smftools 0.3.0__py3-none-any.whl → 0.3.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (66) hide show
  1. smftools/_version.py +1 -1
  2. smftools/cli/chimeric_adata.py +1563 -0
  3. smftools/cli/helpers.py +49 -7
  4. smftools/cli/hmm_adata.py +250 -32
  5. smftools/cli/latent_adata.py +773 -0
  6. smftools/cli/load_adata.py +78 -74
  7. smftools/cli/preprocess_adata.py +122 -58
  8. smftools/cli/recipes.py +26 -0
  9. smftools/cli/spatial_adata.py +74 -112
  10. smftools/cli/variant_adata.py +423 -0
  11. smftools/cli_entry.py +52 -4
  12. smftools/config/conversion.yaml +1 -1
  13. smftools/config/deaminase.yaml +3 -0
  14. smftools/config/default.yaml +85 -12
  15. smftools/config/experiment_config.py +146 -1
  16. smftools/constants.py +69 -0
  17. smftools/hmm/HMM.py +88 -0
  18. smftools/hmm/call_hmm_peaks.py +1 -1
  19. smftools/informatics/__init__.py +6 -0
  20. smftools/informatics/bam_functions.py +358 -8
  21. smftools/informatics/binarize_converted_base_identities.py +2 -89
  22. smftools/informatics/converted_BAM_to_adata.py +636 -175
  23. smftools/informatics/h5ad_functions.py +198 -2
  24. smftools/informatics/modkit_extract_to_adata.py +1007 -425
  25. smftools/informatics/sequence_encoding.py +72 -0
  26. smftools/logging_utils.py +21 -2
  27. smftools/metadata.py +1 -1
  28. smftools/plotting/__init__.py +26 -3
  29. smftools/plotting/autocorrelation_plotting.py +22 -4
  30. smftools/plotting/chimeric_plotting.py +1893 -0
  31. smftools/plotting/classifiers.py +28 -14
  32. smftools/plotting/general_plotting.py +62 -1583
  33. smftools/plotting/hmm_plotting.py +1670 -8
  34. smftools/plotting/latent_plotting.py +804 -0
  35. smftools/plotting/plotting_utils.py +243 -0
  36. smftools/plotting/position_stats.py +16 -8
  37. smftools/plotting/preprocess_plotting.py +281 -0
  38. smftools/plotting/qc_plotting.py +8 -3
  39. smftools/plotting/spatial_plotting.py +1134 -0
  40. smftools/plotting/variant_plotting.py +1231 -0
  41. smftools/preprocessing/__init__.py +4 -0
  42. smftools/preprocessing/append_base_context.py +18 -18
  43. smftools/preprocessing/append_mismatch_frequency_sites.py +187 -0
  44. smftools/preprocessing/append_sequence_mismatch_annotations.py +171 -0
  45. smftools/preprocessing/append_variant_call_layer.py +480 -0
  46. smftools/preprocessing/calculate_consensus.py +1 -1
  47. smftools/preprocessing/calculate_read_modification_stats.py +6 -1
  48. smftools/preprocessing/flag_duplicate_reads.py +4 -4
  49. smftools/preprocessing/invert_adata.py +1 -0
  50. smftools/readwrite.py +159 -99
  51. smftools/schema/anndata_schema_v1.yaml +15 -1
  52. smftools/tools/__init__.py +10 -0
  53. smftools/tools/calculate_knn.py +121 -0
  54. smftools/tools/calculate_leiden.py +57 -0
  55. smftools/tools/calculate_nmf.py +130 -0
  56. smftools/tools/calculate_pca.py +180 -0
  57. smftools/tools/calculate_umap.py +79 -80
  58. smftools/tools/position_stats.py +4 -4
  59. smftools/tools/rolling_nn_distance.py +872 -0
  60. smftools/tools/sequence_alignment.py +140 -0
  61. smftools/tools/tensor_factorization.py +217 -0
  62. {smftools-0.3.0.dist-info → smftools-0.3.2.dist-info}/METADATA +9 -5
  63. {smftools-0.3.0.dist-info → smftools-0.3.2.dist-info}/RECORD +66 -45
  64. {smftools-0.3.0.dist-info → smftools-0.3.2.dist-info}/WHEEL +0 -0
  65. {smftools-0.3.0.dist-info → smftools-0.3.2.dist-info}/entry_points.txt +0 -0
  66. {smftools-0.3.0.dist-info → smftools-0.3.2.dist-info}/licenses/LICENSE +0 -0
@@ -5,6 +5,10 @@ from importlib import import_module
5
5
  _LAZY_ATTRS = {
