snappy 3.1__cp310-cp310-win_amd64.whl → 3.2__cp310-cp310-win_amd64.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (476) hide show
  1. snappy/CyOpenGL.cp310-win_amd64.pyd +0 -0
  2. snappy/SnapPy.cp310-win_amd64.pyd +0 -0
  3. snappy/SnapPyHP.cp310-win_amd64.pyd +0 -0
  4. snappy/__init__.py +299 -402
  5. snappy/app.py +70 -20
  6. snappy/browser.py +18 -17
  7. snappy/canonical.py +249 -0
  8. snappy/{verify/cusp_shapes.py → cusps/__init__.py} +8 -18
  9. snappy/cusps/cusp_area_matrix.py +101 -0
  10. snappy/{verify/cusp_areas.py → cusps/cusp_areas_from_matrix.py} +23 -39
  11. snappy/cusps/maximal_cusp_area_matrix.py +136 -0
  12. snappy/cusps/test.py +21 -0
  13. snappy/cusps/trig_cusp_area_matrix.py +63 -0
  14. snappy/database.py +10 -9
  15. snappy/decorated_isosig.py +337 -114
  16. snappy/dev/extended_ptolemy/complexVolumesClosed.py +40 -7
  17. snappy/dev/extended_ptolemy/extended.py +3 -3
  18. snappy/dev/extended_ptolemy/phc_wrapper.py +10 -10
  19. snappy/dev/vericlosed/oneVertexTruncatedComplex.py +1 -1
  20. snappy/doc/_images/m004_paper_plane_on_systole.jpg +0 -0
  21. snappy/doc/_images/m125_paper_plane.jpg +0 -0
  22. snappy/doc/_images/o9_00000_systole_paper_plane.jpg +0 -0
  23. snappy/doc/_images/o9_00000_systole_paper_plane_closer.jpg +0 -0
  24. snappy/doc/_sources/additional_classes.rst.txt +40 -40
  25. snappy/doc/_sources/bugs.rst.txt +14 -14
  26. snappy/doc/_sources/censuses.rst.txt +51 -51
  27. snappy/doc/_sources/credits.rst.txt +75 -70
  28. snappy/doc/_sources/development.rst.txt +259 -239
  29. snappy/doc/_sources/index.rst.txt +182 -115
  30. snappy/doc/_sources/installing.rst.txt +247 -264
  31. snappy/doc/_sources/manifold.rst.txt +6 -6
  32. snappy/doc/_sources/manifoldhp.rst.txt +46 -46
  33. snappy/doc/_sources/news.rst.txt +355 -283
  34. snappy/doc/_sources/other.rst.txt +25 -25
  35. snappy/doc/_sources/platonic_census.rst.txt +20 -20
  36. snappy/doc/_sources/plink.rst.txt +102 -102
  37. snappy/doc/_sources/ptolemy.rst.txt +66 -66
  38. snappy/doc/_sources/ptolemy_classes.rst.txt +42 -42
  39. snappy/doc/_sources/ptolemy_examples1.rst.txt +298 -297
  40. snappy/doc/_sources/ptolemy_examples2.rst.txt +363 -363
  41. snappy/doc/_sources/ptolemy_examples3.rst.txt +301 -301
  42. snappy/doc/_sources/ptolemy_examples4.rst.txt +61 -61
  43. snappy/doc/_sources/ptolemy_prelim.rst.txt +105 -105
  44. snappy/doc/_sources/screenshots.rst.txt +21 -21
  45. snappy/doc/_sources/snap.rst.txt +87 -87
  46. snappy/doc/_sources/snappy.rst.txt +28 -28
  47. snappy/doc/_sources/spherogram.rst.txt +103 -103
  48. snappy/doc/_sources/todo.rst.txt +47 -47
  49. snappy/doc/_sources/triangulation.rst.txt +11 -11
  50. snappy/doc/_sources/tutorial.rst.txt +49 -49
  51. snappy/doc/_sources/verify.rst.txt +210 -150
  52. snappy/doc/_sources/verify_internals.rst.txt +79 -90
  53. snappy/doc/_static/basic.css +924 -902
  54. snappy/doc/_static/css/badge_only.css +1 -1
  55. snappy/doc/_static/css/theme.css +1 -1
  56. snappy/doc/_static/doctools.js +1 -1
  57. snappy/doc/_static/documentation_options.js +12 -13
  58. snappy/doc/_static/fonts/Lato/lato-bold.eot +0 -0
  59. snappy/doc/_static/fonts/Lato/lato-bold.ttf +0 -0
  60. snappy/doc/_static/fonts/Lato/lato-bold.woff +0 -0
  61. snappy/doc/_static/fonts/Lato/lato-bold.woff2 +0 -0
  62. snappy/doc/_static/fonts/Lato/lato-bolditalic.eot +0 -0
  63. snappy/doc/_static/fonts/Lato/lato-bolditalic.ttf +0 -0
  64. snappy/doc/_static/fonts/Lato/lato-bolditalic.woff +0 -0
  65. snappy/doc/_static/fonts/Lato/lato-bolditalic.woff2 +0 -0
  66. snappy/doc/_static/fonts/Lato/lato-italic.eot +0 -0
  67. snappy/doc/_static/fonts/Lato/lato-italic.ttf +0 -0
  68. snappy/doc/_static/fonts/Lato/lato-italic.woff +0 -0
  69. snappy/doc/_static/fonts/Lato/lato-italic.woff2 +0 -0
  70. snappy/doc/_static/fonts/Lato/lato-regular.eot +0 -0
  71. snappy/doc/_static/fonts/Lato/lato-regular.ttf +0 -0
  72. snappy/doc/_static/fonts/Lato/lato-regular.woff +0 -0
  73. snappy/doc/_static/fonts/Lato/lato-regular.woff2 +0 -0
  74. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.eot +0 -0
  75. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.ttf +0 -0
  76. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff +0 -0
  77. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-bold.woff2 +0 -0
  78. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.eot +0 -0
  79. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.ttf +0 -0
  80. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff +0 -0
  81. snappy/doc/_static/fonts/RobotoSlab/roboto-slab-v7-regular.woff2 +0 -0
  82. snappy/doc/_static/js/versions.js +228 -0
  83. snappy/doc/_static/language_data.js +199 -199
  84. snappy/doc/_static/pygments.css +74 -73
  85. snappy/doc/_static/searchtools.js +125 -71
  86. snappy/doc/_static/snappy_furo.css +33 -33
  87. snappy/doc/_static/snappy_sphinx_rtd_theme.css +42 -42
  88. snappy/doc/_static/sphinx_highlight.js +13 -3
  89. snappy/doc/additional_classes.html +1499 -1330
  90. snappy/doc/bugs.html +131 -134
  91. snappy/doc/censuses.html +426 -445
  92. snappy/doc/credits.html +180 -180
  93. snappy/doc/development.html +383 -363
  94. snappy/doc/genindex.html +1330 -1409
  95. snappy/doc/index.html +261 -206
  96. snappy/doc/installing.html +345 -363
  97. snappy/doc/manifold.html +3451 -2839
  98. snappy/doc/manifoldhp.html +179 -182
  99. snappy/doc/news.html +387 -329
  100. snappy/doc/objects.inv +0 -0
  101. snappy/doc/other.html +160 -162
  102. snappy/doc/platonic_census.html +374 -377
  103. snappy/doc/plink.html +209 -212
  104. snappy/doc/ptolemy.html +253 -255
  105. snappy/doc/ptolemy_classes.html +1143 -1146
  106. snappy/doc/ptolemy_examples1.html +408 -410
  107. snappy/doc/ptolemy_examples2.html +470 -473
  108. snappy/doc/ptolemy_examples3.html +413 -416
  109. snappy/doc/ptolemy_examples4.html +194 -197
  110. snappy/doc/ptolemy_prelim.html +247 -250
  111. snappy/doc/py-modindex.html +164 -167
  112. snappy/doc/screenshots.html +140 -142
  113. snappy/doc/search.html +134 -137
  114. snappy/doc/searchindex.js +1 -1
  115. snappy/doc/snap.html +201 -204
  116. snappy/doc/snappy.html +180 -182
  117. snappy/doc/spherogram.html +1210 -1213
  118. snappy/doc/todo.html +165 -168
  119. snappy/doc/triangulation.html +1583 -1474
  120. snappy/doc/tutorial.html +158 -161
  121. snappy/doc/verify.html +329 -275
  122. snappy/doc/verify_internals.html +1234 -1691
  123. snappy/drilling/__init__.py +153 -235
  124. snappy/drilling/barycentric.py +103 -0
  125. snappy/drilling/constants.py +0 -2
  126. snappy/drilling/crush.py +56 -130
  127. snappy/drilling/cusps.py +12 -6
  128. snappy/drilling/debug.py +2 -1
  129. snappy/drilling/exceptions.py +7 -40
  130. snappy/drilling/moves.py +302 -243
  131. snappy/drilling/perturb.py +63 -37
  132. snappy/drilling/shorten.py +36 -0
  133. snappy/drilling/subdivide.py +0 -5
  134. snappy/drilling/test.py +23 -0
  135. snappy/drilling/test_cases.py +126 -0
  136. snappy/drilling/tracing.py +9 -37
  137. snappy/exceptions.py +18 -5
  138. snappy/exterior_to_link/barycentric_geometry.py +2 -4
  139. snappy/exterior_to_link/main.py +8 -7
  140. snappy/exterior_to_link/mcomplex_with_link.py +2 -2
  141. snappy/exterior_to_link/rational_linear_algebra.py +1 -1
  142. snappy/exterior_to_link/rational_linear_algebra_wrapped.py +1 -1
  143. snappy/exterior_to_link/test.py +21 -33
  144. snappy/geometric_structure/__init__.py +212 -0
  145. snappy/geometric_structure/cusp_neighborhood/__init__.py +3 -0
  146. snappy/geometric_structure/cusp_neighborhood/complex_cusp_cross_section.py +697 -0
  147. snappy/geometric_structure/cusp_neighborhood/cusp_cross_section_base.py +484 -0
  148. snappy/geometric_structure/cusp_neighborhood/exceptions.py +42 -0
  149. snappy/geometric_structure/cusp_neighborhood/real_cusp_cross_section.py +298 -0
  150. snappy/geometric_structure/cusp_neighborhood/tiles_for_cusp_neighborhood.py +159 -0
  151. snappy/geometric_structure/cusp_neighborhood/vertices.py +32 -0
  152. snappy/geometric_structure/geodesic/__init__.py +0 -0
  153. snappy/geometric_structure/geodesic/add_core_curves.py +152 -0
  154. snappy/geometric_structure/geodesic/avoid_core_curves.py +369 -0
  155. snappy/geometric_structure/geodesic/canonical_keys.py +52 -0
  156. snappy/geometric_structure/geodesic/check_away_from_core_curve.py +60 -0
  157. snappy/geometric_structure/geodesic/constants.py +6 -0
  158. snappy/geometric_structure/geodesic/exceptions.py +22 -0
  159. snappy/{drilling → geometric_structure/geodesic}/fixed_points.py +34 -9
  160. snappy/{drilling/geodesic_info.py → geometric_structure/geodesic/geodesic_start_point_info.py} +139 -180
  161. snappy/geometric_structure/geodesic/graph_trace_helper.py +67 -0
  162. snappy/geometric_structure/geodesic/line.py +30 -0
  163. snappy/geometric_structure/geodesic/multiplicity.py +127 -0
  164. snappy/geometric_structure/geodesic/tiles_for_geodesic.py +101 -0
  165. snappy/geometric_structure/test.py +22 -0
  166. snappy/gui.py +23 -13
  167. snappy/horoviewer.py +7 -7
  168. snappy/hyperboloid/__init__.py +96 -31
  169. snappy/hyperboloid/distances.py +245 -0
  170. snappy/hyperboloid/horoball.py +19 -0
  171. snappy/hyperboloid/line.py +35 -0
  172. snappy/hyperboloid/point.py +9 -0
  173. snappy/hyperboloid/triangle.py +29 -0
  174. snappy/isometry_signature.py +382 -0
  175. snappy/len_spec/__init__.py +596 -0
  176. snappy/len_spec/geodesic_info.py +110 -0
  177. snappy/len_spec/geodesic_key_info_dict.py +117 -0
  178. snappy/len_spec/geodesic_piece.py +143 -0
  179. snappy/len_spec/geometric_structure.py +182 -0
  180. snappy/len_spec/geometry.py +80 -0
  181. snappy/len_spec/length_spectrum_geodesic_info.py +170 -0
  182. snappy/len_spec/spine.py +206 -0
  183. snappy/len_spec/test.py +24 -0
  184. snappy/len_spec/test_cases.py +69 -0
  185. snappy/len_spec/tile.py +275 -0
  186. snappy/len_spec/word.py +86 -0
  187. snappy/math_basics.py +39 -13
  188. snappy/matrix.py +52 -9
  189. snappy/number.py +12 -6
  190. snappy/numeric_output_checker.py +2 -3
  191. snappy/pari.py +8 -4
  192. snappy/phone_home.py +2 -1
  193. snappy/polyviewer.py +8 -8
  194. snappy/ptolemy/__init__.py +1 -1
  195. snappy/ptolemy/component.py +2 -2
  196. snappy/ptolemy/coordinates.py +25 -25
  197. snappy/ptolemy/findLoops.py +9 -9
  198. snappy/ptolemy/manifoldMethods.py +27 -29
  199. snappy/ptolemy/polynomial.py +50 -57
  200. snappy/ptolemy/processFileBase.py +60 -0
  201. snappy/ptolemy/ptolemyVariety.py +109 -41
  202. snappy/ptolemy/reginaWrapper.py +4 -4
  203. snappy/ptolemy/rur.py +1 -1
  204. snappy/ptolemy/solutionsToPrimeIdealGroebnerBasis.py +9 -9
  205. snappy/ptolemy/test.py +99 -54
  206. snappy/ptolemy/utilities.py +1 -1
  207. snappy/raytracing/__init__.py +64 -0
  208. snappy/raytracing/additional_horospheres.py +64 -0
  209. snappy/raytracing/additional_len_spec_choices.py +63 -0
  210. snappy/raytracing/cohomology_fractal.py +0 -3
  211. snappy/raytracing/eyeball.py +123 -0
  212. snappy/raytracing/finite_raytracing_data.py +17 -17
  213. snappy/raytracing/finite_viewer.py +15 -15
  214. snappy/raytracing/geodesic_tube_info.py +93 -63
  215. snappy/raytracing/geodesics.py +94 -64
  216. snappy/raytracing/geodesics_window.py +56 -34
  217. snappy/raytracing/gui_utilities.py +21 -6
  218. snappy/raytracing/hyperboloid_navigation.py +29 -4
  219. snappy/raytracing/hyperboloid_utilities.py +73 -73
  220. snappy/raytracing/ideal_raytracing_data.py +121 -91
  221. snappy/raytracing/inside_viewer.py +199 -66
  222. snappy/raytracing/pack.py +22 -0
  223. snappy/raytracing/raytracing_data.py +37 -25
  224. snappy/raytracing/raytracing_view.py +70 -65
  225. snappy/raytracing/shaders/Eye.png +0 -0
  226. snappy/raytracing/shaders/NonGeometric.png +0 -0
  227. snappy/raytracing/shaders/__init__.py +39 -3
  228. snappy/raytracing/shaders/fragment.glsl +451 -133
  229. snappy/raytracing/test.py +29 -0
  230. snappy/raytracing/tooltip.py +146 -0
  231. snappy/raytracing/upper_halfspace_utilities.py +42 -9
  232. snappy/sage_helper.py +67 -134
  233. snappy/settings.py +90 -77
  234. snappy/shell.py +2 -0
  235. snappy/snap/character_varieties.py +2 -2
  236. snappy/snap/find_field.py +4 -3
  237. snappy/snap/fundamental_polyhedron.py +2 -2
  238. snappy/snap/kernel_structures.py +5 -1
  239. snappy/snap/nsagetools.py +9 -8
  240. snappy/snap/peripheral/dual_cellulation.py +4 -3
  241. snappy/snap/peripheral/peripheral.py +2 -2
  242. snappy/snap/peripheral/surface.py +5 -5
  243. snappy/snap/peripheral/test.py +1 -1
  244. snappy/snap/polished_reps.py +8 -8
  245. snappy/snap/slice_obs_HKL.py +16 -14
  246. snappy/snap/t3mlite/arrow.py +3 -3
  247. snappy/snap/t3mlite/edge.py +3 -3
  248. snappy/snap/t3mlite/homology.py +2 -2
  249. snappy/snap/t3mlite/mcomplex.py +3 -3
  250. snappy/snap/t3mlite/simplex.py +12 -0
  251. snappy/snap/t3mlite/spun.py +18 -17
  252. snappy/snap/t3mlite/test_vs_regina.py +4 -4
  253. snappy/snap/test.py +37 -53
  254. snappy/snap/utilities.py +4 -5
  255. snappy/test.py +121 -138
