</span><span class="n">sols</span><span class="o">.</span><span class="n">cross_ratios</span><span class="p">()</span>
345
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">zs</span>
346
+ <span class="go">[[],</span>
347
+ <span class="go"> [CrossRatios({&#39;z_0000_0&#39;: Mod(x + 1, x^2 + x + 1),</span>
348
+ <span class="go"> &#39;z_0000_1&#39;: Mod(x + 1, x^2 + x + 1),</span>
349
+ <span class="go"> &#39;zp_0000_0&#39;: Mod(x + 1, x^2 + x + 1),</span>
350
+ <span class="go"> &#39;zp_0000_1&#39;: Mod(x + 1, x^2 + x + 1),</span>
351
+ <span class="go"> &#39;zpp_0000_0&#39;: Mod(x + 1, x^2 + x + 1),</span>
352
+ <span class="go"> &#39;zpp_0000_1&#39;: Mod(x + 1, x^2 + x + 1)},</span>
353
+ <span class="go"> is_numerical = False, ...)]]</span>
354
+ </pre></div>
355
+ </div>
356
+ <p><strong>Remark</strong>: The shapes will be given as element in the Ptolemy field with defining polynomial being the second argument to <code class="docutils literal notranslate"><span class="pre">Mod(...,</span> <span class="pre">...)</span></code>, here, x<sup>2</sup>+x+1. The Ptolemy field is a (possibly trivial) extension of the shape field. For <em>N</em> =2, the Ptolemy field is the trace field <a class="reference internal" href="ptolemy_prelim.html#ggz2014" id="id2"><span>[GGZ2014]</span></a> and an iterated square extension of the shape field which is the invariant trace field for a cusped manifold.</p>
357
+ <p>And numerically, so that we can compare to SnapPy’s shapes:</p>
358
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">zs</span><span class="o">.</span><span class="n">numerical</span><span class="p">()</span>
359
+ <span class="go">[[],</span>
360
+ <span class="go"> [[CrossRatios(</span>
361
+ <span class="go"> {&#39;z_0000_0&#39;: 0.500000000000000 - 0.866025403784439*I,</span>
362
+ <span class="go"> &#39;z_0000_1&#39;: 0.500000000000000 - 0.866025403784439*I,</span>
363
+ <span class="go"> &#39;zp_0000_0&#39;: 0.500000000000000 - 0.866025403784439*I,</span>
364
+ <span class="go"> &#39;zp_0000_1&#39;: 0.500000000000000 - 0.866025403784439*I,</span>
365
+ <span class="go"> &#39;zpp_0000_0&#39;: 0.500000000000000 - 0.866025403784439*I,</span>
366
+ <span class="go"> &#39;zpp_0000_1&#39;: 0.500000000000000 - 0.866025403784439*I},</span>
367
+ <span class="go"> is_numerical = True, ...),</span>
368
+ <span class="go"> CrossRatios(</span>
369
+ <span class="go"> {&#39;z_0000_0&#39;: 0.500000000000000 + 0.866025403784439*I,</span>
370
+ <span class="go"> &#39;z_0000_1&#39;: 0.500000000000000 + 0.866025403784439*I,</span>
371
+ <span class="go"> &#39;zp_0000_0&#39;: 0.500000000000000 + 0.866025403784439*I,</span>
372
+ <span class="go"> &#39;zp_0000_1&#39;: 0.500000000000000 + 0.866025403784439*I,</span>
373
+ <span class="go"> &#39;zpp_0000_0&#39;: 0.500000000000000 + 0.866025403784439*I,</span>
374
+ <span class="go"> &#39;zpp_0000_1&#39;: 0.500000000000000 + 0.866025403784439*I},</span>
375
+ <span class="go"> is_numerical = True, ...)]]]</span>
376
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">tetrahedra_shapes</span><span class="p">(</span><span class="s1">&#39;rect&#39;</span><span class="p">)</span>
377
+ <span class="go">[0.5000000000 + 0.8660254038*I, 0.5000000000 + 0.8660254038*I]</span>
378
+ </pre></div>
379
+ </div>
380
+ <p>The result is of type <code class="docutils literal notranslate"><span class="pre">CrossRatios</span></code> and assigns z as well as z’=1/(1-z) and z’’=1-1/z a value.</p>
381
+ </section>
382
+ <section id="the-dimension-of-a-component">
383
+ <span id="ptolemy-non-zero-dim-comp"></span><h2>The dimension of a component<a class="headerlink" href="#the-dimension-of-a-component" title="Link to this heading"></a></h2>
384
+ <p>A Ptolemy variety might have positively dimensional components (note that this might or might not be a positively dimensional family of representations, see <a class="reference internal" href="ptolemy_prelim.html#ptolemy-generically-decorated"><span class="std std-ref">here</span></a>). For example, the Ptolemy variety for <code class="docutils literal notranslate"><span class="pre">m371</span></code> and the trivial obstruction class has a 1-dimensional component. This is indicated by:</p>
385
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()</span>
386
+ <span class="go">[NonZeroDimensionalComponent(dimension = 1)]</span>
387
+ </pre></div>
388
+ </div>
389
+ <p>Or:</p>
390
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">=</span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m371&quot;</span><span class="p">)</span>
391
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()</span>
392
+ <span class="go">[[ PtolemyCoordinates(</span>
393
+ <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
394
+ <span class="go"> &#39;c_0011_1&#39;: -1,</span>
395
+ <span class="go"> &#39;c_0011_2&#39;: -1,</span>
396
+ <span class="go"> &#39;c_0011_3&#39;: Mod(-x - 1, x^2 + x + 2),</span>
397
+ <span class="go"> ...,</span>
398