6
6
  "append_base_context": "smftools.preprocessing.append_base_context",
7
7
  "append_binary_layer_by_base_context": "smftools.preprocessing.append_binary_layer_by_base_context",
8
+ "append_mismatch_frequency_sites": "smftools.preprocessing.append_mismatch_frequency_sites",
9
+ "append_variant_call_layer": "smftools.preprocessing.append_variant_call_layer",
10
+ "append_variant_segment_layer": "smftools.preprocessing.append_variant_call_layer",
11
+ "append_sequence_mismatch_annotations": "smftools.preprocessing.append_sequence_mismatch_annotations",
8
12
  "binarize_adata": "smftools.preprocessing.binarize",
9
13
  "binarize_on_Youden": "smftools.preprocessing.binarize_on_Youden",
10
14
  "calculate_complexity_II": "smftools.preprocessing.calculate_complexity_II",
@@ -51,7 +51,7 @@ def append_base_context(
51
51
  site_types += ["A_site"]
52
52
 
53
53
  for ref in references:
54
- # Assess if the strand is the top or bottom strand converted
54
+ # Assess if the modified strand is the top or bottom strand.
55
55
  if "top" in ref:
56
56
  strand = "top"
57
57
  elif "bottom" in ref:
@@ -133,23 +133,23 @@ def append_base_context(
133
133
  adata.var[f"{ref}_{site_type}_valid_coverage"] = (
134
134
  (adata.var[f"{ref}_{site_type}"]) & (adata.var[f"position_in_{ref}"])
135
135
  )
136
- if native:
137
- adata.obsm[f"{ref}_{site_type}_valid_coverage"] = adata[
138
- :, adata.var[f"{ref}_{site_type}_valid_coverage"]
139
- ].layers["binarized_methylation"]
140
- else:
141
- adata.obsm[f"{ref}_{site_type}_valid_coverage"] = adata[
142
- :, adata.var[f"{ref}_{site_type}_valid_coverage"]
143
- ].X
144
- else:
145
- pass
146
-
147
- if native:
148
- adata.obsm[f"{ref}_{site_type}"] = adata[:, adata.var[f"{ref}_{site_type}"]].layers[
149
- "binarized_methylation"
150
- ]
151
- else:
152
- adata.obsm[f"{ref}_{site_type}"] = adata[:, adata.var[f"{ref}_{site_type}"]].X
136
+ # if native:
137
+ # adata.obsm[f"{ref}_{site_type}_valid_coverage"] = adata[
138
+ # :, adata.var[f"{ref}_{site_type}_valid_coverage"]
139
+ # ].layers["binarized_methylation"]
140
+ # else:
141
+ # adata.obsm[f"{ref}_{site_type}_valid_coverage"] = adata[
142
+ # :, adata.var[f"{ref}_{site_type}_valid_coverage"]
143
+ # ].X
144
+ # else:
145
+ # pass
146
+
147
+ # if native:
148
+ # adata.obsm[f"{ref}_{site_type}"] = adata[:, adata.var[f"{ref}_{site_type}"]].layers[
149
+ # "binarized_methylation"
150
+ # ]
151
+ # else:
152
+ # adata.obsm[f"{ref}_{site_type}"] = adata[:, adata.var[f"{ref}_{site_type}"]].X
153
153
 
154
154
  # mark as done
155
155
  adata.uns[uns_flag] = True
@@ -0,0 +1,187 @@
1
+ from __future__ import annotations
2
+
3
+ from typing import TYPE_CHECKING, Iterable, Sequence
4
+
5
+ import numpy as np
6
+ import pandas as pd
7
+
8
+ from smftools.constants import BASE_QUALITY_SCORES, MODKIT_EXTRACT_SEQUENCE_BASE_TO_INT
9
+ from smftools.logging_utils import get_logger
10
+
11
+ if TYPE_CHECKING:
12
+ import anndata as ad
13
+
14
+ logger = get_logger(__name__)
15
+
16
+
17
+ def append_mismatch_frequency_sites(
18
+ adata: "ad.AnnData",
19
+ ref_column: str = "Reference_strand",
20
+ mismatch_layer: str = "mismatch_integer_encoding",
21
+ read_span_layer: str = "read_span_mask",
22
+ quality_layer: str | None = None,
23
+ mismatch_frequency_range: Sequence[float] | None = (0.05, 0.95),
24
+ uns_flag: str = "append_mismatch_frequency_sites_performed",
25
+ force_redo: bool = False,
26
+ bypass: bool = False,
27
+ ) -> None:
28
+ """Append mismatch frequency metadata and variable-site flags per reference.