  256. snappy/test_cases.py +263 -0
  257. snappy/testing.py +131 -0
  258. snappy/tiling/__init__.py +2 -0
  259. snappy/tiling/canonical_key_dict.py +59 -0
  260. snappy/tiling/dict_based_set.py +79 -0
  261. snappy/tiling/floor.py +49 -0
  262. snappy/tiling/hyperboloid_dict.py +54 -0
  263. snappy/tiling/iter_utils.py +78 -0
  264. snappy/tiling/lifted_tetrahedron.py +22 -0
  265. snappy/tiling/lifted_tetrahedron_set.py +54 -0
  266. snappy/tiling/real_hash_dict.py +164 -0
  267. snappy/tiling/test.py +23 -0
  268. snappy/tiling/tile.py +215 -0
  269. snappy/tiling/triangle.py +33 -0
  270. snappy/tkterminal.py +116 -86
  271. snappy/twister/main.py +1 -7
  272. snappy/twister/twister_core.cp310-win_amd64.pyd +0 -0
  273. snappy/upper_halfspace/__init__.py +78 -17
  274. snappy/verify/__init__.py +3 -7
  275. snappy/verify/{verifyCanonical.py → canonical.py} +78 -70
  276. snappy/verify/complex_volume/adjust_torsion.py +1 -2
  277. snappy/verify/complex_volume/closed.py +13 -13
  278. snappy/verify/complex_volume/cusped.py +6 -6
  279. snappy/verify/complex_volume/extended_bloch.py +5 -8
  280. snappy/verify/{cuspTranslations.py → cusp_translations.py} +1 -1
  281. snappy/verify/edge_equations.py +80 -0
  282. snappy/verify/exceptions.py +0 -55
  283. snappy/verify/{verifyHyperbolicity.py → hyperbolicity.py} +3 -3
  284. snappy/verify/interval_newton_shapes_engine.py +7 -5
  285. snappy/verify/interval_tree.py +5 -5
  286. snappy/verify/krawczyk_shapes_engine.py +17 -18
  287. snappy/verify/maximal_cusp_area_matrix/__init__.py +7 -74
  288. snappy/verify/maximal_cusp_area_matrix/cusp_tiling_engine.py +3 -4
  289. snappy/verify/maximal_cusp_area_matrix/cusp_translate_engine.py +1 -1
  290. snappy/verify/{realAlgebra.py → real_algebra.py} +1 -1
  291. snappy/verify/shapes.py +5 -3
  292. snappy/verify/short_slopes.py +39 -41
  293. snappy/verify/{squareExtensions.py → square_extensions.py} +14 -11
  294. snappy/verify/test.py +57 -60
  295. snappy/verify/upper_halfspace/extended_matrix.py +1 -1
  296. snappy/verify/upper_halfspace/finite_point.py +3 -4
  297. snappy/verify/upper_halfspace/ideal_point.py +9 -9
  298. snappy/verify/volume.py +2 -2
  299. snappy/version.py +2 -2
  300. {snappy-3.1.dist-info → snappy-3.2.dist-info}/METADATA +26 -11
  301. snappy-3.2.dist-info/RECORD +503 -0
  302. {snappy-3.1.dist-info → snappy-3.2.dist-info}/WHEEL +1 -1
  303. {snappy-3.1.dist-info → snappy-3.2.dist-info}/top_level.txt +6 -1
  304. snappy/__pycache__/__init__.cpython-310.pyc +0 -0
  305. snappy/__pycache__/browser.cpython-310.pyc +0 -0
  306. snappy/__pycache__/cache.cpython-310.pyc +0 -0
  307. snappy/__pycache__/database.cpython-310.pyc +0 -0
  308. snappy/__pycache__/db_utilities.cpython-310.pyc +0 -0
  309. snappy/__pycache__/decorated_isosig.cpython-310.pyc +0 -0
  310. snappy/__pycache__/exceptions.cpython-310.pyc +0 -0
  311. snappy/__pycache__/export_stl.cpython-310.pyc +0 -0
  312. snappy/__pycache__/filedialog.cpython-310.pyc +0 -0
  313. snappy/__pycache__/gui.cpython-310.pyc +0 -0
  314. snappy/__pycache__/horoviewer.cpython-310.pyc +0 -0
  315. snappy/__pycache__/math_basics.cpython-310.pyc +0 -0
  316. snappy/__pycache__/matrix.cpython-310.pyc +0 -0
  317. snappy/__pycache__/number.cpython-310.pyc +0 -0
  318. snappy/__pycache__/numeric_output_checker.cpython-310.pyc +0 -0
  319. snappy/__pycache__/pari.cpython-310.pyc +0 -0
  320. snappy/__pycache__/polyviewer.cpython-310.pyc +0 -0
  321. snappy/__pycache__/sage_helper.cpython-310.pyc +0 -0
  322. snappy/__pycache__/version.cpython-310.pyc +0 -0
  323. snappy/doc/_sources/verify_canon.rst.txt +0 -90
  324. snappy/doc/_static/jquery-3.6.0.js +0 -10881
  325. snappy/doc/_static/js/html5shiv-printshiv.min.js +0 -4
  326. snappy/doc/_static/js/html5shiv.min.js +0 -4
  327. snappy/doc/_static/underscore-1.13.1.js +0 -2042
  328. snappy/doc/_static/underscore.js +0 -6
  329. snappy/doc/verify_canon.html +0 -304
  330. snappy/drilling/__pycache__/__init__.cpython-310.pyc +0 -0
  331. snappy/drilling/__pycache__/constants.cpython-310.pyc +0 -0
  332. snappy/drilling/__pycache__/crush.cpython-310.pyc +0 -0
  333. snappy/drilling/__pycache__/cusps.cpython-310.pyc +0 -0
  334. snappy/drilling/__pycache__/debug.cpython-310.pyc +0 -0
  335. snappy/drilling/__pycache__/epsilons.cpython-310.pyc +0 -0
  336. snappy/drilling/__pycache__/exceptions.cpython-310.pyc +0 -0
  337. snappy/drilling/__pycache__/fixed_points.cpython-310.pyc +0 -0
  338. snappy/drilling/__pycache__/geodesic_info.cpython-310.pyc +0 -0
  339. snappy/drilling/__pycache__/geodesic_tube.cpython-310.pyc +0 -0
  340. snappy/drilling/__pycache__/geometric_structure.cpython-310.pyc +0 -0
  341. snappy/drilling/__pycache__/line.cpython-310.pyc +0 -0
  342. snappy/drilling/__pycache__/moves.cpython-310.pyc +0 -0
  343. snappy/drilling/__pycache__/peripheral_curves.cpython-310.pyc +0 -0
  344. snappy/drilling/__pycache__/perturb.cpython-310.pyc +0 -0
  345. snappy/drilling/__pycache__/quotient_space.cpython-310.pyc +0 -0
  346. snappy/drilling/__pycache__/spatial_dict.cpython-310.pyc +0 -0
  347. snappy/drilling/__pycache__/subdivide.cpython-310.pyc +0 -0
  348. snappy/drilling/__pycache__/tracing.cpython-310.pyc +0 -0
  349. snappy/drilling/geodesic_tube.py +0 -441
  350. snappy/drilling/geometric_structure.py +0 -366
  351. snappy/drilling/line.py +0 -122
  352. snappy/drilling/quotient_space.py +0 -94
  353. snappy/drilling/spatial_dict.py +0 -128
  354. snappy/exterior_to_link/__pycache__/__init__.cpython-310.pyc +0 -0
  355. snappy/exterior_to_link/__pycache__/barycentric_geometry.cpython-310.pyc +0 -0
  356. snappy/exterior_to_link/__pycache__/exceptions.cpython-310.pyc +0 -0
  357. snappy/exterior_to_link/__pycache__/hyp_utils.cpython-310.pyc +0 -0
  358. snappy/exterior_to_link/__pycache__/link_projection.cpython-310.pyc +0 -0
  359. snappy/exterior_to_link/__pycache__/main.cpython-310.pyc +0 -0
  360. snappy/exterior_to_link/__pycache__/mcomplex_with_expansion.cpython-310.pyc +0 -0
  361. snappy/exterior_to_link/__pycache__/mcomplex_with_link.cpython-310.pyc +0 -0
  362. snappy/exterior_to_link/__pycache__/mcomplex_with_memory.cpython-310.pyc +0 -0
  363. snappy/exterior_to_link/__pycache__/pl_utils.cpython-310.pyc +0 -0
  364. snappy/exterior_to_link/__pycache__/put_in_S3.cpython-310.pyc +0 -0
  365. snappy/exterior_to_link/__pycache__/rational_linear_algebra.cpython-310.pyc +0 -0
  366. snappy/exterior_to_link/__pycache__/simplify_to_base_tri.cpython-310.pyc +0 -0
  367. snappy/exterior_to_link/__pycache__/stored_moves.cpython-310.pyc +0 -0
  368. snappy/hyperboloid/__pycache__/__init__.cpython-310.pyc +0 -0
  369. snappy/manifolds/__pycache__/__init__.cpython-310.pyc +0 -0
  370. snappy/ptolemy/__pycache__/__init__.cpython-310.pyc +0 -0
  371. snappy/ptolemy/__pycache__/component.cpython-310.pyc +0 -0
  372. snappy/ptolemy/__pycache__/coordinates.cpython-310.pyc +0 -0
  373. snappy/ptolemy/__pycache__/fieldExtensions.cpython-310.pyc +0 -0
  374. snappy/ptolemy/__pycache__/findLoops.cpython-310.pyc +0 -0
  375. snappy/ptolemy/__pycache__/homology.cpython-310.pyc +0 -0
  376. snappy/ptolemy/__pycache__/manifoldMethods.cpython-310.pyc +0 -0
  377. snappy/ptolemy/__pycache__/matrix.cpython-310.pyc +0 -0
  378. snappy/ptolemy/__pycache__/numericalSolutionsToGroebnerBasis.cpython-310.pyc +0 -0
  379. snappy/ptolemy/__pycache__/polynomial.cpython-310.pyc +0 -0
  380. snappy/ptolemy/__pycache__/processComponents.cpython-310.pyc +0 -0
  381. snappy/ptolemy/__pycache__/processFileBase.cpython-310.pyc +0 -0
  382. snappy/ptolemy/__pycache__/processFileDispatch.cpython-310.pyc +0 -0
  383. snappy/ptolemy/__pycache__/processMagmaFile.cpython-310.pyc +0 -0
  384. snappy/ptolemy/__pycache__/processRurFile.cpython-310.pyc +0 -0
  385. snappy/ptolemy/__pycache__/ptolemyGeneralizedObstructionClass.cpython-310.pyc +0 -0
  386. snappy/ptolemy/__pycache__/ptolemyObstructionClass.cpython-310.pyc +0 -0
  387. snappy/ptolemy/__pycache__/ptolemyVariety.cpython-310.pyc +0 -0
  388. snappy/ptolemy/__pycache__/ptolemyVarietyPrimeIdealGroebnerBasis.cpython-310.pyc +0 -0
  389. snappy/ptolemy/__pycache__/rur.cpython-310.pyc +0 -0
  390. snappy/ptolemy/__pycache__/solutionsToPrimeIdealGroebnerBasis.cpython-310.pyc +0 -0
  391. snappy/ptolemy/__pycache__/utilities.cpython-310.pyc +0 -0
  392. snappy/snap/__pycache__/__init__.cpython-310.pyc +0 -0
  393. snappy/snap/__pycache__/character_varieties.cpython-310.pyc +0 -0
  394. snappy/snap/__pycache__/fundamental_polyhedron.cpython-310.pyc +0 -0
  395. snappy/snap/__pycache__/interval_reps.cpython-310.pyc +0 -0
  396. snappy/snap/__pycache__/kernel_structures.cpython-310.pyc +0 -0
  397. snappy/snap/__pycache__/mcomplex_base.cpython-310.pyc +0 -0
  398. snappy/snap/__pycache__/nsagetools.cpython-310.pyc +0 -0
  399. snappy/snap/__pycache__/polished_reps.cpython-310.pyc +0 -0
  400. snappy/snap/__pycache__/shapes.cpython-310.pyc +0 -0
  401. snappy/snap/__pycache__/slice_obs_HKL.cpython-310.pyc +0 -0
  402. snappy/snap/__pycache__/utilities.cpython-310.pyc +0 -0
  403. snappy/snap/peripheral/__pycache__/__init__.cpython-310.pyc +0 -0
  404. snappy/snap/peripheral/__pycache__/dual_cellulation.cpython-310.pyc +0 -0
  405. snappy/snap/peripheral/__pycache__/link.cpython-310.pyc +0 -0
  406. snappy/snap/peripheral/__pycache__/peripheral.cpython-310.pyc +0 -0
  407. snappy/snap/peripheral/__pycache__/surface.cpython-310.pyc +0 -0
  408. snappy/snap/t3mlite/__pycache__/__init__.cpython-310.pyc +0 -0
  409. snappy/snap/t3mlite/__pycache__/arrow.cpython-310.pyc +0 -0
  410. snappy/snap/t3mlite/__pycache__/corner.cpython-310.pyc +0 -0
  411. snappy/snap/t3mlite/__pycache__/edge.cpython-310.pyc +0 -0
  412. snappy/snap/t3mlite/__pycache__/face.cpython-310.pyc +0 -0
  413. snappy/snap/t3mlite/__pycache__/files.cpython-310.pyc +0 -0
  414. snappy/snap/t3mlite/__pycache__/homology.cpython-310.pyc +0 -0
  415. snappy/snap/t3mlite/__pycache__/linalg.cpython-310.pyc +0 -0
  416. snappy/snap/t3mlite/__pycache__/mcomplex.cpython-310.pyc +0 -0
  417. snappy/snap/t3mlite/__pycache__/perm4.cpython-310.pyc +0 -0
  418. snappy/snap/t3mlite/__pycache__/simplex.cpython-310.pyc +0 -0
  419. snappy/snap/t3mlite/__pycache__/spun.cpython-310.pyc +0 -0
  420. snappy/snap/t3mlite/__pycache__/surface.cpython-310.pyc +0 -0
  421. snappy/snap/t3mlite/__pycache__/tetrahedron.cpython-310.pyc +0 -0
  422. snappy/snap/t3mlite/__pycache__/vertex.cpython-310.pyc +0 -0
  423. snappy/togl/__init__.py +0 -3
  424. snappy/togl/darwin-tk8.6/Togl2.1/LICENSE +0 -28
  425. snappy/togl/darwin-tk8.6/Togl2.1/libTogl2.1.dylib +0 -0
  426. snappy/togl/darwin-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
  427. snappy/togl/darwin-tk8.7/Togl2.1/LICENSE +0 -28
  428. snappy/togl/darwin-tk8.7/Togl2.1/libTogl2.1.dylib +0 -0
  429. snappy/togl/darwin-tk8.7/Togl2.1/pkgIndex.tcl +0 -5
  430. snappy/togl/linux2-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
  431. snappy/togl/linux2-x86_64-tk8.6/Togl2.1/libTogl2.1.so +0 -0
  432. snappy/togl/linux2-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -5
  433. snappy/togl/win32VC-tk8.6/Togl2.1/LICENSE +0 -28
  434. snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.dll +0 -0
  435. snappy/togl/win32VC-tk8.6/Togl2.1/Togl21.lib +0 -0
  436. snappy/togl/win32VC-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
  437. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/LICENSE +0 -28
  438. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.dll +0 -0
  439. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/Togl21.lib +0 -0
  440. snappy/togl/win32VC-x86_64-tk8.6/Togl2.1/pkgIndex.tcl +0 -6
  441. snappy/twister/__pycache__/__init__.cpython-310.pyc +0 -0
  442. snappy/twister/__pycache__/main.cpython-310.pyc +0 -0
  443. snappy/upper_halfspace/__pycache__/__init__.cpython-310.pyc +0 -0
  444. snappy/upper_halfspace/__pycache__/ideal_point.cpython-310.pyc +0 -0
  445. snappy/verify/__pycache__/__init__.cpython-310.pyc +0 -0
  446. snappy/verify/__pycache__/cuspCrossSection.cpython-310.pyc +0 -0
  447. snappy/verify/__pycache__/cuspTranslations.cpython-310.pyc +0 -0
  448. snappy/verify/__pycache__/cusp_areas.cpython-310.pyc +0 -0
  449. snappy/verify/__pycache__/cusp_shapes.cpython-310.pyc +0 -0
  450. snappy/verify/__pycache__/exceptions.cpython-310.pyc +0 -0
  451. snappy/verify/__pycache__/interval_newton_shapes_engine.cpython-310.pyc +0 -0
  452. snappy/verify/__pycache__/interval_tree.cpython-310.pyc +0 -0
  453. snappy/verify/__pycache__/krawczyk_shapes_engine.cpython-310.pyc +0 -0
  454. snappy/verify/__pycache__/realAlgebra.cpython-310.pyc +0 -0
  455. snappy/verify/__pycache__/shapes.cpython-310.pyc +0 -0
  456. snappy/verify/__pycache__/short_slopes.cpython-310.pyc +0 -0
  457. snappy/verify/__pycache__/squareExtensions.cpython-310.pyc +0 -0
  458. snappy/verify/__pycache__/verifyCanonical.cpython-310.pyc +0 -0
  459. snappy/verify/__pycache__/verifyHyperbolicity.cpython-310.pyc +0 -0
  460. snappy/verify/__pycache__/volume.cpython-310.pyc +0 -0
  461. snappy/verify/complex_volume/__pycache__/__init__.cpython-310.pyc +0 -0
