smftools 0.3.1__py3-none-any.whl → 0.3.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- smftools/_version.py +1 -1
- smftools/cli/chimeric_adata.py +1563 -0
- smftools/cli/helpers.py +18 -2
- smftools/cli/hmm_adata.py +18 -1
- smftools/cli/latent_adata.py +522 -67
- smftools/cli/load_adata.py +2 -2
- smftools/cli/preprocess_adata.py +32 -93
- smftools/cli/recipes.py +26 -0
- smftools/cli/spatial_adata.py +23 -109
- smftools/cli/variant_adata.py +423 -0
- smftools/cli_entry.py +41 -5
- smftools/config/conversion.yaml +0 -10
- smftools/config/deaminase.yaml +3 -0
- smftools/config/default.yaml +49 -13
- smftools/config/experiment_config.py +96 -3
- smftools/constants.py +4 -0
- smftools/hmm/call_hmm_peaks.py +1 -1
- smftools/informatics/binarize_converted_base_identities.py +2 -89
- smftools/informatics/converted_BAM_to_adata.py +53 -13
- smftools/informatics/h5ad_functions.py +83 -0
- smftools/informatics/modkit_extract_to_adata.py +4 -0
- smftools/plotting/__init__.py +26 -12
- smftools/plotting/autocorrelation_plotting.py +22 -4
- smftools/plotting/chimeric_plotting.py +1893 -0
- smftools/plotting/classifiers.py +28 -14
- smftools/plotting/general_plotting.py +58 -3362
- smftools/plotting/hmm_plotting.py +1586 -2
- smftools/plotting/latent_plotting.py +804 -0
- smftools/plotting/plotting_utils.py +243 -0
- smftools/plotting/position_stats.py +16 -8
- smftools/plotting/preprocess_plotting.py +281 -0
- smftools/plotting/qc_plotting.py +8 -3
- smftools/plotting/spatial_plotting.py +1134 -0
- smftools/plotting/variant_plotting.py +1231 -0
- smftools/preprocessing/__init__.py +3 -0
- smftools/preprocessing/append_base_context.py +1 -1
- smftools/preprocessing/append_mismatch_frequency_sites.py +35 -6
- smftools/preprocessing/append_sequence_mismatch_annotations.py +171 -0
- smftools/preprocessing/append_variant_call_layer.py +480 -0
- smftools/preprocessing/flag_duplicate_reads.py +4 -4
- smftools/preprocessing/invert_adata.py +1 -0
- smftools/readwrite.py +109 -85
- smftools/tools/__init__.py +6 -0
- smftools/tools/calculate_knn.py +121 -0
- smftools/tools/calculate_nmf.py +18 -7
- smftools/tools/calculate_pca.py +180 -0
- smftools/tools/calculate_umap.py +70 -154
- smftools/tools/position_stats.py +4 -4
- smftools/tools/rolling_nn_distance.py +640 -3
- smftools/tools/sequence_alignment.py +140 -0
- smftools/tools/tensor_factorization.py +52 -4
- {smftools-0.3.1.dist-info → smftools-0.3.2.dist-info}/METADATA +3 -1
- {smftools-0.3.1.dist-info → smftools-0.3.2.dist-info}/RECORD +56 -42
- {smftools-0.3.1.dist-info → smftools-0.3.2.dist-info}/WHEEL +0 -0
- {smftools-0.3.1.dist-info → smftools-0.3.2.dist-info}/entry_points.txt +0 -0
- {smftools-0.3.1.dist-info → smftools-0.3.2.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,3368 +1,64 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
|
-
import ast
|
|
4
|
-
import json
|
|
5
|
-
import math
|
|
6
|
-
import os
|
|
7
|
-
from pathlib import Path
|
|
8
|
-
from typing import TYPE_CHECKING, Any, Dict, List, Mapping, Optional, Sequence, Tuple
|
|
9
|
-
|
|
10
|
-
import numpy as np
|
|
11
|
-
import pandas as pd
|
|
12
|
-
import scipy.cluster.hierarchy as sch
|
|
13
|
-
|
|
14
3
|
from smftools.logging_utils import get_logger
|
|
15
|
-
from smftools.
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
4
|
+
from smftools.plotting.chimeric_plotting import (
|
|
5
|
+
plot_delta_hamming_summary,
|
|
6
|
+
plot_rolling_nn_and_layer,
|
|
7
|
+
plot_rolling_nn_and_two_layers,
|
|
8
|
+
plot_segment_length_histogram,
|
|
9
|
+
plot_span_length_distributions,
|
|
10
|
+
plot_zero_hamming_pair_counts,
|
|
11
|
+
plot_zero_hamming_span_and_layer,
|
|
12
|
+
)
|
|
13
|
+
from smftools.plotting.hmm_plotting import (
|
|
14
|
+
combined_hmm_length_clustermap,
|
|
15
|
+
combined_hmm_raw_clustermap,
|
|
16
|
+
plot_hmm_layers_rolling_by_sample_ref,
|
|
17
|
+
)
|
|
18
|
+
from smftools.plotting.latent_plotting import (
|
|
19
|
+
plot_cp_sequence_components,
|
|
20
|
+
plot_embedding,
|
|
21
|
+
plot_embedding_grid,
|
|
22
|
+
plot_nmf_components,
|
|
23
|
+
plot_pca,
|
|
24
|
+
plot_pca_components,
|
|
25
|
+
plot_pca_explained_variance,
|
|
26
|
+
plot_pca_grid,
|
|
27
|
+
plot_umap,
|
|
28
|
+
plot_umap_grid,
|
|
29
|
+
)
|
|
30
|
+
from smftools.plotting.preprocess_plotting import (
|
|
31
|
+
plot_read_span_quality_clustermaps,
|
|
32
|
+
)
|
|
33
|
+
from smftools.plotting.spatial_plotting import (
|
|
34
|
+
combined_raw_clustermap,
|
|
35
|
+
)
|
|
36
|
+
from smftools.plotting.variant_plotting import (
|
|
37
|
+
plot_sequence_integer_encoding_clustermaps,
|
|
38
|
+
)
|
|
22
39
|
|
|
23
40
|
logger = get_logger(__name__)
|
|
24
41
|
|
|
25
|
-
|
|
26
|
-
"
|
|
27
|
-
"
|
|
28
|
-
"
|
|
29
|
-
"
|
|
30
|
-
"
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
""
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
""
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
return np.unique(np.round(pos).astype(int))
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
def _select_labels(subset, sites: np.ndarray, reference: str, index_col_suffix: str | None):
|
|
52
|
-
"""
|
|
53
|
-
Select tick labels for the heatmap axis.
|
|
54
|
-
|
|
55
|
-
Parameters
|
|
56
|
-
----------
|
|
57
|
-
subset : AnnData view
|
|
58
|
-
The per-bin subset of the AnnData.
|
|
59
|
-
sites : np.ndarray[int]
|
|
60
|
-
Indices of the subset.var positions to annotate.
|
|
61
|
-
reference : str
|
|
62
|
-
Reference name (e.g., '6B6_top').
|
|
63
|
-
index_col_suffix : None or str
|
|
64
|
-
If None → use subset.var_names
|
|
65
|
-
Else → use subset.var[f"{reference}_{index_col_suffix}"]
|
|
66
|
-
|
|
67
|
-
Returns
|
|
68
|
-
-------
|
|
69
|
-
np.ndarray[str]
|
|
70
|
-
The labels to use for tick positions.
|
|
71
|
-
"""
|
|
72
|
-
if sites.size == 0:
|
|
73
|
-
return np.array([])
|
|
74
|
-
|
|
75
|
-
# Default behavior: use var_names
|
|
76
|
-
if index_col_suffix is None:
|
|
77
|
-
return subset.var_names[sites].astype(str)
|
|
78
|
-
|
|
79
|
-
# Otherwise: use a computed column adata.var[f"{reference}_{suffix}"]
|
|
80
|
-
colname = f"{reference}_{index_col_suffix}"
|
|
81
|
-
|
|
82
|
-
if colname not in subset.var:
|
|
83
|
-
raise KeyError(
|
|
84
|
-
f"index_col_suffix='{index_col_suffix}' requires var column '{colname}', "
|
|
85
|
-
f"but it is not present in adata.var."
|
|
86
|
-
)
|
|
87
|
-
|
|
88
|
-
labels = subset.var[colname].astype(str).values
|
|
89
|
-
return labels[sites]
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
def normalized_mean(matrix: np.ndarray, *, ignore_nan: bool = True) -> np.ndarray:
|
|
93
|
-
"""Compute normalized column means for a matrix.
|
|
94
|
-
|
|
95
|
-
Args:
|
|
96
|
-
matrix: Input matrix.
|
|
97
|
-
|
|
98
|
-
Returns:
|
|
99
|
-
1D array of normalized means.
|
|
100
|
-
"""
|
|
101
|
-
mean = np.nanmean(matrix, axis=0) if ignore_nan else np.mean(matrix, axis=0)
|
|
102
|
-
denom = (mean.max() - mean.min()) + 1e-9
|
|
103
|
-
return (mean - mean.min()) / denom
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
def plot_nmf_components(
|
|
107
|
-
adata: "ad.AnnData",
|
|
108
|
-
*,
|
|
109
|
-
output_dir: Path | str,
|
|
110
|
-
components_key: str = "H_nmf",
|
|
111
|
-
heatmap_name: str = "nmf_H_heatmap.png",
|
|
112
|
-
lineplot_name: str = "nmf_H_lineplot.png",
|
|
113
|
-
max_features: int = 2000,
|
|
114
|
-
) -> Dict[str, Path]:
|
|
115
|
-
"""Plot NMF component weights as a heatmap and per-component line plot.
|
|
116
|
-
|
|
117
|
-
Args:
|
|
118
|
-
adata: AnnData object containing NMF results.
|
|
119
|
-
output_dir: Directory to write plots into.
|
|
120
|
-
components_key: Key in ``adata.varm`` storing the H matrix.
|
|
121
|
-
heatmap_name: Filename for the heatmap plot.
|
|
122
|
-
lineplot_name: Filename for the line plot.
|
|
123
|
-
max_features: Maximum number of features to plot (top-weighted by component).
|
|
124
|
-
|
|
125
|
-
Returns:
|
|
126
|
-
Dict[str, Path]: Paths to created plots (keys: ``heatmap`` and ``lineplot``).
|
|
127
|
-
"""
|
|
128
|
-
if components_key not in adata.varm:
|
|
129
|
-
logger.warning("NMF components key '%s' not found in adata.varm.", components_key)
|
|
130
|
-
return {}
|
|
131
|
-
|
|
132
|
-
output_path = Path(output_dir)
|
|
133
|
-
output_path.mkdir(parents=True, exist_ok=True)
|
|
134
|
-
|
|
135
|
-
components = np.asarray(adata.varm[components_key])
|
|
136
|
-
if components.ndim != 2:
|
|
137
|
-
raise ValueError(f"NMF components must be 2D; got shape {components.shape}.")
|
|
138
|
-
|
|
139
|
-
feature_labels = (
|
|
140
|
-
np.asarray(adata.var_names).astype(str)
|
|
141
|
-
if adata.shape[1] == components.shape[0]
|
|
142
|
-
else np.array([str(i) for i in range(components.shape[0])])
|
|
143
|
-
)
|
|
144
|
-
|
|
145
|
-
nonzero_mask = np.any(components != 0, axis=1)
|
|
146
|
-
if not np.any(nonzero_mask):
|
|
147
|
-
logger.warning("NMF components are all zeros; skipping plot generation.")
|
|
148
|
-
return {}
|
|
149
|
-
|
|
150
|
-
components = components[nonzero_mask]
|
|
151
|
-
feature_labels = feature_labels[nonzero_mask]
|
|
152
|
-
|
|
153
|
-
if max_features and components.shape[0] > max_features:
|
|
154
|
-
scores = np.nanmax(components, axis=1)
|
|
155
|
-
top_idx = np.argsort(scores)[-max_features:]
|
|
156
|
-
top_idx = np.sort(top_idx)
|
|
157
|
-
components = components[top_idx]
|
|
158
|
-
feature_labels = feature_labels[top_idx]
|
|
159
|
-
logger.info(
|
|
160
|
-
"Downsampled NMF features from %s to %s for plotting.",
|
|
161
|
-
nonzero_mask.sum(),
|
|
162
|
-
components.shape[0],
|
|
163
|
-
)
|
|
164
|
-
|
|
165
|
-
n_features, n_components = components.shape
|
|
166
|
-
component_labels = [f"C{i + 1}" for i in range(n_components)]
|
|
167
|
-
|
|
168
|
-
heatmap_width = max(8, min(20, n_features / 60))
|
|
169
|
-
heatmap_height = max(2.5, 0.6 * n_components + 1.5)
|
|
170
|
-
fig, ax = plt.subplots(figsize=(heatmap_width, heatmap_height))
|
|
171
|
-
sns.heatmap(
|
|
172
|
-
components.T,
|
|
173
|
-
ax=ax,
|
|
174
|
-
cmap="viridis",
|
|
175
|
-
cbar_kws={"label": "Component weight"},
|
|
176
|
-
xticklabels=feature_labels if n_features <= 60 else False,
|
|
177
|
-
yticklabels=component_labels,
|
|
178
|
-
)
|
|
179
|
-
ax.set_xlabel("Feature")
|
|
180
|
-
ax.set_ylabel("NMF component")
|
|
181
|
-
fig.tight_layout()
|
|
182
|
-
heatmap_path = output_path / heatmap_name
|
|
183
|
-
fig.savefig(heatmap_path, dpi=200)
|
|
184
|
-
plt.close(fig)
|
|
185
|
-
|
|
186
|
-
fig, ax = plt.subplots(figsize=(max(8, min(20, n_features / 50)), 3.5))
|
|
187
|
-
x = np.arange(n_features)
|
|
188
|
-
for idx, label in enumerate(component_labels):
|
|
189
|
-
ax.plot(x, components[:, idx], label=label, linewidth=1.5)
|
|
190
|
-
ax.set_xlabel("Feature index")
|
|
191
|
-
ax.set_ylabel("Component weight")
|
|
192
|
-
if n_features <= 60:
|
|
193
|
-
ax.set_xticks(x)
|
|
194
|
-
ax.set_xticklabels(feature_labels, rotation=90, fontsize=8)
|
|
195
|
-
ax.legend(loc="upper right", frameon=False)
|
|
196
|
-
fig.tight_layout()
|
|
197
|
-
lineplot_path = output_path / lineplot_name
|
|
198
|
-
fig.savefig(lineplot_path, dpi=200)
|
|
199
|
-
plt.close(fig)
|
|
200
|
-
|
|
201
|
-
return {"heatmap": heatmap_path, "lineplot": lineplot_path}
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
def plot_cp_sequence_components(
|
|
205
|
-
adata: "ad.AnnData",
|
|
206
|
-
*,
|
|
207
|
-
output_dir: Path | str,
|
|
208
|
-
components_key: str = "H_cp_sequence",
|
|
209
|
-
uns_key: str = "cp_sequence",
|
|
210
|
-
heatmap_name: str = "cp_sequence_position_heatmap.png",
|
|
211
|
-
lineplot_name: str = "cp_sequence_position_lineplot.png",
|
|
212
|
-
base_name: str = "cp_sequence_base_weights.png",
|
|
213
|
-
max_positions: int = 2000,
|
|
214
|
-
) -> Dict[str, Path]:
|
|
215
|
-
"""Plot CP decomposition position and base factors.
|
|
216
|
-
|
|
217
|
-
Args:
|
|
218
|
-
adata: AnnData object containing CP decomposition results.
|
|
219
|
-
output_dir: Directory to write plots into.
|
|
220
|
-
components_key: Key in ``adata.varm`` storing position factors.
|
|
221
|
-
uns_key: Key in ``adata.uns`` storing base factors.
|
|
222
|
-
heatmap_name: Filename for position heatmap.
|
|
223
|
-
lineplot_name: Filename for position line plot.
|
|
224
|
-
base_name: Filename for base factor bar plot.
|
|
225
|
-
max_positions: Maximum number of positions to plot.
|
|
226
|
-
|
|
227
|
-
Returns:
|
|
228
|
-
Dict[str, Path]: Paths to created plots.
|
|
229
|
-
"""
|
|
230
|
-
if components_key not in adata.varm:
|
|
231
|
-
logger.warning("CP components key '%s' not found in adata.varm.", components_key)
|
|
232
|
-
return {}
|
|
233
|
-
|
|
234
|
-
output_path = Path(output_dir)
|
|
235
|
-
output_path.mkdir(parents=True, exist_ok=True)
|
|
236
|
-
|
|
237
|
-
components = np.asarray(adata.varm[components_key])
|
|
238
|
-
if components.ndim != 2:
|
|
239
|
-
raise ValueError(f"CP position factors must be 2D; got shape {components.shape}.")
|
|
240
|
-
|
|
241
|
-
feature_labels = (
|
|
242
|
-
np.asarray(adata.var_names).astype(str)
|
|
243
|
-
if adata.shape[1] == components.shape[0]
|
|
244
|
-
else np.array([str(i) for i in range(components.shape[0])])
|
|
245
|
-
)
|
|
246
|
-
|
|
247
|
-
if max_positions and components.shape[0] > max_positions:
|
|
248
|
-
original_count = components.shape[0]
|
|
249
|
-
scores = np.nanmax(np.abs(components), axis=1)
|
|
250
|
-
top_idx = np.argsort(scores)[-max_positions:]
|
|
251
|
-
top_idx = np.sort(top_idx)
|
|
252
|
-
components = components[top_idx]
|
|
253
|
-
feature_labels = feature_labels[top_idx]
|
|
254
|
-
logger.info(
|
|
255
|
-
"Downsampled CP positions from %s to %s for plotting.",
|
|
256
|
-
original_count,
|
|
257
|
-
max_positions,
|
|
258
|
-
)
|
|
259
|
-
|
|
260
|
-
n_positions, n_components = components.shape
|
|
261
|
-
component_labels = [f"C{i + 1}" for i in range(n_components)]
|
|
262
|
-
|
|
263
|
-
heatmap_width = max(8, min(20, n_positions / 60))
|
|
264
|
-
heatmap_height = max(2.5, 0.6 * n_components + 1.5)
|
|
265
|
-
fig, ax = plt.subplots(figsize=(heatmap_width, heatmap_height))
|
|
266
|
-
sns.heatmap(
|
|
267
|
-
components.T,
|
|
268
|
-
ax=ax,
|
|
269
|
-
cmap="viridis",
|
|
270
|
-
cbar_kws={"label": "Component weight"},
|
|
271
|
-
xticklabels=feature_labels if n_positions <= 60 else False,
|
|
272
|
-
yticklabels=component_labels,
|
|
273
|
-
)
|
|
274
|
-
ax.set_xlabel("Position")
|
|
275
|
-
ax.set_ylabel("CP component")
|
|
276
|
-
fig.tight_layout()
|
|
277
|
-
heatmap_path = output_path / heatmap_name
|
|
278
|
-
fig.savefig(heatmap_path, dpi=200)
|
|
279
|
-
plt.close(fig)
|
|
280
|
-
|
|
281
|
-
fig, ax = plt.subplots(figsize=(max(8, min(20, n_positions / 50)), 3.5))
|
|
282
|
-
x = np.arange(n_positions)
|
|
283
|
-
for idx, label in enumerate(component_labels):
|
|
284
|
-
ax.plot(x, components[:, idx], label=label, linewidth=1.5)
|
|
285
|
-
ax.set_xlabel("Position index")
|
|
286
|
-
ax.set_ylabel("Component weight")
|
|
287
|
-
if n_positions <= 60:
|
|
288
|
-
ax.set_xticks(x)
|
|
289
|
-
ax.set_xticklabels(feature_labels, rotation=90, fontsize=8)
|
|
290
|
-
ax.legend(loc="upper right", frameon=False)
|
|
291
|
-
fig.tight_layout()
|
|
292
|
-
lineplot_path = output_path / lineplot_name
|
|
293
|
-
fig.savefig(lineplot_path, dpi=200)
|
|
294
|
-
plt.close(fig)
|
|
295
|
-
|
|
296
|
-
outputs = {"heatmap": heatmap_path, "lineplot": lineplot_path}
|
|
297
|
-
if uns_key in adata.uns:
|
|
298
|
-
base_factors = adata.uns[uns_key].get("base_factors")
|
|
299
|
-
base_labels = adata.uns[uns_key].get("base_labels")
|
|
300
|
-
if base_factors is not None:
|
|
301
|
-
base_factors = np.asarray(base_factors)
|
|
302
|
-
if base_factors.ndim != 2 or base_factors.size == 0:
|
|
303
|
-
logger.warning(
|
|
304
|
-
"CP base factors must be 2D and non-empty; got shape %s.",
|
|
305
|
-
base_factors.shape,
|
|
306
|
-
)
|
|
307
|
-
else:
|
|
308
|
-
base_labels = base_labels or [f"B{i + 1}" for i in range(base_factors.shape[0])]
|
|
309
|
-
fig, ax = plt.subplots(figsize=(4.5, 3))
|
|
310
|
-
width = 0.8 / base_factors.shape[1]
|
|
311
|
-
x = np.arange(base_factors.shape[0])
|
|
312
|
-
for idx in range(base_factors.shape[1]):
|
|
313
|
-
ax.bar(
|
|
314
|
-
x + idx * width,
|
|
315
|
-
base_factors[:, idx],
|
|
316
|
-
width=width,
|
|
317
|
-
label=f"C{idx + 1}",
|
|
318
|
-
)
|
|
319
|
-
ax.set_xticks(x + width * (base_factors.shape[1] - 1) / 2)
|
|
320
|
-
ax.set_xticklabels(base_labels)
|
|
321
|
-
ax.set_ylabel("Base factor weight")
|
|
322
|
-
ax.legend(loc="upper right", frameon=False)
|
|
323
|
-
fig.tight_layout()
|
|
324
|
-
base_path = output_path / base_name
|
|
325
|
-
fig.savefig(base_path, dpi=200)
|
|
326
|
-
plt.close(fig)
|
|
327
|
-
outputs["base_factors"] = base_path
|
|
328
|
-
|
|
329
|
-
return outputs
|
|
330
|
-
|
|
331
|
-
|
|
332
|
-
def _resolve_feature_color(cmap: Any) -> Tuple[float, float, float, float]:
|
|
333
|
-
"""Resolve a representative feature color from a colormap or color spec."""
|
|
334
|
-
if isinstance(cmap, str):
|
|
335
|
-
try:
|
|
336
|
-
cmap_obj = plt.get_cmap(cmap)
|
|
337
|
-
return colors.to_rgba(cmap_obj(1.0))
|
|
338
|
-
except Exception:
|
|
339
|
-
return colors.to_rgba(cmap)
|
|
340
|
-
|
|
341
|
-
if isinstance(cmap, colors.Colormap):
|
|
342
|
-
if hasattr(cmap, "colors") and cmap.colors:
|
|
343
|
-
return colors.to_rgba(cmap.colors[-1])
|
|
344
|
-
return colors.to_rgba(cmap(1.0))
|
|
345
|
-
|
|
346
|
-
return colors.to_rgba("black")
|
|
347
|
-
|
|
348
|
-
|
|
349
|
-
def _build_hmm_feature_cmap(
|
|
350
|
-
cmap: Any,
|
|
351
|
-
*,
|
|
352
|
-
zero_color: str = "#f5f1e8",
|
|
353
|
-
nan_color: str = "#E6E6E6",
|
|
354
|
-
) -> colors.Colormap:
|
|
355
|
-
"""Build a two-color HMM colormap with explicit NaN/under handling."""
|
|
356
|
-
feature_color = _resolve_feature_color(cmap)
|
|
357
|
-
hmm_cmap = colors.LinearSegmentedColormap.from_list(
|
|
358
|
-
"hmm_feature_cmap",
|
|
359
|
-
[zero_color, feature_color],
|
|
360
|
-
)
|
|
361
|
-
hmm_cmap.set_bad(nan_color)
|
|
362
|
-
hmm_cmap.set_under(nan_color)
|
|
363
|
-
return hmm_cmap
|
|
364
|
-
|
|
365
|
-
|
|
366
|
-
def _map_length_matrix_to_subclasses(
|
|
367
|
-
length_matrix: np.ndarray,
|
|
368
|
-
feature_ranges: Sequence[Tuple[int, int, Any]],
|
|
369
|
-
) -> np.ndarray:
|
|
370
|
-
"""Map length values into subclass integer codes based on feature ranges."""
