smftools 0.2.4__py3-none-any.whl → 0.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (181) hide show
  1. smftools/__init__.py +43 -13
  2. smftools/_settings.py +6 -6
  3. smftools/_version.py +3 -1
  4. smftools/cli/__init__.py +1 -0
  5. smftools/cli/archived/cli_flows.py +2 -0
  6. smftools/cli/helpers.py +9 -1
  7. smftools/cli/hmm_adata.py +905 -242
  8. smftools/cli/load_adata.py +432 -280
  9. smftools/cli/preprocess_adata.py +287 -171
  10. smftools/cli/spatial_adata.py +141 -53
  11. smftools/cli_entry.py +119 -178
  12. smftools/config/__init__.py +3 -1
  13. smftools/config/conversion.yaml +5 -1
  14. smftools/config/deaminase.yaml +1 -1
  15. smftools/config/default.yaml +26 -18
  16. smftools/config/direct.yaml +8 -3
  17. smftools/config/discover_input_files.py +19 -5
  18. smftools/config/experiment_config.py +511 -276
  19. smftools/constants.py +37 -0
  20. smftools/datasets/__init__.py +4 -8
  21. smftools/datasets/datasets.py +32 -18
  22. smftools/hmm/HMM.py +2133 -1428
  23. smftools/hmm/__init__.py +24 -14
  24. smftools/hmm/archived/apply_hmm_batched.py +2 -0
  25. smftools/hmm/archived/calculate_distances.py +2 -0
  26. smftools/hmm/archived/call_hmm_peaks.py +18 -1
  27. smftools/hmm/archived/train_hmm.py +2 -0
  28. smftools/hmm/call_hmm_peaks.py +176 -193
  29. smftools/hmm/display_hmm.py +23 -7
  30. smftools/hmm/hmm_readwrite.py +20 -6
  31. smftools/hmm/nucleosome_hmm_refinement.py +104 -14
  32. smftools/informatics/__init__.py +55 -13
  33. smftools/informatics/archived/bam_conversion.py +2 -0
  34. smftools/informatics/archived/bam_direct.py +2 -0
  35. smftools/informatics/archived/basecall_pod5s.py +2 -0
  36. smftools/informatics/archived/basecalls_to_adata.py +2 -0
  37. smftools/informatics/archived/conversion_smf.py +2 -0
  38. smftools/informatics/archived/deaminase_smf.py +1 -0
  39. smftools/informatics/archived/direct_smf.py +2 -0
  40. smftools/informatics/archived/fast5_to_pod5.py +2 -0
  41. smftools/informatics/archived/helpers/archived/__init__.py +2 -0
  42. smftools/informatics/archived/helpers/archived/align_and_sort_BAM.py +16 -1
  43. smftools/informatics/archived/helpers/archived/aligned_BAM_to_bed.py +2 -0
  44. smftools/informatics/archived/helpers/archived/bam_qc.py +14 -1
  45. smftools/informatics/archived/helpers/archived/bed_to_bigwig.py +2 -0
  46. smftools/informatics/archived/helpers/archived/canoncall.py +2 -0
  47. smftools/informatics/archived/helpers/archived/concatenate_fastqs_to_bam.py +8 -1
  48. smftools/informatics/archived/helpers/archived/converted_BAM_to_adata.py +2 -0
  49. smftools/informatics/archived/helpers/archived/count_aligned_reads.py +2 -0
  50. smftools/informatics/archived/helpers/archived/demux_and_index_BAM.py +2 -0
  51. smftools/informatics/archived/helpers/archived/extract_base_identities.py +2 -0
  52. smftools/informatics/archived/helpers/archived/extract_mods.py +2 -0
  53. smftools/informatics/archived/helpers/archived/extract_read_features_from_bam.py +2 -0
  54. smftools/informatics/archived/helpers/archived/extract_read_lengths_from_bed.py +2 -0
  55. smftools/informatics/archived/helpers/archived/extract_readnames_from_BAM.py +2 -0
  56. smftools/informatics/archived/helpers/archived/find_conversion_sites.py +2 -0
  57. smftools/informatics/archived/helpers/archived/generate_converted_FASTA.py +2 -0
  58. smftools/informatics/archived/helpers/archived/get_chromosome_lengths.py +2 -0
  59. smftools/informatics/archived/helpers/archived/get_native_references.py +2 -0