  462. snappy/verify/complex_volume/__pycache__/adjust_torsion.cpython-310.pyc +0 -0
  463. snappy/verify/complex_volume/__pycache__/closed.cpython-310.pyc +0 -0
  464. snappy/verify/complex_volume/__pycache__/compute_ptolemys.cpython-310.pyc +0 -0
  465. snappy/verify/complex_volume/__pycache__/cusped.cpython-310.pyc +0 -0
  466. snappy/verify/complex_volume/__pycache__/extended_bloch.cpython-310.pyc +0 -0
  467. snappy/verify/cuspCrossSection.py +0 -1422
  468. snappy/verify/maximal_cusp_area_matrix/__pycache__/__init__.cpython-310.pyc +0 -0
  469. snappy/verify/maximal_cusp_area_matrix/__pycache__/cusp_tiling_engine.cpython-310.pyc +0 -0
  470. snappy/verify/maximal_cusp_area_matrix/__pycache__/cusp_translate_engine.cpython-310.pyc +0 -0
  471. snappy/verify/upper_halfspace/__pycache__/__init__.cpython-310.pyc +0 -0
  472. snappy/verify/upper_halfspace/__pycache__/extended_matrix.cpython-310.pyc +0 -0
  473. snappy/verify/upper_halfspace/__pycache__/finite_point.cpython-310.pyc +0 -0
  474. snappy/verify/upper_halfspace/__pycache__/ideal_point.cpython-310.pyc +0 -0
  475. snappy-3.1.dist-info/RECORD +0 -575
  476. {snappy-3.1.dist-info → snappy-3.2.dist-info}/entry_points.txt +0 -0
@@ -1,474 +1,471 @@
1
- <!DOCTYPE html>
2
- <html class="writer-html5" lang="en" >
3
- <head>
4
- <meta charset="utf-8" /><meta name="generator" content="Docutils 0.18.1: http://docutils.sourceforge.net/" />
5
-
6
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
7
- <title>Step-by-step examples: Part 2 &mdash; SnapPy 3.1 documentation</title>
8
- <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
9
- <link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
10
- <link rel="stylesheet" href="_static/snappy_sphinx_rtd_theme.css" type="text/css" />
11
- <link rel="shortcut icon" href="_static/SnapPy.ico"/>
12
- <!--[if lt IE 9]>
13
- <script src="_static/js/html5shiv.min.js"></script>
14
- <![endif]-->
15
-
16
- <script src="_static/jquery.js"></script>
17
- <script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
18
- <script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
19
- <script src="_static/doctools.js"></script>
20
- <script src="_static/sphinx_highlight.js"></script>
21
- <script src="_static/js/theme.js"></script>
22
- <link rel="index" title="Index" href="genindex.html" />
23
- <link rel="search" title="Search" href="search.html" />
24
- <link rel="next" title="Step-by-step examples: Part 3" href="ptolemy_examples3.html" />
25
- <link rel="prev" title="Step-by-step examples: Part 1" href="ptolemy_examples1.html" />
26
- </head>
27
-
28
- <body class="wy-body-for-nav">
29
- <div class="wy-grid-for-nav">
30
- <nav data-toggle="wy-nav-shift" class="wy-nav-side">
31
- <div class="wy-side-scroll">
32
- <div class="wy-side-nav-search" >
33
-
34
-
35
-
36
- <a href="index.html" class="icon icon-home">
37
- SnapPy
38
- <img src="_static/SnapPy-horizontal-128.png" class="logo" alt="Logo"/>
39
- </a>
40
- <div class="version">
41
- 3.1
42
- </div>
43
- <div role="search">
44
- <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
45
- <input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
46
- <input type="hidden" name="check_keywords" value="yes" />
47
- <input type="hidden" name="area" value="default" />
48
- </form>
49
- </div>
50
- </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
51
- <ul class="current">
52
- <li class="toctree-l1"><a class="reference internal" href="installing.html">Installing SnapPy</a></li>
53
- <li class="toctree-l1"><a class="reference internal" href="screenshots.html">Screenshots: SnapPy in action</a></li>
54
- <li class="toctree-l1"><a class="reference internal" href="tutorial.html">Tutorial</a></li>
55
- <li class="toctree-l1"><a class="reference internal" href="snappy.html">The snappy module and its classes</a></li>
56
- <li class="toctree-l1"><a class="reference internal" href="plink.html">Using SnapPy’s link editor</a></li>
57
- <li class="toctree-l1"><a class="reference internal" href="spherogram.html">Links: planar diagrams and invariants</a></li>
58
- <li class="toctree-l1"><a class="reference internal" href="snap.html">Number theory of hyperbolic 3-manifolds</a></li>
59
- <li class="toctree-l1"><a class="reference internal" href="verify.html">Verified computations</a></li>
60
- <li class="toctree-l1 current"><a class="reference internal" href="other.html">Other components</a><ul class="current">
61
- <li class="toctree-l2 current"><a class="reference internal" href="other.html#ptolemy-module">Ptolemy module</a><ul class="current">
62
- <li class="toctree-l3 current"><a class="reference internal" href="ptolemy.html">The ptolemy module</a><ul class="current">
63
- <li class="toctree-l4"><a class="reference internal" href="ptolemy.html#what-is-the-ptolemy-module">What is the ptolemy module?</a></li>
64
- <li class="toctree-l4 current"><a class="reference internal" href="ptolemy.html#documentation">Documentation</a><ul class="current">
65
- <li class="toctree-l5"><a class="reference internal" href="ptolemy_prelim.html">Mathematical preliminaries</a></li>
66
- <li class="toctree-l5"><a class="reference internal" href="ptolemy_examples1.html">Step-by-step examples: Part 1</a></li>
67
- <li class="toctree-l5 current"><a class="current reference internal" href="#">Step-by-step examples: Part 2</a></li>
68
- <li class="toctree-l5"><a class="reference internal" href="ptolemy_examples3.html">Step-by-step examples: Part 3</a></li>
69
- <li class="toctree-l5"><a class="reference internal" href="ptolemy_examples4.html">Step-by-step examples: Part 4</a></li>
70
- <li class="toctree-l5"><a class="reference internal" href="ptolemy_classes.html">Classes</a></li>
71
- </ul>
72
- </li>
73
- </ul>
74
- </li>
75
- </ul>
76
- </li>
77
- <li class="toctree-l2"><a class="reference internal" href="other.html#twister">Twister</a></li>
78
- </ul>
79
- </li>
80
- <li class="toctree-l1"><a class="reference internal" href="news.html">News</a></li>
81
- <li class="toctree-l1"><a class="reference internal" href="credits.html">Credits</a></li>
82
- <li class="toctree-l1"><a class="reference internal" href="bugs.html">Reporting bugs and other problems</a></li>
83
- <li class="toctree-l1"><a class="reference internal" href="todo.html">To Do List</a></li>
84
- <li class="toctree-l1"><a class="reference internal" href="development.html">Development Basics</a></li>
85
- </ul>
86
-
87
- </div>
88
- </div>
89
- </nav>
90
-
91
- <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
92
- <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
93
- <a href="index.html">SnapPy</a>
94
- </nav>
95
-
96
- <div class="wy-nav-content">
97
- <div class="rst-content">
98
- <div role="navigation" aria-label="Page navigation">
99
- <ul class="wy-breadcrumbs">
100
- <li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
101
- <li class="breadcrumb-item"><a href="other.html">Other components</a></li>
102
- <li class="breadcrumb-item"><a href="ptolemy.html">The ptolemy module</a></li>
103
- <li class="breadcrumb-item active">Step-by-step examples: Part 2</li>
104
- <li class="wy-breadcrumbs-aside">
105
- </li>
106
- </ul>
107
- <hr/>
108
- </div>
109
- <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
110
- <div itemprop="articleBody">
111
-
112
- <section id="step-by-step-examples-part-2">
113
- <h1>Step-by-step examples: Part 2<a class="headerlink" href="#step-by-step-examples-part-2" title="Permalink to this heading"></a></h1>
114
- <section id="the-ptolemy-list-type">
115
- <span id="ptolemy-example-smart-lists"></span><h2>The Ptolemy list type<a class="headerlink" href="#the-ptolemy-list-type" title="Permalink to this heading"></a></h2>
116
- <p>Recall that <code class="docutils literal notranslate"><span class="pre">ptolemy_variety</span></code> with <code class="docutils literal notranslate"><span class="pre">obstruction_class='all'</span></code> returns a list of varieties, one for each obstruction class:</p>
117
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span>
118
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="s1">&#39;all&#39;</span><span class="p">)</span>
119
- <span class="go">[Ptolemy Variety for m003, N = 2, obstruction_class = 0</span>
120
- <span class="go"> c_0011_0 * c_0101_0 + c_0011_0^2 - c_0101_0^2</span>
121
- <span class="go"> c_0011_0 * c_0101_0 + c_0011_0^2 - c_0101_0^2</span>
122
- <span class="go"> - 1 + c_0011_0,</span>
123
- <span class="go"> Ptolemy Variety for m003, N = 2, obstruction_class = 1</span>
124
- <span class="go"> - c_0011_0 * c_0101_0 - c_0011_0^2 - c_0101_0^2</span>
125
- <span class="go"> - c_0011_0 * c_0101_0 - c_0011_0^2 - c_0101_0^2</span>
126
- <span class="go"> - 1 + c_0011_0]</span>
127
- </pre></div>
128
- </div>
129
- <p>Also recall that <code class="docutils literal notranslate"><span class="pre">retrieve_solutions</span></code> was a method of a <code class="docutils literal notranslate"><span class="pre">PtolemyVariety</span></code>. Assume we want to call <code class="docutils literal notranslate"><span class="pre">retrieve_solutions</span></code> for each Ptolemy variety. As in the previous example, we could write a loop such as:</p>
130
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="p">[</span><span class="n">p</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span> <span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="s1">&#39;all&#39;</span><span class="p">)]</span>
131
- </pre></div>
132
- </div>
133
- <p>The ptolemy module allows to do this in a much shorter way:</p>
134
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
135
- <span class="go">[[PtolemyCoordinates(</span>
136
- <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
137
- <span class="go"> &#39;c_0011_1&#39;: -1,</span>
138
- <span class="go"> &#39;c_0101_0&#39;: Mod(x, x^2 - x - 1),</span>
139
- <span class="go"> ...,</span>
140
- <span class="go"> &#39;s_3_1&#39;: 1},</span>
141
- <span class="go"> is_numerical = False, ...)],</span>
142
- <span class="go"> [PtolemyCoordinates(</span>
143
- <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
144
- <span class="go"> &#39;c_0011_1&#39;: -1,</span>
145
- <span class="go"> &#39;c_0101_0&#39;: Mod(x, x^2 + x + 1),</span>
146
- <span class="go"> ...,</span>
147
- <span class="go"> &#39;s_3_1&#39;: 1},</span>
148
- <span class="go"> is_numerical = False, ...)]]</span>
149
- </pre></div>
150
- </div>
151
- <p>This behavior is specific to the ptolemy module. It works with many methods of the ptolemy module that
152
- can potentially return more than one object. These methods return a special kind of list (usually
153
- <code class="docutils literal notranslate"><span class="pre">MethodMappingList</span></code>, a subclass of python <code class="docutils literal notranslate"><span class="pre">list</span></code>) that tries to call the method of the given name (here <code class="docutils literal notranslate"><span class="pre">retrieve_solutions</span></code>) with
154
- the given arguments (here <code class="docutils literal notranslate"><span class="pre">verbose=False</span></code>) on each element in the list (here the two Ptolemy varieties).</p>
155
- <p>Since <code class="docutils literal notranslate"><span class="pre">retrieve_solutions</span></code> itself actually returns a list, the result is a list of lists of solutions which are of type <code class="docutils literal notranslate"><span class="pre">PtolemyCoordinates</span></code>. The first level groups the solutions by obstruction class. The inner lists contain the different (non-Galois conjugate) solutions for each obstruction class (here, for <code class="docutils literal notranslate"><span class="pre">m003</span></code>, each inner lists contains only one element).</p>
156
- </section>
157
- <section id="using-the-ptolemy-list-type-recursively">
158
- <h2>Using the Ptolemy list type recursively<a class="headerlink" href="#using-the-ptolemy-list-type-recursively" title="Permalink to this heading"></a></h2>
159
- <p>The list type described in the previous example works recursively. Recall that an algebraic solution to a Ptolemy variety (of type <code class="docutils literal notranslate"><span class="pre">PtolemyCoordinates</span></code>) has a method <code class="docutils literal notranslate"><span class="pre">volume_numerical</span></code> that returns a list of volumes:</p>
160
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">=</span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span>
161
- <span class="gp">&gt;&gt;&gt; </span><span class="n">p</span><span class="o">=</span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span>
162
- <span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span><span class="o">=</span><span class="n">p</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
163
- <span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
164
- <span class="go">[0.E-19, 1.88267370443418 E-14]</span>
165
- </pre></div>
166
- </div>
167