|
|
371
|
-
mapped = np.zeros_like(length_matrix, dtype=float)
|
|
372
|
-
finite_mask = np.isfinite(length_matrix)
|
|
373
|
-
for idx, (min_len, max_len, _color) in enumerate(feature_ranges, start=1):
|
|
374
|
-
mask = finite_mask & (length_matrix >= min_len) & (length_matrix <= max_len)
|
|
375
|
-
mapped[mask] = float(idx)
|
|
376
|
-
mapped[~finite_mask] = np.nan
|
|
377
|
-
return mapped
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
def _build_length_feature_cmap(
|
|
381
|
-
feature_ranges: Sequence[Tuple[int, int, Any]],
|
|
382
|
-
*,
|
|
383
|
-
zero_color: str = "#f5f1e8",
|
|
384
|
-
nan_color: str = "#E6E6E6",
|
|
385
|
-
) -> Tuple[colors.Colormap, colors.BoundaryNorm]:
|
|
386
|
-
"""Build a discrete colormap and norm for length-based subclasses."""
|
|
387
|
-
color_list = [zero_color] + [color for _, _, color in feature_ranges]
|
|
388
|
-
cmap = colors.ListedColormap(color_list, name="hmm_length_feature_cmap")
|
|
389
|
-
cmap.set_bad(nan_color)
|
|
390
|
-
bounds = np.arange(-0.5, len(color_list) + 0.5, 1)
|
|
391
|
-
norm = colors.BoundaryNorm(bounds, cmap.N)
|
|
392
|
-
return cmap, norm
|
|
393
|
-
|
|
394
|
-
|
|
395
|
-
def _layer_to_numpy(
|
|
396
|
-
subset,
|
|
397
|
-
layer_name: str,
|
|
398
|
-
sites: np.ndarray | None = None,
|
|
399
|
-
*,
|
|
400
|
-
fill_nan_strategy: str = "value",
|
|
401
|
-
fill_nan_value: float = -1,
|
|
402
|
-
) -> np.ndarray:
|
|
403
|
-
"""Return a (copied) numpy array for a layer with optional NaN filling."""
|
|
404
|
-
if sites is not None:
|
|
405
|
-
layer_data = subset[:, sites].layers[layer_name]
|
|
406
|
-
else:
|
|
407
|
-
layer_data = subset.layers[layer_name]
|
|
408
|
-
|
|
409
|
-
if hasattr(layer_data, "toarray"):
|
|
410
|
-
arr = layer_data.toarray()
|
|
411
|
-
else:
|
|
412
|
-
arr = np.asarray(layer_data)
|
|
413
|
-
|
|
414
|
-
arr = np.array(arr, copy=True)
|
|
415
|
-
|
|
416
|
-
if fill_nan_strategy == "none":
|
|
417
|
-
return arr
|
|
418
|
-
|
|
419
|
-
if fill_nan_strategy not in {"value", "col_mean"}:
|
|
420
|
-
raise ValueError("fill_nan_strategy must be 'none', 'value', or 'col_mean'.")
|
|
421
|
-
|
|
422
|
-
arr = arr.astype(float, copy=False)
|
|
423
|
-
|
|
424
|
-
if fill_nan_strategy == "value":
|
|
425
|
-
return np.where(np.isnan(arr), fill_nan_value, arr)
|
|
426
|
-
|
|
427
|
-
col_mean = np.nanmean(arr, axis=0)
|
|
428
|
-
if np.any(np.isnan(col_mean)):
|
|
429
|
-
col_mean = np.where(np.isnan(col_mean), fill_nan_value, col_mean)
|
|
430
|
-
return np.where(np.isnan(arr), col_mean, arr)
|
|
431
|
-
|
|
432
|
-
|
|
433
|
-
def _infer_zero_is_valid(layer_name: str | None, matrix: np.ndarray) -> bool:
|
|
434
|
-
"""Infer whether zeros should count as valid (unmethylated) values."""
|
|
435
|
-
if layer_name and "nan0_0minus1" in layer_name:
|
|
436
|
-
return False
|
|
437
|
-
if np.isnan(matrix).any():
|
|
438
|
-
return True
|
|
439
|
-
if np.any(matrix < 0):
|
|
440
|
-
return False
|
|
441
|
-
return True
|
|
442
|
-
|
|
443
|
-
|
|
444
|
-
def methylation_fraction(
|
|
445
|
-
matrix: np.ndarray, *, ignore_nan: bool = True, zero_is_valid: bool = False
|
|
446
|
-
) -> np.ndarray:
|
|
447
|
-
"""
|
|
448
|
-
Fraction methylated per column.
|
|
449
|
-
Methylated = 1
|
|
450
|
-
Valid = finite AND not 0 (unless zero_is_valid=True)
|
|
451
|
-
"""
|
|
452
|
-
matrix = np.asarray(matrix)
|
|
453
|
-
if not ignore_nan:
|
|
454
|
-
matrix = np.where(np.isnan(matrix), 0, matrix)
|
|
455
|
-
finite_mask = np.isfinite(matrix)
|
|
456
|
-
valid_mask = finite_mask if zero_is_valid else (finite_mask & (matrix != 0))
|
|
457
|
-
methyl_mask = (matrix == 1) & np.isfinite(matrix)
|
|
458
|
-
|
|
459
|
-
methylated = methyl_mask.sum(axis=0)
|
|
460
|
-
valid = valid_mask.sum(axis=0)
|
|
461
|
-
|
|
462
|
-
return np.divide(
|
|
463
|
-
methylated, valid, out=np.zeros_like(methylated, dtype=float), where=valid != 0
|
|
464
|
-
)
|
|
465
|
-
|
|
466
|
-
|
|
467
|
-
def _methylation_fraction_for_layer(
|
|
468
|
-
matrix: np.ndarray,
|
|
469
|
-
layer_name: str | None,
|
|
470
|
-
*,
|
|
471
|
-
ignore_nan: bool = True,
|
|
472
|
-
zero_is_valid: bool | None = None,
|
|
473
|
-
) -> np.ndarray:
|
|
474
|
-
"""Compute methylation fractions with layer-aware zero handling."""
|
|
475
|
-
matrix = np.asarray(matrix)
|
|
476
|
-
if zero_is_valid is None:
|
|
477
|
-
zero_is_valid = _infer_zero_is_valid(layer_name, matrix)
|
|
478
|
-
return methylation_fraction(matrix, ignore_nan=ignore_nan, zero_is_valid=zero_is_valid)
|
|
479
|
-
|
|
480
|
-
|
|
481
|
-
def clean_barplot(
|
|
482
|
-
ax,
|
|
483
|
-
mean_values,
|
|
484
|
-
title,
|
|
485
|
-
*,
|
|
486
|
-
y_max: float | None = 1.0,
|
|
487
|
-
y_label: str = "Mean",
|
|
488
|
-
y_ticks: list[float] | None = None,
|
|
489
|
-
):
|
|
490
|
-
"""Format a barplot with consistent axes and labels.
|
|
491
|
-
|
|
492
|
-
Args:
|
|
493
|
-
ax: Matplotlib axes.
|
|
494
|
-
mean_values: Values to plot.
|
|
495
|
-
title: Plot title.
|
|
496
|
-
y_max: Optional y-axis max; inferred from data if not provided.
|
|
497
|
-
y_label: Y-axis label.
|
|
498
|
-
y_ticks: Optional y-axis ticks.
|
|
499
|
-
"""
|
|
500
|
-
x = np.arange(len(mean_values))
|
|
501
|
-
ax.bar(x, mean_values, color="gray", width=1.0, align="edge")
|
|
502
|
-
ax.set_xlim(0, len(mean_values))
|
|
503
|
-
if y_ticks is None and y_max == 1.0:
|
|
504
|
-
y_ticks = [0.0, 0.5, 1.0]
|
|
505
|
-
if y_max is None:
|
|
506
|
-
y_max = np.nanmax(mean_values) if len(mean_values) else 1.0
|
|
507
|
-
if not np.isfinite(y_max) or y_max <= 0:
|
|
508
|
-
y_max = 1.0
|
|
509
|
-
y_max *= 1.05
|
|
510
|
-
ax.set_ylim(0, y_max)
|
|
511
|
-
if y_ticks is not None:
|
|
512
|
-
ax.set_yticks(y_ticks)
|
|
513
|
-
ax.set_ylabel(y_label)
|
|
514
|
-
ax.set_title(title, fontsize=12, pad=2)
|
|
515
|
-
|
|
516
|
-
# Hide all spines except left
|
|
517
|
-
for spine_name, spine in ax.spines.items():
|
|
518
|
-
spine.set_visible(spine_name == "left")
|
|
519
|
-
|
|
520
|
-
ax.tick_params(axis="x", which="both", bottom=False, top=False, labelbottom=False)
|
|
521
|
-
|
|
522
|
-
|
|
523
|
-
def combined_hmm_raw_clustermap(
|
|
524
|
-
adata,
|
|
525
|
-
sample_col: str = "Sample_Names",
|
|
526
|
-
reference_col: str = "Reference_strand",
|
|
527
|
-
hmm_feature_layer: str = "hmm_combined",
|
|
528
|
-
layer_gpc: str = "nan0_0minus1",
|
|
529
|
-
layer_cpg: str = "nan0_0minus1",
|
|
530
|
-
layer_c: str = "nan0_0minus1",
|
|
531
|
-
layer_a: str = "nan0_0minus1",
|
|
532
|
-
cmap_hmm: str = "tab10",
|
|
533
|
-
cmap_gpc: str = "coolwarm",
|
|
534
|
-
cmap_cpg: str = "viridis",
|
|
535
|
-
cmap_c: str = "coolwarm",
|
|
536
|
-
cmap_a: str = "coolwarm",
|
|
537
|
-
min_quality: int = 20,
|
|
538
|
-
min_length: int = 200,
|
|
539
|
-
min_mapped_length_to_reference_length_ratio: float = 0.8,
|
|
540
|
-
min_position_valid_fraction: float = 0.5,
|
|
541
|
-
demux_types: Sequence[str] = ("single", "double", "already"),
|
|
542
|
-
sample_mapping: Optional[Mapping[str, str]] = None,
|
|
543
|
-
save_path: str | Path | None = None,
|
|
544
|
-
normalize_hmm: bool = False,
|
|
545
|
-
sort_by: str = "gpc",
|
|
546
|
-
bins: Optional[Dict[str, Any]] = None,
|
|
547
|
-
deaminase: bool = False,
|
|
548
|
-
min_signal: float = 0.0,
|
|
549
|
-
# ---- fixed tick label controls (counts, not spacing)
|
|
550
|
-
n_xticks_hmm: int = 10,
|
|
551
|
-
n_xticks_any_c: int = 8,
|
|
552
|
-
n_xticks_gpc: int = 8,
|
|
553
|
-
n_xticks_cpg: int = 8,
|
|
554
|
-
n_xticks_a: int = 8,
|
|
555
|
-
index_col_suffix: str | None = None,
|
|
556
|
-
fill_nan_strategy: str = "value",
|
|
557
|
-
fill_nan_value: float = -1,
|
|
558
|
-
):
|
|
559
|
-
"""
|
|
560
|
-
Makes a multi-panel clustermap per (sample, reference):
|
|
561
|
-
HMM panel (always) + optional raw panels for C, GpC, CpG, and A sites.
|
|
562
|
-
|
|
563
|
-
Panels are added only if the corresponding site mask exists AND has >0 sites.
|
|
564
|
-
|
|
565
|
-
sort_by options:
|
|
566
|
-
'gpc', 'cpg', 'c', 'a', 'gpc_cpg', 'none', 'hmm', or 'obs:<col>'
|
|
567
|
-
|
|
568
|
-
NaN fill strategy is applied in-memory for clustering/plotting only.
|
|
569
|
-
"""
|
|
570
|
-
if fill_nan_strategy not in {"none", "value", "col_mean"}:
|
|
571
|
-
raise ValueError("fill_nan_strategy must be 'none', 'value', or 'col_mean'.")
|
|
572
|
-
|
|
573
|
-
def pick_xticks(labels: np.ndarray, n_ticks: int):
|
|
574
|
-
"""Pick tick indices/labels from an array."""
|
|
575
|
-
if labels.size == 0:
|
|
576
|
-
return [], []
|
|
577
|
-
idx = np.linspace(0, len(labels) - 1, n_ticks).round().astype(int)
|
|
578
|
-
idx = np.unique(idx)
|
|
579
|
-
return idx.tolist(), labels[idx].tolist()
|
|
580
|
-
|
|
581
|
-
# Helper: build a True mask if filter is inactive or column missing
|
|
582
|
-
def _mask_or_true(series_name: str, predicate):
|
|
583
|
-
"""Return a mask from predicate or an all-True mask."""
|
|
584
|
-
if series_name not in adata.obs:
|
|
585
|
-
return pd.Series(True, index=adata.obs.index)
|
|
586
|
-
s = adata.obs[series_name]
|
|
587
|
-
try:
|
|
588
|
-
return predicate(s)
|
|
589
|
-
except Exception:
|
|
590
|
-
# Fallback: all True if bad dtype / predicate failure
|
|
591
|
-
return pd.Series(True, index=adata.obs.index)
|
|
592
|
-
|
|
593
|
-
results = []
|
|
594
|
-
signal_type = "deamination" if deaminase else "methylation"
|
|
595
|
-
|
|
596
|
-
for ref in adata.obs[reference_col].cat.categories:
|
|
597
|
-
for sample in adata.obs[sample_col].cat.categories:
|
|
598
|
-
# Optionally remap sample label for display
|
|
599
|
-
display_sample = sample_mapping.get(sample, sample) if sample_mapping else sample
|
|
600
|
-
# Row-level masks (obs)
|
|
601
|
-
qmask = _mask_or_true(
|
|
602
|
-
"read_quality",
|
|
603
|
-
(lambda s: s >= float(min_quality))
|
|
604
|
-
if (min_quality is not None)
|
|
605
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
606
|
-
)
|
|
607
|
-
lm_mask = _mask_or_true(
|
|
608
|
-
"mapped_length",
|
|
609
|
-
(lambda s: s >= float(min_length))
|
|
610
|
-
if (min_length is not None)
|
|
611
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
612
|
-
)
|
|
613
|
-
lrr_mask = _mask_or_true(
|
|
614
|
-
"mapped_length_to_reference_length_ratio",
|
|
615
|
-
(lambda s: s >= float(min_mapped_length_to_reference_length_ratio))
|
|
616
|
-
if (min_mapped_length_to_reference_length_ratio is not None)
|
|
617
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
618
|
-
)
|
|
619
|
-
|
|
620
|
-
demux_mask = _mask_or_true(
|
|
621
|
-
"demux_type",
|
|
622
|
-
(lambda s: s.astype("string").isin(list(demux_types)))
|
|
623
|
-
if (demux_types is not None)
|
|
624
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
625
|
-
)
|
|
626
|
-
|
|
627
|
-
ref_mask = adata.obs[reference_col] == ref
|
|
628
|
-
sample_mask = adata.obs[sample_col] == sample
|
|
629
|
-
|
|
630
|
-
row_mask = ref_mask & sample_mask & qmask & lm_mask & lrr_mask & demux_mask
|
|
631
|
-
|
|
632
|
-
if not bool(row_mask.any()):
|
|
633
|
-
print(
|
|
634
|
-
f"No reads for {display_sample} - {ref} after read quality and length filtering"
|
|
635
|
-
)
|
|
636
|
-
continue
|
|
637
|
-
|
|
638
|
-
try:
|
|
639
|
-
# ---- subset reads ----
|
|
640
|
-
subset = adata[row_mask, :].copy()
|
|
641
|
-
|
|
642
|
-
# Column-level mask (var)
|
|
643
|
-
if min_position_valid_fraction is not None:
|
|
644
|
-
valid_key = f"{ref}_valid_fraction"
|
|
645
|
-
if valid_key in subset.var:
|
|
646
|
-
v = pd.to_numeric(subset.var[valid_key], errors="coerce").to_numpy()
|
|
647
|
-
col_mask = np.asarray(v > float(min_position_valid_fraction), dtype=bool)
|
|
648
|
-
if col_mask.any():
|
|
649
|
-
subset = subset[:, col_mask].copy()
|
|
650
|
-
else:
|
|
651
|
-
print(
|
|
652
|
-
f"No positions left after valid_fraction filter for {display_sample} - {ref}"
|
|
653
|
-
)
|
|
654
|
-
continue
|
|
655
|
-
|
|
656
|
-
if subset.shape[0] == 0:
|
|
657
|
-
print(f"No reads left after filtering for {display_sample} - {ref}")
|
|
658
|
-
continue
|
|
659
|
-
|
|
660
|
-
# ---- bins ----
|
|
661
|
-
if bins is None:
|
|
662
|
-
bins_temp = {"All": np.ones(subset.n_obs, dtype=bool)}
|
|
663
|
-
else:
|
|
664
|
-
bins_temp = bins
|
|
665
|
-
|
|
666
|
-
# ---- site masks (robust) ----
|
|
667
|
-
def _sites(*keys):
|
|
668
|
-
"""Return indices for the first matching site key."""
|
|
669
|
-
for k in keys:
|
|
670
|
-
if k in subset.var:
|
|
671
|
-
return np.where(subset.var[k].values)[0]
|
|
672
|
-
return np.array([], dtype=int)
|
|
673
|
-
|
|
674
|
-
gpc_sites = _sites(f"{ref}_GpC_site")
|
|
675
|
-
cpg_sites = _sites(f"{ref}_CpG_site")
|
|
676
|
-
any_c_sites = _sites(f"{ref}_any_C_site", f"{ref}_C_site")
|
|
677
|
-
any_a_sites = _sites(f"{ref}_A_site", f"{ref}_any_A_site")
|
|
678
|
-
|
|
679
|
-
# ---- labels via _select_labels ----
|
|
680
|
-
# HMM uses *all* columns
|
|
681
|
-
hmm_sites = np.arange(subset.n_vars, dtype=int)
|
|
682
|
-
hmm_labels = _select_labels(subset, hmm_sites, ref, index_col_suffix)
|
|
683
|
-
gpc_labels = _select_labels(subset, gpc_sites, ref, index_col_suffix)
|
|
684
|
-
cpg_labels = _select_labels(subset, cpg_sites, ref, index_col_suffix)
|
|
685
|
-
any_c_labels = _select_labels(subset, any_c_sites, ref, index_col_suffix)
|
|
686
|
-
any_a_labels = _select_labels(subset, any_a_sites, ref, index_col_suffix)
|
|
687
|
-
|
|
688
|
-
# storage
|
|
689
|
-
stacked_hmm = []
|
|
690
|
-
stacked_hmm_raw = []
|
|
691
|
-
stacked_any_c = []
|
|
692
|
-
stacked_any_c_raw = []
|
|
693
|
-
stacked_gpc = []
|
|
694
|
-
stacked_gpc_raw = []
|
|
695
|
-
stacked_cpg = []
|
|
696
|
-
stacked_cpg_raw = []
|
|
697
|
-
stacked_any_a = []
|
|
698
|
-
stacked_any_a_raw = []
|
|
699
|
-
|
|
700
|
-
row_labels, bin_labels, bin_boundaries = [], [], []
|
|
701
|
-
total_reads = subset.n_obs
|
|
702
|
-
percentages = {}
|
|
703
|
-
last_idx = 0
|
|
704
|
-
|
|
705
|
-
# ---------------- process bins ----------------
|
|
706
|
-
for bin_label, bin_filter in bins_temp.items():
|
|
707
|
-
sb = subset[bin_filter].copy()
|
|
708
|
-
n = sb.n_obs
|
|
709
|
-
if n == 0:
|
|
710
|
-
continue
|
|
711
|
-
|
|
712
|
-
pct = (n / total_reads) * 100 if total_reads else 0
|
|
713
|
-
percentages[bin_label] = pct
|
|
714
|
-
|
|
715
|
-
# ---- sorting ----
|
|
716
|
-
if sort_by.startswith("obs:"):
|
|
717
|
-
colname = sort_by.split("obs:")[1]
|
|
718
|
-
order = np.argsort(sb.obs[colname].values)
|
|
719
|
-
|
|
720
|
-
elif sort_by == "gpc" and gpc_sites.size:
|
|
721
|
-
gpc_matrix = _layer_to_numpy(
|
|
722
|
-
sb,
|
|
723
|
-
layer_gpc,
|
|
724
|
-
gpc_sites,
|
|
725
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
726
|
-
fill_nan_value=fill_nan_value,
|
|
727
|
-
)
|
|
728
|
-
linkage = sch.linkage(gpc_matrix, method="ward")
|
|
729
|
-
order = sch.leaves_list(linkage)
|
|
730
|
-
|
|
731
|
-
elif sort_by == "cpg" and cpg_sites.size:
|
|
732
|
-
cpg_matrix = _layer_to_numpy(
|
|
733
|
-
sb,
|
|
734
|
-
layer_cpg,
|
|
735
|
-
cpg_sites,
|
|
736
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
737
|
-
fill_nan_value=fill_nan_value,
|
|
738
|
-
)
|
|
739
|
-
linkage = sch.linkage(cpg_matrix, method="ward")
|
|
740
|
-
order = sch.leaves_list(linkage)
|
|
741
|
-
|
|
742
|
-
elif sort_by == "c" and any_c_sites.size:
|
|
743
|
-
any_c_matrix = _layer_to_numpy(
|
|
744
|
-
sb,
|
|
745
|
-
layer_c,
|
|
746
|
-
any_c_sites,
|
|
747
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
748
|
-
fill_nan_value=fill_nan_value,
|
|
749
|
-
)
|
|
750
|
-
linkage = sch.linkage(any_c_matrix, method="ward")
|
|
751
|
-
order = sch.leaves_list(linkage)
|
|
752
|
-
|
|
753
|
-
elif sort_by == "a" and any_a_sites.size:
|
|
754
|
-
any_a_matrix = _layer_to_numpy(
|
|
755
|
-
sb,
|
|
756
|
-
layer_a,
|
|
757
|
-
any_a_sites,
|
|
758
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
759
|
-
fill_nan_value=fill_nan_value,
|
|
760
|
-
)
|
|
761
|
-
linkage = sch.linkage(any_a_matrix, method="ward")
|
|
762
|
-
order = sch.leaves_list(linkage)
|
|
763
|
-
|
|
764
|
-
elif sort_by == "gpc_cpg" and gpc_sites.size and cpg_sites.size:
|
|
765
|
-
gpc_matrix = _layer_to_numpy(
|
|
766
|
-
sb,
|
|
767
|
-
layer_gpc,
|
|
768
|
-
None,
|
|
769
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
770
|
-
fill_nan_value=fill_nan_value,
|
|
771
|
-
)
|
|
772
|
-
linkage = sch.linkage(gpc_matrix, method="ward")
|
|
773
|
-
order = sch.leaves_list(linkage)
|
|
774
|
-
|
|
775
|
-
elif sort_by == "hmm" and hmm_sites.size:
|
|
776
|
-
hmm_matrix = _layer_to_numpy(
|
|
777
|
-
sb,
|
|
778
|
-
hmm_feature_layer,
|
|
779
|
-
hmm_sites,
|
|
780
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
781
|
-
fill_nan_value=fill_nan_value,
|