29
+
30
+ Args:
31
+ adata: AnnData object.
32
+ ref_column: Obs column defining reference categories.
33
+ mismatch_layer: Layer containing mismatch integer encodings.
34
+ read_span_layer: Layer containing read span masks (1=covered, 0=not covered).
35
+ quality_layer: Layer containing base quality scores for Q-value based error rates.
36
+ mismatch_frequency_range: Lower/upper bounds (inclusive) for variable site flagging.
37
+ uns_flag: Flag in ``adata.uns`` indicating prior completion.
38
+ force_redo: Whether to rerun even if ``uns_flag`` is set.
39
+ bypass: Whether to skip running this step.
40
+ """
41
+ if bypass:
42
+ return
43
+
44
+ already = bool(adata.uns.get(uns_flag, False))
45
+ if already and not force_redo:
46
+ return
47
+
48
+ if mismatch_layer not in adata.layers:
49
+ logger.debug(
50
+ "Mismatch layer '%s' not found; skipping mismatch frequency step.", mismatch_layer
51
+ )
52
+ return
53
+
54
+ mismatch_map = adata.uns.get("mismatch_integer_encoding_map", {})
55
+ if not mismatch_map:
56
+ logger.debug("Mismatch encoding map not found; skipping mismatch frequency step.")
57
+ return
58
+
59
+ n_value = mismatch_map.get("N", MODKIT_EXTRACT_SEQUENCE_BASE_TO_INT["N"])
60
+ pad_value = mismatch_map.get("PAD", MODKIT_EXTRACT_SEQUENCE_BASE_TO_INT["PAD"])
61
+
62
+ base_int_to_label = {
63
+ int(value): str(base)
64
+ for base, value in mismatch_map.items()
65
+ if base not in {"N", "PAD"} and isinstance(value, (int, np.integer))
66
+ }
67
+ if not base_int_to_label:
68
+ logger.debug("Mismatch encoding map missing base labels; skipping mismatch frequency step.")
69
+ return
70
+
71
+ has_span_mask = read_span_layer in adata.layers
72
+ if not has_span_mask:
73
+ logger.debug(
74
+ "Read span mask '%s' not found; mismatch frequencies will be computed over all reads.",
75
+ read_span_layer,
76
+ )
77
+
78
+ if quality_layer is None:
79
+ if BASE_QUALITY_SCORES in adata.layers:
80
+ quality_layer = BASE_QUALITY_SCORES
81
+ elif "base_qualities" in adata.layers:
82
+ quality_layer = "base_qualities"
83
+
84
+ if quality_layer is not None and quality_layer not in adata.layers:
85
+ logger.debug("Quality layer '%s' not found; falling back to range flagging.", quality_layer)
86
+ quality_layer = None
87
+
88
+ references = adata.obs[ref_column].cat.categories
89
+ n_vars = adata.shape[1]
90
+
91
+ if mismatch_frequency_range is None:
92
+ mismatch_frequency_range = (0.0, 1.0)
93
+
94
+ lower_bound, upper_bound = mismatch_frequency_range
95
+
96
+ for ref in references:
97
+ ref_mask = adata.obs[ref_column] == ref
98
+ ref_position_mask = adata.var.get(f"position_in_{ref}")
99
+ if ref_position_mask is None:
100
+ ref_position_mask = pd.Series(np.ones(n_vars, dtype=bool), index=adata.var.index)
101
+ else:
102
+ ref_position_mask = ref_position_mask.astype(bool)
103
+
104