- <p>We can chain these commands together to retrieve the volumes of all boundary-unipotent PSL(2, <strong>C</strong>) (that are <a class="reference internal" href="ptolemy_prelim.html#ptolemy-generically-decorated"><span class="std std-ref">generically decorated</span></a> with respect to the triangulation) in just one line:</p>
168
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
169
- <span class="go">[[[0.E-19, 1.88267370443418 E-14]], [[2.02988321281931, -2.02988321281931]]]</span>
170
- </pre></div>
171
- </div>
172
- <p>Note that the volumes of the representations are in a list of lists of lists. At the first level the volumes are grouped by obstruction class, then by Galois conjugacy.</p>
173
- <p><strong>Remark:</strong> There might be an extra level for witness points.</p>
174
- <p><strong>Remark:</strong> Unfortunately, this is not compatible with tab-autocompletion, see <a class="reference internal" href="#ptolemy-example-missing-auto-completion"><span class="std std-ref">later</span></a>.</p>
175
- </section>
176
- <section id="a-comparison-of-m003-and-m004">
177
- <h2>A comparison of <code class="docutils literal notranslate"><span class="pre">m003</span></code> and <code class="docutils literal notranslate"><span class="pre">m004</span></code><a class="headerlink" href="#a-comparison-of-m003-and-m004" title="Permalink to this heading"></a></h2>
178
- <p>We can now compare the set of volumes of <code class="docutils literal notranslate"><span class="pre">m003</span></code> and <code class="docutils literal notranslate"><span class="pre">m004</span></code>:</p>
179
- <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
180
- <span class="go">[[[0.E-19, 1.88267370443418 E-14]], [[2.02988321281931, -2.02988321281931]]]</span>
181
- <span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
182
- <span class="go">[[], [[-2.02988321281931, 2.02988321281931]]]</span>
183
- </pre></div>
184
- </div>
185
- <p>We see that the two manifolds are distinguished by their volumes of boundary-unipotent representations: <code class="docutils literal notranslate"><span class="pre">m004</span></code> has no representation with trivial volume (this is not a proof as in theory, there could be such a representation which is not <a class="reference internal" href="ptolemy_prelim.html#ptolemy-generically-decorated"><span class="std std-ref">generically decorated</span></a> with respect to the given triangulation) and no representation that can be lifted to a boundary-unipotent SL(2, <strong>C</strong>)-representation.</p>
186
- </section>
187
- <section id="a-non-hyperbolic-example">
188
- <h2>A non-hyperbolic example<a class="headerlink" href="#a-non-hyperbolic-example" title="Permalink to this heading"></a></h2>
189
- <p>We can also compute the volumes for a manifold that might be non-hyperbolic, here the complement of the 5<sub>1</sub> knot:</p>
190
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;5_1&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
191
- <span class="go">[[], [[1.52310839130992 E-14, 0.E-37]]]</span>
192
- </pre></div>
193
- </div>
194
- <p>Note that one of the Ptolemy varieties is non-empty which proves that all edges of the triangulation are essential. We also see that all volumes are 0 and thus smaller than the volume 2.029883… of the figure-eight knot complement that is proven to be the smallest volume of any orientable cusped manifold. Thus, it follows from Theorem 1.3 and Remark 1.4 of <a class="reference internal" href="ptolemy_prelim.html#ggz2014" id="id1"><span>[GGZ2014]</span></a> that 5<sub>1</sub> is not hyperbolic.</p>
195
- <p><strong>Remark:</strong> The ptolemy module does not (yet) support interval arithmetics, otherwise, this would be a proof that 5<sub>1</sub> is not hyperbolic.</p>
196
- </section>
197
- <section id="flattening-nested-structures">
198
- <h2>Flattening nested structures<a class="headerlink" href="#flattening-nested-structures" title="Permalink to this heading"></a></h2>
199
- <p>If we want to loose some of the grouping, we can call <code class="docutils literal notranslate"><span class="pre">flatten</span></code> on the results. Here the grouping by obstruction class is lost:</p>
200
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span><span class="o">.</span><span class="n">flatten</span><span class="p">()</span>
201
- <span class="go">[[0.E-19, 1.88267370443418 E-14], [2.02988321281931, -2.02988321281931]]</span>
202
- </pre></div>
203
- </div>
204
- <p>And now, the grouping by Galois conjugacy is lost as well, resulting in a flat list:</p>
205
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span><span class="o">.</span><span class="n">flatten</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
206
- <span class="go">[0.E-19, 1.88267370443418 E-14, 2.02988321281931, -2.02988321281931]</span>
207
- </pre></div>
208
- </div>
209
- <p>So the result is just a flat list.</p>
210
- <p><strong>Remark:</strong> We cannot <cite>overflatten</cite>. If we give an even larger argument to flatten, the result will just stay a flat list.</p>
211
- </section>
212
- <section id="lack-of-tab-autocompletion-for-nested-structures">
213
- <span id="ptolemy-example-missing-auto-completion"></span><h2>Lack of tab-autocompletion for nested structures<a class="headerlink" href="#lack-of-tab-autocompletion-for-nested-structures" title="Permalink to this heading"></a></h2>
214
- <p>Unfortunately, the autocompletion does not list all the desired results when we have a nested structure. For example:</p>
215
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
216
- <span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span><span class="o">.</span>
217
- </pre></div>
218
- </div>
219
- <p>When we now hit the tab key:</p>
220
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span><span class="o">.</span>
221
- <span class="go">sols.append sols.extend sols.index sols.pop sols.reverse</span>
222
- <span class="go">sols.count sols.flatten sols.insert sols.remove sols.sort</span>
223
- </pre></div>
224
- </div>
225
- <p>… we only get <code class="docutils literal notranslate"><span class="pre">list</span></code> methods, but not the desired <code class="docutils literal notranslate"><span class="pre">volume_numerical</span></code>. One way to discover the available methods is to pick a leaf of the nested structure and hit the tab key:</p>
226
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span> <span class="o">=</span> <span class="n">sols</span><span class="o">.</span><span class="n">flatten</span><span class="p">(</span><span class="mi">100</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
227
- <span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span><span class="o">.</span>
228
- <span class="go">sol.N sol.keys</span>
229
- <span class="go">sol.check_against_manifold sol.long_edge</span>
230
- <span class="go">...</span>
231
- <span class="go">sol.itervalues sol.volume_numerical</span>
232
- </pre></div>
233
- </div>
234
- <p>The overview diagram might also be helpful.</p>
235
- </section>
236
- <section id="converting-exact-solutions-into-numerical-solutions">
237
- <h2>Converting exact solutions into numerical solutions<a class="headerlink" href="#converting-exact-solutions-into-numerical-solutions" title="Permalink to this heading"></a></h2>
238
- <p>We can turn exact solutions into numerical solutions by calling <code class="docutils literal notranslate"><span class="pre">numerical</span></code>:</p>
239
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
240
- <span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span>
241
- <span class="go">PtolemyCoordinates(</span>
242
- <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
243
- <span class="go"> &#39;c_0011_1&#39;: -1,</span>
244
- <span class="go"> &#39;c_0101_0&#39;: Mod(x, x^2 + x + 1),</span>
245
- <span class="go"> ...</span>
246
- <span class="go"> &#39;s_3_1&#39;: 1},</span>
247
- <span class="go"> is_numerical = False, ...)</span>
248
- <span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span><span class="o">.</span><span class="n">numerical</span><span class="p">()</span>
249
- <span class="go">[PtolemyCoordinates(</span>
250
- <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
251
- <span class="go"> &#39;c_0011_1&#39;: -1,</span>
252
- <span class="go"> &#39;c_0101_0&#39;: -0.500000000000000 - 0.866025403784439*I,</span>
253
- <span class="go"> ...,</span>
254
- <span class="go"> &#39;s_3_1&#39;: 1},</span>
255
- <span class="go"> is_numerical = True, ...),</span>
256
- <span class="go"> PtolemyCoordinates(</span>
257
- <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
258
- <span class="go"> &#39;c_0011_1&#39;: -1,</span>
259
- <span class="go"> &#39;c_0101_0&#39;: -0.500000000000000 + 0.866025403784439*I,</span>
260
- <span class="go"> ...,</span>
261
- <span class="go"> &#39;s_3_1&#39;: 1},</span>
262
- <span class="go"> is_numerical = True, ...)]</span>
263
- </pre></div>
264
- </div>
265
- <p>Note that the one exact (algebraic) solution turns into a list of numerical solutions which are Galois conjugates.</p>
266
- <p><strong>Remark:</strong> This uses the current pari precision. See the <a class="reference internal" href="ptolemy_examples1.html#ptolemy-example-increase-precision"><span class="std std-ref">above example</span></a>, in particular, the comment about interval arithmetics.</p>
267
- <p><strong>Remark:</strong> Calling <code class="docutils literal notranslate"><span class="pre">numerical()</span></code> on a numerical solution does nothing.</p>
268
- <p><strong>Remark:</strong> <code class="docutils literal notranslate"><span class="pre">CrossRatios</span></code> also support <code class="docutils literal notranslate"><span class="pre">numerical</span></code>.</p>
269
- </section>
270
- <section id="working-with-exact-vs-numerical-solutions">
271
- <span id="ptolemy-example-numerical-matrix"></span><h2>Working with exact vs numerical solutions<a class="headerlink" href="#working-with-exact-vs-numerical-solutions" title="Permalink to this heading"></a></h2>
272
- <p>Most methods such as <code class="docutils literal notranslate"><span class="pre">evaluate_word</span></code> or <code class="docutils literal notranslate"><span class="pre">cross_ratios</span></code> work just the same way on an exact solution:</p>
273
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">exact_sol</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
274
- <span class="gp">&gt;&gt;&gt; </span><span class="n">exact_sol</span>
275
- <span class="go">PtolemyCoordinates(</span>
276
- <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
277
- <span class="go"> &#39;c_0011_1&#39;: -1,</span>
278
- <span class="go"> &#39;c_0101_0&#39;: 1,</span>
279
- <span class="go"> &#39;c_0101_1&#39;: Mod(x, x^2 + x + 1),</span>
280
- <span class="go"> ...,</span>
281
- <span class="go"> &#39;s_3_1&#39;: -1},</span>
282
- <span class="go"> is_numerical = False, ...)</span>
283
- <span class="gp">&gt;&gt;&gt; </span><span class="n">exact_sol</span><span class="o">.</span><span class="n">evaluate_word</span><span class="p">(</span><span class="s1">&#39;a&#39;</span><span class="p">)</span>
284
- <span class="go">[[Mod(-2*x, x^2 + x + 1), Mod(-x - 1, x^2 + x + 1)],</span>
285
- <span class="go"> [Mod(x, x^2 + x + 1), Mod(x + 1, x^2 + x + 1)]]</span>
286
- </pre></div>
287
- </div>
288
- <p>… as they do on a numerical solution:</p>
289
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">numerical_sol</span> <span class="o">=</span> <span class="n">sol</span><span class="o">.</span><span class="n">numerical</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
290
- <span class="gp">&gt;&gt;&gt; </span><span class="n">numerical_sol</span>
291
- <span class="go">PtolemyCoordinates(</span>
292
- <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
293
- <span class="go"> &#39;c_0011_1&#39;: -1,</span>
294
- <span class="go"> &#39;c_0101_0&#39;: 1,</span>
295
- <span class="go"> &#39;c_0101_1&#39;: -0.500000000000000 - 0.866025403784439*I,</span>
296
- <span class="go"> ...,</span>
297
- <span class="go"> &#39;s_3_1&#39;: -1},</span>
298
- <span class="go"> is_numerical = False, ...)</span>
299
- <span class="gp">&gt;&gt;&gt; </span><span class="n">numerical_sol</span><span class="o">.</span><span class="n">evaluate_word</span><span class="p">(</span><span class="s1">&#39;a&#39;</span><span class="p">)</span>
300
- <span class="go">[[1.00000000000000 + 1.73205080756888*I,</span>
301
- <span class="go"> -0.500000000000000 + 0.866025403784439*I],</span>
302
- <span class="go"> [-0.500000000000000 - 0.866025403784439*I,</span>
303
- <span class="go"> 0.500000000000000 - 0.866025403784439*I]]</span>
304
- </pre></div>
305
- </div>
306
- <p>Methods with postfix <code class="docutils literal notranslate"><span class="pre">_numerical</span></code> are special: when applied to an exact solution, they implicitly convert it to a list
307
- of Galois conjugate numerical solutions first. <code class="docutils literal notranslate"><span class="pre">volume_numerical</span></code> is an example (because volume is a transcendental function):</p>