|
782
|
-
)
|
|
783
|
-
linkage = sch.linkage(hmm_matrix, method="ward")
|
|
784
|
-
order = sch.leaves_list(linkage)
|
|
785
|
-
|
|
786
|
-
else:
|
|
787
|
-
order = np.arange(n)
|
|
788
|
-
|
|
789
|
-
sb = sb[order]
|
|
790
|
-
|
|
791
|
-
# ---- collect matrices ----
|
|
792
|
-
stacked_hmm.append(
|
|
793
|
-
_layer_to_numpy(
|
|
794
|
-
sb,
|
|
795
|
-
hmm_feature_layer,
|
|
796
|
-
None,
|
|
797
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
798
|
-
fill_nan_value=fill_nan_value,
|
|
799
|
-
)
|
|
800
|
-
)
|
|
801
|
-
stacked_hmm_raw.append(
|
|
802
|
-
_layer_to_numpy(
|
|
803
|
-
sb,
|
|
804
|
-
hmm_feature_layer,
|
|
805
|
-
None,
|
|
806
|
-
fill_nan_strategy="none",
|
|
807
|
-
fill_nan_value=fill_nan_value,
|
|
808
|
-
)
|
|
809
|
-
)
|
|
810
|
-
if any_c_sites.size:
|
|
811
|
-
stacked_any_c.append(
|
|
812
|
-
_layer_to_numpy(
|
|
813
|
-
sb,
|
|
814
|
-
layer_c,
|
|
815
|
-
any_c_sites,
|
|
816
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
817
|
-
fill_nan_value=fill_nan_value,
|
|
818
|
-
)
|
|
819
|
-
)
|
|
820
|
-
stacked_any_c_raw.append(
|
|
821
|
-
_layer_to_numpy(
|
|
822
|
-
sb,
|
|
823
|
-
layer_c,
|
|
824
|
-
any_c_sites,
|
|
825
|
-
fill_nan_strategy="none",
|
|
826
|
-
fill_nan_value=fill_nan_value,
|
|
827
|
-
)
|
|
828
|
-
)
|
|
829
|
-
if gpc_sites.size:
|
|
830
|
-
stacked_gpc.append(
|
|
831
|
-
_layer_to_numpy(
|
|
832
|
-
sb,
|
|
833
|
-
layer_gpc,
|
|
834
|
-
gpc_sites,
|
|
835
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
836
|
-
fill_nan_value=fill_nan_value,
|
|
837
|
-
)
|
|
838
|
-
)
|
|
839
|
-
stacked_gpc_raw.append(
|
|
840
|
-
_layer_to_numpy(
|
|
841
|
-
sb,
|
|
842
|
-
layer_gpc,
|
|
843
|
-
gpc_sites,
|
|
844
|
-
fill_nan_strategy="none",
|
|
845
|
-
fill_nan_value=fill_nan_value,
|
|
846
|
-
)
|
|
847
|
-
)
|
|
848
|
-
if cpg_sites.size:
|
|
849
|
-
stacked_cpg.append(
|
|
850
|
-
_layer_to_numpy(
|
|
851
|
-
sb,
|
|
852
|
-
layer_cpg,
|
|
853
|
-
cpg_sites,
|
|
854
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
855
|
-
fill_nan_value=fill_nan_value,
|
|
856
|
-
)
|
|
857
|
-
)
|
|
858
|
-
stacked_cpg_raw.append(
|
|
859
|
-
_layer_to_numpy(
|
|
860
|
-
sb,
|
|
861
|
-
layer_cpg,
|
|
862
|
-
cpg_sites,
|
|
863
|
-
fill_nan_strategy="none",
|
|
864
|
-
fill_nan_value=fill_nan_value,
|
|
865
|
-
)
|
|
866
|
-
)
|
|
867
|
-
if any_a_sites.size:
|
|
868
|
-
stacked_any_a.append(
|
|
869
|
-
_layer_to_numpy(
|
|
870
|
-
sb,
|
|
871
|
-
layer_a,
|
|
872
|
-
any_a_sites,
|
|
873
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
874
|
-
fill_nan_value=fill_nan_value,
|
|
875
|
-
)
|
|
876
|
-
)
|
|
877
|
-
stacked_any_a_raw.append(
|
|
878
|
-
_layer_to_numpy(
|
|
879
|
-
sb,
|
|
880
|
-
layer_a,
|
|
881
|
-
any_a_sites,
|
|
882
|
-
fill_nan_strategy="none",
|
|
883
|
-
fill_nan_value=fill_nan_value,
|
|
884
|
-
)
|
|
885
|
-
)
|
|
886
|
-
|
|
887
|
-
row_labels.extend([bin_label] * n)
|
|
888
|
-
bin_labels.append(f"{bin_label}: {n} reads ({pct:.1f}%)")
|
|
889
|
-
last_idx += n
|
|
890
|
-
bin_boundaries.append(last_idx)
|
|
891
|
-
|
|
892
|
-
# ---------------- stack ----------------
|
|
893
|
-
hmm_matrix = np.vstack(stacked_hmm)
|
|
894
|
-
hmm_matrix_raw = np.vstack(stacked_hmm_raw)
|
|
895
|
-
mean_hmm = (
|
|
896
|
-
normalized_mean(hmm_matrix_raw)
|
|
897
|
-
if normalize_hmm
|
|
898
|
-
else np.nanmean(hmm_matrix_raw, axis=0)
|
|
899
|
-
)
|
|
900
|
-
hmm_plot_matrix = hmm_matrix_raw
|
|
901
|
-
hmm_plot_cmap = _build_hmm_feature_cmap(cmap_hmm)
|
|
902
|
-
|
|
903
|
-
panels = [
|
|
904
|
-
(
|
|
905
|
-
f"HMM - {hmm_feature_layer}",
|
|
906
|
-
hmm_plot_matrix,
|
|
907
|
-
hmm_labels,
|
|
908
|
-
hmm_plot_cmap,
|
|
909
|
-
mean_hmm,
|
|
910
|
-
n_xticks_hmm,
|
|
911
|
-
),
|
|
912
|
-
]
|
|
913
|
-
|
|
914
|
-
if stacked_any_c:
|
|
915
|
-
m = np.vstack(stacked_any_c)
|
|
916
|
-
m_raw = np.vstack(stacked_any_c_raw)
|
|
917
|
-
panels.append(
|
|
918
|
-
(
|
|
919
|
-
"C",
|
|
920
|
-
m,
|
|
921
|
-
any_c_labels,
|
|
922
|
-
cmap_c,
|
|
923
|
-
_methylation_fraction_for_layer(m_raw, layer_c),
|
|
924
|
-
n_xticks_any_c,
|
|
925
|
-
)
|
|
926
|
-
)
|
|
927
|
-
|
|
928
|
-
if stacked_gpc:
|
|
929
|
-
m = np.vstack(stacked_gpc)
|
|
930
|
-
m_raw = np.vstack(stacked_gpc_raw)
|
|
931
|
-
panels.append(
|
|
932
|
-
(
|
|
933
|
-
"GpC",
|
|
934
|
-
m,
|
|
935
|
-
gpc_labels,
|
|
936
|
-
cmap_gpc,
|
|
937
|
-
_methylation_fraction_for_layer(m_raw, layer_gpc),
|
|
938
|
-
n_xticks_gpc,
|
|
939
|
-
)
|
|
940
|
-
)
|
|
941
|
-
|
|
942
|
-
if stacked_cpg:
|
|
943
|
-
m = np.vstack(stacked_cpg)
|
|
944
|
-
m_raw = np.vstack(stacked_cpg_raw)
|
|
945
|
-
panels.append(
|
|
946
|
-
(
|
|
947
|
-
"CpG",
|
|
948
|
-
m,
|
|
949
|
-
cpg_labels,
|
|
950
|
-
cmap_cpg,
|
|
951
|
-
_methylation_fraction_for_layer(m_raw, layer_cpg),
|
|
952
|
-
n_xticks_cpg,
|
|
953
|
-
)
|
|
954
|
-
)
|
|
955
|
-
|
|
956
|
-
if stacked_any_a:
|
|
957
|
-
m = np.vstack(stacked_any_a)
|
|
958
|
-
m_raw = np.vstack(stacked_any_a_raw)
|
|
959
|
-
panels.append(
|
|
960
|
-
(
|
|
961
|
-
"A",
|
|
962
|
-
m,
|
|
963
|
-
any_a_labels,
|
|
964
|
-
cmap_a,
|
|
965
|
-
_methylation_fraction_for_layer(m_raw, layer_a),
|
|
966
|
-
n_xticks_a,
|
|
967
|
-
)
|
|
968
|
-
)
|
|
969
|
-
|
|
970
|
-
# ---------------- plotting ----------------
|
|
971
|
-
n_panels = len(panels)
|
|
972
|
-
fig = plt.figure(figsize=(4.5 * n_panels, 10))
|
|
973
|
-
gs = gridspec.GridSpec(2, n_panels, height_ratios=[1, 6], hspace=0.01)
|
|
974
|
-
fig.suptitle(
|
|
975
|
-
f"{sample} — {ref} — {total_reads} reads ({signal_type})", fontsize=14, y=0.98
|
|
976
|
-
)
|
|
977
|
-
|
|
978
|
-
axes_heat = [fig.add_subplot(gs[1, i]) for i in range(n_panels)]
|
|
979
|
-
axes_bar = [fig.add_subplot(gs[0, i], sharex=axes_heat[i]) for i in range(n_panels)]
|
|
980
|
-
|
|
981
|
-
for i, (name, matrix, labels, cmap, mean_vec, n_ticks) in enumerate(panels):
|
|
982
|
-
# ---- your clean barplot ----
|
|
983
|
-
clean_barplot(axes_bar[i], mean_vec, name)
|
|
984
|
-
|
|
985
|
-
# ---- heatmap ----
|
|
986
|
-
heatmap_kwargs = dict(
|
|
987
|
-
cmap=cmap,
|
|
988
|
-
ax=axes_heat[i],
|
|
989
|
-
yticklabels=False,
|
|
990
|
-
cbar=False,
|
|
991
|
-
)
|
|
992
|
-
if name.startswith("HMM -"):
|
|
993
|
-
heatmap_kwargs.update(vmin=0.0, vmax=1.0)
|
|
994
|
-
sns.heatmap(matrix, **heatmap_kwargs)
|
|
995
|
-
|
|
996
|
-
# ---- xticks ----
|
|
997
|
-
xtick_pos, xtick_labels = pick_xticks(np.asarray(labels), n_ticks)
|
|
998
|
-
axes_heat[i].set_xticks(xtick_pos)
|
|
999
|
-
axes_heat[i].set_xticklabels(xtick_labels, rotation=90, fontsize=8)
|
|
1000
|
-
|
|
1001
|
-
for boundary in bin_boundaries[:-1]:
|
|
1002
|
-
axes_heat[i].axhline(y=boundary, color="black", linewidth=1.2)
|
|
1003
|
-
|
|
1004
|
-
plt.tight_layout()
|
|
1005
|
-
|
|
1006
|
-
if save_path:
|
|
1007
|
-
save_path = Path(save_path)
|
|
1008
|
-
save_path.mkdir(parents=True, exist_ok=True)
|
|
1009
|
-
safe_name = f"{ref}__{sample}".replace("/", "_")
|
|
1010
|
-
out_file = save_path / f"{safe_name}.png"
|
|
1011
|
-
plt.savefig(out_file, dpi=300)
|
|
1012
|
-
plt.close(fig)
|
|
1013
|
-
else:
|
|
1014
|
-
plt.show()
|
|
1015
|
-
|
|
1016
|
-
except Exception:
|
|
1017
|
-
import traceback
|
|
1018
|
-
|
|
1019
|
-
traceback.print_exc()
|
|
1020
|
-
continue
|
|
1021
|
-
|
|
1022
|
-
|
|
1023
|
-
def combined_raw_clustermap(
|
|
1024
|
-
adata,
|
|
1025
|
-
sample_col: str = "Sample_Names",
|
|
1026
|
-
reference_col: str = "Reference_strand",
|
|
1027
|
-
mod_target_bases: Sequence[str] = ("GpC", "CpG"),
|
|
1028
|
-
layer_c: str = "nan0_0minus1",
|
|
1029
|
-
layer_gpc: str = "nan0_0minus1",
|
|
1030
|
-
layer_cpg: str = "nan0_0minus1",
|
|
1031
|
-
layer_a: str = "nan0_0minus1",
|
|
1032
|
-
cmap_c: str = "coolwarm",
|
|
1033
|
-
cmap_gpc: str = "coolwarm",
|
|
1034
|
-
cmap_cpg: str = "viridis",
|
|
1035
|
-
cmap_a: str = "coolwarm",
|
|
1036
|
-
min_quality: float | None = 20,
|
|
1037
|
-
min_length: int | None = 200,
|
|
1038
|
-
min_mapped_length_to_reference_length_ratio: float | None = 0,
|
|
1039
|
-
min_position_valid_fraction: float | None = 0,
|
|
1040
|
-
demux_types: Sequence[str] = ("single", "double", "already"),
|
|
1041
|
-
sample_mapping: Optional[Mapping[str, str]] = None,
|
|
1042
|
-
save_path: str | Path | None = None,
|
|
1043
|
-
sort_by: str = "gpc", # 'gpc','cpg','c','gpc_cpg','a','none','obs:<col>'
|
|
1044
|
-
bins: Optional[Dict[str, Any]] = None,
|
|
1045
|
-
deaminase: bool = False,
|
|
1046
|
-
min_signal: float = 0,
|
|
1047
|
-
n_xticks_any_c: int = 10,
|
|
1048
|
-
n_xticks_gpc: int = 10,
|
|
1049
|
-
n_xticks_cpg: int = 10,
|
|
1050
|
-
n_xticks_any_a: int = 10,
|
|
1051
|
-
xtick_rotation: int = 90,
|
|
1052
|
-
xtick_fontsize: int = 9,
|
|
1053
|
-
index_col_suffix: str | None = None,
|
|
1054
|
-
fill_nan_strategy: str = "value",
|
|
1055
|
-
fill_nan_value: float = -1,
|
|
1056
|
-
):
|
|
1057
|
-
"""
|
|
1058
|
-
Plot stacked heatmaps + per-position mean barplots for C, GpC, CpG, and optional A.
|
|
1059
|
-
|
|
1060
|
-
Key fixes vs old version:
|
|
1061
|
-
- order computed ONCE per bin, applied to all matrices
|
|
1062
|
-
- no hard-coded axes indices
|
|
1063
|
-
- NaNs excluded from methylation denominators
|
|
1064
|
-
- var_names not forced to int
|
|
1065
|
-
- fixed count of x tick labels per block (controllable)
|
|
1066
|
-
- optional NaN fill strategy for clustering/plotting (in-memory only)
|
|
1067
|
-
- adata.uns updated once at end
|
|
1068
|
-
|
|
1069
|
-
Returns
|
|
1070
|
-
-------
|
|
1071
|
-
results : list[dict]
|
|
1072
|
-
One entry per (sample, ref) plot with matrices + bin metadata.
|
|
1073
|
-
"""
|
|
1074
|
-
if fill_nan_strategy not in {"none", "value", "col_mean"}:
|
|
1075
|
-
raise ValueError("fill_nan_strategy must be 'none', 'value', or 'col_mean'.")
|
|
1076
|
-
|
|
1077
|
-
# Helper: build a True mask if filter is inactive or column missing
|
|
1078
|
-
def _mask_or_true(series_name: str, predicate):
|
|
1079
|
-
"""Return a mask from predicate or an all-True mask."""
|
|
1080
|
-
if series_name not in adata.obs:
|
|
1081
|
-
return pd.Series(True, index=adata.obs.index)
|
|
1082
|
-
s = adata.obs[series_name]
|
|
1083
|
-
try:
|
|
1084
|
-
return predicate(s)
|
|
1085
|
-
except Exception:
|
|
1086
|
-
# Fallback: all True if bad dtype / predicate failure
|
|
1087
|
-
return pd.Series(True, index=adata.obs.index)
|
|
1088
|
-
|
|
1089
|
-
results: List[Dict[str, Any]] = []
|
|
1090
|
-
save_path = Path(save_path) if save_path is not None else None
|
|
1091
|
-
if save_path is not None:
|
|
1092
|
-
save_path.mkdir(parents=True, exist_ok=True)
|
|
1093
|
-
|
|
1094
|
-
# Ensure categorical
|
|
1095
|
-
for col in (sample_col, reference_col):
|
|
1096
|
-
if col not in adata.obs:
|
|
1097
|
-
raise KeyError(f"{col} not in adata.obs")
|
|
1098
|
-
if not pd.api.types.is_categorical_dtype(adata.obs[col]):
|
|
1099
|
-
adata.obs[col] = adata.obs[col].astype("category")
|
|
1100
|
-
|
|
1101
|
-
base_set = set(mod_target_bases)
|
|
1102
|
-
include_any_c = any(b in {"C", "CpG", "GpC"} for b in base_set)
|
|
1103
|
-
include_any_a = "A" in base_set
|
|
1104
|
-
|
|
1105
|
-
for ref in adata.obs[reference_col].cat.categories:
|
|
1106
|
-
for sample in adata.obs[sample_col].cat.categories:
|
|
1107
|
-
# Optionally remap sample label for display
|
|
1108
|
-
display_sample = sample_mapping.get(sample, sample) if sample_mapping else sample
|
|
1109
|
-
|
|
1110
|
-
# Row-level masks (obs)
|
|
1111
|
-
qmask = _mask_or_true(
|
|
1112
|
-
"read_quality",
|
|
1113
|
-
(lambda s: s >= float(min_quality))
|
|
1114
|
-
if (min_quality is not None)
|
|
1115
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
1116
|
-
)
|
|
1117
|
-
lm_mask = _mask_or_true(
|
|
1118
|
-
"mapped_length",
|
|
1119
|
-
(lambda s: s >= float(min_length))
|
|
1120
|
-
if (min_length is not None)
|
|
1121
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
1122
|
-
)
|
|
1123
|
-
lrr_mask = _mask_or_true(
|
|
1124
|
-
"mapped_length_to_reference_length_ratio",
|
|
1125
|
-
(lambda s: s >= float(min_mapped_length_to_reference_length_ratio))
|
|
1126
|
-
if (min_mapped_length_to_reference_length_ratio is not None)
|
|
1127
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
1128
|
-
)
|
|
1129
|
-
|
|
1130
|
-
demux_mask = _mask_or_true(
|
|
1131
|
-
"demux_type",
|
|
1132
|
-
(lambda s: s.astype("string").isin(list(demux_types)))
|
|
1133
|
-
if (demux_types is not None)
|
|
1134
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
1135
|
-
)
|
|
1136
|
-
|
|
1137
|
-
ref_mask = adata.obs[reference_col] == ref
|
|
1138
|
-
sample_mask = adata.obs[sample_col] == sample
|
|
1139
|
-
|
|
1140
|
-
row_mask = ref_mask & sample_mask & qmask & lm_mask & lrr_mask & demux_mask
|
|
1141
|
-
|
|
1142
|
-
if not bool(row_mask.any()):
|
|
1143
|
-
print(
|
|
1144
|
-
f"No reads for {display_sample} - {ref} after read quality and length filtering"
|
|
1145
|
-
)
|
|
1146
|
-
continue
|
|
1147
|
-
|
|
1148
|
-
try:
|
|
1149
|
-
subset = adata[row_mask, :].copy()
|
|
1150
|
-
|
|
1151
|
-
# Column-level mask (var)
|
|
1152
|
-
if min_position_valid_fraction is not None:
|
|
1153
|
-
valid_key = f"{ref}_valid_fraction"
|
|
1154
|
-
if valid_key in subset.var:
|
|
1155
|
-
v = pd.to_numeric(subset.var[valid_key], errors="coerce").to_numpy()
|
|
1156
|
-
col_mask = np.asarray(v > float(min_position_valid_fraction), dtype=bool)
|
|
1157
|
-
if col_mask.any():
|
|
1158
|
-
subset = subset[:, col_mask].copy()
|
|
1159
|
-
else:
|
|
1160
|
-
print(
|
|
1161
|
-
f"No positions left after valid_fraction filter for {display_sample} - {ref}"
|
|
1162
|
-
)
|
|
1163
|
-
continue
|
|
1164
|
-
|
|
1165
|
-
if subset.shape[0] == 0:
|
|
1166
|
-
print(f"No reads left after filtering for {display_sample} - {ref}")
|
|
1167
|
-
continue
|
|
1168
|
-
|
|
1169
|
-
# bins mode
|
|
1170
|
-
if bins is None:
|
|
1171
|
-
bins_temp = {"All": (subset.obs[reference_col] == ref)}
|
|
1172
|
-
else:
|
|
1173
|
-
bins_temp = bins
|
|
1174
|
-
|
|
1175
|
-
# find sites (positions)
|
|
1176
|
-
any_c_sites = gpc_sites = cpg_sites = np.array([], dtype=int)
|
|
1177
|
-
any_a_sites = np.array([], dtype=int)
|
|
1178
|
-
|
|
1179
|
-
num_any_c = num_gpc = num_cpg = num_any_a = 0
|
|
1180
|
-
|
|
1181
|
-
if include_any_c:
|
|
1182
|
-
any_c_sites = np.where(subset.var.get(f"{ref}_C_site", False).values)[0]
|
|
1183
|
-
gpc_sites = np.where(subset.var.get(f"{ref}_GpC_site", False).values)[0]
|
|
1184
|
-
cpg_sites = np.where(subset.var.get(f"{ref}_CpG_site", False).values)[0]
|
|
1185
|
-
|
|
1186
|
-
num_any_c, num_gpc, num_cpg = len(any_c_sites), len(gpc_sites), len(cpg_sites)
|
|
1187
|
-
|
|
1188
|
-
any_c_labels = _select_labels(subset, any_c_sites, ref, index_col_suffix)
|
|
1189
|
-
gpc_labels = _select_labels(subset, gpc_sites, ref, index_col_suffix)
|
|
1190
|
-
cpg_labels = _select_labels(subset, cpg_sites, ref, index_col_suffix)
|
|
1191
|
-
|
|
1192
|
-
if include_any_a:
|
|
1193
|
-
any_a_sites = np.where(subset.var.get(f"{ref}_A_site", False).values)[0]
|
|
1194
|
-
num_any_a = len(any_a_sites)
|
|
1195
|
-
any_a_labels = _select_labels(subset, any_a_sites, ref, index_col_suffix)
|
|
1196
|
-
|
|
1197
|
-
stacked_any_c, stacked_gpc, stacked_cpg, stacked_any_a = [], [], [], []
|
|
1198
|
-
stacked_any_c_raw, stacked_gpc_raw, stacked_cpg_raw, stacked_any_a_raw = (
|
|
1199
|
-
[],
|
|
1200
|
-
[],
|
|
1201
|
-
[],
|
|
1202
|
-
[],
|
|
1203
|
-
)
|
|
1204
|
-
row_labels, bin_labels, bin_boundaries = [], [], []
|
|
1205
|
-
percentages = {}
|
|
1206
|
-
last_idx = 0
|
|
1207
|
-
total_reads = subset.shape[0]
|
|
1208
|
-
|
|
1209
|
-
# ----------------------------
|
|
1210
|
-
# per-bin stacking
|
|
1211
|
-
# ----------------------------
|
|
1212
|
-
for bin_label, bin_filter in bins_temp.items():
|
|
1213
|
-
subset_bin = subset[bin_filter].copy()
|
|
1214
|
-
num_reads = subset_bin.shape[0]
|
|
1215
|
-
if num_reads == 0:
|
|
1216
|
-
percentages[bin_label] = 0.0
|
|
1217
|
-
continue
|
|
1218
|
-
|
|
1219
|
-
percent_reads = (num_reads / total_reads) * 100
|
|
1220
|
-
percentages[bin_label] = percent_reads
|
|
1221
|
-
|
|
1222
|
-
# compute order ONCE
|
|
1223
|
-
if sort_by.startswith("obs:"):
|
|
1224
|
-
colname = sort_by.split("obs:")[1]
|
|
1225
|
-
order = np.argsort(subset_bin.obs[colname].values)
|
|
1226
|
-
|
|
1227
|
-
elif sort_by == "gpc" and num_gpc > 0:
|
|
1228
|
-
gpc_matrix = _layer_to_numpy(
|
|
1229
|
-
subset_bin,
|
|
1230
|
-
layer_gpc,
|
|
1231
|
-
gpc_sites,
|
|
1232
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1233
|
-
fill_nan_value=fill_nan_value,
|
|
1234
|
-
)
|
|
1235
|
-