+ <span class="go"> &#39;s_3_4&#39;: 1},</span>
399
+ <span class="go"> is_numerical = False, ...)</span>
400
+ <span class="go"> (witnesses for NonZeroDimensionalComponent(dimension = 1, free_variables = [&#39;c_0110_2&#39;])) ]]</span>
401
+ </pre></div>
402
+ </div>
403
+ <p>The latter actually also provides a sample point (<a class="reference internal" href="ptolemy_examples3.html#ptolemy-example-find-witness"><span class="std std-ref">witness</span></a> which we will use <a class="reference internal" href="ptolemy_examples3.html#ptolemy-example-non-zero-dim-rep"><span class="std std-ref">later</span></a> to determine whether this corresponds to a 1-dimensional family of representations or not) on the 1-dimensional component. A <code class="docutils literal notranslate"><span class="pre">NonZeroDimensionalComponent</span></code> as well as <code class="docutils literal notranslate"><span class="pre">PtolemyCoordinates</span></code> (that correspond to 0-dimensional components of the Ptolemy variety)) has a <code class="docutils literal notranslate"><span class="pre">dimension</span></code> attribute, so we can do:</p>
404
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">=</span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m371&quot;</span><span class="p">)</span>
405
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()</span>
406
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span><span class="o">.</span><span class="n">dimension</span>
407
+ <span class="go">[[1], [], [0], []]</span>
408
+ </pre></div>
409
+ </div>
410
+ <p>This means that the Ptolemy variety for the trivial obstruction class has a 1-dimensional component and that the Ptolemy variety of one of the other obstruction classes a 0-dimensional component.</p>
411
+ <p>A <code class="docutils literal notranslate"><span class="pre">NonZeroDimensionalComponent</span></code> is actually again a list whose elements will be witness points if witnesses have been computed for this Ptolemy variety.</p>
412
+ <p><strong>Warning:</strong> This implies that if we <code class="docutils literal notranslate"><span class="pre">flatten</span></code> too much, the reported dimension becomes 0 which is the dimension of the witness point instead of 1:</p>
413
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span><span class="o">.</span><span class="n">flatten</span><span class="p">()</span>
414
+ <span class="go">[1, 0]</span>
415
+ </pre></div>
416
+ </div>
417
+ <p>Too much <code class="docutils literal notranslate"><span class="pre">flatten</span></code>:</p>
418
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span><span class="o">.</span><span class="n">flatten</span><span class="p">()</span>
419
+ <span class="go">[0, 0]</span>
420
+ </pre></div>
421
+ </div>
422
+ <p>The advantage is that we can still call methods such as <code class="docutils literal notranslate"><span class="pre">volume_numerical</span></code> and actually see the volume of a witness point (it is known that the volume stays constant on a component of boundary-unipotent representations, so one witness point can tell us the volume of all representation in that component):</p>
423
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
424
+ <span class="go">[[[ [0.E-38, 0.E-38] (witnesses for NonZeroDimensionalComponent(dimension = 1, free_variables = [&#39;c_0110_2&#39;])) ]],</span>
425
+ <span class="go"> [],</span>
426
+ <span class="go"> [[4.75170196551790,</span>
427
+ <span class="go"> -4.75170196551790,</span>
428
+ <span class="go"> 4.75170196551790,</span>
429
+ <span class="go"> -4.75170196551790,</span>
430
+ <span class="go"> 1.17563301006556,</span>
431
+ <span class="go"> -1.17563301006556,</span>
432
+ <span class="go"> 1.17563301006556,</span>
433
+ <span class="go"> -1.17563301006556]],</span>
434
+ <span class="go"> []]</span>
435
+ </pre></div>
436
+ </div>
437
+ </section>
438
+ </section>
439
+
440
+
441
+ </div>
442
+ </div>
443
+ <footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
444
+ <a href="ptolemy_examples1.html" class="btn btn-neutral float-left" title="Step-by-step examples: Part 1" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
445
+ <a href="ptolemy_examples3.html" class="btn btn-neutral float-right" title="Step-by-step examples: Part 3" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
446
+ </div>
447
+
448
+ <hr/>
449
+
450
+ <div role="contentinfo">
451
+ <p>&#169; Copyright 2009-2025, by Marc Culler, Nathan Dunfield, Matthias Goerner, Jeffrey Weeks and others.</p>
452
+ </div>
453
+
454
+ Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
455
+ <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
456
+ provided by <a href="https://readthedocs.org">Read the Docs</a>.
457
+
458
+
459
+ </footer>
460
+ </div>
461
+ </div>
462
+ </section>
463
+ </div>
464
+ <script>
465
+ jQuery(function () {
466
+ SphinxRtdTheme.Navigation.enable(true);
467
+ });
468
+ </script>
469
+
470
+ </body>
471
+ </html>