+ frequency_values = np.full(n_vars, np.nan, dtype=float)
105
+ variable_flags = np.zeros(n_vars, dtype=bool)
106
+ mismatch_base_frequencies: list[list[tuple[str, float]]] = [[] for _ in range(n_vars)]
107
+
108
+ if ref_mask.sum() == 0:
109
+ adata.var[f"{ref}_mismatch_frequency"] = pd.Series(
110
+ frequency_values, index=adata.var.index
111
+ )
112
+ adata.var[f"{ref}_variable_sequence_site"] = pd.Series(
113
+ variable_flags, index=adata.var.index
114
+ )
115
+ adata.var[f"{ref}_mismatch_base_frequencies"] = pd.Series(
116
+ mismatch_base_frequencies, index=adata.var.index
117
+ )
118
+ continue
119
+
120
+ mismatch_matrix = np.asarray(adata.layers[mismatch_layer][ref_mask])
121
+ if has_span_mask:
122
+ span_matrix = np.asarray(adata.layers[read_span_layer][ref_mask])
123
+ coverage_mask = span_matrix > 0
124
+ coverage_counts = coverage_mask.sum(axis=0).astype(float)
125
+ else:
126
+ coverage_mask = np.ones_like(mismatch_matrix, dtype=bool)
127
+ coverage_counts = np.full(n_vars, ref_mask.sum(), dtype=float)
128
+
129
+ mismatch_mask = (~np.isin(mismatch_matrix, [n_value, pad_value])) & coverage_mask
130
+ mismatch_counts = mismatch_mask.sum(axis=0)
131
+
132
+ frequency_values = np.divide(
133
+ mismatch_counts,
134
+ coverage_counts,
135
+ out=np.full(n_vars, np.nan, dtype=float),
136
+ where=coverage_counts > 0,
137
+ )
138
+ frequency_values = np.where(ref_position_mask.values, frequency_values, np.nan)
139
+
140
+ mean_error_rate: np.ndarray | None = None
141
+ if quality_layer is not None:
142
+ quality_matrix = np.asarray(adata.layers[quality_layer][ref_mask]).astype(float)
143
+ quality_matrix[quality_matrix < 0] = np.nan
144
+ if has_span_mask:
145
+ quality_matrix = np.where(coverage_mask, quality_matrix, np.nan)
146
+ error_matrix = np.power(10.0, -quality_matrix / 10.0)
147
+ mean_error_rate = np.nanmean(error_matrix, axis=0)
148
+ mean_error_rate = np.where(ref_position_mask.values, mean_error_rate, np.nan)
149
+
150
+ if mean_error_rate is None:
151
+ variable_flags = (
152
+ (frequency_values >= lower_bound)
153
+ & (frequency_values <= upper_bound)
154
+ & ref_position_mask.values
155
+ )
156
+ else:
157
+ variable_flags = (
158
+ (frequency_values > mean_error_rate)
159
+ & ref_position_mask.values
160
+ & np.isfinite(mean_error_rate)
161
+ )
162
+
163
+ base_counts_by_int: dict[int, np.ndarray] = {}
164
+ for base_int in base_int_to_label:
165
+ base_counts_by_int[base_int] = ((mismatch_matrix == base_int) & coverage_mask).sum(
166
+ axis=0
167
+ )
168
+
169
+ for idx in range(n_vars):
170
+ if not ref_position_mask.iloc[idx] or coverage_counts[idx] == 0:
171
+ continue
172
+ base_freqs: list[tuple[str, float]] = []
173
+ for base_int, base_label in base_int_to_label.items():
174
+ count = base_counts_by_int[base_int][idx]
175
+ if count > 0:
176
+ base_freqs.append((base_label, float(count / coverage_counts[idx])))