linkage = sch.linkage(gpc_matrix, method="ward")
|
|
1236
|
-
order = sch.leaves_list(linkage)
|
|
1237
|
-
|
|
1238
|
-
elif sort_by == "cpg" and num_cpg > 0:
|
|
1239
|
-
cpg_matrix = _layer_to_numpy(
|
|
1240
|
-
subset_bin,
|
|
1241
|
-
layer_cpg,
|
|
1242
|
-
cpg_sites,
|
|
1243
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1244
|
-
fill_nan_value=fill_nan_value,
|
|
1245
|
-
)
|
|
1246
|
-
linkage = sch.linkage(cpg_matrix, method="ward")
|
|
1247
|
-
order = sch.leaves_list(linkage)
|
|
1248
|
-
|
|
1249
|
-
elif sort_by == "c" and num_any_c > 0:
|
|
1250
|
-
any_c_matrix = _layer_to_numpy(
|
|
1251
|
-
subset_bin,
|
|
1252
|
-
layer_c,
|
|
1253
|
-
any_c_sites,
|
|
1254
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1255
|
-
fill_nan_value=fill_nan_value,
|
|
1256
|
-
)
|
|
1257
|
-
linkage = sch.linkage(any_c_matrix, method="ward")
|
|
1258
|
-
order = sch.leaves_list(linkage)
|
|
1259
|
-
|
|
1260
|
-
elif sort_by == "gpc_cpg":
|
|
1261
|
-
gpc_matrix = _layer_to_numpy(
|
|
1262
|
-
subset_bin,
|
|
1263
|
-
layer_gpc,
|
|
1264
|
-
None,
|
|
1265
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1266
|
-
fill_nan_value=fill_nan_value,
|
|
1267
|
-
)
|
|
1268
|
-
linkage = sch.linkage(gpc_matrix, method="ward")
|
|
1269
|
-
order = sch.leaves_list(linkage)
|
|
1270
|
-
|
|
1271
|
-
elif sort_by == "a" and num_any_a > 0:
|
|
1272
|
-
any_a_matrix = _layer_to_numpy(
|
|
1273
|
-
subset_bin,
|
|
1274
|
-
layer_a,
|
|
1275
|
-
any_a_sites,
|
|
1276
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1277
|
-
fill_nan_value=fill_nan_value,
|
|
1278
|
-
)
|
|
1279
|
-
linkage = sch.linkage(any_a_matrix, method="ward")
|
|
1280
|
-
order = sch.leaves_list(linkage)
|
|
1281
|
-
|
|
1282
|
-
elif sort_by == "none":
|
|
1283
|
-
order = np.arange(num_reads)
|
|
1284
|
-
|
|
1285
|
-
else:
|
|
1286
|
-
order = np.arange(num_reads)
|
|
1287
|
-
|
|
1288
|
-
subset_bin = subset_bin[order]
|
|
1289
|
-
|
|
1290
|
-
# stack consistently
|
|
1291
|
-
if include_any_c and num_any_c > 0:
|
|
1292
|
-
stacked_any_c.append(
|
|
1293
|
-
_layer_to_numpy(
|
|
1294
|
-
subset_bin,
|
|
1295
|
-
layer_c,
|
|
1296
|
-
any_c_sites,
|
|
1297
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1298
|
-
fill_nan_value=fill_nan_value,
|
|
1299
|
-
)
|
|
1300
|
-
)
|
|
1301
|
-
stacked_any_c_raw.append(
|
|
1302
|
-
_layer_to_numpy(
|
|
1303
|
-
subset_bin,
|
|
1304
|
-
layer_c,
|
|
1305
|
-
any_c_sites,
|
|
1306
|
-
fill_nan_strategy="none",
|
|
1307
|
-
fill_nan_value=fill_nan_value,
|
|
1308
|
-
)
|
|
1309
|
-
)
|
|
1310
|
-
if include_any_c and num_gpc > 0:
|
|
1311
|
-
stacked_gpc.append(
|
|
1312
|
-
_layer_to_numpy(
|
|
1313
|
-
subset_bin,
|
|
1314
|
-
layer_gpc,
|
|
1315
|
-
gpc_sites,
|
|
1316
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1317
|
-
fill_nan_value=fill_nan_value,
|
|
1318
|
-
)
|
|
1319
|
-
)
|
|
1320
|
-
stacked_gpc_raw.append(
|
|
1321
|
-
_layer_to_numpy(
|
|
1322
|
-
subset_bin,
|
|
1323
|
-
layer_gpc,
|
|
1324
|
-
gpc_sites,
|
|
1325
|
-
fill_nan_strategy="none",
|
|
1326
|
-
fill_nan_value=fill_nan_value,
|
|
1327
|
-
)
|
|
1328
|
-
)
|
|
1329
|
-
if include_any_c and num_cpg > 0:
|
|
1330
|
-
stacked_cpg.append(
|
|
1331
|
-
_layer_to_numpy(
|
|
1332
|
-
subset_bin,
|
|
1333
|
-
layer_cpg,
|
|
1334
|
-
cpg_sites,
|
|
1335
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1336
|
-
fill_nan_value=fill_nan_value,
|
|
1337
|
-
)
|
|
1338
|
-
)
|
|
1339
|
-
stacked_cpg_raw.append(
|
|
1340
|
-
_layer_to_numpy(
|
|
1341
|
-
subset_bin,
|
|
1342
|
-
layer_cpg,
|
|
1343
|
-
cpg_sites,
|
|
1344
|
-
fill_nan_strategy="none",
|
|
1345
|
-
fill_nan_value=fill_nan_value,
|
|
1346
|
-
)
|
|
1347
|
-
)
|
|
1348
|
-
if include_any_a and num_any_a > 0:
|
|
1349
|
-
stacked_any_a.append(
|
|
1350
|
-
_layer_to_numpy(
|
|
1351
|
-
subset_bin,
|
|
1352
|
-
layer_a,
|
|
1353
|
-
any_a_sites,
|
|
1354
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1355
|
-
fill_nan_value=fill_nan_value,
|
|
1356
|
-
)
|
|
1357
|
-
)
|
|
1358
|
-
stacked_any_a_raw.append(
|
|
1359
|
-
_layer_to_numpy(
|
|
1360
|
-
subset_bin,
|
|
1361
|
-
layer_a,
|
|
1362
|
-
any_a_sites,
|
|
1363
|
-
fill_nan_strategy="none",
|
|
1364
|
-
fill_nan_value=fill_nan_value,
|
|
1365
|
-
)
|
|
1366
|
-
)
|
|
1367
|
-
|
|
1368
|
-
row_labels.extend([bin_label] * num_reads)
|
|
1369
|
-
bin_labels.append(f"{bin_label}: {num_reads} reads ({percent_reads:.1f}%)")
|
|
1370
|
-
last_idx += num_reads
|
|
1371
|
-
bin_boundaries.append(last_idx)
|
|
1372
|
-
|
|
1373
|
-
# ----------------------------
|
|
1374
|
-
# build matrices + means
|
|
1375
|
-
# ----------------------------
|
|
1376
|
-
blocks = [] # list of dicts describing what to plot in order
|
|
1377
|
-
|
|
1378
|
-
if include_any_c and stacked_any_c:
|
|
1379
|
-
any_c_matrix = np.vstack(stacked_any_c)
|
|
1380
|
-
any_c_matrix_raw = np.vstack(stacked_any_c_raw)
|
|
1381
|
-
gpc_matrix = np.vstack(stacked_gpc) if stacked_gpc else np.empty((0, 0))
|
|
1382
|
-
gpc_matrix_raw = (
|
|
1383
|
-
np.vstack(stacked_gpc_raw) if stacked_gpc_raw else np.empty((0, 0))
|
|
1384
|
-
)
|
|
1385
|
-
cpg_matrix = np.vstack(stacked_cpg) if stacked_cpg else np.empty((0, 0))
|
|
1386
|
-
cpg_matrix_raw = (
|
|
1387
|
-
np.vstack(stacked_cpg_raw) if stacked_cpg_raw else np.empty((0, 0))
|
|
1388
|
-
)
|
|
1389
|
-
|
|
1390
|
-
mean_any_c = (
|
|
1391
|
-
_methylation_fraction_for_layer(any_c_matrix_raw, layer_c)
|
|
1392
|
-
if any_c_matrix_raw.size
|
|
1393
|
-
else None
|
|
1394
|
-
)
|
|
1395
|
-
mean_gpc = (
|
|
1396
|
-
_methylation_fraction_for_layer(gpc_matrix_raw, layer_gpc)
|
|
1397
|
-
if gpc_matrix_raw.size
|
|
1398
|
-
else None
|
|
1399
|
-
)
|
|
1400
|
-
mean_cpg = (
|
|
1401
|
-
_methylation_fraction_for_layer(cpg_matrix_raw, layer_cpg)
|
|
1402
|
-
if cpg_matrix_raw.size
|
|
1403
|
-
else None
|
|
1404
|
-
)
|
|
1405
|
-
|
|
1406
|
-
if any_c_matrix.size:
|
|
1407
|
-
blocks.append(
|
|
1408
|
-
dict(
|
|
1409
|
-
name="c",
|
|
1410
|
-
matrix=any_c_matrix,
|
|
1411
|
-
mean=mean_any_c,
|
|
1412
|
-
labels=any_c_labels,
|
|
1413
|
-
cmap=cmap_c,
|
|
1414
|
-
n_xticks=n_xticks_any_c,
|
|
1415
|
-
title="any C site Modification Signal",
|
|
1416
|
-
)
|
|
1417
|
-
)
|
|
1418
|
-
if gpc_matrix.size:
|
|
1419
|
-
blocks.append(
|
|
1420
|
-
dict(
|
|
1421
|
-
name="gpc",
|
|
1422
|
-
matrix=gpc_matrix,
|
|
1423
|
-
mean=mean_gpc,
|
|
1424
|
-
labels=gpc_labels,
|
|
1425
|
-
cmap=cmap_gpc,
|
|
1426
|
-
n_xticks=n_xticks_gpc,
|
|
1427
|
-
title="GpC Modification Signal",
|
|
1428
|
-
)
|
|
1429
|
-
)
|
|
1430
|
-
if cpg_matrix.size:
|
|
1431
|
-
blocks.append(
|
|
1432
|
-
dict(
|
|
1433
|
-
name="cpg",
|
|
1434
|
-
matrix=cpg_matrix,
|
|
1435
|
-
mean=mean_cpg,
|
|
1436
|
-
labels=cpg_labels,
|
|
1437
|
-
cmap=cmap_cpg,
|
|
1438
|
-
n_xticks=n_xticks_cpg,
|
|
1439
|
-
title="CpG Modification Signal",
|
|
1440
|
-
)
|
|
1441
|
-
)
|
|
1442
|
-
|
|
1443
|
-
if include_any_a and stacked_any_a:
|
|
1444
|
-
any_a_matrix = np.vstack(stacked_any_a)
|
|
1445
|
-
any_a_matrix_raw = np.vstack(stacked_any_a_raw)
|
|
1446
|
-
mean_any_a = (
|
|
1447
|
-
_methylation_fraction_for_layer(any_a_matrix_raw, layer_a)
|
|
1448
|
-
if any_a_matrix_raw.size
|
|
1449
|
-
else None
|
|
1450
|
-
)
|
|
1451
|
-
if any_a_matrix.size:
|
|
1452
|
-
blocks.append(
|
|
1453
|
-
dict(
|
|
1454
|
-
name="a",
|
|
1455
|
-
matrix=any_a_matrix,
|
|
1456
|
-
mean=mean_any_a,
|
|
1457
|
-
labels=any_a_labels,
|
|
1458
|
-
cmap=cmap_a,
|
|
1459
|
-
n_xticks=n_xticks_any_a,
|
|
1460
|
-
title="any A site Modification Signal",
|
|
1461
|
-
)
|
|
1462
|
-
)
|
|
1463
|
-
|
|
1464
|
-
if not blocks:
|
|
1465
|
-
print(f"No matrices to plot for {display_sample} - {ref}")
|
|
1466
|
-
continue
|
|
1467
|
-
|
|
1468
|
-
gs_dim = len(blocks)
|
|
1469
|
-
fig = plt.figure(figsize=(5.5 * gs_dim, 11))
|
|
1470
|
-
gs = gridspec.GridSpec(2, gs_dim, height_ratios=[1, 6], hspace=0.02)
|
|
1471
|
-
fig.suptitle(f"{display_sample} - {ref} - {total_reads} reads", fontsize=14, y=0.97)
|
|
1472
|
-
|
|
1473
|
-
axes_heat = [fig.add_subplot(gs[1, i]) for i in range(gs_dim)]
|
|
1474
|
-
axes_bar = [fig.add_subplot(gs[0, i], sharex=axes_heat[i]) for i in range(gs_dim)]
|
|
1475
|
-
|
|
1476
|
-
# ----------------------------
|
|
1477
|
-
# plot blocks
|
|
1478
|
-
# ----------------------------
|
|
1479
|
-
for i, blk in enumerate(blocks):
|
|
1480
|
-
mat = blk["matrix"]
|
|
1481
|
-
mean = blk["mean"]
|
|
1482
|
-
labels = np.asarray(blk["labels"], dtype=str)
|
|
1483
|
-
n_xticks = blk["n_xticks"]
|
|
1484
|
-
|
|
1485
|
-
# barplot
|
|
1486
|
-
clean_barplot(axes_bar[i], mean, blk["title"])
|
|
1487
|
-
|
|
1488
|
-
# heatmap
|
|
1489
|
-
sns.heatmap(
|
|
1490
|
-
mat, cmap=blk["cmap"], ax=axes_heat[i], yticklabels=False, cbar=False
|
|
1491
|
-
)
|
|
1492
|
-
|
|
1493
|
-
# fixed tick labels
|
|
1494
|
-
tick_pos = _fixed_tick_positions(len(labels), n_xticks)
|
|
1495
|
-
axes_heat[i].set_xticks(tick_pos)
|
|
1496
|
-
axes_heat[i].set_xticklabels(
|
|
1497
|
-
labels[tick_pos], rotation=xtick_rotation, fontsize=xtick_fontsize
|
|
1498
|
-
)
|
|
1499
|
-
|
|
1500
|
-
# bin separators
|
|
1501
|
-
for boundary in bin_boundaries[:-1]:
|
|
1502
|
-
axes_heat[i].axhline(y=boundary, color="black", linewidth=2)
|
|
1503
|
-
|
|
1504
|
-
axes_heat[i].set_xlabel("Position", fontsize=9)
|
|
1505
|
-
|
|
1506
|
-
plt.tight_layout()
|
|
1507
|
-
|
|
1508
|
-
# save or show
|
|
1509
|
-
if save_path is not None:
|
|
1510
|
-
safe_name = (
|
|
1511
|
-
f"{ref}__{display_sample}".replace("=", "")
|
|
1512
|
-
.replace("__", "_")
|
|
1513
|
-
.replace(",", "_")
|
|
1514
|
-
.replace(" ", "_")
|
|
1515
|
-
)
|
|
1516
|
-
out_file = save_path / f"{safe_name}.png"
|
|
1517
|
-
fig.savefig(out_file, dpi=300)
|
|
1518
|
-
plt.close(fig)
|
|
1519
|
-
print(f"Saved: {out_file}")
|
|
1520
|
-
else:
|
|
1521
|
-
plt.show()
|
|
1522
|
-
|
|
1523
|
-
# record results
|
|
1524
|
-
rec = {
|
|
1525
|
-
"sample": str(sample),
|
|
1526
|
-
"ref": str(ref),
|
|
1527
|
-
"row_labels": row_labels,
|
|
1528
|
-
"bin_labels": bin_labels,
|
|
1529
|
-
"bin_boundaries": bin_boundaries,
|
|
1530
|
-
"percentages": percentages,
|
|
1531
|
-
}
|
|
1532
|
-
for blk in blocks:
|
|
1533
|
-
rec[f"{blk['name']}_matrix"] = blk["matrix"]
|
|
1534
|
-
rec[f"{blk['name']}_labels"] = list(map(str, blk["labels"]))
|
|
1535
|
-
results.append(rec)
|
|
1536
|
-
|
|
1537
|
-
print(f"Summary for {display_sample} - {ref}:")
|
|
1538
|
-
for bin_label, percent in percentages.items():
|
|
1539
|
-
print(f" - {bin_label}: {percent:.1f}%")
|
|
1540
|
-
|
|
1541
|
-
except Exception:
|
|
1542
|
-
import traceback
|
|
1543
|
-
|
|
1544
|
-
traceback.print_exc()
|
|
1545
|
-
continue
|
|
1546
|
-
|
|
1547
|
-
return results
|
|
1548
|
-
|
|
1549
|
-
|
|
1550
|
-
def combined_hmm_length_clustermap(
|
|
1551
|
-
adata,
|
|
1552
|
-
sample_col: str = "Sample_Names",
|
|
1553
|
-
reference_col: str = "Reference_strand",
|
|
1554
|
-
length_layer: str = "hmm_combined_lengths",
|
|
1555
|
-
layer_gpc: str = "nan0_0minus1",
|
|
1556
|
-
layer_cpg: str = "nan0_0minus1",
|
|
1557
|
-
layer_c: str = "nan0_0minus1",
|
|
1558
|
-
layer_a: str = "nan0_0minus1",
|
|
1559
|
-
cmap_lengths: Any = "Greens",
|
|
1560
|
-
cmap_gpc: str = "coolwarm",
|
|
1561
|
-
cmap_cpg: str = "viridis",
|
|
1562
|
-
cmap_c: str = "coolwarm",
|
|
1563
|
-
cmap_a: str = "coolwarm",
|
|
1564
|
-
min_quality: int = 20,
|
|
1565
|
-
min_length: int = 200,
|
|
1566
|
-
min_mapped_length_to_reference_length_ratio: float = 0.8,
|
|
1567
|
-
min_position_valid_fraction: float = 0.5,
|
|
1568
|
-
demux_types: Sequence[str] = ("single", "double", "already"),
|
|
1569
|
-
sample_mapping: Optional[Mapping[str, str]] = None,
|
|
1570
|
-
save_path: str | Path | None = None,
|
|
1571
|
-
sort_by: str = "gpc",
|
|
1572
|
-
bins: Optional[Dict[str, Any]] = None,
|
|
1573
|
-
deaminase: bool = False,
|
|
1574
|
-
min_signal: float = 0.0,
|
|
1575
|
-
n_xticks_lengths: int = 10,
|
|
1576
|
-
n_xticks_any_c: int = 8,
|
|
1577
|
-
n_xticks_gpc: int = 8,
|
|
1578
|
-
n_xticks_cpg: int = 8,
|
|
1579
|
-
n_xticks_a: int = 8,
|
|
1580
|
-
index_col_suffix: str | None = None,
|
|
1581
|
-
fill_nan_strategy: str = "value",
|
|
1582
|
-
fill_nan_value: float = -1,
|
|
1583
|
-
length_feature_ranges: Optional[Sequence[Tuple[int, int, Any]]] = None,
|
|
1584
|
-
):
|
|
1585
|
-
"""
|
|
1586
|
-
Plot clustermaps for length-encoded HMM feature layers with optional subclass colors.
|
|
1587
|
-
|
|
1588
|
-
Length-based feature ranges map integer lengths into subclass colors for accessible
|
|
1589
|
-
and footprint layers. Raw methylation panels are included when available.
|
|
1590
|
-
"""
|
|
1591
|
-
if fill_nan_strategy not in {"none", "value", "col_mean"}:
|
|
1592
|
-
raise ValueError("fill_nan_strategy must be 'none', 'value', or 'col_mean'.")
|
|
1593
|
-
|
|
1594
|
-
def pick_xticks(labels: np.ndarray, n_ticks: int):
|
|
1595
|
-
"""Pick tick indices/labels from an array."""
|
|
1596
|
-
if labels.size == 0:
|
|
1597
|
-
return [], []
|
|
1598
|
-
idx = np.linspace(0, len(labels) - 1, n_ticks).round().astype(int)
|
|
1599
|
-
idx = np.unique(idx)
|
|
1600
|
-
return idx.tolist(), labels[idx].tolist()
|
|
1601
|
-
|
|
1602
|
-
def _mask_or_true(series_name: str, predicate):
|
|
1603
|
-
"""Return a mask from predicate or an all-True mask."""
|
|
1604
|
-
if series_name not in adata.obs:
|
|
1605
|
-
return pd.Series(True, index=adata.obs.index)
|
|
1606
|
-
s = adata.obs[series_name]
|
|
1607
|
-
try:
|
|
1608
|
-
return predicate(s)
|
|
1609
|
-
except Exception:
|
|
1610
|
-
return pd.Series(True, index=adata.obs.index)
|
|
1611
|
-
|
|
1612
|
-
results = []
|
|
1613
|
-
signal_type = "deamination" if deaminase else "methylation"
|
|
1614
|
-
feature_ranges = tuple(length_feature_ranges or ())
|
|
1615
|
-
|
|
1616
|
-
for ref in adata.obs[reference_col].cat.categories:
|
|
1617
|
-
for sample in adata.obs[sample_col].cat.categories:
|
|
1618
|
-
display_sample = sample_mapping.get(sample, sample) if sample_mapping else sample
|
|
1619
|
-
qmask = _mask_or_true(
|
|
1620
|
-
"read_quality",
|
|
1621
|
-
(lambda s: s >= float(min_quality))
|
|
1622
|
-
if (min_quality is not None)
|
|
1623
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
1624
|
-
)
|
|
1625
|
-
lm_mask = _mask_or_true(
|
|
1626
|
-
"mapped_length",
|
|
1627
|
-
(lambda s: s >= float(min_length))
|
|
1628
|
-
if (min_length is not None)
|
|
1629
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
1630
|
-
)
|
|
1631
|
-
lrr_mask = _mask_or_true(
|
|
1632
|
-
"mapped_length_to_reference_length_ratio",
|
|
1633
|
-
(lambda s: s >= float(min_mapped_length_to_reference_length_ratio))
|
|
1634
|
-
if (min_mapped_length_to_reference_length_ratio is not None)
|
|
1635
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
1636
|
-
)
|
|
1637
|
-
|
|
1638
|
-
demux_mask = _mask_or_true(
|
|
1639
|
-
"demux_type",
|
|
1640
|
-
(lambda s: s.astype("string").isin(list(demux_types)))
|
|
1641
|
-
if (demux_types is not None)
|
|
1642
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
1643
|
-
)
|
|
1644
|
-
|
|
1645
|
-
ref_mask = adata.obs[reference_col] == ref
|
|
1646
|
-
sample_mask = adata.obs[sample_col] == sample
|
|
1647
|
-
|
|
1648
|
-
row_mask = ref_mask & sample_mask & qmask & lm_mask & lrr_mask & demux_mask
|
|
1649
|
-
|
|
1650
|
-
if not bool(row_mask.any()):
|
|
1651
|
-
print(
|
|
1652
|
-
f"No reads for {display_sample} - {ref} after read quality and length filtering"
|
|
1653
|
-
)
|
|
1654
|
-
continue
|
|
1655
|
-
|
|
1656
|
-
try:
|
|
1657
|
-
subset = adata[row_mask, :].copy()
|
|
1658
|
-
|
|
1659
|
-
if min_position_valid_fraction is not None:
|
|
1660
|
-
valid_key = f"{ref}_valid_fraction"
|
|
1661
|
-
if valid_key in subset.var:
|
|
1662
|
-
v = pd.to_numeric(subset.var[valid_key], errors="coerce").to_numpy()
|
|
1663
|
-
col_mask = np.asarray(v > float(min_position_valid_fraction), dtype=bool)
|
|
1664
|
-
if col_mask.any():
|
|
1665
|
-
subset = subset[:, col_mask].copy()
|
|
1666
|
-
else:
|
|
1667
|
-
print(
|
|
1668
|
-
f"No positions left after valid_fraction filter for {display_sample} - {ref}"
|
|
1669
|
-
)
|
|
1670
|
-
continue
|
|
1671
|
-
|
|
1672
|
-
if subset.shape[0] == 0:
|
|
1673
|
-
print(f"No reads left after filtering for {display_sample} - {ref}")
|
|
1674
|
-
continue
|
|
1675
|
-
|
|
1676
|
-
if bins is None:
|
|
1677
|
-
bins_temp = {"All": np.ones(subset.n_obs, dtype=bool)}
|
|
1678
|
-
else:
|
|
1679
|
-
bins_temp = bins
|
|
1680
|
-
|
|
1681
|
-
def _sites(*keys):
|
|
1682
|
-
"""Return indices for the first matching site key."""