  60. smftools/informatics/archived/helpers/archived/index_fasta.py +2 -0
  61. smftools/informatics/archived/helpers/archived/informatics.py +2 -0
  62. smftools/informatics/archived/helpers/archived/load_adata.py +5 -3
  63. smftools/informatics/archived/helpers/archived/make_modbed.py +2 -0
  64. smftools/informatics/archived/helpers/archived/modQC.py +2 -0
  65. smftools/informatics/archived/helpers/archived/modcall.py +2 -0
  66. smftools/informatics/archived/helpers/archived/ohe_batching.py +2 -0
  67. smftools/informatics/archived/helpers/archived/ohe_layers_decode.py +2 -0
  68. smftools/informatics/archived/helpers/archived/one_hot_decode.py +2 -0
  69. smftools/informatics/archived/helpers/archived/one_hot_encode.py +2 -0
  70. smftools/informatics/archived/helpers/archived/plot_bed_histograms.py +5 -1
  71. smftools/informatics/archived/helpers/archived/separate_bam_by_bc.py +2 -0
  72. smftools/informatics/archived/helpers/archived/split_and_index_BAM.py +2 -0
  73. smftools/informatics/archived/print_bam_query_seq.py +9 -1
  74. smftools/informatics/archived/subsample_fasta_from_bed.py +2 -0
  75. smftools/informatics/archived/subsample_pod5.py +2 -0
  76. smftools/informatics/bam_functions.py +1059 -269
  77. smftools/informatics/basecalling.py +53 -9
  78. smftools/informatics/bed_functions.py +357 -114
  79. smftools/informatics/binarize_converted_base_identities.py +21 -7
  80. smftools/informatics/complement_base_list.py +9 -6
  81. smftools/informatics/converted_BAM_to_adata.py +324 -137
  82. smftools/informatics/fasta_functions.py +251 -89
  83. smftools/informatics/h5ad_functions.py +202 -30
  84. smftools/informatics/modkit_extract_to_adata.py +623 -274
  85. smftools/informatics/modkit_functions.py +87 -44
  86. smftools/informatics/ohe.py +46 -21
  87. smftools/informatics/pod5_functions.py +114 -74
  88. smftools/informatics/run_multiqc.py +20 -14
  89. smftools/logging_utils.py +51 -0
  90. smftools/machine_learning/__init__.py +23 -12
  91. smftools/machine_learning/data/__init__.py +2 -0
  92. smftools/machine_learning/data/anndata_data_module.py +157 -50
  93. smftools/machine_learning/data/preprocessing.py +4 -1
  94. smftools/machine_learning/evaluation/__init__.py +3 -1
  95. smftools/machine_learning/evaluation/eval_utils.py +13 -14
  96. smftools/machine_learning/evaluation/evaluators.py +52 -34
  97. smftools/machine_learning/inference/__init__.py +3 -1
  98. smftools/machine_learning/inference/inference_utils.py +9 -4
  99. smftools/machine_learning/inference/lightning_inference.py +14 -13
  100. smftools/machine_learning/inference/sklearn_inference.py +8 -8
  101. smftools/machine_learning/inference/sliding_window_inference.py +37 -25
  102. smftools/machine_learning/models/__init__.py +12 -5
  103. smftools/machine_learning/models/base.py +34 -43
  104. smftools/machine_learning/models/cnn.py +22 -13
  105. smftools/machine_learning/models/lightning_base.py +78 -42
  106. smftools/machine_learning/models/mlp.py +18 -5
  107. smftools/machine_learning/models/positional.py +10 -4
  108. smftools/machine_learning/models/rnn.py +8 -3
  109. smftools/machine_learning/models/sklearn_models.py +46 -24
  110. smftools/machine_learning/models/transformer.py +75 -55
  111. smftools/machine_learning/models/wrappers.py +8 -3
  112. smftools/machine_learning/training/__init__.py +4 -2
  113. smftools/machine_learning/training/train_lightning_model.py +42 -23