308
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">exact_sol</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
309
- <span class="go">[-2.02988321281931, 2.02988321281931]</span>
310
- <span class="gp">&gt;&gt;&gt; </span><span class="n">numerical_sol</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
311
- <span class="go">-2.02988321281931</span>
312
- </pre></div>
313
- </div>
314
- </section>
315
- <section id="computing-numerical-solutions-directly">
316
- <span id="ptolemy-example-retrieve-numerical-solutions"></span><h2>Computing numerical solutions directly<a class="headerlink" href="#computing-numerical-solutions-directly" title="Permalink to this heading"></a></h2>
317
- <p>We can also directly compute numerical solutions:</p>
318
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span>
319
- <span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">numerical</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
320
- <span class="go">[[],</span>
321
- <span class="go"> [[PtolemyCoordinates(</span>
322
- <span class="go"> {&#39;c_0011_0&#39;: 1.00000000000000 + 0.E-19*I,</span>
323
- <span class="go"> &#39;c_0011_1&#39;: -1.00000000000000 + 0.E-19*I,</span>
324
- <span class="go"> &#39;c_0101_0&#39;: 1.00000000000000 + 0.E-19*I,</span>
325
- <span class="go"> &#39;c_0101_1&#39;: -0.500000000000000 - 0.866025403784439*I,</span>
326
- <span class="go"> ...,</span>
327
- <span class="go"> &#39;s_3_1&#39;: -1},</span>
328
- <span class="go"> is_numerical = True, ...),</span>
329
- <span class="go"> PtolemyCoordinates(</span>
330
- <span class="go"> {&#39;c_0011_0&#39;: 1.00000000000000 + 0.E-19*I,</span>
331
- <span class="go"> &#39;c_0011_1&#39;: -1.00000000000000 + 0.E-19*I,</span>
332
- <span class="go"> &#39;c_0101_0&#39;: 1.00000000000000 + 0.E-19*I,</span>
333
- <span class="go"> &#39;c_0101_1&#39;: -0.500000000000000 + 0.866025403784439*I,</span>
334
- <span class="go"> ...,</span>
335
- <span class="go"> &#39;s_3_1&#39;: -1},</span>
336
- <span class="go"> is_numerical = True, ...)]]]</span>
337
- </pre></div>
338
- </div>
339
- <p>The structure is as described earlier, a list of lists of lists: first solutions are grouped by obstruction class, then by Galois conjugacy.</p>
340
- <p>The advantage over going through the exact solutions is that it might be much faster
341
- (because it can avoid computing the number field from the lexicographic Groebner basis, see later). For example, many PSL(3, <strong>C</strong>) examples only work when using <code class="docutils literal notranslate"><span class="pre">numerical</span> <span class="pre">=</span> <span class="pre">True</span></code>.</p>
342
- </section>
343
- <section id="computing-cross-ratios-from-ptolemy-coordinates">
344
- <span id="ptolemy-example-cross-ratios"></span><h2>Computing cross ratios from Ptolemy coordinates<a class="headerlink" href="#computing-cross-ratios-from-ptolemy-coordinates" title="Permalink to this heading"></a></h2>
345
- <p>Given exact or numerical solutions to the Ptolemy variety, we can also compute the cross ratios/shape parameters:</p>
346
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
347
- <span class="gp">&gt;&gt;&gt; </span><span class="n">zs</span><span class="o">=</span><span class="n">sols</span><span class="o">.</span><span class="n">cross_ratios</span><span class="p">()</span>
348
- <span class="gp">&gt;&gt;&gt; </span><span class="n">zs</span>
349
- <span class="go">[[],</span>
350
- <span class="go"> [CrossRatios({&#39;z_0000_0&#39;: Mod(x + 1, x^2 + x + 1),</span>
351
- <span class="go"> &#39;z_0000_1&#39;: Mod(x + 1, x^2 + x + 1),</span>
352
- <span class="go"> &#39;zp_0000_0&#39;: Mod(x + 1, x^2 + x + 1),</span>
353
- <span class="go"> &#39;zp_0000_1&#39;: Mod(x + 1, x^2 + x + 1),</span>
354
- <span class="go"> &#39;zpp_0000_0&#39;: Mod(x + 1, x^2 + x + 1),</span>
355
- <span class="go"> &#39;zpp_0000_1&#39;: Mod(x + 1, x^2 + x + 1)},</span>
356
- <span class="go"> is_numerical = False, ...)]]</span>
357
- </pre></div>
358
- </div>
359
- <p><strong>Remark</strong>: The shapes will be given as element in the Ptolemy field with defining polynomial being the second argument to <code class="docutils literal notranslate"><span class="pre">Mod(...,</span> <span class="pre">...)</span></code>, here, x<sup>2</sup>+x+1. The Ptolemy field is a (possibly trivial) extension of the shape field. For <em>N</em> =2, the Ptolemy field is the trace field <a class="reference internal" href="ptolemy_prelim.html#ggz2014" id="id2"><span>[GGZ2014]</span></a> and an iterated square extension of the shape field which is the invariant trace field for a cusped manifold.</p>
360
- <p>And numerically, so that we can compare to SnapPy’s shapes:</p>
361
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">zs</span><span class="o">.</span><span class="n">numerical</span><span class="p">()</span>
362
- <span class="go">[[],</span>
363
- <span class="go"> [[CrossRatios(</span>
364
- <span class="go"> {&#39;z_0000_0&#39;: 0.500000000000000 - 0.866025403784439*I,</span>
365
- <span class="go"> &#39;z_0000_1&#39;: 0.500000000000000 - 0.866025403784439*I,</span>
366
- <span class="go"> &#39;zp_0000_0&#39;: 0.500000000000000 - 0.866025403784439*I,</span>
367
- <span class="go"> &#39;zp_0000_1&#39;: 0.500000000000000 - 0.866025403784439*I,</span>
368
- <span class="go"> &#39;zpp_0000_0&#39;: 0.500000000000000 - 0.866025403784439*I,</span>
369
- <span class="go"> &#39;zpp_0000_1&#39;: 0.500000000000000 - 0.866025403784439*I},</span>
370
- <span class="go"> is_numerical = True, ...),</span>
371
- <span class="go"> CrossRatios(</span>
372
- <span class="go"> {&#39;z_0000_0&#39;: 0.500000000000000 + 0.866025403784439*I,</span>
373
- <span class="go"> &#39;z_0000_1&#39;: 0.500000000000000 + 0.866025403784439*I,</span>
374
- <span class="go"> &#39;zp_0000_0&#39;: 0.500000000000000 + 0.866025403784439*I,</span>
375
- <span class="go"> &#39;zp_0000_1&#39;: 0.500000000000000 + 0.866025403784439*I,</span>
376
- <span class="go"> &#39;zpp_0000_0&#39;: 0.500000000000000 + 0.866025403784439*I,</span>
377
- <span class="go"> &#39;zpp_0000_1&#39;: 0.500000000000000 + 0.866025403784439*I},</span>
378
- <span class="go"> is_numerical = True, ...)]]]</span>
379
- <span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">tetrahedra_shapes</span><span class="p">(</span><span class="s1">&#39;rect&#39;</span><span class="p">)</span>
380
- <span class="go">[0.5000000000 + 0.8660254038*I, 0.5000000000 + 0.8660254038*I]</span>
381
- </pre></div>
382
- </div>
383
- <p>The result is of type <code class="docutils literal notranslate"><span class="pre">CrossRatios</span></code> and assigns z as well as z’=1/(1-z) and z’’=1-1/z a value.</p>
384
- </section>
385
- <section id="the-dimension-of-a-component">
386
- <span id="ptolemy-non-zero-dim-comp"></span><h2>The dimension of a component<a class="headerlink" href="#the-dimension-of-a-component" title="Permalink to this heading"></a></h2>
387
- <p>A Ptolemy variety might have positively dimensional components (note that this might or might not be a positively dimensional family of representations, see <a class="reference internal" href="ptolemy_prelim.html#ptolemy-generically-decorated"><span class="std std-ref">here</span></a>). For example, the Ptolemy variety for <code class="docutils literal notranslate"><span class="pre">m371</span></code> and the trivial obstruction class has a 1-dimensional component. This is indicated by:</p>
388
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()</span>
389
- <span class="go">[NonZeroDimensionalComponent(dimension = 1)]</span>
390
- </pre></div>
391
- </div>
392
- <p>Or:</p>
393
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">=</span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m371&quot;</span><span class="p">)</span>
394
- <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()</span>
395
- <span class="go">[[ PtolemyCoordinates(</span>
396
- <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
397
- <span class="go"> &#39;c_0011_1&#39;: -1,</span>
398
- <span class="go"> &#39;c_0011_2&#39;: -1,</span>
399
- <span class="go"> &#39;c_0011_3&#39;: Mod(-x - 1, x^2 + x + 2),</span>
400
- <span class="go"> ...,</span>
401
- <span class="go"> &#39;s_3_4&#39;: 1},</span>
402
- <span class="go"> is_numerical = False, ...)</span>
403
- <span class="go"> (witnesses for NonZeroDimensionalComponent(dimension = 1, free_variables = [&#39;c_0110_2&#39;])) ]]</span>
404
- </pre></div>
405
- </div>
406
- <p>The latter actually also provides a sample point (<a class="reference internal" href="ptolemy_examples3.html#ptolemy-example-find-witness"><span class="std std-ref">witness</span></a> which we will use <a class="reference internal" href="ptolemy_examples3.html#ptolemy-example-non-zero-dim-rep"><span class="std std-ref">later</span></a> to determine whether this corresponds to a 1-dimensional family of representations or not) on the 1-dimensional component. A <code class="docutils literal notranslate"><span class="pre">NonZeroDimensionalComponent</span></code> as well as <code class="docutils literal notranslate"><span class="pre">PtolemyCoordinates</span></code> (that correspond to 0-dimensional components of the Ptolemy variety)) has a <code class="docutils literal notranslate"><span class="pre">dimension</span></code> attribute, so we can do:</p>
407
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">=</span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m371&quot;</span><span class="p">)</span>
408
- <span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()</span>
409
- <span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span><span class="o">.</span><span class="n">dimension</span>
410
- <span class="go">[[1], [], [0], []]</span>
411
- </pre></div>
412
- </div>
413
- <p>This means that the Ptolemy variety for the trivial obstruction class has a 1-dimensional component and that the Ptolemy variety of one of the other obstruction classes a 0-dimensional component.</p>
414
- <p>A <code class="docutils literal notranslate"><span class="pre">NonZeroDimensionalComponent</span></code> is actually again a list whose elements will be witness points if witnesses have been computed for this Ptolemy variety.</p>
415
- <p><strong>Warning:</strong> This implies that if we <code class="docutils literal notranslate"><span class="pre">flatten</span></code> too much, the reported dimension becomes 0 which is the dimension of the witness point instead of 1:</p>
416
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span><span class="o">.</span><span class="n">flatten</span><span class="p">()</span>
417
- <span class="go">[1, 0]</span>
418
- </pre></div>
419
- </div>
420
- <p>Too much <code class="docutils literal notranslate"><span class="pre">flatten</span></code>:</p>
421
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span><span class="o">.</span><span class="n">flatten</span><span class="p">()</span>
422
- <span class="go">[0, 0]</span>
423
- </pre></div>
424
- </div>
425
- <p>The advantage is that we can still call methods such as <code class="docutils literal notranslate"><span class="pre">volume_numerical</span></code> and actually see the volume of a witness point (it is known that the volume stays constant on a component of boundary-unipotent representations, so one witness point can tell us the volume of all representation in that component):</p>
426
- <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
427
- <span class="go">[[[ [0.E-38, 0.E-38] (witnesses for NonZeroDimensionalComponent(dimension = 1, free_variables = [&#39;c_0110_2&#39;])) ]],</span>
428
- <span class="go"> [],</span>
429
- <span class="go"> [[4.75170196551790,</span>
430
- <span class="go"> -4.75170196551790,</span>
431
- <span class="go"> 4.75170196551790,</span>
432
- <span class="go"> -4.75170196551790,</span>
433
- <span class="go"> 1.17563301006556,</span>
434
- <span class="go"> -1.17563301006556,</span>
435
- <span class="go"> 1.17563301006556,</span>
436
- <span class="go"> -1.17563301006556]],</span>
437
- <span class="go"> []]</span>
438
- </pre></div>
439
- </div>
440
- </section>
441
- </section>
442
-
443
-
444
- </div>
445
- </div>
446
- <footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
447
- <a href="ptolemy_examples1.html" class="btn btn-neutral float-left" title="Step-by-step examples: Part 1" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
448
- <a href="ptolemy_examples3.html" class="btn btn-neutral float-right" title="Step-by-step examples: Part 3" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
449
- </div>
450
-
451
- <hr/>
452
-
453
- <div role="contentinfo">
454
- <p>&#169; Copyright 2009-2023, by Marc Culler, Nathan Dunfield, Matthias Goerner, Jeffrey Weeks and others.</p>
455
- </div>
456
-
457
- Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
458
- <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
459
- provided by <a href="https://readthedocs.org">Read the Docs</a>.