|
|
1683
|
-
for k in keys:
|
|
1684
|
-
if k in subset.var:
|
|
1685
|
-
return np.where(subset.var[k].values)[0]
|
|
1686
|
-
return np.array([], dtype=int)
|
|
1687
|
-
|
|
1688
|
-
gpc_sites = _sites(f"{ref}_GpC_site")
|
|
1689
|
-
cpg_sites = _sites(f"{ref}_CpG_site")
|
|
1690
|
-
any_c_sites = _sites(f"{ref}_any_C_site", f"{ref}_C_site")
|
|
1691
|
-
any_a_sites = _sites(f"{ref}_A_site", f"{ref}_any_A_site")
|
|
1692
|
-
|
|
1693
|
-
length_sites = np.arange(subset.n_vars, dtype=int)
|
|
1694
|
-
length_labels = _select_labels(subset, length_sites, ref, index_col_suffix)
|
|
1695
|
-
gpc_labels = _select_labels(subset, gpc_sites, ref, index_col_suffix)
|
|
1696
|
-
cpg_labels = _select_labels(subset, cpg_sites, ref, index_col_suffix)
|
|
1697
|
-
any_c_labels = _select_labels(subset, any_c_sites, ref, index_col_suffix)
|
|
1698
|
-
any_a_labels = _select_labels(subset, any_a_sites, ref, index_col_suffix)
|
|
1699
|
-
|
|
1700
|
-
stacked_lengths = []
|
|
1701
|
-
stacked_lengths_raw = []
|
|
1702
|
-
stacked_any_c = []
|
|
1703
|
-
stacked_any_c_raw = []
|
|
1704
|
-
stacked_gpc = []
|
|
1705
|
-
stacked_gpc_raw = []
|
|
1706
|
-
stacked_cpg = []
|
|
1707
|
-
stacked_cpg_raw = []
|
|
1708
|
-
stacked_any_a = []
|
|
1709
|
-
stacked_any_a_raw = []
|
|
1710
|
-
|
|
1711
|
-
row_labels, bin_labels, bin_boundaries = [], [], []
|
|
1712
|
-
total_reads = subset.n_obs
|
|
1713
|
-
percentages = {}
|
|
1714
|
-
last_idx = 0
|
|
1715
|
-
|
|
1716
|
-
for bin_label, bin_filter in bins_temp.items():
|
|
1717
|
-
sb = subset[bin_filter].copy()
|
|
1718
|
-
n = sb.n_obs
|
|
1719
|
-
if n == 0:
|
|
1720
|
-
continue
|
|
1721
|
-
|
|
1722
|
-
pct = (n / total_reads) * 100 if total_reads else 0
|
|
1723
|
-
percentages[bin_label] = pct
|
|
1724
|
-
|
|
1725
|
-
if sort_by.startswith("obs:"):
|
|
1726
|
-
colname = sort_by.split("obs:")[1]
|
|
1727
|
-
order = np.argsort(sb.obs[colname].values)
|
|
1728
|
-
elif sort_by == "gpc" and gpc_sites.size:
|
|
1729
|
-
gpc_matrix = _layer_to_numpy(
|
|
1730
|
-
sb,
|
|
1731
|
-
layer_gpc,
|
|
1732
|
-
gpc_sites,
|
|
1733
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1734
|
-
fill_nan_value=fill_nan_value,
|
|
1735
|
-
)
|
|
1736
|
-
linkage = sch.linkage(gpc_matrix, method="ward")
|
|
1737
|
-
order = sch.leaves_list(linkage)
|
|
1738
|
-
elif sort_by == "cpg" and cpg_sites.size:
|
|
1739
|
-
cpg_matrix = _layer_to_numpy(
|
|
1740
|
-
sb,
|
|
1741
|
-
layer_cpg,
|
|
1742
|
-
cpg_sites,
|
|
1743
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1744
|
-
fill_nan_value=fill_nan_value,
|
|
1745
|
-
)
|
|
1746
|
-
linkage = sch.linkage(cpg_matrix, method="ward")
|
|
1747
|
-
order = sch.leaves_list(linkage)
|
|
1748
|
-
elif sort_by == "c" and any_c_sites.size:
|
|
1749
|
-
any_c_matrix = _layer_to_numpy(
|
|
1750
|
-
sb,
|
|
1751
|
-
layer_c,
|
|
1752
|
-
any_c_sites,
|
|
1753
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1754
|
-
fill_nan_value=fill_nan_value,
|
|
1755
|
-
)
|
|
1756
|
-
linkage = sch.linkage(any_c_matrix, method="ward")
|
|
1757
|
-
order = sch.leaves_list(linkage)
|
|
1758
|
-
elif sort_by == "a" and any_a_sites.size:
|
|
1759
|
-
any_a_matrix = _layer_to_numpy(
|
|
1760
|
-
sb,
|
|
1761
|
-
layer_a,
|
|
1762
|
-
any_a_sites,
|
|
1763
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1764
|
-
fill_nan_value=fill_nan_value,
|
|
1765
|
-
)
|
|
1766
|
-
linkage = sch.linkage(any_a_matrix, method="ward")
|
|
1767
|
-
order = sch.leaves_list(linkage)
|
|
1768
|
-
elif sort_by == "gpc_cpg" and gpc_sites.size and cpg_sites.size:
|
|
1769
|
-
gpc_matrix = _layer_to_numpy(
|
|
1770
|
-
sb,
|
|
1771
|
-
layer_gpc,
|
|
1772
|
-
None,
|
|
1773
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1774
|
-
fill_nan_value=fill_nan_value,
|
|
1775
|
-
)
|
|
1776
|
-
linkage = sch.linkage(gpc_matrix, method="ward")
|
|
1777
|
-
order = sch.leaves_list(linkage)
|
|
1778
|
-
elif sort_by == "hmm" and length_sites.size:
|
|
1779
|
-
length_matrix = _layer_to_numpy(
|
|
1780
|
-
sb,
|
|
1781
|
-
length_layer,
|
|
1782
|
-
length_sites,
|
|
1783
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1784
|
-
fill_nan_value=fill_nan_value,
|
|
1785
|
-
)
|
|
1786
|
-
linkage = sch.linkage(length_matrix, method="ward")
|
|
1787
|
-
order = sch.leaves_list(linkage)
|
|
1788
|
-
else:
|
|
1789
|
-
order = np.arange(n)
|
|
1790
|
-
|
|
1791
|
-
sb = sb[order]
|
|
1792
|
-
|
|
1793
|
-
stacked_lengths.append(
|
|
1794
|
-
_layer_to_numpy(
|
|
1795
|
-
sb,
|
|
1796
|
-
length_layer,
|
|
1797
|
-
None,
|
|
1798
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1799
|
-
fill_nan_value=fill_nan_value,
|
|
1800
|
-
)
|
|
1801
|
-
)
|
|
1802
|
-
stacked_lengths_raw.append(
|
|
1803
|
-
_layer_to_numpy(
|
|
1804
|
-
sb,
|
|
1805
|
-
length_layer,
|
|
1806
|
-
None,
|
|
1807
|
-
fill_nan_strategy="none",
|
|
1808
|
-
fill_nan_value=fill_nan_value,
|
|
1809
|
-
)
|
|
1810
|
-
)
|
|
1811
|
-
if any_c_sites.size:
|
|
1812
|
-
stacked_any_c.append(
|
|
1813
|
-
_layer_to_numpy(
|
|
1814
|
-
sb,
|
|
1815
|
-
layer_c,
|
|
1816
|
-
any_c_sites,
|
|
1817
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1818
|
-
fill_nan_value=fill_nan_value,
|
|
1819
|
-
)
|
|
1820
|
-
)
|
|
1821
|
-
stacked_any_c_raw.append(
|
|
1822
|
-
_layer_to_numpy(
|
|
1823
|
-
sb,
|
|
1824
|
-
layer_c,
|
|
1825
|
-
any_c_sites,
|
|
1826
|
-
fill_nan_strategy="none",
|
|
1827
|
-
fill_nan_value=fill_nan_value,
|
|
1828
|
-
)
|
|
1829
|
-
)
|
|
1830
|
-
if gpc_sites.size:
|
|
1831
|
-
stacked_gpc.append(
|
|
1832
|
-
_layer_to_numpy(
|
|
1833
|
-
sb,
|
|
1834
|
-
layer_gpc,
|
|
1835
|
-
gpc_sites,
|
|
1836
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1837
|
-
fill_nan_value=fill_nan_value,
|
|
1838
|
-
)
|
|
1839
|
-
)
|
|
1840
|
-
stacked_gpc_raw.append(
|
|
1841
|
-
_layer_to_numpy(
|
|
1842
|
-
sb,
|
|
1843
|
-
layer_gpc,
|
|
1844
|
-
gpc_sites,
|
|
1845
|
-
fill_nan_strategy="none",
|
|
1846
|
-
fill_nan_value=fill_nan_value,
|
|
1847
|
-
)
|
|
1848
|
-
)
|
|
1849
|
-
if cpg_sites.size:
|
|
1850
|
-
stacked_cpg.append(
|
|
1851
|
-
_layer_to_numpy(
|
|
1852
|
-
sb,
|
|
1853
|
-
layer_cpg,
|
|
1854
|
-
cpg_sites,
|
|
1855
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1856
|
-
fill_nan_value=fill_nan_value,
|
|
1857
|
-
)
|
|
1858
|
-
)
|
|
1859
|
-
stacked_cpg_raw.append(
|
|
1860
|
-
_layer_to_numpy(
|
|
1861
|
-
sb,
|
|
1862
|
-
layer_cpg,
|
|
1863
|
-
cpg_sites,
|
|
1864
|
-
fill_nan_strategy="none",
|
|
1865
|
-
fill_nan_value=fill_nan_value,
|
|
1866
|
-
)
|
|
1867
|
-
)
|
|
1868
|
-
if any_a_sites.size:
|
|
1869
|
-
stacked_any_a.append(
|
|
1870
|
-
_layer_to_numpy(
|
|
1871
|
-
sb,
|
|
1872
|
-
layer_a,
|
|
1873
|
-
any_a_sites,
|
|
1874
|
-
fill_nan_strategy=fill_nan_strategy,
|
|
1875
|
-
fill_nan_value=fill_nan_value,
|
|
1876
|
-
)
|
|
1877
|
-
)
|
|
1878
|
-
stacked_any_a_raw.append(
|
|
1879
|
-
_layer_to_numpy(
|
|
1880
|
-
sb,
|
|
1881
|
-
layer_a,
|
|
1882
|
-
any_a_sites,
|
|
1883
|
-
fill_nan_strategy="none",
|
|
1884
|
-
fill_nan_value=fill_nan_value,
|
|
1885
|
-
)
|
|
1886
|
-
)
|
|
1887
|
-
|
|
1888
|
-
row_labels.extend([bin_label] * n)
|
|
1889
|
-
bin_labels.append(f"{bin_label}: {n} reads ({pct:.1f}%)")
|
|
1890
|
-
last_idx += n
|
|
1891
|
-
bin_boundaries.append(last_idx)
|
|
1892
|
-
|
|
1893
|
-
length_matrix = np.vstack(stacked_lengths)
|
|
1894
|
-
length_matrix_raw = np.vstack(stacked_lengths_raw)
|
|
1895
|
-
capped_lengths = np.where(length_matrix_raw > 1, 1.0, length_matrix_raw)
|
|
1896
|
-
mean_lengths = np.nanmean(capped_lengths, axis=0)
|
|
1897
|
-
length_plot_matrix = length_matrix_raw
|
|
1898
|
-
length_plot_cmap = cmap_lengths
|
|
1899
|
-
length_plot_norm = None
|
|
1900
|
-
|
|
1901
|
-
if feature_ranges:
|
|
1902
|
-
length_plot_matrix = _map_length_matrix_to_subclasses(
|
|
1903
|
-
length_matrix_raw, feature_ranges
|
|
1904
|
-
)
|
|
1905
|
-
length_plot_cmap, length_plot_norm = _build_length_feature_cmap(feature_ranges)
|
|
1906
|
-
|
|
1907
|
-
panels = [
|
|
1908
|
-
(
|
|
1909
|
-
f"HMM lengths - {length_layer}",
|
|
1910
|
-
length_plot_matrix,
|
|
1911
|
-
length_labels,
|
|
1912
|
-
length_plot_cmap,
|
|
1913
|
-
mean_lengths,
|
|
1914
|
-
n_xticks_lengths,
|
|
1915
|
-
length_plot_norm,
|
|
1916
|
-
),
|
|
1917
|
-
]
|
|
1918
|
-
|
|
1919
|
-
if stacked_any_c:
|
|
1920
|
-
m = np.vstack(stacked_any_c)
|
|
1921
|
-
m_raw = np.vstack(stacked_any_c_raw)
|
|
1922
|
-
panels.append(
|
|
1923
|
-
(
|
|
1924
|
-
"C",
|
|
1925
|
-
m,
|
|
1926
|
-
any_c_labels,
|
|
1927
|
-
cmap_c,
|
|
1928
|
-
_methylation_fraction_for_layer(m_raw, layer_c),
|
|
1929
|
-
n_xticks_any_c,
|
|
1930
|
-
None,
|
|
1931
|
-
)
|
|
1932
|
-
)
|
|
1933
|
-
|
|
1934
|
-
if stacked_gpc:
|
|
1935
|
-
m = np.vstack(stacked_gpc)
|
|
1936
|
-
m_raw = np.vstack(stacked_gpc_raw)
|
|
1937
|
-
panels.append(
|
|
1938
|
-
(
|
|
1939
|
-
"GpC",
|
|
1940
|
-
m,
|
|
1941
|
-
gpc_labels,
|
|
1942
|
-
cmap_gpc,
|
|
1943
|
-
_methylation_fraction_for_layer(m_raw, layer_gpc),
|
|
1944
|
-
n_xticks_gpc,
|
|
1945
|
-
None,
|
|
1946
|
-
)
|
|
1947
|
-
)
|
|
1948
|
-
|
|
1949
|
-
if stacked_cpg:
|
|
1950
|
-
m = np.vstack(stacked_cpg)
|
|
1951
|
-
m_raw = np.vstack(stacked_cpg_raw)
|
|
1952
|
-
panels.append(
|
|
1953
|
-
(
|
|
1954
|
-
"CpG",
|
|
1955
|
-
m,
|
|
1956
|
-
cpg_labels,
|
|
1957
|
-
cmap_cpg,
|
|
1958
|
-
_methylation_fraction_for_layer(m_raw, layer_cpg),
|
|
1959
|
-
n_xticks_cpg,
|
|
1960
|
-
None,
|
|
1961
|
-
)
|
|
1962
|
-
)
|
|
1963
|
-
|
|
1964
|
-
if stacked_any_a:
|
|
1965
|
-
m = np.vstack(stacked_any_a)
|
|
1966
|
-
m_raw = np.vstack(stacked_any_a_raw)
|
|
1967
|
-
panels.append(
|
|
1968
|
-
(
|
|
1969
|
-
"A",
|
|
1970
|
-
m,
|
|
1971
|
-
any_a_labels,
|
|
1972
|
-
cmap_a,
|
|
1973
|
-
_methylation_fraction_for_layer(m_raw, layer_a),
|
|
1974
|
-
n_xticks_a,
|
|
1975
|
-
None,
|
|
1976
|
-
)
|
|
1977
|
-
)
|
|
1978
|
-
|
|
1979
|
-
n_panels = len(panels)
|
|
1980
|
-
fig = plt.figure(figsize=(4.5 * n_panels, 10))
|
|
1981
|
-
gs = gridspec.GridSpec(2, n_panels, height_ratios=[1, 6], hspace=0.01)
|
|
1982
|
-
fig.suptitle(
|
|
1983
|
-
f"{sample} — {ref} — {total_reads} reads ({signal_type})", fontsize=14, y=0.98
|
|
1984
|
-
)
|
|
1985
|
-
|
|
1986
|
-
axes_heat = [fig.add_subplot(gs[1, i]) for i in range(n_panels)]
|
|
1987
|
-
axes_bar = [fig.add_subplot(gs[0, i], sharex=axes_heat[i]) for i in range(n_panels)]
|
|
1988
|
-
|
|
1989
|
-
for i, (name, matrix, labels, cmap, mean_vec, n_ticks, norm) in enumerate(panels):
|
|
1990
|
-
clean_barplot(axes_bar[i], mean_vec, name)
|
|
1991
|
-
|
|
1992
|
-
heatmap_kwargs = dict(
|
|
1993
|
-
cmap=cmap,
|
|
1994
|
-
ax=axes_heat[i],
|
|
1995
|
-
yticklabels=False,
|
|
1996
|
-
cbar=False,
|
|
1997
|
-
)
|
|
1998
|
-
if norm is not None:
|
|
1999
|
-
heatmap_kwargs["norm"] = norm
|
|
2000
|
-
sns.heatmap(matrix, **heatmap_kwargs)
|
|
2001
|
-
|
|
2002
|
-
xtick_pos, xtick_labels = pick_xticks(np.asarray(labels), n_ticks)
|
|
2003
|
-
axes_heat[i].set_xticks(xtick_pos)
|
|
2004
|
-
axes_heat[i].set_xticklabels(xtick_labels, rotation=90, fontsize=8)
|
|
2005
|
-
|
|
2006
|
-
for boundary in bin_boundaries[:-1]:
|
|
2007
|
-
axes_heat[i].axhline(y=boundary, color="black", linewidth=1.2)
|
|
2008
|
-
|
|
2009
|
-
plt.tight_layout()
|
|
2010
|
-
|
|
2011
|
-
if save_path:
|
|
2012
|
-
save_path = Path(save_path)
|
|
2013
|
-
save_path.mkdir(parents=True, exist_ok=True)
|
|
2014
|
-
safe_name = f"{ref}__{sample}".replace("/", "_")
|
|
2015
|
-
out_file = save_path / f"{safe_name}.png"
|
|
2016
|
-
plt.savefig(out_file, dpi=300)
|
|
2017
|
-
plt.close(fig)
|
|
2018
|
-
else:
|
|
2019
|
-
plt.show()
|
|
2020
|
-
|
|
2021
|
-
results.append((sample, ref))
|
|
2022
|
-
|
|
2023
|
-
except Exception:
|
|
2024
|
-
import traceback
|
|
2025
|
-
|
|
2026
|
-
traceback.print_exc()
|
|
2027
|
-
print(f"Failed {sample} - {ref} - {length_layer}")
|
|
2028
|
-
|
|
2029
|
-
return results
|
|
2030
|
-
|
|
2031
|
-
|
|
2032
|
-
def make_row_colors(meta: pd.DataFrame) -> pd.DataFrame:
|
|
2033
|
-
"""
|
|
2034
|
-
Convert metadata columns to RGB colors without invoking pandas Categorical.map
|
|
2035
|
-
(MultiIndex-safe, category-safe).
|
|
2036
|
-
"""
|
|
2037
|
-
row_colors = pd.DataFrame(index=meta.index)
|
|
2038
|
-
|
|
2039
|
-
for col in meta.columns:
|
|
2040
|
-
# Force plain python objects to avoid ExtensionArray/Categorical behavior
|
|
2041
|
-
s = meta[col].astype("object")
|
|
2042
|
-
|
|
2043
|
-
def _to_label(x):
|
|
2044
|
-
if x is None:
|
|
2045
|
-
return "NA"
|
|
2046
|
-
if isinstance(x, float) and np.isnan(x):
|
|
2047
|
-
return "NA"
|
|
2048
|
-
# If a MultiIndex object is stored in a cell (rare), bucket it
|
|
2049
|
-
if isinstance(x, pd.MultiIndex):
|
|
2050
|
-
return "MultiIndex"
|
|
2051
|
-
# Tuples are common when MultiIndex-ish things get stored as values
|
|
2052
|
-
if isinstance(x, tuple):
|
|
2053
|
-
return "|".join(map(str, x))
|
|
2054
|
-
return str(x)
|
|
2055
|
-
|
|
2056
|
-
labels = np.array([_to_label(x) for x in s.to_numpy()], dtype=object)
|
|
2057
|
-
uniq = pd.unique(labels)
|
|
2058
|
-
palette = dict(zip(uniq, sns.color_palette(n_colors=len(uniq))))
|
|
2059
|
-
|
|
2060
|
-
# Map via python loop -> no pandas map machinery
|
|
2061
|
-
colors = [palette.get(lbl, (0.7, 0.7, 0.7)) for lbl in labels]
|
|
2062
|
-
row_colors[col] = colors
|
|
2063
|
-
|
|
2064
|
-
return row_colors
|
|
2065
|
-
|
|
2066
|
-
|
|
2067
|
-
def plot_rolling_nn_and_layer(
|
|
2068
|
-
subset,
|
|
2069
|
-
obsm_key: str = "rolling_nn_dist",
|
|
2070
|
-
layer_key: str = "nan0_0minus1",
|
|
2071
|
-
meta_cols=("Reference_strand", "Sample"),
|
|
2072
|
-
col_cluster: bool = False,
|
|
2073
|
-
fill_nn_with_colmax: bool = True,
|
|
2074
|
-
fill_layer_value: float = 0.0,
|
|
2075
|
-
drop_all_nan_windows: bool = True,
|
|
2076
|
-
max_nan_fraction: float | None = None,
|
|
2077
|
-
var_valid_fraction_col: str | None = None,
|
|
2078
|
-
var_nan_fraction_col: str | None = None,
|
|
2079
|
-
figsize=(14, 10),
|
|
2080
|
-
right_panel_var_mask=None, # optional boolean mask over subset.var to reduce width
|
|
2081
|
-
robust=True,
|
|
2082
|
-
title: str | None = None,
|
|
2083
|
-
xtick_step: int | None = None,
|
|
2084
|
-
xtick_rotation: int = 90,
|
|
2085
|
-
xtick_fontsize: int = 8,
|
|
2086
|
-
save_name=None,
|
|
2087
|
-
):
|
|
2088
|
-
"""
|
|
2089
|
-
1) Cluster rows by subset.obsm[obsm_key] (rolling NN distances)
|
|
2090
|
-
2) Plot two heatmaps side-by-side in the SAME row order, with mean barplots above:
|
|
2091
|
-
- left: rolling NN distance matrix
|
|
2092
|
-
- right: subset.layers[layer_key] matrix
|
|
2093
|
-
|
|
2094
|
-
Handles categorical/MultiIndex issues in metadata coloring.
|
|
2095
|
-
|
|
2096
|
-
Args:
|
|
2097
|
-
subset: AnnData subset with rolling NN distances stored in ``obsm``.
|
|
2098
|
-
obsm_key: Key in ``subset.obsm`` containing rolling NN distances.
|
|
2099
|
-
layer_key: Layer name to plot alongside rolling NN distances.
|
|
2100
|
-
meta_cols: Obs columns used for row color annotations.
|
|
2101
|
-
col_cluster: Whether to cluster columns in the rolling NN clustermap.
|
|
2102
|
-
fill_nn_with_colmax: Fill NaNs in rolling NN distances with per-column max values.
|
|
2103
|
-
fill_layer_value: Fill NaNs in the layer heatmap with this value.
|
|
2104
|
-
drop_all_nan_windows: Drop rolling windows that are all NaN.
|
|
2105
|
-
max_nan_fraction: Maximum allowed NaN fraction per position (filtering columns).
|
|
2106
|
-
var_valid_fraction_col: ``subset.var`` column with valid fractions (1 - NaN fraction).
|
|
2107
|
-
var_nan_fraction_col: ``subset.var`` column with NaN fractions.
|
|
2108
|
-
figsize: Figure size for the combined plot.
|
|
2109
|
-
right_panel_var_mask: Optional boolean mask over ``subset.var`` for the right panel.
|
|
2110
|
-
robust: Use robust color scaling in seaborn.
|
|
2111
|
-
title: Optional figure title (suptitle).
|
|
2112
|
-
xtick_step: Spacing between x-axis tick labels.
|
|
2113
|
-
xtick_rotation: Rotation for x-axis tick labels.
|
|
2114
|
-
xtick_fontsize: Font size for x-axis tick labels.
|
|
2115
|
-
save_name: Optional output path for saving the plot.
|
|
2116
|
-
"""
|
|
2117
|
-
if max_nan_fraction is not None and not (0 <= max_nan_fraction <= 1):
|
|
2118
|
-
raise ValueError("max_nan_fraction must be between 0 and 1.")