177
+ mismatch_base_frequencies[idx] = base_freqs
178
+
179
+ adata.var[f"{ref}_mismatch_frequency"] = pd.Series(frequency_values, index=adata.var.index)
180
+ adata.var[f"{ref}_variable_sequence_site"] = pd.Series(
181
+ variable_flags, index=adata.var.index
182
+ )
183
+ adata.var[f"{ref}_mismatch_base_frequencies"] = pd.Series(
184
+ mismatch_base_frequencies, index=adata.var.index
185
+ )
186
+
187
+ adata.uns[uns_flag] = True
@@ -0,0 +1,171 @@
1
+ from __future__ import annotations
2
+
3
+ from typing import TYPE_CHECKING
4
+
5
+ import numpy as np
6
+ import pandas as pd
7
+
8
+ from smftools.logging_utils import get_logger
9
+ from smftools.tools.sequence_alignment import align_sequences_with_mismatches
10
+
11
+ if TYPE_CHECKING:
12
+ import anndata as ad
13
+
14
+ logger = get_logger(__name__)
15
+
16
+
17
+ def _format_mismatch_identity(event: str, seq1_base: str | None, seq2_base: str | None) -> str:
18
+ if event == "substitution":
19
+ return f"{seq1_base}->{seq2_base}"
20
+ if event == "insertion":
21
+ return f"ins:{seq2_base}"
22
+ return f"del:{seq1_base}"
23
+
24
+
25
+ def append_sequence_mismatch_annotations(
26
+ adata: "ad.AnnData",
27
+ seq1_column: str,
28
+ seq2_column: str,
29
+ output_prefix: str | None = None,
30
+ match_score: int = 1,
31
+ mismatch_score: int = -1,
32
+ gap_score: int = -2,
33
+ ignore_n: bool = True,
34
+ bypass: bool = False,
35
+ force_redo: bool = False,
36
+ uns_flag: str = "append_sequence_mismatch_annotations_performed",
37
+ ) -> None:
38
+ """Append mismatch annotations by aligning full reference sequences.
39
+
40
+ Extracts the full reference sequences from per-position base columns in
41
+ ``adata.var``, performs a single global alignment, and maps mismatches
42
+ (substitutions, insertions, deletions) back to ``adata.var`` indices.
43
+
44
+ Results stored in ``adata.var``:
45
+ - ``{prefix}_mismatch_type``: Per-position str — ``"substitution"``,
46
+ ``"insertion"``, ``"deletion"``, or ``""`` (no mismatch).
47
+ - ``{prefix}_mismatch_identity``: Per-position str — e.g. ``"A->G"``,
48
+ ``"ins:T"``, ``"del:C"``, or ``""``).
49
+ - ``{prefix}_is_mismatch``: Per-position bool flag.
50
+
51
+ Args:
52
+ adata: AnnData object.
53
+ seq1_column: Column in ``adata.var`` with per-position bases for reference 1.
54
+ seq2_column: Column in ``adata.var`` with per-position bases for reference 2.
55
+ output_prefix: Prefix for output columns. Defaults to ``{seq1_column}__{seq2_column}``.
56
+ match_score: Alignment match score.
57
+ mismatch_score: Alignment mismatch score.
58
+ gap_score: Alignment gap score.
59
+ ignore_n: Whether to ignore mismatches involving ``N`` bases.
60
+ bypass: Whether to skip processing.
61
+ force_redo: Whether to rerun even if ``uns_flag`` is set.
62
+ uns_flag: Flag in ``adata.uns`` indicating prior completion.