460
-
461
-
462
- </footer>
463
- </div>
464
- </div>
465
- </section>
466
- </div>
467
- <script>
468
- jQuery(function () {
469
- SphinxRtdTheme.Navigation.enable(true);
470
- });
471
- </script>
472
-
473
- </body>
1
+
2
+
3
+ <!DOCTYPE html>
4
+ <html class="writer-html5" lang="en" data-content_root="./">
5
+ <head>
6
+ <meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
7
+
8
+ <meta name="viewport" content="width=device-width, initial-scale=1.0" />
9
+ <title>Step-by-step examples: Part 2 &mdash; SnapPy 3.2 documentation</title>
10
+ <link rel="stylesheet" type="text/css" href="_static/pygments.css?v=fa44fd50" />
11
+ <link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=e59714d7" />
12
+ <link rel="stylesheet" type="text/css" href="_static/snappy_sphinx_rtd_theme.css?v=1b8ec2a8" />
13
+
14
+
15
+ <link rel="shortcut icon" href="_static/SnapPy.ico"/>
16
+ <script src="_static/jquery.js?v=5d32c60e"></script>
17
+ <script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
18
+ <script src="_static/documentation_options.js?v=828ea960"></script>
19
+ <script src="_static/doctools.js?v=9a2dae69"></script>
20
+ <script src="_static/sphinx_highlight.js?v=dc90522c"></script>
21
+ <script src="_static/js/theme.js"></script>
22
+ <link rel="index" title="Index" href="genindex.html" />
23
+ <link rel="search" title="Search" href="search.html" />
24
+ <link rel="next" title="Step-by-step examples: Part 3" href="ptolemy_examples3.html" />
25
+ <link rel="prev" title="Step-by-step examples: Part 1" href="ptolemy_examples1.html" />
26
+ </head>
27
+
28
+ <body class="wy-body-for-nav">
29
+ <div class="wy-grid-for-nav">
30
+ <nav data-toggle="wy-nav-shift" class="wy-nav-side">
31
+ <div class="wy-side-scroll">
32
+ <div class="wy-side-nav-search" >
33
+
34
+
35
+
36
+ <a href="index.html" class="icon icon-home">
37
+ SnapPy
38
+ <img src="_static/SnapPy-horizontal-128.png" class="logo" alt="Logo"/>
39
+ </a>
40
+ <div role="search">
41
+ <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
42
+ <input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
43
+ <input type="hidden" name="check_keywords" value="yes" />
44
+ <input type="hidden" name="area" value="default" />
45
+ </form>
46
+ </div>
47
+ </div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
48
+ <ul class="current">
49
+ <li class="toctree-l1"><a class="reference internal" href="installing.html">Installing SnapPy</a></li>
50
+ <li class="toctree-l1"><a class="reference internal" href="screenshots.html">Screenshots: SnapPy in action</a></li>
51
+ <li class="toctree-l1"><a class="reference internal" href="tutorial.html">Tutorial</a></li>
52
+ <li class="toctree-l1"><a class="reference internal" href="snappy.html">The snappy module and its classes</a></li>
53
+ <li class="toctree-l1"><a class="reference internal" href="plink.html">Using SnapPy’s link editor</a></li>
54
+ <li class="toctree-l1"><a class="reference internal" href="spherogram.html">Links: planar diagrams and invariants</a></li>
55
+ <li class="toctree-l1"><a class="reference internal" href="snap.html">Number theory of hyperbolic 3-manifolds</a></li>
56
+ <li class="toctree-l1"><a class="reference internal" href="verify.html">Verified computations</a></li>
57
+ <li class="toctree-l1 current"><a class="reference internal" href="other.html">Other components</a><ul class="current">
58
+ <li class="toctree-l2 current"><a class="reference internal" href="other.html#ptolemy-module">Ptolemy module</a><ul class="current">
59
+ <li class="toctree-l3 current"><a class="reference internal" href="ptolemy.html">The ptolemy module</a><ul class="current">
60
+ <li class="toctree-l4"><a class="reference internal" href="ptolemy.html#what-is-the-ptolemy-module">What is the ptolemy module?</a></li>
61
+ <li class="toctree-l4 current"><a class="reference internal" href="ptolemy.html#documentation">Documentation</a><ul class="current">
62
+ <li class="toctree-l5"><a class="reference internal" href="ptolemy_prelim.html">Mathematical preliminaries</a></li>
63
+ <li class="toctree-l5"><a class="reference internal" href="ptolemy_examples1.html">Step-by-step examples: Part 1</a></li>
64
+ <li class="toctree-l5 current"><a class="current reference internal" href="#">Step-by-step examples: Part 2</a></li>
65
+ <li class="toctree-l5"><a class="reference internal" href="ptolemy_examples3.html">Step-by-step examples: Part 3</a></li>
66
+ <li class="toctree-l5"><a class="reference internal" href="ptolemy_examples4.html">Step-by-step examples: Part 4</a></li>
67
+ <li class="toctree-l5"><a class="reference internal" href="ptolemy_classes.html">Classes</a></li>
68
+ </ul>
69
+ </li>
70
+ </ul>
71
+ </li>
72
+ </ul>
73
+ </li>
74
+ <li class="toctree-l2"><a class="reference internal" href="other.html#twister">Twister</a></li>
75
+ </ul>
76
+ </li>
77
+ <li class="toctree-l1"><a class="reference internal" href="news.html">News</a></li>
78
+ <li class="toctree-l1"><a class="reference internal" href="credits.html">Credits</a></li>
79
+ <li class="toctree-l1"><a class="reference internal" href="bugs.html">Reporting bugs and other problems</a></li>
80
+ <li class="toctree-l1"><a class="reference internal" href="todo.html">To Do List</a></li>
81
+ <li class="toctree-l1"><a class="reference internal" href="development.html">Development Basics</a></li>
82
+ </ul>
83
+
84
+ </div>
85
+ </div>
86
+ </nav>
87
+
88
+ <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
89
+ <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
90
+ <a href="index.html">SnapPy</a>
91
+ </nav>
92
+
93
+ <div class="wy-nav-content">
94
+ <div class="rst-content">
95
+ <div role="navigation" aria-label="Page navigation">
96
+ <ul class="wy-breadcrumbs">
97
+ <li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
98
+ <li class="breadcrumb-item"><a href="other.html">Other components</a></li>
99
+ <li class="breadcrumb-item"><a href="ptolemy.html">The ptolemy module</a></li>
100
+ <li class="breadcrumb-item active">Step-by-step examples: Part 2</li>
101
+ <li class="wy-breadcrumbs-aside">
102
+ </li>
103
+ </ul>
104
+ <hr/>
105
+ </div>
106
+ <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
107
+ <div itemprop="articleBody">
108
+
109
+ <section id="step-by-step-examples-part-2">
110
+ <h1>Step-by-step examples: Part 2<a class="headerlink" href="#step-by-step-examples-part-2" title="Link to this heading"></a></h1>
111
+ <section id="the-ptolemy-list-type">
112
+ <span id="ptolemy-example-smart-lists"></span><h2>The Ptolemy list type<a class="headerlink" href="#the-ptolemy-list-type" title="Link to this heading"></a></h2>
113
+ <p>Recall that <code class="docutils literal notranslate"><span class="pre">ptolemy_variety</span></code> with <code class="docutils literal notranslate"><span class="pre">obstruction_class='all'</span></code> returns a list of varieties, one for each obstruction class:</p>
114
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span>
115
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">obstruction_class</span> <span class="o">=</span> <span class="s1">&#39;all&#39;</span><span class="p">)</span>
116
+ <span class="go">[Ptolemy Variety for m003, N = 2, obstruction_class = 0</span>
117
+ <span class="go"> c_0011_0 * c_0101_0 + c_0011_0^2 - c_0101_0^2</span>
118
+ <span class="go"> c_0011_0 * c_0101_0 + c_0011_0^2 - c_0101_0^2</span>
119
+ <span class="go"> - 1 + c_0011_0,</span>
120
+ <span class="go"> Ptolemy Variety for m003, N = 2, obstruction_class = 1</span>
121
+ <span class="go"> - c_0011_0 * c_0101_0 - c_0011_0^2 - c_0101_0^2</span>
122
+ <span class="go"> - c_0011_0 * c_0101_0 - c_0011_0^2 - c_0101_0^2</span>
123
+ <span class="go"> - 1 + c_0011_0]</span>
124
+ </pre></div>
125
+ </div>
126
+ <p>Also recall that <code class="docutils literal notranslate"><span class="pre">retrieve_solutions</span></code> was a method of a <code class="docutils literal notranslate"><span class="pre">PtolemyVariety</span></code>. Assume we want to call <code class="docutils literal notranslate"><span class="pre">retrieve_solutions</span></code> for each Ptolemy variety. As in the previous example, we could write a loop such as:</p>
127
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="p">[</span><span class="n">p</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span> <span class="k">for</span> <span class="n">p</span> <span class="ow">in</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="s1">&#39;all&#39;</span><span class="p">)]</span>
128
+ </pre></div>
129
+ </div>
130
+ <p>The ptolemy module allows to do this in a much shorter way:</p>
131
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
132
+ <span class="go">[[PtolemyCoordinates(</span>
133
+ <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
134
+ <span class="go"> &#39;c_0011_1&#39;: -1,</span>
135
+ <span class="go"> &#39;c_0101_0&#39;: Mod(x, x^2 - x - 1),</span>
136
+ <span class="go"> ...,</span>
137
+ <span class="go"> &#39;s_3_1&#39;: 1},</span>
138
+ <span class="go"> is_numerical = False, ...)],</span>
139
+ <span class="go"> [PtolemyCoordinates(</span>
140
+ <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
141
+ <span class="go"> &#39;c_0011_1&#39;: -1,</span>
142
+ <span class="go"> &#39;c_0101_0&#39;: Mod(x, x^2 + x + 1),</span>
143
+ <span class="go"> ...,</span>
144
+ <span class="go"> &#39;s_3_1&#39;: 1},</span>
145
+ <span class="go"> is_numerical = False, ...)]]</span>
146
+ </pre></div>
147
+ </div>
148
+ <p>This behavior is specific to the ptolemy module. It works with many methods of the ptolemy module that
149
+ can potentially return more than one object. These methods return a special kind of list (usually
150
+ <code class="docutils literal notranslate"><span class="pre">MethodMappingList</span></code>, a subclass of python <code class="docutils literal notranslate"><span class="pre">list</span></code>) that tries to call the method of the given name (here <code class="docutils literal notranslate"><span class="pre">retrieve_solutions</span></code>) with
151
+ the given arguments (here <code class="docutils literal notranslate"><span class="pre">verbose=False</span></code>) on each element in the list (here the two Ptolemy varieties).</p>
152
+ <p>Since <code class="docutils literal notranslate"><span class="pre">retrieve_solutions</span></code> itself actually returns a list, the result is a list of lists of solutions which are of type <code class="docutils literal notranslate"><span class="pre">PtolemyCoordinates</span></code>. The first level groups the solutions by obstruction class. The inner lists contain the different (non-Galois conjugate) solutions for each obstruction class (here, for <code class="docutils literal notranslate"><span class="pre">m003</span></code>, each inner lists contains only one element).</p>
153
+ </section>
154
+ <section id="using-the-ptolemy-list-type-recursively">
155
+ <h2>Using the Ptolemy list type recursively<a class="headerlink" href="#using-the-ptolemy-list-type-recursively" title="Link to this heading"></a></h2>
156
+ <p>The list type described in the previous example works recursively. Recall that an algebraic solution to a Ptolemy variety (of type <code class="docutils literal notranslate"><span class="pre">PtolemyCoordinates</span></code>) has a method <code class="docutils literal notranslate"><span class="pre">volume_numerical</span></code> that returns a list of volumes:</p>
157
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">=</span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span>
158
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">p</span><span class="o">=</span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span>
159
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span><span class="o">=</span><span class="n">p</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
160
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
161
+ <span class="go">[0.E-19, 1.88267370443418 E-14]</span>
162
+ </pre></div>
163
+ </div>
164
+ <p>We can chain these commands together to retrieve the volumes of all boundary-unipotent PSL(2, <strong>C</strong>) (that are <a class="reference internal" href="ptolemy_prelim.html#ptolemy-generically-decorated"><span class="std std-ref">generically decorated</span></a> with respect to the triangulation) in just one line:</p>
165
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
166
+ <span class="go">[[[0.E-19, 1.88267370443418 E-14]], [[2.02988321281931, -2.02988321281931]]]</span>
167
+ </pre></div>
168
+ </div>
169
+ <p>Note that the volumes of the representations are in a list of lists of lists. At the first level the volumes are grouped by obstruction class, then by Galois conjugacy.</p>
170
+ <p><strong>Remark:</strong> There might be an extra level for witness points.</p>
171
+ <p><strong>Remark:</strong> Unfortunately, this is not compatible with tab-autocompletion, see <a class="reference internal" href="#ptolemy-example-missing-auto-completion"><span class="std std-ref">later</span></a>.</p>