|
|
2119
|
-
|
|
2120
|
-
def _apply_xticks(ax, labels, step):
|
|
2121
|
-
if labels is None or len(labels) == 0:
|
|
2122
|
-
ax.set_xticks([])
|
|
2123
|
-
return
|
|
2124
|
-
if step is None or step <= 0:
|
|
2125
|
-
step = max(1, len(labels) // 10)
|
|
2126
|
-
ticks = np.arange(0, len(labels), step)
|
|
2127
|
-
ax.set_xticks(ticks + 0.5)
|
|
2128
|
-
ax.set_xticklabels(
|
|
2129
|
-
[labels[i] for i in ticks],
|
|
2130
|
-
rotation=xtick_rotation,
|
|
2131
|
-
fontsize=xtick_fontsize,
|
|
2132
|
-
)
|
|
2133
|
-
|
|
2134
|
-
# --- rolling NN distances
|
|
2135
|
-
X = subset.obsm[obsm_key]
|
|
2136
|
-
valid = ~np.all(np.isnan(X), axis=1)
|
|
2137
|
-
|
|
2138
|
-
X_df = pd.DataFrame(X[valid], index=subset.obs_names[valid])
|
|
2139
|
-
|
|
2140
|
-
if drop_all_nan_windows:
|
|
2141
|
-
X_df = X_df.loc[:, ~X_df.isna().all(axis=0)]
|
|
2142
|
-
|
|
2143
|
-
X_df_filled = X_df.copy()
|
|
2144
|
-
if fill_nn_with_colmax:
|
|
2145
|
-
col_max = X_df_filled.max(axis=0, skipna=True)
|
|
2146
|
-
X_df_filled = X_df_filled.fillna(col_max)
|
|
2147
|
-
|
|
2148
|
-
# Ensure non-MultiIndex index for seaborn
|
|
2149
|
-
X_df_filled.index = X_df_filled.index.astype(str)
|
|
2150
|
-
|
|
2151
|
-
# --- row colors from metadata (MultiIndex-safe)
|
|
2152
|
-
meta = subset.obs.loc[X_df.index, list(meta_cols)].copy()
|
|
2153
|
-
meta.index = meta.index.astype(str)
|
|
2154
|
-
row_colors = make_row_colors(meta)
|
|
2155
|
-
|
|
2156
|
-
# --- get row order via clustermap
|
|
2157
|
-
g = sns.clustermap(
|
|
2158
|
-
X_df_filled,
|
|
2159
|
-
cmap="viridis",
|
|
2160
|
-
col_cluster=col_cluster,
|
|
2161
|
-
row_cluster=True,
|
|
2162
|
-
row_colors=row_colors,
|
|
2163
|
-
xticklabels=False,
|
|
2164
|
-
yticklabels=False,
|
|
2165
|
-
robust=robust,
|
|
2166
|
-
)
|
|
2167
|
-
row_order = g.dendrogram_row.reordered_ind
|
|
2168
|
-
ordered_index = X_df_filled.index[row_order]
|
|
2169
|
-
plt.close(g.fig)
|
|
2170
|
-
|
|
2171
|
-
# reorder rolling NN matrix
|
|
2172
|
-
X_ord = X_df_filled.loc[ordered_index]
|
|
2173
|
-
|
|
2174
|
-
# --- layer matrix
|
|
2175
|
-
L = subset.layers[layer_key]
|
|
2176
|
-
L = L.toarray() if hasattr(L, "toarray") else np.asarray(L)
|
|
2177
|
-
|
|
2178
|
-
L_df = pd.DataFrame(L[valid], index=subset.obs_names[valid], columns=subset.var_names)
|
|
2179
|
-
L_df.index = L_df.index.astype(str)
|
|
2180
|
-
|
|
2181
|
-
if right_panel_var_mask is not None:
|
|
2182
|
-
# right_panel_var_mask must be boolean array/Series aligned to subset.var_names
|
|
2183
|
-
if hasattr(right_panel_var_mask, "values"):
|
|
2184
|
-
right_panel_var_mask = right_panel_var_mask.values
|
|
2185
|
-
right_panel_var_mask = np.asarray(right_panel_var_mask, dtype=bool)
|
|
2186
|
-
|
|
2187
|
-
if max_nan_fraction is not None:
|
|
2188
|
-
nan_fraction = None
|
|
2189
|
-
if var_nan_fraction_col and var_nan_fraction_col in subset.var:
|
|
2190
|
-
nan_fraction = pd.to_numeric(
|
|
2191
|
-
subset.var[var_nan_fraction_col], errors="coerce"
|
|
2192
|
-
).to_numpy()
|
|
2193
|
-
elif var_valid_fraction_col and var_valid_fraction_col in subset.var:
|
|
2194
|
-
valid_fraction = pd.to_numeric(
|
|
2195
|
-
subset.var[var_valid_fraction_col], errors="coerce"
|
|
2196
|
-
).to_numpy()
|
|
2197
|
-
nan_fraction = 1 - valid_fraction
|
|
2198
|
-
if nan_fraction is not None:
|
|
2199
|
-
nan_mask = nan_fraction <= max_nan_fraction
|
|
2200
|
-
if right_panel_var_mask is None:
|
|
2201
|
-
right_panel_var_mask = nan_mask
|
|
2202
|
-
else:
|
|
2203
|
-
right_panel_var_mask = right_panel_var_mask & nan_mask
|
|
2204
|
-
|
|
2205
|
-
if right_panel_var_mask is not None:
|
|
2206
|
-
if right_panel_var_mask.size != L_df.shape[1]:
|
|
2207
|
-
raise ValueError("right_panel_var_mask must align with subset.var_names.")
|
|
2208
|
-
L_df = L_df.loc[:, right_panel_var_mask]
|
|
2209
|
-
|
|
2210
|
-
L_ord = L_df.loc[ordered_index]
|
|
2211
|
-
L_plot = L_ord.fillna(fill_layer_value)
|
|
2212
|
-
|
|
2213
|
-
# --- plot side-by-side with barplots above
|
|
2214
|
-
fig = plt.figure(figsize=figsize)
|
|
2215
|
-
gs = fig.add_gridspec(
|
|
2216
|
-
2,
|
|
2217
|
-
4,
|
|
2218
|
-
width_ratios=[1, 0.05, 1, 0.05],
|
|
2219
|
-
height_ratios=[1, 6],
|
|
2220
|
-
wspace=0.2,
|
|
2221
|
-
hspace=0.05,
|
|
2222
|
-
)
|
|
2223
|
-
|
|
2224
|
-
ax1 = fig.add_subplot(gs[1, 0])
|
|
2225
|
-
ax1_cbar = fig.add_subplot(gs[1, 1])
|
|
2226
|
-
ax2 = fig.add_subplot(gs[1, 2])
|
|
2227
|
-
ax2_cbar = fig.add_subplot(gs[1, 3])
|
|
2228
|
-
ax1_bar = fig.add_subplot(gs[0, 0], sharex=ax1)
|
|
2229
|
-
ax2_bar = fig.add_subplot(gs[0, 2], sharex=ax2)
|
|
2230
|
-
fig.add_subplot(gs[0, 1]).axis("off")
|
|
2231
|
-
fig.add_subplot(gs[0, 3]).axis("off")
|
|
2232
|
-
|
|
2233
|
-
mean_nn = np.nanmean(X_ord.to_numpy(), axis=0)
|
|
2234
|
-
clean_barplot(
|
|
2235
|
-
ax1_bar,
|
|
2236
|
-
mean_nn,
|
|
2237
|
-
obsm_key,
|
|
2238
|
-
y_max=None,
|
|
2239
|
-
y_label="Mean distance",
|
|
2240
|
-
y_ticks=None,
|
|
2241
|
-
)
|
|
2242
|
-
|
|
2243
|
-
sns.heatmap(
|
|
2244
|
-
X_ord,
|
|
2245
|
-
ax=ax1,
|
|
2246
|
-
cmap="viridis",
|
|
2247
|
-
xticklabels=False,
|
|
2248
|
-
yticklabels=False,
|
|
2249
|
-
robust=robust,
|
|
2250
|
-
cbar_ax=ax1_cbar,
|
|
2251
|
-
)
|
|
2252
|
-
starts = subset.uns.get(f"{obsm_key}_starts")
|
|
2253
|
-
if starts is not None:
|
|
2254
|
-
starts = np.asarray(starts)
|
|
2255
|
-
window_labels = [str(s) for s in starts]
|
|
2256
|
-
try:
|
|
2257
|
-
col_idx = X_ord.columns.to_numpy()
|
|
2258
|
-
if np.issubdtype(col_idx.dtype, np.number):
|
|
2259
|
-
col_idx = col_idx.astype(int)
|
|
2260
|
-
if col_idx.size and col_idx.max() < len(starts):
|
|
2261
|
-
window_labels = [str(s) for s in starts[col_idx]]
|
|
2262
|
-
except Exception:
|
|
2263
|
-
window_labels = [str(s) for s in starts]
|
|
2264
|
-
_apply_xticks(ax1, window_labels, xtick_step)
|
|
2265
|
-
|
|
2266
|
-
methylation_fraction = _methylation_fraction_for_layer(L_ord.to_numpy(), layer_key)
|
|
2267
|
-
clean_barplot(
|
|
2268
|
-
ax2_bar,
|
|
2269
|
-
methylation_fraction,
|
|
2270
|
-
layer_key,
|
|
2271
|
-
y_max=1.0,
|
|
2272
|
-
y_label="Methylation fraction",
|
|
2273
|
-
y_ticks=[0.0, 0.5, 1.0],
|
|
2274
|
-
)
|
|
2275
|
-
|
|
2276
|
-
sns.heatmap(
|
|
2277
|
-
L_plot,
|
|
2278
|
-
ax=ax2,
|
|
2279
|
-
cmap="coolwarm",
|
|
2280
|
-
xticklabels=False,
|
|
2281
|
-
yticklabels=False,
|
|
2282
|
-
robust=robust,
|
|
2283
|
-
cbar_ax=ax2_cbar,
|
|
2284
|
-
)
|
|
2285
|
-
_apply_xticks(ax2, [str(x) for x in L_plot.columns], xtick_step)
|
|
2286
|
-
|
|
2287
|
-
if title:
|
|
2288
|
-
fig.suptitle(title)
|
|
2289
|
-
|
|
2290
|
-
if save_name is not None:
|
|
2291
|
-
fname = os.path.join(save_name)
|
|
2292
|
-
plt.savefig(fname, dpi=200, bbox_inches="tight")
|
|
2293
|
-
|
|
2294
|
-
else:
|
|
2295
|
-
plt.show()
|
|
2296
|
-
|
|
2297
|
-
return ordered_index
|
|
2298
|
-
|
|
2299
|
-
|
|
2300
|
-
def plot_sequence_integer_encoding_clustermaps(
|
|
2301
|
-
adata,
|
|
2302
|
-
sample_col: str = "Sample_Names",
|
|
2303
|
-
reference_col: str = "Reference_strand",
|
|
2304
|
-
layer: str = "sequence_integer_encoding",
|
|
2305
|
-
mismatch_layer: str = "mismatch_integer_encoding",
|
|
2306
|
-
min_quality: float | None = 20,
|
|
2307
|
-
min_length: int | None = 200,
|
|
2308
|
-
min_mapped_length_to_reference_length_ratio: float | None = 0,
|
|
2309
|
-
demux_types: Sequence[str] = ("single", "double", "already"),
|
|
2310
|
-
sort_by: str = "none", # "none", "hierarchical", "obs:<col>"
|
|
2311
|
-
cmap: str = "viridis",
|
|
2312
|
-
max_unknown_fraction: float | None = None,
|
|
2313
|
-
unknown_values: Sequence[int] = (4, 5),
|
|
2314
|
-
xtick_step: int | None = None,
|
|
2315
|
-
xtick_rotation: int = 90,
|
|
2316
|
-
xtick_fontsize: int = 9,
|
|
2317
|
-
max_reads: int | None = None,
|
|
2318
|
-
save_path: str | Path | None = None,
|
|
2319
|
-
use_dna_5color_palette: bool = True,
|
|
2320
|
-
show_numeric_colorbar: bool = False,
|
|
2321
|
-
show_position_axis: bool = False,
|
|
2322
|
-
position_axis_tick_target: int = 25,
|
|
2323
|
-
):
|
|
2324
|
-
"""Plot integer-encoded sequence clustermaps per sample/reference.
|
|
2325
|
-
|
|
2326
|
-
Args:
|
|
2327
|
-
adata: AnnData with a ``sequence_integer_encoding`` layer.
|
|
2328
|
-
sample_col: Column in ``adata.obs`` that identifies samples.
|
|
2329
|
-
reference_col: Column in ``adata.obs`` that identifies references.
|
|
2330
|
-
layer: Layer name containing integer-encoded sequences.
|
|
2331
|
-
mismatch_layer: Optional layer name containing mismatch integer encodings.
|
|
2332
|
-
min_quality: Optional minimum read quality filter.
|
|
2333
|
-
min_length: Optional minimum mapped length filter.
|
|
2334
|
-
min_mapped_length_to_reference_length_ratio: Optional min length ratio filter.
|
|
2335
|
-
demux_types: Allowed ``demux_type`` values, if present in ``adata.obs``.
|
|
2336
|
-
sort_by: Row sorting strategy: ``none``, ``hierarchical``, or ``obs:<col>``.
|
|
2337
|
-
cmap: Matplotlib colormap for the heatmap when ``use_dna_5color_palette`` is False.
|
|
2338
|
-
max_unknown_fraction: Optional maximum fraction of ``unknown_values`` allowed per
|
|
2339
|
-
position; positions above this threshold are excluded.
|
|
2340
|
-
unknown_values: Integer values to treat as unknown/padding.
|
|
2341
|
-
xtick_step: Spacing between x-axis tick labels (None = no labels).
|
|
2342
|
-
xtick_rotation: Rotation for x-axis tick labels.
|
|
2343
|
-
xtick_fontsize: Font size for x-axis tick labels.
|
|
2344
|
-
max_reads: Optional maximum number of reads to plot per sample/reference.
|
|
2345
|
-
save_path: Optional output directory for saving plots.
|
|
2346
|
-
use_dna_5color_palette: Whether to use a fixed A/C/G/T/Other palette.
|
|
2347
|
-
show_numeric_colorbar: If False, use a legend instead of a numeric colorbar.
|
|
2348
|
-
show_position_axis: Whether to draw a position axis with tick labels.
|
|
2349
|
-
position_axis_tick_target: Approximate number of ticks to show when auto-sizing.
|
|
2350
|
-
|
|
2351
|
-
Returns:
|
|
2352
|
-
List of dictionaries with per-plot metadata and output paths.
|
|
2353
|
-
"""
|
|
2354
|
-
|
|
2355
|
-
def _mask_or_true(series_name: str, predicate):
|
|
2356
|
-
if series_name not in adata.obs:
|
|
2357
|
-
return pd.Series(True, index=adata.obs.index)
|
|
2358
|
-
s = adata.obs[series_name]
|
|
2359
|
-
try:
|
|
2360
|
-
return predicate(s)
|
|
2361
|
-
except Exception:
|
|
2362
|
-
return pd.Series(True, index=adata.obs.index)
|
|
2363
|
-
|
|
2364
|
-
if layer not in adata.layers:
|
|
2365
|
-
raise KeyError(f"Layer '{layer}' not found in adata.layers")
|
|
2366
|
-
|
|
2367
|
-
if max_unknown_fraction is not None and not (0 <= max_unknown_fraction <= 1):
|
|
2368
|
-
raise ValueError("max_unknown_fraction must be between 0 and 1.")
|
|
2369
|
-
|
|
2370
|
-
if position_axis_tick_target < 1:
|
|
2371
|
-
raise ValueError("position_axis_tick_target must be at least 1.")
|
|
2372
|
-
|
|
2373
|
-
results: List[Dict[str, Any]] = []
|
|
2374
|
-
save_path = Path(save_path) if save_path is not None else None
|
|
2375
|
-
if save_path is not None:
|
|
2376
|
-
save_path.mkdir(parents=True, exist_ok=True)
|
|
2377
|
-
|
|
2378
|
-
for col in (sample_col, reference_col):
|
|
2379
|
-
if col not in adata.obs:
|
|
2380
|
-
raise KeyError(f"{col} not in adata.obs")
|
|
2381
|
-
if not isinstance(adata.obs[col].dtype, pd.CategoricalDtype):
|
|
2382
|
-
adata.obs[col] = adata.obs[col].astype("category")
|
|
2383
|
-
|
|
2384
|
-
int_to_base = adata.uns.get("sequence_integer_decoding_map", {}) or {}
|
|
2385
|
-
if not int_to_base:
|
|
2386
|
-
encoding_map = adata.uns.get("sequence_integer_encoding_map", {}) or {}
|
|
2387
|
-
int_to_base = {int(v): str(k) for k, v in encoding_map.items()} if encoding_map else {}
|
|
2388
|
-
|
|
2389
|
-
coerced_int_to_base = {}
|
|
2390
|
-
for key, value in int_to_base.items():
|
|
2391
|
-
try:
|
|
2392
|
-
coerced_key = int(key)
|
|
2393
|
-
except Exception:
|
|
2394
|
-
continue
|
|
2395
|
-
coerced_int_to_base[coerced_key] = str(value)
|
|
2396
|
-
int_to_base = coerced_int_to_base
|
|
2397
|
-
|
|
2398
|
-
def normalize_base(base: str) -> str:
|
|
2399
|
-
return base if base in {"A", "C", "G", "T"} else "OTHER"
|
|
2400
|
-
|
|
2401
|
-
mismatch_int_to_base = {}
|
|
2402
|
-
if mismatch_layer in adata.layers:
|
|
2403
|
-
mismatch_encoding_map = adata.uns.get("mismatch_integer_encoding_map", {}) or {}
|
|
2404
|
-
mismatch_int_to_base = {
|
|
2405
|
-
int(v): str(k)
|
|
2406
|
-
for k, v in mismatch_encoding_map.items()
|
|
2407
|
-
if isinstance(v, (int, np.integer))
|
|
2408
|
-
}
|
|
2409
|
-
|
|
2410
|
-
def _resolve_xtick_step(n_positions: int) -> int | None:
|
|
2411
|
-
if xtick_step is not None:
|
|
2412
|
-
return xtick_step
|
|
2413
|
-
if not show_position_axis:
|
|
2414
|
-
return None
|
|
2415
|
-
return max(1, int(np.ceil(n_positions / position_axis_tick_target)))
|
|
2416
|
-
|
|
2417
|
-
for ref in adata.obs[reference_col].cat.categories:
|
|
2418
|
-
for sample in adata.obs[sample_col].cat.categories:
|
|
2419
|
-
qmask = _mask_or_true(
|
|
2420
|
-
"read_quality",
|
|
2421
|
-
(lambda s: s >= float(min_quality))
|
|
2422
|
-
if (min_quality is not None)
|
|
2423
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
2424
|
-
)
|
|
2425
|
-
lm_mask = _mask_or_true(
|
|
2426
|
-
"mapped_length",
|
|
2427
|
-
(lambda s: s >= float(min_length))
|
|
2428
|
-
if (min_length is not None)
|
|
2429
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
2430
|
-
)
|
|
2431
|
-
lrr_mask = _mask_or_true(
|
|
2432
|
-
"mapped_length_to_reference_length_ratio",
|
|
2433
|
-
(lambda s: s >= float(min_mapped_length_to_reference_length_ratio))
|
|
2434
|
-
if (min_mapped_length_to_reference_length_ratio is not None)
|
|
2435
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
2436
|
-
)
|
|
2437
|
-
demux_mask = _mask_or_true(
|
|
2438
|
-
"demux_type",
|
|
2439
|
-
(lambda s: s.astype("string").isin(list(demux_types)))
|
|
2440
|
-
if (demux_types is not None)
|
|
2441
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
2442
|
-
)
|
|
2443
|
-
|
|
2444
|
-
row_mask = (
|
|
2445
|
-
(adata.obs[reference_col] == ref)
|
|
2446
|
-
& (adata.obs[sample_col] == sample)
|
|
2447
|
-
& qmask
|
|
2448
|
-
& lm_mask
|
|
2449
|
-
& lrr_mask
|
|
2450
|
-
& demux_mask
|
|
2451
|
-
)
|
|
2452
|
-
if not bool(row_mask.any()):
|
|
2453
|
-
continue
|
|
2454
|
-
|
|
2455
|
-
subset = adata[row_mask, :].copy()
|
|
2456
|
-
matrix = np.asarray(subset.layers[layer])
|
|
2457
|
-
mismatch_matrix = None
|
|
2458
|
-
if mismatch_layer in subset.layers:
|
|
2459
|
-
mismatch_matrix = np.asarray(subset.layers[mismatch_layer])
|
|
2460
|
-
|
|
2461
|
-
if max_unknown_fraction is not None:
|
|
2462
|
-
unknown_mask = np.isin(matrix, np.asarray(unknown_values))
|
|
2463
|
-
unknown_fraction = unknown_mask.mean(axis=0)
|
|
2464
|
-
keep_columns = unknown_fraction <= max_unknown_fraction
|
|
2465
|
-
if not np.any(keep_columns):
|
|
2466
|
-
continue
|
|
2467
|
-
matrix = matrix[:, keep_columns]
|
|
2468
|
-
subset = subset[:, keep_columns].copy()
|
|
2469
|
-
if mismatch_matrix is not None:
|
|
2470
|
-
mismatch_matrix = mismatch_matrix[:, keep_columns]
|
|
2471
|
-
|
|
2472
|
-
if max_reads is not None and matrix.shape[0] > max_reads:
|
|
2473
|
-
matrix = matrix[:max_reads]
|
|
2474
|
-
subset = subset[:max_reads, :].copy()
|
|
2475
|
-
if mismatch_matrix is not None:
|
|
2476
|
-
mismatch_matrix = mismatch_matrix[:max_reads]
|
|
2477
|
-
|
|
2478
|
-
if matrix.size == 0:
|
|
2479
|
-
continue
|
|
2480
|
-
|
|
2481
|
-
if use_dna_5color_palette and not int_to_base:
|
|
2482
|
-
uniq_vals = np.unique(matrix[~pd.isna(matrix)])
|
|
2483
|
-
guess = {}
|
|
2484
|
-
for val in uniq_vals:
|
|
2485
|
-
try:
|
|
2486
|
-
int_val = int(val)
|
|
2487
|
-
except Exception:
|
|
2488
|
-
continue
|
|
2489
|
-
guess[int_val] = {0: "A", 1: "C", 2: "G", 3: "T"}.get(int_val, "OTHER")
|
|
2490
|
-
int_to_base_local = guess
|
|
2491
|
-
else:
|
|
2492
|
-
int_to_base_local = int_to_base
|
|
2493
|
-
|
|
2494
|
-
order = None
|
|
2495
|
-
if sort_by.startswith("obs:"):
|
|
2496
|
-
colname = sort_by.split("obs:")[1]
|
|
2497
|
-
order = np.argsort(subset.obs[colname].values)
|
|
2498
|
-
elif sort_by == "hierarchical":
|
|
2499
|
-
linkage = sch.linkage(np.nan_to_num(matrix), method="ward")
|
|
2500
|
-
order = sch.leaves_list(linkage)
|
|
2501
|
-
elif sort_by != "none":
|
|
2502
|
-
raise ValueError("sort_by must be 'none', 'hierarchical', or 'obs:<col>'")
|
|
2503
|
-
|
|
2504
|
-
if order is not None:
|
|
2505
|
-
matrix = matrix[order]
|
|
2506
|
-
if mismatch_matrix is not None:
|
|
2507
|
-
mismatch_matrix = mismatch_matrix[order]
|
|
2508
|
-
|
|
2509
|
-
has_mismatch = mismatch_matrix is not None
|
|
2510
|
-
fig, axes = plt.subplots(
|
|
2511
|
-
ncols=2 if has_mismatch else 1,
|
|
2512
|
-
figsize=(18, 6) if has_mismatch else (12, 6),
|
|
2513
|
-
sharey=has_mismatch,
|
|
2514
|
-
)
|
|
2515
|
-
if not isinstance(axes, np.ndarray):
|
|
2516
|
-
axes = np.asarray([axes])
|
|
2517
|
-
ax = axes[0]
|
|
2518
|
-
|
|
2519
|
-
if use_dna_5color_palette and int_to_base_local:
|
|
2520
|
-
int_to_color = {
|
|
2521
|
-
int(int_val): DNA_5COLOR_PALETTE[normalize_base(str(base))]
|
|
2522
|
-
for int_val, base in int_to_base_local.items()
|
|
2523
|
-
}
|
|
2524
|
-
uniq_matrix = np.unique(matrix[~pd.isna(matrix)])
|
|
2525
|
-
for val in uniq_matrix:
|
|
2526
|
-
try:
|
|
2527
|
-
int_val = int(val)
|
|
2528
|
-
except Exception:
|
|
2529
|
-
continue
|
|
2530
|
-
if int_val not in int_to_color:
|
|
2531
|
-
int_to_color[int_val] = DNA_5COLOR_PALETTE["OTHER"]
|
|
2532
|
-
|
|
2533
|
-
ordered = sorted(int_to_color.items(), key=lambda x: x[0])
|
|
2534
|
-
colors_list = [color for _, color in ordered]
|
|
2535
|
-
bounds = [int_val - 0.5 for int_val, _ in ordered]
|
|
2536
|
-
bounds.append(ordered[-1][0] + 0.5)
|
|
2537
|
-
|
|
2538
|
-
cmap_obj = colors.ListedColormap(colors_list)
|
|
2539
|
-
norm = colors.BoundaryNorm(bounds, cmap_obj.N)
|
|
2540
|
-
|
|
2541
|
-
sns.heatmap(
|
|
2542
|
-
matrix,
|
|
2543
|
-
cmap=cmap_obj,
|
|
2544
|
-
norm=norm,
|
|
2545
|
-
ax=ax,
|
|
2546
|
-
yticklabels=False,
|
|
2547
|
-
cbar=show_numeric_colorbar,
|
|
2548
|
-
)
|
|
2549
|
-
|
|
2550
|
-
legend_handles = [
|
|
2551
|
-
patches.Patch(facecolor=DNA_5COLOR_PALETTE["A"], label="A"),