63
+ """
64
+ already = bool(adata.uns.get(uns_flag, False))
65
+ if (already and not force_redo) or bypass:
66
+ return
67
+
68
+ if seq1_column not in adata.var:
69
+ raise KeyError(f"Sequence column '{seq1_column}' not found in adata.var")
70
+ if seq2_column not in adata.var:
71
+ raise KeyError(f"Sequence column '{seq2_column}' not found in adata.var")
72
+
73
+ output_prefix = output_prefix or f"{seq1_column}__{seq2_column}"
74
+
75
+ seq1_series = adata.var[seq1_column]
76
+ seq2_series = adata.var[seq2_column]
77
+ n_vars = adata.shape[1]
78
+
79
+ # ---- Build full sequences from positions where each ref has a valid (non-N) base ----
80
+ valid1_mask = seq1_series.notna() & (seq1_series != "N")
81
+ valid2_mask = seq2_series.notna() & (seq2_series != "N")
82
+
83
+ # var indices (integers) for each valid base
84
+ var_indices_1 = np.where(valid1_mask.values)[0]
85
+ var_indices_2 = np.where(valid2_mask.values)[0]
86
+
87
+ full_seq1 = "".join(str(seq1_series.iloc[i]) for i in var_indices_1)
88
+ full_seq2 = "".join(str(seq2_series.iloc[i]) for i in var_indices_2)
89
+
90
+ logger.info(
91
+ "Aligning full sequences: '%s' (%d bases) vs '%s' (%d bases).",
92
+ seq1_column,
93
+ len(full_seq1),
94
+ seq2_column,
95
+ len(full_seq2),
96
+ )
97
+
98
+ # ---- Global alignment ----
99
+ aligned_seq1, aligned_seq2, mismatches = align_sequences_with_mismatches(
100
+ full_seq1,
101
+ full_seq2,
102
+ match_score=match_score,
103
+ mismatch_score=mismatch_score,
104
+ gap_score=gap_score,
105
+ ignore_n=ignore_n,
106
+ )
107
+
108
+ logger.info(
109
+ "Alignment complete. Aligned length: %d, mismatches: %d.",
110
+ len(aligned_seq1),
111
+ len(mismatches),
112
+ )
113
+
114
+ # ---- Map alignment mismatches back to var indices ----
115
+ mismatch_type_arr = [""] * n_vars
116
+ mismatch_identity_arr = [""] * n_vars
117
+ is_mismatch_arr = np.zeros(n_vars, dtype=bool)
118
+
119
+ # For substitutions, store the paired var indices from both references.
120
+ # This is needed because indels shift the coordinate systems so that the
121
+ # same alignment column maps to different var indices in each reference.
122
+ substitution_map: list[dict] = []
123
+
124
+ for mm in mismatches:
125
+ # Determine which var index this mismatch maps to.
126
+ # For substitutions and deletions, seq1_pos is defined.
127
+ # For insertions, only seq2_pos is defined (gap in seq1).
128
+ if mm.seq1_pos is not None:
129
+ var_idx = int(var_indices_1[mm.seq1_pos])
130
+ elif mm.seq2_pos is not None:
131
+ var_idx = int(var_indices_2[mm.seq2_pos])
132
+ else:
133
+ continue
134
+
135
+ mismatch_type_arr[var_idx] = mm.event
136
+ mismatch_identity_arr[var_idx] = _format_mismatch_identity(
137
+ mm.event, mm.seq1_base, mm.seq2_base
138
+ )
139
+ is_mismatch_arr[var_idx] = True
140
+
141
+ if mm.event == "substitution" and mm.seq1_pos is not None and mm.seq2_pos is not None:
142
+ substitution_map.append(
143
+ {
144
+ "seq1_var_idx": int(var_indices_1[mm.seq1_pos]),
145
+ "seq2_var_idx": int(var_indices_2[mm.seq2_pos]),
146
+ "seq1_base": mm.seq1_base,
147
+ "seq2_base": mm.seq2_base,
148
+ }
149
+ )
150
+
151
+ adata.var[f"{output_prefix}_mismatch_type"] = pd.Series(
152
+ mismatch_type_arr, index=adata.var.index
153
+ )
154
+ adata.var[f"{output_prefix}_mismatch_identity"] = pd.Series(
155
+ mismatch_identity_arr, index=adata.var.index
156
+ )
157
+ adata.var[f"{output_prefix}_is_mismatch"] = pd.Series(is_mismatch_arr, index=adata.var.index)
158
+ # Store substitution map as a DataFrame in adata.uns (h5ad-serializable)
159
+ if substitution_map:
160
+ adata.uns[f"{output_prefix}_substitution_map"] = pd.DataFrame(substitution_map)
161
+ adata.uns[uns_flag] = True
162
+
163
+ n_sub = sum(1 for t in mismatch_type_arr if t == "substitution")
164
+ n_ins = sum(1 for t in mismatch_type_arr if t == "insertion")
165
+ n_del = sum(1 for t in mismatch_type_arr if t == "deletion")
166
+ logger.info(
167
+ "Mismatch annotations: %d substitutions, %d insertions, %d deletions.",
168
+ n_sub,
169
+ n_ins,
170
+ n_del,
171
+ )