172
+ </section>
173
+ <section id="a-comparison-of-m003-and-m004">
174
+ <h2>A comparison of <code class="docutils literal notranslate"><span class="pre">m003</span></code> and <code class="docutils literal notranslate"><span class="pre">m004</span></code><a class="headerlink" href="#a-comparison-of-m003-and-m004" title="Link to this heading"></a></h2>
175
+ <p>We can now compare the set of volumes of <code class="docutils literal notranslate"><span class="pre">m003</span></code> and <code class="docutils literal notranslate"><span class="pre">m004</span></code>:</p>
176
+ <div class="doctest highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
177
+ <span class="go">[[[0.E-19, 1.88267370443418 E-14]], [[2.02988321281931, -2.02988321281931]]]</span>
178
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
179
+ <span class="go">[[], [[-2.02988321281931, 2.02988321281931]]]</span>
180
+ </pre></div>
181
+ </div>
182
+ <p>We see that the two manifolds are distinguished by their volumes of boundary-unipotent representations: <code class="docutils literal notranslate"><span class="pre">m004</span></code> has no representation with trivial volume (this is not a proof as in theory, there could be such a representation which is not <a class="reference internal" href="ptolemy_prelim.html#ptolemy-generically-decorated"><span class="std std-ref">generically decorated</span></a> with respect to the given triangulation) and no representation that can be lifted to a boundary-unipotent SL(2, <strong>C</strong>)-representation.</p>
183
+ </section>
184
+ <section id="a-non-hyperbolic-example">
185
+ <h2>A non-hyperbolic example<a class="headerlink" href="#a-non-hyperbolic-example" title="Link to this heading"></a></h2>
186
+ <p>We can also compute the volumes for a manifold that might be non-hyperbolic, here the complement of the 5<sub>1</sub> knot:</p>
187
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;5_1&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
188
+ <span class="go">[[], [[1.52310839130992 E-14, 0.E-37]]]</span>
189
+ </pre></div>
190
+ </div>
191
+ <p>Note that one of the Ptolemy varieties is non-empty which proves that all edges of the triangulation are essential. We also see that all volumes are 0 and thus smaller than the volume 2.029883… of the figure-eight knot complement that is proven to be the smallest volume of any orientable cusped manifold. Thus, it follows from Theorem 1.3 and Remark 1.4 of <a class="reference internal" href="ptolemy_prelim.html#ggz2014" id="id1"><span>[GGZ2014]</span></a> that 5<sub>1</sub> is not hyperbolic.</p>
192
+ <p><strong>Remark:</strong> The ptolemy module does not (yet) support interval arithmetics, otherwise, this would be a proof that 5<sub>1</sub> is not hyperbolic.</p>
193
+ </section>
194
+ <section id="flattening-nested-structures">
195
+ <h2>Flattening nested structures<a class="headerlink" href="#flattening-nested-structures" title="Link to this heading"></a></h2>
196
+ <p>If we want to loose some of the grouping, we can call <code class="docutils literal notranslate"><span class="pre">flatten</span></code> on the results. Here the grouping by obstruction class is lost:</p>
197
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span><span class="o">.</span><span class="n">flatten</span><span class="p">()</span>
198
+ <span class="go">[[0.E-19, 1.88267370443418 E-14], [2.02988321281931, -2.02988321281931]]</span>
199
+ </pre></div>
200
+ </div>
201
+ <p>And now, the grouping by Galois conjugacy is lost as well, resulting in a flat list:</p>
202
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span><span class="o">.</span><span class="n">flatten</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
203
+ <span class="go">[0.E-19, 1.88267370443418 E-14, 2.02988321281931, -2.02988321281931]</span>
204
+ </pre></div>
205
+ </div>
206
+ <p>So the result is just a flat list.</p>
207
+ <p><strong>Remark:</strong> We cannot <cite>overflatten</cite>. If we give an even larger argument to flatten, the result will just stay a flat list.</p>
208
+ </section>
209
+ <section id="lack-of-tab-autocompletion-for-nested-structures">
210
+ <span id="ptolemy-example-missing-auto-completion"></span><h2>Lack of tab-autocompletion for nested structures<a class="headerlink" href="#lack-of-tab-autocompletion-for-nested-structures" title="Link to this heading"></a></h2>
211
+ <p>Unfortunately, the autocompletion does not list all the desired results when we have a nested structure. For example:</p>
212
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
213
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span><span class="o">.</span>
214
+ </pre></div>
215
+ </div>
216
+ <p>When we now hit the tab key:</p>
217
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span><span class="o">.</span>
218
+ <span class="go">sols.append sols.extend sols.index sols.pop sols.reverse</span>
219
+ <span class="go">sols.count sols.flatten sols.insert sols.remove sols.sort</span>
220
+ </pre></div>
221
+ </div>
222
+ <p>… we only get <code class="docutils literal notranslate"><span class="pre">list</span></code> methods, but not the desired <code class="docutils literal notranslate"><span class="pre">volume_numerical</span></code>. One way to discover the available methods is to pick a leaf of the nested structure and hit the tab key:</p>
223
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span> <span class="o">=</span> <span class="n">sols</span><span class="o">.</span><span class="n">flatten</span><span class="p">(</span><span class="mi">100</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
224
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span><span class="o">.</span>
225
+ <span class="go">sol.N sol.keys</span>
226
+ <span class="go">sol.check_against_manifold sol.long_edge</span>
227
+ <span class="go">...</span>
228
+ <span class="go">sol.itervalues sol.volume_numerical</span>
229
+ </pre></div>
230
+ </div>
231
+ <p>The overview diagram might also be helpful.</p>
232
+ </section>
233
+ <section id="converting-exact-solutions-into-numerical-solutions">
234
+ <h2>Converting exact solutions into numerical solutions<a class="headerlink" href="#converting-exact-solutions-into-numerical-solutions" title="Link to this heading"></a></h2>
235
+ <p>We can turn exact solutions into numerical solutions by calling <code class="docutils literal notranslate"><span class="pre">numerical</span></code>:</p>
236
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m003&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
237
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span>
238
+ <span class="go">PtolemyCoordinates(</span>
239
+ <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
240
+ <span class="go"> &#39;c_0011_1&#39;: -1,</span>
241
+ <span class="go"> &#39;c_0101_0&#39;: Mod(x, x^2 + x + 1),</span>
242
+ <span class="go"> ...</span>
243
+ <span class="go"> &#39;s_3_1&#39;: 1},</span>
244
+ <span class="go"> is_numerical = False, ...)</span>
245
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">sol</span><span class="o">.</span><span class="n">numerical</span><span class="p">()</span>
246
+ <span class="go">[PtolemyCoordinates(</span>
247
+ <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
248
+ <span class="go"> &#39;c_0011_1&#39;: -1,</span>
249
+ <span class="go"> &#39;c_0101_0&#39;: -0.500000000000000 - 0.866025403784439*I,</span>
250
+ <span class="go"> ...,</span>
251
+ <span class="go"> &#39;s_3_1&#39;: 1},</span>
252
+ <span class="go"> is_numerical = True, ...),</span>
253
+ <span class="go"> PtolemyCoordinates(</span>
254
+ <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
255
+ <span class="go"> &#39;c_0011_1&#39;: -1,</span>
256
+ <span class="go"> &#39;c_0101_0&#39;: -0.500000000000000 + 0.866025403784439*I,</span>
257
+ <span class="go"> ...,</span>
258
+ <span class="go"> &#39;s_3_1&#39;: 1},</span>
259
+ <span class="go"> is_numerical = True, ...)]</span>
260
+ </pre></div>
261
+ </div>
262
+ <p>Note that the one exact (algebraic) solution turns into a list of numerical solutions which are Galois conjugates.</p>
263
+ <p><strong>Remark:</strong> This uses the current pari precision. See the <a class="reference internal" href="ptolemy_examples1.html#ptolemy-example-increase-precision"><span class="std std-ref">above example</span></a>, in particular, the comment about interval arithmetics.</p>
264
+ <p><strong>Remark:</strong> Calling <code class="docutils literal notranslate"><span class="pre">numerical()</span></code> on a numerical solution does nothing.</p>
265
+ <p><strong>Remark:</strong> <code class="docutils literal notranslate"><span class="pre">CrossRatios</span></code> also support <code class="docutils literal notranslate"><span class="pre">numerical</span></code>.</p>
266
+ </section>
267
+ <section id="working-with-exact-vs-numerical-solutions">
268
+ <span id="ptolemy-example-numerical-matrix"></span><h2>Working with exact vs numerical solutions<a class="headerlink" href="#working-with-exact-vs-numerical-solutions" title="Link to this heading"></a></h2>
269
+ <p>Most methods such as <code class="docutils literal notranslate"><span class="pre">evaluate_word</span></code> or <code class="docutils literal notranslate"><span class="pre">cross_ratios</span></code> work just the same way on an exact solution:</p>
270
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">exact_sol</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
271
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">exact_sol</span>
272
+ <span class="go">PtolemyCoordinates(</span>
273
+ <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
274
+ <span class="go"> &#39;c_0011_1&#39;: -1,</span>
275
+ <span class="go"> &#39;c_0101_0&#39;: 1,</span>
276
+ <span class="go"> &#39;c_0101_1&#39;: Mod(x, x^2 + x + 1),</span>
277
+ <span class="go"> ...,</span>
278
+ <span class="go"> &#39;s_3_1&#39;: -1},</span>
279
+ <span class="go"> is_numerical = False, ...)</span>
280
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">exact_sol</span><span class="o">.</span><span class="n">evaluate_word</span><span class="p">(</span><span class="s1">&#39;a&#39;</span><span class="p">)</span>
281
+ <span class="go">[[Mod(-2*x, x^2 + x + 1), Mod(-x - 1, x^2 + x + 1)],</span>
282
+ <span class="go"> [Mod(x, x^2 + x + 1), Mod(x + 1, x^2 + x + 1)]]</span>
283
+ </pre></div>
284
+ </div>
285
+ <p>… as they do on a numerical solution:</p>
286
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">numerical_sol</span> <span class="o">=</span> <span class="n">sol</span><span class="o">.</span><span class="n">numerical</span><span class="p">()[</span><span class="mi">0</span><span class="p">]</span>
287
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">numerical_sol</span>
288
+ <span class="go">PtolemyCoordinates(</span>
289
+ <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
290
+ <span class="go"> &#39;c_0011_1&#39;: -1,</span>
291
+ <span class="go"> &#39;c_0101_0&#39;: 1,</span>
292
+ <span class="go"> &#39;c_0101_1&#39;: -0.500000000000000 - 0.866025403784439*I,</span>
293
+ <span class="go"> ...,</span>
294
+ <span class="go"> &#39;s_3_1&#39;: -1},</span>
295
+ <span class="go"> is_numerical = False, ...)</span>
296
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">numerical_sol</span><span class="o">.</span><span class="n">evaluate_word</span><span class="p">(</span><span class="s1">&#39;a&#39;</span><span class="p">)</span>
297
+ <span class="go">[[1.00000000000000 + 1.73205080756888*I,</span>
298
+ <span class="go"> -0.500000000000000 + 0.866025403784439*I],</span>
299
+ <span class="go"> [-0.500000000000000 - 0.866025403784439*I,</span>
300
+ <span class="go"> 0.500000000000000 - 0.866025403784439*I]]</span>
301
+ </pre></div>
302
+ </div>
303
+ <p>Methods with postfix <code class="docutils literal notranslate"><span class="pre">_numerical</span></code> are special: when applied to an exact solution, they implicitly convert it to a list
304
+ of Galois conjugate numerical solutions first. <code class="docutils literal notranslate"><span class="pre">volume_numerical</span></code> is an example (because volume is a transcendental function):</p>
305
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">exact_sol</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
306
+ <span class="go">[-2.02988321281931, 2.02988321281931]</span>
307
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">numerical_sol</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
308
+ <span class="go">-2.02988321281931</span>
309
+ </pre></div>
310
+ </div>
311
+ </section>
312
+ <section id="computing-numerical-solutions-directly">
313
+ <span id="ptolemy-example-retrieve-numerical-solutions"></span><h2>Computing numerical solutions directly<a class="headerlink" href="#computing-numerical-solutions-directly" title="Link to this heading"></a></h2>
314
+ <p>We can also directly compute numerical solutions:</p>
315
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span>