|
|
2552
|
-
patches.Patch(facecolor=DNA_5COLOR_PALETTE["C"], label="C"),
|
|
2553
|
-
patches.Patch(facecolor=DNA_5COLOR_PALETTE["G"], label="G"),
|
|
2554
|
-
patches.Patch(facecolor=DNA_5COLOR_PALETTE["T"], label="T"),
|
|
2555
|
-
patches.Patch(
|
|
2556
|
-
facecolor=DNA_5COLOR_PALETTE["OTHER"],
|
|
2557
|
-
label="Other (N / PAD / unknown)",
|
|
2558
|
-
),
|
|
2559
|
-
]
|
|
2560
|
-
ax.legend(
|
|
2561
|
-
handles=legend_handles,
|
|
2562
|
-
title="Base",
|
|
2563
|
-
loc="upper left",
|
|
2564
|
-
bbox_to_anchor=(1.02, 1.0),
|
|
2565
|
-
frameon=False,
|
|
2566
|
-
)
|
|
2567
|
-
else:
|
|
2568
|
-
sns.heatmap(matrix, cmap=cmap, ax=ax, yticklabels=False, cbar=True)
|
|
2569
|
-
|
|
2570
|
-
ax.set_title(layer)
|
|
2571
|
-
|
|
2572
|
-
resolved_step = _resolve_xtick_step(matrix.shape[1])
|
|
2573
|
-
if resolved_step is not None and resolved_step > 0:
|
|
2574
|
-
sites = np.arange(0, matrix.shape[1], resolved_step)
|
|
2575
|
-
ax.set_xticks(sites)
|
|
2576
|
-
ax.set_xticklabels(
|
|
2577
|
-
subset.var_names[sites].astype(str),
|
|
2578
|
-
rotation=xtick_rotation,
|
|
2579
|
-
fontsize=xtick_fontsize,
|
|
2580
|
-
)
|
|
2581
|
-
else:
|
|
2582
|
-
ax.set_xticks([])
|
|
2583
|
-
if show_position_axis or xtick_step is not None:
|
|
2584
|
-
ax.set_xlabel("Position")
|
|
2585
|
-
|
|
2586
|
-
if has_mismatch:
|
|
2587
|
-
mismatch_ax = axes[1]
|
|
2588
|
-
mismatch_int_to_base_local = mismatch_int_to_base or int_to_base_local
|
|
2589
|
-
if use_dna_5color_palette and mismatch_int_to_base_local:
|
|
2590
|
-
mismatch_int_to_color = {}
|
|
2591
|
-
for int_val, base in mismatch_int_to_base_local.items():
|
|
2592
|
-
base_upper = str(base).upper()
|
|
2593
|
-
if base_upper == "PAD":
|
|
2594
|
-
mismatch_int_to_color[int(int_val)] = "#D3D3D3"
|
|
2595
|
-
elif base_upper == "N":
|
|
2596
|
-
mismatch_int_to_color[int(int_val)] = "#808080"
|
|
2597
|
-
else:
|
|
2598
|
-
mismatch_int_to_color[int(int_val)] = DNA_5COLOR_PALETTE[
|
|
2599
|
-
normalize_base(base_upper)
|
|
2600
|
-
]
|
|
2601
|
-
|
|
2602
|
-
uniq_mismatch = np.unique(mismatch_matrix[~pd.isna(mismatch_matrix)])
|
|
2603
|
-
for val in uniq_mismatch:
|
|
2604
|
-
try:
|
|
2605
|
-
int_val = int(val)
|
|
2606
|
-
except Exception:
|
|
2607
|
-
continue
|
|
2608
|
-
if int_val not in mismatch_int_to_color:
|
|
2609
|
-
mismatch_int_to_color[int_val] = DNA_5COLOR_PALETTE["OTHER"]
|
|
2610
|
-
|
|
2611
|
-
ordered_mismatch = sorted(mismatch_int_to_color.items(), key=lambda x: x[0])
|
|
2612
|
-
mismatch_colors = [color for _, color in ordered_mismatch]
|
|
2613
|
-
mismatch_bounds = [int_val - 0.5 for int_val, _ in ordered_mismatch]
|
|
2614
|
-
mismatch_bounds.append(ordered_mismatch[-1][0] + 0.5)
|
|
2615
|
-
|
|
2616
|
-
mismatch_cmap = colors.ListedColormap(mismatch_colors)
|
|
2617
|
-
mismatch_norm = colors.BoundaryNorm(mismatch_bounds, mismatch_cmap.N)
|
|
2618
|
-
|
|
2619
|
-
sns.heatmap(
|
|
2620
|
-
mismatch_matrix,
|
|
2621
|
-
cmap=mismatch_cmap,
|
|
2622
|
-
norm=mismatch_norm,
|
|
2623
|
-
ax=mismatch_ax,
|
|
2624
|
-
yticklabels=False,
|
|
2625
|
-
cbar=show_numeric_colorbar,
|
|
2626
|
-
)
|
|
2627
|
-
|
|
2628
|
-
mismatch_legend_handles = [
|
|
2629
|
-
patches.Patch(facecolor=DNA_5COLOR_PALETTE["A"], label="A"),
|
|
2630
|
-
patches.Patch(facecolor=DNA_5COLOR_PALETTE["C"], label="C"),
|
|
2631
|
-
patches.Patch(facecolor=DNA_5COLOR_PALETTE["G"], label="G"),
|
|
2632
|
-
patches.Patch(facecolor=DNA_5COLOR_PALETTE["T"], label="T"),
|
|
2633
|
-
patches.Patch(facecolor="#808080", label="Match/N"),
|
|
2634
|
-
patches.Patch(facecolor="#D3D3D3", label="PAD"),
|
|
2635
|
-
]
|
|
2636
|
-
mismatch_ax.legend(
|
|
2637
|
-
handles=mismatch_legend_handles,
|
|
2638
|
-
title="Mismatch base",
|
|
2639
|
-
loc="upper left",
|
|
2640
|
-
bbox_to_anchor=(1.02, 1.0),
|
|
2641
|
-
frameon=False,
|
|
2642
|
-
)
|
|
2643
|
-
else:
|
|
2644
|
-
sns.heatmap(
|
|
2645
|
-
mismatch_matrix,
|
|
2646
|
-
cmap=cmap,
|
|
2647
|
-
ax=mismatch_ax,
|
|
2648
|
-
yticklabels=False,
|
|
2649
|
-
cbar=True,
|
|
2650
|
-
)
|
|
2651
|
-
|
|
2652
|
-
mismatch_ax.set_title(mismatch_layer)
|
|
2653
|
-
if resolved_step is not None and resolved_step > 0:
|
|
2654
|
-
sites = np.arange(0, mismatch_matrix.shape[1], resolved_step)
|
|
2655
|
-
mismatch_ax.set_xticks(sites)
|
|
2656
|
-
mismatch_ax.set_xticklabels(
|
|
2657
|
-
subset.var_names[sites].astype(str),
|
|
2658
|
-
rotation=xtick_rotation,
|
|
2659
|
-
fontsize=xtick_fontsize,
|
|
2660
|
-
)
|
|
2661
|
-
else:
|
|
2662
|
-
mismatch_ax.set_xticks([])
|
|
2663
|
-
if show_position_axis or xtick_step is not None:
|
|
2664
|
-
mismatch_ax.set_xlabel("Position")
|
|
2665
|
-
|
|
2666
|
-
fig.suptitle(f"{sample} - {ref}")
|
|
2667
|
-
fig.tight_layout(rect=(0, 0, 1, 0.95))
|
|
2668
|
-
|
|
2669
|
-
out_file = None
|
|
2670
|
-
if save_path is not None:
|
|
2671
|
-
safe_name = f"{ref}__{sample}__{layer}".replace("=", "").replace(",", "_")
|
|
2672
|
-
out_file = save_path / f"{safe_name}.png"
|
|
2673
|
-
fig.savefig(out_file, dpi=300, bbox_inches="tight")
|
|
2674
|
-
plt.close(fig)
|
|
2675
|
-
else:
|
|
2676
|
-
plt.show()
|
|
2677
|
-
|
|
2678
|
-
results.append(
|
|
2679
|
-
{
|
|
2680
|
-
"reference": str(ref),
|
|
2681
|
-
"sample": str(sample),
|
|
2682
|
-
"layer": layer,
|
|
2683
|
-
"n_positions": int(matrix.shape[1]),
|
|
2684
|
-
"mismatch_layer": mismatch_layer if has_mismatch else None,
|
|
2685
|
-
"mismatch_layer_present": bool(has_mismatch),
|
|
2686
|
-
"output_path": str(out_file) if out_file is not None else None,
|
|
2687
|
-
}
|
|
2688
|
-
)
|
|
2689
|
-
|
|
2690
|
-
return results
|
|
2691
|
-
|
|
2692
|
-
|
|
2693
|
-
def plot_read_span_quality_clustermaps(
|
|
2694
|
-
adata,
|
|
2695
|
-
sample_col: str = "Sample_Names",
|
|
2696
|
-
reference_col: str = "Reference_strand",
|
|
2697
|
-
quality_layer: str = "base_quality_scores",
|
|
2698
|
-
read_span_layer: str = "read_span_mask",
|
|
2699
|
-
quality_cmap: str = "viridis",
|
|
2700
|
-
read_span_color: str = "#2ca25f",
|
|
2701
|
-
max_nan_fraction: float | None = None,
|
|
2702
|
-
min_quality: float | None = None,
|
|
2703
|
-
min_length: int | None = None,
|
|
2704
|
-
min_mapped_length_to_reference_length_ratio: float | None = None,
|
|
2705
|
-
demux_types: Sequence[str] = ("single", "double", "already"),
|
|
2706
|
-
max_reads: int | None = None,
|
|
2707
|
-
xtick_step: int | None = None,
|
|
2708
|
-
xtick_rotation: int = 90,
|
|
2709
|
-
xtick_fontsize: int = 9,
|
|
2710
|
-
show_position_axis: bool = False,
|
|
2711
|
-
position_axis_tick_target: int = 25,
|
|
2712
|
-
save_path: str | Path | None = None,
|
|
2713
|
-
) -> List[Dict[str, Any]]:
|
|
2714
|
-
"""Plot read-span mask and base quality clustermaps side by side.
|
|
2715
|
-
|
|
2716
|
-
Clustering is performed using the base-quality layer ordering, which is then
|
|
2717
|
-
applied to the read-span mask to keep the two panels aligned.
|
|
2718
|
-
|
|
2719
|
-
Args:
|
|
2720
|
-
adata: AnnData with read-span and base-quality layers.
|
|
2721
|
-
sample_col: Column in ``adata.obs`` that identifies samples.
|
|
2722
|
-
reference_col: Column in ``adata.obs`` that identifies references.
|
|
2723
|
-
quality_layer: Layer name containing base-quality scores.
|
|
2724
|
-
read_span_layer: Layer name containing read-span masks.
|
|
2725
|
-
quality_cmap: Colormap for base-quality scores.
|
|
2726
|
-
read_span_color: Color for read-span mask (1-values); 0-values are white.
|
|
2727
|
-
max_nan_fraction: Optional maximum fraction of NaNs allowed per position; positions
|
|
2728
|
-
above this threshold are excluded.
|
|
2729
|
-
min_quality: Optional minimum read quality filter.
|
|
2730
|
-
min_length: Optional minimum mapped length filter.
|
|
2731
|
-
min_mapped_length_to_reference_length_ratio: Optional min length ratio filter.
|
|
2732
|
-
demux_types: Allowed ``demux_type`` values, if present in ``adata.obs``.
|
|
2733
|
-
max_reads: Optional maximum number of reads to plot per sample/reference.
|
|
2734
|
-
xtick_step: Spacing between x-axis tick labels (None = no labels).
|
|
2735
|
-
xtick_rotation: Rotation for x-axis tick labels.
|
|
2736
|
-
xtick_fontsize: Font size for x-axis tick labels.
|
|
2737
|
-
show_position_axis: Whether to draw a position axis with tick labels.
|
|
2738
|
-
position_axis_tick_target: Approximate number of ticks to show when auto-sizing.
|
|
2739
|
-
save_path: Optional output directory for saving plots.
|
|
2740
|
-
|
|
2741
|
-
Returns:
|
|
2742
|
-
List of dictionaries with per-plot metadata and output paths.
|
|
2743
|
-
"""
|
|
2744
|
-
|
|
2745
|
-
def _mask_or_true(series_name: str, predicate):
|
|
2746
|
-
if series_name not in adata.obs:
|
|
2747
|
-
return pd.Series(True, index=adata.obs.index)
|
|
2748
|
-
s = adata.obs[series_name]
|
|
2749
|
-
try:
|
|
2750
|
-
return predicate(s)
|
|
2751
|
-
except Exception:
|
|
2752
|
-
return pd.Series(True, index=adata.obs.index)
|
|
2753
|
-
|
|
2754
|
-
def _resolve_xtick_step(n_positions: int) -> int | None:
|
|
2755
|
-
if xtick_step is not None:
|
|
2756
|
-
return xtick_step
|
|
2757
|
-
if not show_position_axis:
|
|
2758
|
-
return None
|
|
2759
|
-
return max(1, int(np.ceil(n_positions / position_axis_tick_target)))
|
|
2760
|
-
|
|
2761
|
-
def _fill_nan_with_col_means(matrix: np.ndarray) -> np.ndarray:
|
|
2762
|
-
filled = matrix.copy()
|
|
2763
|
-
col_means = np.nanmean(filled, axis=0)
|
|
2764
|
-
col_means = np.where(np.isnan(col_means), 0.0, col_means)
|
|
2765
|
-
nan_rows, nan_cols = np.where(np.isnan(filled))
|
|
2766
|
-
filled[nan_rows, nan_cols] = col_means[nan_cols]
|
|
2767
|
-
return filled
|
|
2768
|
-
|
|
2769
|
-
if quality_layer not in adata.layers:
|
|
2770
|
-
raise KeyError(f"Layer '{quality_layer}' not found in adata.layers")
|
|
2771
|
-
if read_span_layer not in adata.layers:
|
|
2772
|
-
raise KeyError(f"Layer '{read_span_layer}' not found in adata.layers")
|
|
2773
|
-
if max_nan_fraction is not None and not (0 <= max_nan_fraction <= 1):
|
|
2774
|
-
raise ValueError("max_nan_fraction must be between 0 and 1.")
|
|
2775
|
-
if position_axis_tick_target < 1:
|
|
2776
|
-
raise ValueError("position_axis_tick_target must be at least 1.")
|
|
2777
|
-
|
|
2778
|
-
results: List[Dict[str, Any]] = []
|
|
2779
|
-
save_path = Path(save_path) if save_path is not None else None
|
|
2780
|
-
if save_path is not None:
|
|
2781
|
-
save_path.mkdir(parents=True, exist_ok=True)
|
|
2782
|
-
|
|
2783
|
-
for col in (sample_col, reference_col):
|
|
2784
|
-
if col not in adata.obs:
|
|
2785
|
-
raise KeyError(f"{col} not in adata.obs")
|
|
2786
|
-
if not isinstance(adata.obs[col].dtype, pd.CategoricalDtype):
|
|
2787
|
-
adata.obs[col] = adata.obs[col].astype("category")
|
|
2788
|
-
|
|
2789
|
-
for ref in adata.obs[reference_col].cat.categories:
|
|
2790
|
-
for sample in adata.obs[sample_col].cat.categories:
|
|
2791
|
-
qmask = _mask_or_true(
|
|
2792
|
-
"read_quality",
|
|
2793
|
-
(lambda s: s >= float(min_quality))
|
|
2794
|
-
if (min_quality is not None)
|
|
2795
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
2796
|
-
)
|
|
2797
|
-
lm_mask = _mask_or_true(
|
|
2798
|
-
"mapped_length",
|
|
2799
|
-
(lambda s: s >= float(min_length))
|
|
2800
|
-
if (min_length is not None)
|
|
2801
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
2802
|
-
)
|
|
2803
|
-
lrr_mask = _mask_or_true(
|
|
2804
|
-
"mapped_length_to_reference_length_ratio",
|
|
2805
|
-
(lambda s: s >= float(min_mapped_length_to_reference_length_ratio))
|
|
2806
|
-
if (min_mapped_length_to_reference_length_ratio is not None)
|
|
2807
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
2808
|
-
)
|
|
2809
|
-
demux_mask = _mask_or_true(
|
|
2810
|
-
"demux_type",
|
|
2811
|
-
(lambda s: s.astype("string").isin(list(demux_types)))
|
|
2812
|
-
if (demux_types is not None)
|
|
2813
|
-
else (lambda s: pd.Series(True, index=s.index)),
|
|
2814
|
-
)
|
|
2815
|
-
|
|
2816
|
-
row_mask = (
|
|
2817
|
-
(adata.obs[reference_col] == ref)
|
|
2818
|
-
& (adata.obs[sample_col] == sample)
|
|
2819
|
-
& qmask
|
|
2820
|
-
& lm_mask
|
|
2821
|
-
& lrr_mask
|
|
2822
|
-
& demux_mask
|
|
2823
|
-
)
|
|
2824
|
-
if not bool(row_mask.any()):
|
|
2825
|
-
continue
|
|
2826
|
-
|
|
2827
|
-
subset = adata[row_mask, :].copy()
|
|
2828
|
-
quality_matrix = np.asarray(subset.layers[quality_layer]).astype(float)
|
|
2829
|
-
quality_matrix[quality_matrix < 0] = np.nan
|
|
2830
|
-
read_span_matrix = np.asarray(subset.layers[read_span_layer]).astype(float)
|
|
2831
|
-
|
|
2832
|
-
if max_nan_fraction is not None:
|
|
2833
|
-
nan_mask = np.isnan(quality_matrix) | np.isnan(read_span_matrix)
|
|
2834
|
-
nan_fraction = nan_mask.mean(axis=0)
|
|
2835
|
-
keep_columns = nan_fraction <= max_nan_fraction
|
|
2836
|
-
if not np.any(keep_columns):
|
|
2837
|
-
continue
|
|
2838
|
-
quality_matrix = quality_matrix[:, keep_columns]
|
|
2839
|
-
read_span_matrix = read_span_matrix[:, keep_columns]
|
|
2840
|
-
subset = subset[:, keep_columns].copy()
|
|
2841
|
-
|
|
2842
|
-
if max_reads is not None and quality_matrix.shape[0] > max_reads:
|
|
2843
|
-
quality_matrix = quality_matrix[:max_reads]
|
|
2844
|
-
read_span_matrix = read_span_matrix[:max_reads]
|
|
2845
|
-
subset = subset[:max_reads, :].copy()
|
|
2846
|
-
|
|
2847
|
-
if quality_matrix.size == 0:
|
|
2848
|
-
continue
|
|
2849
|
-
|
|
2850
|
-
quality_filled = _fill_nan_with_col_means(quality_matrix)
|
|
2851
|
-
linkage = sch.linkage(quality_filled, method="ward")
|
|
2852
|
-
order = sch.leaves_list(linkage)
|
|
2853
|
-
|
|
2854
|
-
quality_matrix = quality_matrix[order]
|
|
2855
|
-
read_span_matrix = read_span_matrix[order]
|
|
2856
|
-
|
|
2857
|
-
fig, axes = plt.subplots(
|
|
2858
|
-
nrows=2,
|
|
2859
|
-
ncols=3,
|
|
2860
|
-
figsize=(18, 6),
|
|
2861
|
-
sharex="col",
|
|
2862
|
-
gridspec_kw={"height_ratios": [1, 4], "width_ratios": [1, 1, 0.05]},
|
|
2863
|
-
)
|
|
2864
|
-
span_bar_ax, quality_bar_ax, bar_spacer_ax = axes[0]
|
|
2865
|
-
span_ax, quality_ax, cbar_ax = axes[1]
|
|
2866
|
-
bar_spacer_ax.set_axis_off()
|
|
2867
|
-
|
|
2868
|
-
span_mean = np.nanmean(read_span_matrix, axis=0)
|
|
2869
|
-
quality_mean = np.nanmean(quality_matrix, axis=0)
|
|
2870
|
-
bar_positions = np.arange(read_span_matrix.shape[1]) + 0.5
|
|
2871
|
-
span_bar_ax.bar(
|
|
2872
|
-
bar_positions,
|
|
2873
|
-
span_mean,
|
|
2874
|
-
color=read_span_color,
|
|
2875
|
-
width=1.0,
|
|
2876
|
-
)
|
|
2877
|
-
span_bar_ax.set_title(f"{read_span_layer} mean")
|
|
2878
|
-
span_bar_ax.set_xlim(0, read_span_matrix.shape[1])
|
|
2879
|
-
span_bar_ax.tick_params(axis="x", labelbottom=False)
|
|
2880
|
-
|
|
2881
|
-
quality_bar_ax.bar(
|
|
2882
|
-
bar_positions,
|
|
2883
|
-
quality_mean,
|
|
2884
|
-
color="#4c72b0",
|
|
2885
|
-
width=1.0,
|
|
2886
|
-
)
|
|
2887
|
-
quality_bar_ax.set_title(f"{quality_layer} mean")
|
|
2888
|
-
quality_bar_ax.set_xlim(0, quality_matrix.shape[1])
|
|
2889
|
-
quality_bar_ax.tick_params(axis="x", labelbottom=False)
|
|
2890
|
-
|
|
2891
|
-
span_cmap = colors.ListedColormap(["white", read_span_color])
|
|
2892
|
-
span_norm = colors.BoundaryNorm([-0.5, 0.5, 1.5], span_cmap.N)
|
|
2893
|
-
sns.heatmap(
|
|
2894
|
-
read_span_matrix,
|
|
2895
|
-
cmap=span_cmap,
|
|
2896
|
-
norm=span_norm,
|
|
2897
|
-
ax=span_ax,
|
|
2898
|
-
yticklabels=False,
|
|
2899
|
-
cbar=False,
|
|
2900
|
-
)
|
|
2901
|
-
span_ax.set_title(read_span_layer)
|
|
2902
|
-
|
|
2903
|
-
sns.heatmap(
|
|
2904
|
-
quality_matrix,
|
|
2905
|
-
cmap=quality_cmap,
|
|
2906
|
-
ax=quality_ax,
|
|
2907
|
-
yticklabels=False,
|
|
2908
|
-
cbar=True,
|
|
2909
|
-
cbar_ax=cbar_ax,
|
|
2910
|
-
)
|
|
2911
|
-
quality_ax.set_title(quality_layer)
|
|
2912
|
-
|
|
2913
|
-
resolved_step = _resolve_xtick_step(quality_matrix.shape[1])
|
|
2914
|
-
for axis in (span_ax, quality_ax):
|
|
2915
|
-
if resolved_step is not None and resolved_step > 0:
|
|
2916
|
-
sites = np.arange(0, quality_matrix.shape[1], resolved_step)
|
|
2917
|
-
axis.set_xticks(sites)
|
|
2918
|
-
axis.set_xticklabels(
|
|
2919
|
-
subset.var_names[sites].astype(str),
|
|
2920
|
-
rotation=xtick_rotation,
|
|
2921
|
-
fontsize=xtick_fontsize,
|
|
2922
|
-
)
|
|
2923
|
-
else:
|
|
2924
|
-
axis.set_xticks([])
|
|
2925
|
-
if show_position_axis or xtick_step is not None:
|
|
2926
|
-
axis.set_xlabel("Position")
|
|
2927
|
-
|
|
2928
|
-
fig.suptitle(f"{sample} - {ref}")
|
|
2929
|
-
fig.tight_layout(rect=(0, 0, 1, 0.95))
|
|
2930
|
-
|
|
2931
|
-
out_file = None
|
|
2932
|
-
if save_path is not None:
|
|
2933
|
-
safe_name = f"{ref}__{sample}__read_span_quality".replace("=", "").replace(",", "_")
|
|
2934
|
-
out_file = save_path / f"{safe_name}.png"
|
|
2935
|
-
fig.savefig(out_file, dpi=300, bbox_inches="tight")
|
|
2936
|
-
plt.close(fig)
|
|
2937
|
-
else:
|
|
2938
|
-
plt.show()
|
|
2939
|
-
|
|
2940
|
-
results.append(
|
|
2941
|
-
{
|
|
2942
|
-
"reference": str(ref),
|
|
2943
|
-
"sample": str(sample),
|
|
2944
|
-
"quality_layer": quality_layer,
|
|
2945
|
-
"read_span_layer": read_span_layer,
|
|
2946
|
-
"n_positions": int(quality_matrix.shape[1]),
|
|
2947
|
-
"output_path": str(out_file) if out_file is not None else None,
|
|
2948
|
-
}
|
|
2949
|
-
)
|
|
2950
|
-
|
|
2951
|
-
return results
|
|
2952
|
-
|
|
2953
|
-
|
|
2954
|
-
def plot_hmm_layers_rolling_by_sample_ref(
|
|
2955
|
-
adata,
|
|
2956
|
-
layers: Optional[Sequence[str]] = None,
|
|
2957
|
-
sample_col: str = "Barcode",
|
|
2958
|
-
ref_col: str = "Reference_strand",
|
|
2959
|
-
samples: Optional[Sequence[str]] = None,
|
|
2960
|
-
references: Optional[Sequence[str]] = None,
|
|
2961
|
-
window: int = 51,
|
|
2962
|
-
min_periods: int = 1,
|
|
2963
|
-
center: bool = True,
|
|
2964
|
-
rows_per_page: int = 6,
|
|
2965
|
-
figsize_per_cell: Tuple[float, float] = (4.0, 2.5),
|
|
2966
|
-
dpi: int = 160,
|
|
2967
|
-
output_dir: Optional[str] = None,
|
|
2968
|
-
save: bool = True,
|
|
2969
|
-
show_raw: bool = False,
|
|
2970
|
-
cmap: str = "tab20",
|
|
2971
|
-
layer_colors: Optional[Mapping[str, Any]] = None,
|
|
2972
|
-
use_var_coords: bool = True,
|
|
2973
|
-
reindexed_var_suffix: str = "reindexed",
|
|
2974
|
-
):
|
|
2975
|
-
"""
|
|
2976
|
-
For each sample (row) and reference (col) plot the rolling average of the
|
|
2977
|
-
positional mean (mean across reads) for each layer listed.