316
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">numerical</span> <span class="o">=</span> <span class="kc">True</span><span class="p">)</span>
317
+ <span class="go">[[],</span>
318
+ <span class="go"> [[PtolemyCoordinates(</span>
319
+ <span class="go"> {&#39;c_0011_0&#39;: 1.00000000000000 + 0.E-19*I,</span>
320
+ <span class="go"> &#39;c_0011_1&#39;: -1.00000000000000 + 0.E-19*I,</span>
321
+ <span class="go"> &#39;c_0101_0&#39;: 1.00000000000000 + 0.E-19*I,</span>
322
+ <span class="go"> &#39;c_0101_1&#39;: -0.500000000000000 - 0.866025403784439*I,</span>
323
+ <span class="go"> ...,</span>
324
+ <span class="go"> &#39;s_3_1&#39;: -1},</span>
325
+ <span class="go"> is_numerical = True, ...),</span>
326
+ <span class="go"> PtolemyCoordinates(</span>
327
+ <span class="go"> {&#39;c_0011_0&#39;: 1.00000000000000 + 0.E-19*I,</span>
328
+ <span class="go"> &#39;c_0011_1&#39;: -1.00000000000000 + 0.E-19*I,</span>
329
+ <span class="go"> &#39;c_0101_0&#39;: 1.00000000000000 + 0.E-19*I,</span>
330
+ <span class="go"> &#39;c_0101_1&#39;: -0.500000000000000 + 0.866025403784439*I,</span>
331
+ <span class="go"> ...,</span>
332
+ <span class="go"> &#39;s_3_1&#39;: -1},</span>
333
+ <span class="go"> is_numerical = True, ...)]]]</span>
334
+ </pre></div>
335
+ </div>
336
+ <p>The structure is as described earlier, a list of lists of lists: first solutions are grouped by obstruction class, then by Galois conjugacy.</p>
337
+ <p>The advantage over going through the exact solutions is that it might be much faster
338
+ (because it can avoid computing the number field from the lexicographic Groebner basis, see later). For example, many PSL(3, <strong>C</strong>) examples only work when using <code class="docutils literal notranslate"><span class="pre">numerical</span> <span class="pre">=</span> <span class="pre">True</span></code>.</p>
339
+ </section>
340
+ <section id="computing-cross-ratios-from-ptolemy-coordinates">
341
+ <span id="ptolemy-example-cross-ratios"></span><h2>Computing cross ratios from Ptolemy coordinates<a class="headerlink" href="#computing-cross-ratios-from-ptolemy-coordinates" title="Link to this heading"></a></h2>
342
+ <p>Given exact or numerical solutions to the Ptolemy variety, we can also compute the cross ratios/shape parameters:</p>
343
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">(</span><span class="n">verbose</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
344
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">zs</span><span class="o">=</span><span class="n">sols</span><span class="o">.</span><span class="n">cross_ratios</span><span class="p">()</span>
345
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">zs</span>
346
+ <span class="go">[[],</span>
347
+ <span class="go"> [CrossRatios({&#39;z_0000_0&#39;: Mod(x + 1, x^2 + x + 1),</span>
348
+ <span class="go"> &#39;z_0000_1&#39;: Mod(x + 1, x^2 + x + 1),</span>
349
+ <span class="go"> &#39;zp_0000_0&#39;: Mod(x + 1, x^2 + x + 1),</span>
350
+ <span class="go"> &#39;zp_0000_1&#39;: Mod(x + 1, x^2 + x + 1),</span>
351
+ <span class="go"> &#39;zpp_0000_0&#39;: Mod(x + 1, x^2 + x + 1),</span>
352
+ <span class="go"> &#39;zpp_0000_1&#39;: Mod(x + 1, x^2 + x + 1)},</span>
353
+ <span class="go"> is_numerical = False, ...)]]</span>
354
+ </pre></div>
355
+ </div>
356
+ <p><strong>Remark</strong>: The shapes will be given as element in the Ptolemy field with defining polynomial being the second argument to <code class="docutils literal notranslate"><span class="pre">Mod(...,</span> <span class="pre">...)</span></code>, here, x<sup>2</sup>+x+1. The Ptolemy field is a (possibly trivial) extension of the shape field. For <em>N</em> =2, the Ptolemy field is the trace field <a class="reference internal" href="ptolemy_prelim.html#ggz2014" id="id2"><span>[GGZ2014]</span></a> and an iterated square extension of the shape field which is the invariant trace field for a cusped manifold.</p>
357
+ <p>And numerically, so that we can compare to SnapPy’s shapes:</p>
358
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">zs</span><span class="o">.</span><span class="n">numerical</span><span class="p">()</span>
359
+ <span class="go">[[],</span>
360
+ <span class="go"> [[CrossRatios(</span>
361
+ <span class="go"> {&#39;z_0000_0&#39;: 0.500000000000000 - 0.866025403784439*I,</span>
362
+ <span class="go"> &#39;z_0000_1&#39;: 0.500000000000000 - 0.866025403784439*I,</span>
363
+ <span class="go"> &#39;zp_0000_0&#39;: 0.500000000000000 - 0.866025403784439*I,</span>
364
+ <span class="go"> &#39;zp_0000_1&#39;: 0.500000000000000 - 0.866025403784439*I,</span>
365
+ <span class="go"> &#39;zpp_0000_0&#39;: 0.500000000000000 - 0.866025403784439*I,</span>
366
+ <span class="go"> &#39;zpp_0000_1&#39;: 0.500000000000000 - 0.866025403784439*I},</span>
367
+ <span class="go"> is_numerical = True, ...),</span>
368
+ <span class="go"> CrossRatios(</span>
369
+ <span class="go"> {&#39;z_0000_0&#39;: 0.500000000000000 + 0.866025403784439*I,</span>
370
+ <span class="go"> &#39;z_0000_1&#39;: 0.500000000000000 + 0.866025403784439*I,</span>
371
+ <span class="go"> &#39;zp_0000_0&#39;: 0.500000000000000 + 0.866025403784439*I,</span>
372
+ <span class="go"> &#39;zp_0000_1&#39;: 0.500000000000000 + 0.866025403784439*I,</span>
373
+ <span class="go"> &#39;zpp_0000_0&#39;: 0.500000000000000 + 0.866025403784439*I,</span>
374
+ <span class="go"> &#39;zpp_0000_1&#39;: 0.500000000000000 + 0.866025403784439*I},</span>
375
+ <span class="go"> is_numerical = True, ...)]]]</span>
376
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m004&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">tetrahedra_shapes</span><span class="p">(</span><span class="s1">&#39;rect&#39;</span><span class="p">)</span>
377
+ <span class="go">[0.5000000000 + 0.8660254038*I, 0.5000000000 + 0.8660254038*I]</span>
378
+ </pre></div>
379
+ </div>
380
+ <p>The result is of type <code class="docutils literal notranslate"><span class="pre">CrossRatios</span></code> and assigns z as well as z’=1/(1-z) and z’’=1-1/z a value.</p>
381
+ </section>
382
+ <section id="the-dimension-of-a-component">
383
+ <span id="ptolemy-non-zero-dim-comp"></span><h2>The dimension of a component<a class="headerlink" href="#the-dimension-of-a-component" title="Link to this heading"></a></h2>
384
+ <p>A Ptolemy variety might have positively dimensional components (note that this might or might not be a positively dimensional family of representations, see <a class="reference internal" href="ptolemy_prelim.html#ptolemy-generically-decorated"><span class="std std-ref">here</span></a>). For example, the Ptolemy variety for <code class="docutils literal notranslate"><span class="pre">m371</span></code> and the trivial obstruction class has a 1-dimensional component. This is indicated by:</p>
385
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()</span>
386
+ <span class="go">[NonZeroDimensionalComponent(dimension = 1)]</span>
387
+ </pre></div>
388
+ </div>
389
+ <p>Or:</p>
390
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">=</span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m371&quot;</span><span class="p">)</span>
391
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()</span>
392
+ <span class="go">[[ PtolemyCoordinates(</span>
393
+ <span class="go"> {&#39;c_0011_0&#39;: 1,</span>
394
+ <span class="go"> &#39;c_0011_1&#39;: -1,</span>
395
+ <span class="go"> &#39;c_0011_2&#39;: -1,</span>
396
+ <span class="go"> &#39;c_0011_3&#39;: Mod(-x - 1, x^2 + x + 2),</span>
397
+ <span class="go"> ...,</span>
398
+ <span class="go"> &#39;s_3_4&#39;: 1},</span>
399
+ <span class="go"> is_numerical = False, ...)</span>
400
+ <span class="go"> (witnesses for NonZeroDimensionalComponent(dimension = 1, free_variables = [&#39;c_0110_2&#39;])) ]]</span>
401
+ </pre></div>
402
+ </div>
403
+ <p>The latter actually also provides a sample point (<a class="reference internal" href="ptolemy_examples3.html#ptolemy-example-find-witness"><span class="std std-ref">witness</span></a> which we will use <a class="reference internal" href="ptolemy_examples3.html#ptolemy-example-non-zero-dim-rep"><span class="std std-ref">later</span></a> to determine whether this corresponds to a 1-dimensional family of representations or not) on the 1-dimensional component. A <code class="docutils literal notranslate"><span class="pre">NonZeroDimensionalComponent</span></code> as well as <code class="docutils literal notranslate"><span class="pre">PtolemyCoordinates</span></code> (that correspond to 0-dimensional components of the Ptolemy variety)) has a <code class="docutils literal notranslate"><span class="pre">dimension</span></code> attribute, so we can do:</p>
404
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">M</span><span class="o">=</span><span class="n">Manifold</span><span class="p">(</span><span class="s2">&quot;m371&quot;</span><span class="p">)</span>
405
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span> <span class="o">=</span> <span class="n">M</span><span class="o">.</span><span class="n">ptolemy_variety</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span><span class="s1">&#39;all&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">retrieve_solutions</span><span class="p">()</span>
406
+ <span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span><span class="o">.</span><span class="n">dimension</span>
407
+ <span class="go">[[1], [], [0], []]</span>
408
+ </pre></div>
409
+ </div>
410
+ <p>This means that the Ptolemy variety for the trivial obstruction class has a 1-dimensional component and that the Ptolemy variety of one of the other obstruction classes a 0-dimensional component.</p>
411
+ <p>A <code class="docutils literal notranslate"><span class="pre">NonZeroDimensionalComponent</span></code> is actually again a list whose elements will be witness points if witnesses have been computed for this Ptolemy variety.</p>
412
+ <p><strong>Warning:</strong> This implies that if we <code class="docutils literal notranslate"><span class="pre">flatten</span></code> too much, the reported dimension becomes 0 which is the dimension of the witness point instead of 1:</p>
413
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span><span class="o">.</span><span class="n">flatten</span><span class="p">()</span>
414
+ <span class="go">[1, 0]</span>
415
+ </pre></div>
416
+ </div>
417
+ <p>Too much <code class="docutils literal notranslate"><span class="pre">flatten</span></code>:</p>
418
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span><span class="o">.</span><span class="n">flatten</span><span class="p">()</span>
419
+ <span class="go">[0, 0]</span>
420
+ </pre></div>
421
+ </div>
422
+ <p>The advantage is that we can still call methods such as <code class="docutils literal notranslate"><span class="pre">volume_numerical</span></code> and actually see the volume of a witness point (it is known that the volume stays constant on a component of boundary-unipotent representations, so one witness point can tell us the volume of all representation in that component):</p>
423
+ <div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">sols</span><span class="o">.</span><span class="n">volume_numerical</span><span class="p">()</span>
424
+ <span class="go">[[[ [0.E-38, 0.E-38] (witnesses for NonZeroDimensionalComponent(dimension = 1, free_variables = [&#39;c_0110_2&#39;])) ]],</span>
425
+ <span class="go"> [],</span>
426
+ <span class="go"> [[4.75170196551790,</span>
427
+ <span class="go"> -4.75170196551790,</span>
428
+ <span class="go"> 4.75170196551790,</span>
429
+ <span class="go"> -4.75170196551790,</span>
430
+ <span class="go"> 1.17563301006556,</span>
431
+ <span class="go"> -1.17563301006556,</span>
432
+ <span class="go"> 1.17563301006556,</span>
433
+ <span class="go"> -1.17563301006556]],</span>
434
+ <span class="go"> []]</span>
435
+ </pre></div>
436
+ </div>
437
+ </section>
438
+ </section>
439
+
440
+
441
+ </div>
442
+ </div>
443
+ <footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
444
+ <a href="ptolemy_examples1.html" class="btn btn-neutral float-left" title="Step-by-step examples: Part 1" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
445
+ <a href="ptolemy_examples3.html" class="btn btn-neutral float-right" title="Step-by-step examples: Part 3" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
446
+ </div>
447
+
448
+ <hr/>
449
+
450
+ <div role="contentinfo">
451
+ <p>&#169; Copyright 2009-2025, by Marc Culler, Nathan Dunfield, Matthias Goerner, Jeffrey Weeks and others.</p>
452
+ </div>
453
+
454
+ Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
455
+ <a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
456
+ provided by <a href="https://readthedocs.org">Read the Docs</a>.
457
+
458
+
459
+ </footer>
460
+ </div>
461
+ </div>
462
+ </section>
463
+ </div>
464
+ <script>
465
+ jQuery(function () {
466
+ SphinxRtdTheme.Navigation.enable(true);
467
+ });
468
+ </script>
469
+
470
+ </body>
474
471
  </html>