|
|
2978
|
-
|
|
2979
|
-
Parameters
|
|
2980
|
-
----------
|
|
2981
|
-
adata : AnnData
|
|
2982
|
-
Input annotated data (expects obs columns sample_col and ref_col).
|
|
2983
|
-
layers : list[str] | None
|
|
2984
|
-
Which adata.layers to plot. If None, attempts to autodetect layers whose
|
|
2985
|
-
matrices look like "HMM" outputs (else will error). If None and layers
|
|
2986
|
-
cannot be found, user must pass a list.
|
|
2987
|
-
sample_col, ref_col : str
|
|
2988
|
-
obs columns used to group rows.
|
|
2989
|
-
samples, references : optional lists
|
|
2990
|
-
explicit ordering of samples / references. If None, categories in adata.obs are used.
|
|
2991
|
-
window : int
|
|
2992
|
-
rolling window size (odd recommended). If window <= 1, no smoothing applied.
|
|
2993
|
-
min_periods : int
|
|
2994
|
-
min periods param for pd.Series.rolling.
|
|
2995
|
-
center : bool
|
|
2996
|
-
center the rolling window.
|
|
2997
|
-
rows_per_page : int
|
|
2998
|
-
paginate rows per page into multiple figures if needed.
|
|
2999
|
-
figsize_per_cell : (w,h)
|
|
3000
|
-
per-subplot size in inches.
|
|
3001
|
-
dpi : int
|
|
3002
|
-
figure dpi when saving.
|
|
3003
|
-
output_dir : str | None
|
|
3004
|
-
directory to save pages; created if necessary. If None and save=True, uses cwd.
|
|
3005
|
-
save : bool
|
|
3006
|
-
whether to save PNG files.
|
|
3007
|
-
show_raw : bool
|
|
3008
|
-
draw unsmoothed mean as faint line under smoothed curve.
|
|
3009
|
-
cmap : str
|
|
3010
|
-
matplotlib colormap for layer lines.
|
|
3011
|
-
layer_colors : dict[str, Any] | None
|
|
3012
|
-
Optional mapping of layer name to explicit line colors.
|
|
3013
|
-
use_var_coords : bool
|
|
3014
|
-
if True, tries to use adata.var_names (coerced to int) as x-axis coordinates; otherwise uses 0..n-1.
|
|
3015
|
-
reindexed_var_suffix : str
|
|
3016
|
-
Suffix for per-reference reindexed var columns (e.g., ``Reference_reindexed``) used when available.
|
|
3017
|
-
|
|
3018
|
-
Returns
|
|
3019
|
-
-------
|
|
3020
|
-
saved_files : list[str]
|
|
3021
|
-
list of saved filenames (may be empty if save=False).
|
|
3022
|
-
"""
|
|
3023
|
-
|
|
3024
|
-
# --- basic checks / defaults ---
|
|
3025
|
-
if sample_col not in adata.obs.columns or ref_col not in adata.obs.columns:
|
|
3026
|
-
raise ValueError(
|
|
3027
|
-
f"sample_col '{sample_col}' and ref_col '{ref_col}' must exist in adata.obs"
|
|
3028
|
-
)
|
|
3029
|
-
|
|
3030
|
-
# canonicalize samples / refs
|
|
3031
|
-
if samples is None:
|
|
3032
|
-
sseries = adata.obs[sample_col]
|
|
3033
|
-
if not pd.api.types.is_categorical_dtype(sseries):
|
|
3034
|
-
sseries = sseries.astype("category")
|
|
3035
|
-
samples_all = list(sseries.cat.categories)
|
|
3036
|
-
else:
|
|
3037
|
-
samples_all = list(samples)
|
|
3038
|
-
|
|
3039
|
-
if references is None:
|
|
3040
|
-
rseries = adata.obs[ref_col]
|
|
3041
|
-
if not pd.api.types.is_categorical_dtype(rseries):
|
|
3042
|
-
rseries = rseries.astype("category")
|
|
3043
|
-
refs_all = list(rseries.cat.categories)
|
|
3044
|
-
else:
|
|
3045
|
-
refs_all = list(references)
|
|
3046
|
-
|
|
3047
|
-
# choose layers: if not provided, try a sensible default: all layers
|
|
3048
|
-
if layers is None:
|
|
3049
|
-
layers = list(adata.layers.keys())
|
|
3050
|
-
if len(layers) == 0:
|
|
3051
|
-
raise ValueError(
|
|
3052
|
-
"No adata.layers found. Please pass `layers=[...]` of the HMM layers to plot."
|
|
3053
|
-
)
|
|
3054
|
-
layers = list(layers)
|
|
3055
|
-
|
|
3056
|
-
# x coordinates (positions) + optional labels
|
|
3057
|
-
x_labels = None
|
|
3058
|
-
try:
|
|
3059
|
-
if use_var_coords:
|
|
3060
|
-
x_coords = np.array([int(v) for v in adata.var_names])
|
|
3061
|
-
else:
|
|
3062
|
-
raise Exception("user disabled var coords")
|
|
3063
|
-
except Exception:
|
|
3064
|
-
# fallback to 0..n_vars-1, but keep var_names as labels
|
|
3065
|
-
x_coords = np.arange(adata.shape[1], dtype=int)
|
|
3066
|
-
x_labels = adata.var_names.astype(str).tolist()
|
|
3067
|
-
|
|
3068
|
-
ref_reindexed_cols = {
|
|
3069
|
-
ref: f"{ref}_{reindexed_var_suffix}"
|
|
3070
|
-
for ref in refs_all
|
|
3071
|
-
if f"{ref}_{reindexed_var_suffix}" in adata.var
|
|
3072
|
-
}
|
|
3073
|
-
|
|
3074
|
-
# make output dir
|
|
3075
|
-
if save:
|
|
3076
|
-
outdir = output_dir or os.getcwd()
|
|
3077
|
-
os.makedirs(outdir, exist_ok=True)
|
|
3078
|
-
else:
|
|
3079
|
-
outdir = None
|
|
3080
|
-
|
|
3081
|
-
n_samples = len(samples_all)
|
|
3082
|
-
n_refs = len(refs_all)
|
|
3083
|
-
total_pages = math.ceil(n_samples / rows_per_page)
|
|
3084
|
-
saved_files = []
|
|
3085
|
-
|
|
3086
|
-
# color cycle for layers
|
|
3087
|
-
cmap_obj = plt.get_cmap(cmap)
|
|
3088
|
-
n_layers = max(1, len(layers))
|
|
3089
|
-
fallback_colors = [cmap_obj(i / max(1, n_layers - 1)) for i in range(n_layers)]
|
|
3090
|
-
layer_colors = layer_colors or {}
|
|
3091
|
-
colors = [layer_colors.get(layer, fallback_colors[idx]) for idx, layer in enumerate(layers)]
|
|
3092
|
-
|
|
3093
|
-
for page in range(total_pages):
|
|
3094
|
-
start = page * rows_per_page
|
|
3095
|
-
end = min(start + rows_per_page, n_samples)
|
|
3096
|
-
chunk = samples_all[start:end]
|
|
3097
|
-
nrows = len(chunk)
|
|
3098
|
-
ncols = n_refs
|
|
3099
|
-
|
|
3100
|
-
fig_w = figsize_per_cell[0] * ncols
|
|
3101
|
-
fig_h = figsize_per_cell[1] * nrows
|
|
3102
|
-
fig, axes = plt.subplots(
|
|
3103
|
-
nrows=nrows, ncols=ncols, figsize=(fig_w, fig_h), dpi=dpi, squeeze=False
|
|
3104
|
-
)
|
|
3105
|
-
|
|
3106
|
-
for r_idx, sample_name in enumerate(chunk):
|
|
3107
|
-
for c_idx, ref_name in enumerate(refs_all):
|
|
3108
|
-
ax = axes[r_idx][c_idx]
|
|
3109
|
-
|
|
3110
|
-
# subset adata
|
|
3111
|
-
mask = (adata.obs[sample_col].values == sample_name) & (
|
|
3112
|
-
adata.obs[ref_col].values == ref_name
|
|
3113
|
-
)
|
|
3114
|
-
sub = adata[mask]
|
|
3115
|
-
if sub.n_obs == 0:
|
|
3116
|
-
ax.text(
|
|
3117
|
-
0.5,
|
|
3118
|
-
0.5,
|
|
3119
|
-
"No reads",
|
|
3120
|
-
ha="center",
|
|
3121
|
-
va="center",
|
|
3122
|
-
transform=ax.transAxes,
|
|
3123
|
-
color="gray",
|
|
3124
|
-
)
|
|
3125
|
-
ax.set_xticks([])
|
|
3126
|
-
ax.set_yticks([])
|
|
3127
|
-
if r_idx == 0:
|
|
3128
|
-
ax.set_title(str(ref_name), fontsize=9)
|
|
3129
|
-
if c_idx == 0:
|
|
3130
|
-
total_reads = int((adata.obs[sample_col] == sample_name).sum())
|
|
3131
|
-
ax.set_ylabel(f"{sample_name}\n(n={total_reads})", fontsize=8)
|
|
3132
|
-
continue
|
|
3133
|
-
|
|
3134
|
-
# for each layer, compute positional mean across reads (ignore NaNs)
|
|
3135
|
-
plotted_any = False
|
|
3136
|
-
reindexed_col = ref_reindexed_cols.get(ref_name)
|
|
3137
|
-
if reindexed_col is not None:
|
|
3138
|
-
try:
|
|
3139
|
-
ref_coords = np.asarray(adata.var[reindexed_col], dtype=int)
|
|
3140
|
-
except Exception:
|
|
3141
|
-
ref_coords = x_coords
|
|
3142
|
-
else:
|
|
3143
|
-
ref_coords = x_coords
|
|
3144
|
-
for li, layer in enumerate(layers):
|
|
3145
|
-
if layer in sub.layers:
|
|
3146
|
-
mat = sub.layers[layer]
|
|
3147
|
-
else:
|
|
3148
|
-
# fallback: try .X only for the first layer if layer not present
|
|
3149
|
-
if layer == layers[0] and getattr(sub, "X", None) is not None:
|
|
3150
|
-
mat = sub.X
|
|
3151
|
-
else:
|
|
3152
|
-
# layer not present for this subset
|
|
3153
|
-
continue
|
|
3154
|
-
|
|
3155
|
-
# convert matrix to numpy 2D
|
|
3156
|
-
if hasattr(mat, "toarray"):
|
|
3157
|
-
try:
|
|
3158
|
-
arr = mat.toarray()
|
|
3159
|
-
except Exception:
|
|
3160
|
-
arr = np.asarray(mat)
|
|
3161
|
-
else:
|
|
3162
|
-
arr = np.asarray(mat)
|
|
3163
|
-
|
|
3164
|
-
if arr.size == 0 or arr.shape[1] == 0:
|
|
3165
|
-
continue
|
|
3166
|
-
|
|
3167
|
-
# compute column-wise mean ignoring NaNs
|
|
3168
|
-
# if arr is boolean or int, convert to float to support NaN
|
|
3169
|
-
arr = arr.astype(float)
|
|
3170
|
-
with np.errstate(all="ignore"):
|
|
3171
|
-
col_mean = np.nanmean(arr, axis=0)
|
|
3172
|
-
|
|
3173
|
-
# If all-NaN, skip
|
|
3174
|
-
if np.all(np.isnan(col_mean)):
|
|
3175
|
-
continue
|
|
3176
|
-
|
|
3177
|
-
valid_mask = np.isfinite(col_mean)
|
|
3178
|
-
|
|
3179
|
-
# smooth via pandas rolling (centered)
|
|
3180
|
-
if (window is None) or (window <= 1):
|
|
3181
|
-
smoothed = col_mean
|
|
3182
|
-
else:
|
|
3183
|
-
ser = pd.Series(col_mean)
|
|
3184
|
-
smoothed = (
|
|
3185
|
-
ser.rolling(window=window, min_periods=min_periods, center=center)
|
|
3186
|
-
.mean()
|
|
3187
|
-
.to_numpy()
|
|
3188
|
-
)
|
|
3189
|
-
smoothed = np.where(valid_mask, smoothed, np.nan)
|
|
3190
|
-
|
|
3191
|
-
# x axis: x_coords (trim/pad to match length)
|
|
3192
|
-
L = len(col_mean)
|
|
3193
|
-
x = ref_coords[:L]
|
|
3194
|
-
|
|
3195
|
-
# optionally plot raw faint line first
|
|
3196
|
-
if show_raw:
|
|
3197
|
-
ax.plot(x, col_mean[:L], linewidth=0.7, alpha=0.25, zorder=1)
|
|
3198
|
-
|
|
3199
|
-
ax.plot(
|
|
3200
|
-
x,
|
|
3201
|
-
smoothed[:L],
|
|
3202
|
-
label=layer,
|
|
3203
|
-
color=colors[li],
|
|
3204
|
-
linewidth=1.2,
|
|
3205
|
-
alpha=0.95,
|
|
3206
|
-
zorder=2,
|
|
3207
|
-
)
|
|
3208
|
-
plotted_any = True
|
|
3209
|
-
|
|
3210
|
-
# labels / titles
|
|
3211
|
-
if r_idx == 0:
|
|
3212
|
-
ax.set_title(str(ref_name), fontsize=9)
|
|
3213
|
-
if c_idx == 0:
|
|
3214
|
-
total_reads = int((adata.obs[sample_col] == sample_name).sum())
|
|
3215
|
-
ax.set_ylabel(f"{sample_name}\n(n={total_reads})", fontsize=8)
|
|
3216
|
-
if r_idx == nrows - 1:
|
|
3217
|
-
ax.set_xlabel("position", fontsize=8)
|
|
3218
|
-
if x_labels is not None and reindexed_col is None:
|
|
3219
|
-
max_ticks = 8
|
|
3220
|
-
tick_step = max(1, int(math.ceil(len(x_labels) / max_ticks)))
|
|
3221
|
-
tick_positions = x_coords[::tick_step]
|
|
3222
|
-
tick_labels = x_labels[::tick_step]
|
|
3223
|
-
ax.set_xticks(tick_positions)
|
|
3224
|
-
ax.set_xticklabels(tick_labels, fontsize=7, rotation=45, ha="right")
|
|
3225
|
-
|
|
3226
|
-
# legend (only show in top-left plot to reduce clutter)
|
|
3227
|
-
if (r_idx == 0 and c_idx == 0) and plotted_any:
|
|
3228
|
-
ax.legend(fontsize=7, loc="upper right")
|
|
3229
|
-
|
|
3230
|
-
ax.grid(True, alpha=0.2)
|
|
3231
|
-
|
|
3232
|
-
fig.suptitle(
|
|
3233
|
-
f"Rolling mean of layer positional means (window={window}) — page {page + 1}/{total_pages}",
|
|
3234
|
-
fontsize=11,
|
|
3235
|
-
y=0.995,
|
|
3236
|
-
)
|
|
3237
|
-
fig.tight_layout(rect=[0, 0, 1, 0.97])
|
|
3238
|
-
|
|
3239
|
-
if save:
|
|
3240
|
-
fname = os.path.join(outdir, f"hmm_layers_rolling_page{page + 1}.png")
|
|
3241
|
-
plt.savefig(fname, bbox_inches="tight", dpi=dpi)
|
|
3242
|
-
saved_files.append(fname)
|
|
3243
|
-
else:
|
|
3244
|
-
plt.show()
|
|
3245
|
-
plt.close(fig)
|
|
3246
|
-
|
|
3247
|
-
return saved_files
|
|
3248
|
-
|
|
3249
|
-
|
|
3250
|
-
def _resolve_embedding(adata: "ad.AnnData", basis: str) -> np.ndarray:
|
|
3251
|
-
key = basis if basis.startswith("X_") else f"X_{basis}"
|
|
3252
|
-
if key not in adata.obsm:
|
|
3253
|
-
raise KeyError(f"Embedding '{key}' not found in adata.obsm.")
|
|
3254
|
-
embedding = np.asarray(adata.obsm[key])
|
|
3255
|
-
if embedding.shape[1] < 2:
|
|
3256
|
-
raise ValueError(f"Embedding '{key}' must have at least two dimensions.")
|
|
3257
|
-
return embedding[:, :2]
|
|
3258
|
-
|
|
3259
|
-
|
|
3260
|
-
def plot_embedding(
|
|
3261
|
-
adata: "ad.AnnData",
|
|
3262
|
-
*,
|
|
3263
|
-
basis: str,
|
|
3264
|
-
color: str | Sequence[str],
|
|
3265
|
-
output_dir: Path | str,
|
|
3266
|
-
prefix: str | None = None,
|
|
3267
|
-
point_size: float = 12,
|
|
3268
|
-
alpha: float = 0.8,
|
|
3269
|
-
) -> Dict[str, Path]:
|
|
3270
|
-
"""Plot a 2D embedding with scanpy-style color options.
|
|
3271
|
-
|
|
3272
|
-
Args:
|
|
3273
|
-
adata: AnnData object with ``obsm['X_<basis>']``.
|
|
3274
|
-
basis: Embedding basis name (e.g., ``'umap'``, ``'pca'``).
|
|
3275
|
-
color: Obs column name or list of names to color by.
|
|
3276
|
-
output_dir: Directory to save plots.
|
|
3277
|
-
prefix: Optional filename prefix.
|
|
3278
|
-
point_size: Marker size for scatter plots.
|
|
3279
|
-
alpha: Marker transparency.
|
|
3280
|
-
|
|
3281
|
-
Returns:
|
|
3282
|
-
Dict[str, Path]: Mapping of color keys to saved plot paths.
|
|
3283
|
-
"""
|
|
3284
|
-
output_path = Path(output_dir)
|
|
3285
|
-
output_path.mkdir(parents=True, exist_ok=True)
|
|
3286
|
-
embedding = _resolve_embedding(adata, basis)
|
|
3287
|
-
colors = [color] if isinstance(color, str) else list(color)
|
|
3288
|
-
saved: Dict[str, Path] = {}
|
|
3289
|
-
|
|
3290
|
-
for color_key in colors:
|
|
3291
|
-
if color_key not in adata.obs:
|
|
3292
|
-
logger.warning("Color key '%s' not found in adata.obs; skipping.", color_key)
|
|
3293
|
-
continue
|
|
3294
|
-
values = adata.obs[color_key]
|
|
3295
|
-
fig, ax = plt.subplots(figsize=(5.5, 4.5))
|
|
3296
|
-
|
|
3297
|
-
if pd.api.types.is_categorical_dtype(values) or values.dtype == object:
|
|
3298
|
-
categories = pd.Categorical(values)
|
|
3299
|
-
label_strings = categories.categories.astype(str)
|
|
3300
|
-
palette = sns.color_palette("tab20", n_colors=len(label_strings))
|
|
3301
|
-
color_map = dict(zip(label_strings, palette))
|
|
3302
|
-
codes = categories.codes
|
|
3303
|
-
mapped = np.empty(len(codes), dtype=object)
|
|
3304
|
-
valid = codes >= 0
|
|
3305
|
-
if np.any(valid):
|
|
3306
|
-
valid_codes = codes[valid]
|
|
3307
|
-
mapped_values = np.empty(len(valid_codes), dtype=object)
|
|
3308
|
-
for i, idx in enumerate(valid_codes):
|
|
3309
|
-
mapped_values[i] = palette[idx]
|
|
3310
|
-
mapped[valid] = mapped_values
|
|
3311
|
-
mapped[~valid] = "#bdbdbd"
|
|
3312
|
-
ax.scatter(
|
|
3313
|
-
embedding[:, 0],
|
|
3314
|
-
embedding[:, 1],
|
|
3315
|
-
c=list(mapped),
|
|
3316
|
-
s=point_size,
|
|
3317
|
-
alpha=alpha,
|
|
3318
|
-
linewidths=0,
|
|
3319
|
-
)
|
|
3320
|
-
handles = [
|
|
3321
|
-
patches.Patch(color=color_map[label], label=str(label)) for label in label_strings
|
|
3322
|
-
]
|
|
3323
|
-
ax.legend(handles=handles, loc="best", fontsize=8, frameon=False)
|
|
3324
|
-
else:
|
|
3325
|
-
scatter = ax.scatter(
|
|
3326
|
-
embedding[:, 0],
|
|
3327
|
-
embedding[:, 1],
|
|
3328
|
-
c=values.astype(float),
|
|
3329
|
-
cmap="viridis",
|
|
3330
|
-
s=point_size,
|
|
3331
|
-
alpha=alpha,
|
|
3332
|
-
linewidths=0,
|
|
3333
|
-
)
|
|
3334
|
-
fig.colorbar(scatter, ax=ax, label=color_key)
|
|
3335
|
-
|
|
3336
|
-
ax.set_xlabel(f"{basis.upper()} 1")
|
|
3337
|
-
ax.set_ylabel(f"{basis.upper()} 2")
|
|
3338
|
-
ax.set_title(f"{basis.upper()} colored by {color_key}")
|
|
3339
|
-
fig.tight_layout()
|
|
3340
|
-
|
|
3341
|
-
filename_prefix = prefix or basis
|
|
3342
|
-
safe_key = str(color_key).replace(" ", "_")
|
|
3343
|
-
output_file = output_path / f"{filename_prefix}_{safe_key}.png"
|
|
3344
|
-
fig.savefig(output_file, dpi=200)
|
|
3345
|
-
plt.close(fig)
|
|
3346
|
-
saved[color_key] = output_file
|
|
3347
|
-
|
|
3348
|
-
return saved
|
|
3349
|
-
|
|
3350
|
-
|
|
3351
|
-
def plot_umap(
|
|
3352
|
-
adata: "ad.AnnData",
|
|
3353
|
-
*,
|
|
3354
|
-
color: str | Sequence[str],
|
|
3355
|
-
output_dir: Path | str,
|
|
3356
|
-
) -> Dict[str, Path]:
|
|
3357
|
-
"""Plot UMAP embedding with scanpy-style color options."""
|
|
3358
|
-
return plot_embedding(adata, basis="umap", color=color, output_dir=output_dir, prefix="umap")
|
|
3359
|
-
|
|
3360
|
-
|
|
3361
|
-
def plot_pca(
|
|
3362
|
-
adata: "ad.AnnData",
|
|
3363
|
-
*,
|
|
3364
|
-
color: str | Sequence[str],
|
|
3365
|
-
output_dir: Path | str,
|
|
3366
|
-
) -> Dict[str, Path]:
|
|
3367
|
-
"""Plot PCA embedding with scanpy-style color options."""
|
|
3368
|
-
return plot_embedding(adata, basis="pca", color=color, output_dir=output_dir, prefix="pca")
|
|
42
|
+
__all__ = [
|
|
43
|
+
"combined_hmm_length_clustermap",
|
|
44
|
+
"combined_hmm_raw_clustermap",
|
|
45
|
+
"combined_raw_clustermap",
|
|
46
|
+
"plot_rolling_nn_and_layer",
|
|
47
|
+
"plot_rolling_nn_and_two_layers",
|
|
48
|
+
"plot_segment_length_histogram",
|
|
49
|
+
"plot_zero_hamming_pair_counts",
|
|
50
|
+
"plot_zero_hamming_span_and_layer",
|
|
51
|
+
"plot_hmm_layers_rolling_by_sample_ref",
|
|
52
|
+
"plot_nmf_components",
|
|
53
|
+
"plot_pca_components",
|
|
54
|
+
"plot_cp_sequence_components",
|
|
55
|
+
"plot_embedding",
|
|
56
|
+
"plot_embedding_grid",
|
|
57
|
+
"plot_read_span_quality_clustermaps",
|
|
58
|
+
"plot_pca",
|
|
59
|
+
"plot_pca_grid",
|
|
60
|
+
"plot_pca_explained_variance",
|
|
61
|
+
"plot_sequence_integer_encoding_clustermaps",
|
|
62
|
+
"plot_umap",
|
|
63
|
+
"plot_umap_grid",
|
|
64
|
+
]
|