  114. smftools/machine_learning/training/train_sklearn_model.py +11 -15
  115. smftools/machine_learning/utils/__init__.py +3 -1
  116. smftools/machine_learning/utils/device.py +12 -5
  117. smftools/machine_learning/utils/grl.py +8 -2
  118. smftools/metadata.py +443 -0
  119. smftools/optional_imports.py +31 -0
  120. smftools/plotting/__init__.py +32 -17
  121. smftools/plotting/autocorrelation_plotting.py +153 -48
  122. smftools/plotting/classifiers.py +175 -73
  123. smftools/plotting/general_plotting.py +350 -168
  124. smftools/plotting/hmm_plotting.py +53 -14
  125. smftools/plotting/position_stats.py +155 -87
  126. smftools/plotting/qc_plotting.py +25 -12
  127. smftools/preprocessing/__init__.py +35 -37
  128. smftools/preprocessing/append_base_context.py +105 -79
  129. smftools/preprocessing/append_binary_layer_by_base_context.py +75 -37
  130. smftools/preprocessing/{archives → archived}/add_read_length_and_mapping_qc.py +2 -0
  131. smftools/preprocessing/{archives → archived}/calculate_complexity.py +5 -1
  132. smftools/preprocessing/{archives → archived}/mark_duplicates.py +2 -0
  133. smftools/preprocessing/{archives → archived}/preprocessing.py +10 -6
  134. smftools/preprocessing/{archives → archived}/remove_duplicates.py +2 -0
  135. smftools/preprocessing/binarize.py +21 -4
  136. smftools/preprocessing/binarize_on_Youden.py +127 -31
  137. smftools/preprocessing/binary_layers_to_ohe.py +18 -11
  138. smftools/preprocessing/calculate_complexity_II.py +89 -59
  139. smftools/preprocessing/calculate_consensus.py +28 -19
  140. smftools/preprocessing/calculate_coverage.py +44 -22
  141. smftools/preprocessing/calculate_pairwise_differences.py +4 -1
  142. smftools/preprocessing/calculate_pairwise_hamming_distances.py +7 -3
  143. smftools/preprocessing/calculate_position_Youden.py +110 -55
  144. smftools/preprocessing/calculate_read_length_stats.py +52 -23
  145. smftools/preprocessing/calculate_read_modification_stats.py +91 -57
  146. smftools/preprocessing/clean_NaN.py +38 -28
  147. smftools/preprocessing/filter_adata_by_nan_proportion.py +24 -12
  148. smftools/preprocessing/filter_reads_on_length_quality_mapping.py +72 -37
  149. smftools/preprocessing/filter_reads_on_modification_thresholds.py +183 -73
  150. smftools/preprocessing/flag_duplicate_reads.py +708 -303
  151. smftools/preprocessing/invert_adata.py +26 -11
  152. smftools/preprocessing/load_sample_sheet.py +40 -22
  153. smftools/preprocessing/make_dirs.py +9 -3
  154. smftools/preprocessing/min_non_diagonal.py +4 -1
  155. smftools/preprocessing/recipes.py +58 -23
  156. smftools/preprocessing/reindex_references_adata.py +93 -27
  157. smftools/preprocessing/subsample_adata.py +33 -16
  158. smftools/readwrite.py +264 -109
  159. smftools/schema/__init__.py +11 -0
  160. smftools/schema/anndata_schema_v1.yaml +227 -0
  161. smftools/tools/__init__.py +25 -18
  162. smftools/tools/archived/apply_hmm.py +2 -0
  163. smftools/tools/archived/classifiers.py +165 -0
  164. smftools/tools/archived/classify_methylated_features.py +2 -0
  165. smftools/tools/archived/classify_non_methylated_features.py +2 -0
  166. smftools/tools/archived/subset_adata_v1.py +12 -1
  167. smftools/tools/archived/subset_adata_v2.py +14 -1
  168. smftools/tools/calculate_umap.py +56 -15
  169. smftools/tools/cluster_adata_on_methylation.py +122 -47
  170. smftools/tools/general_tools.py +70 -25
  171. smftools/tools/position_stats.py +220 -99
  172. smftools/tools/read_stats.py +50 -29
  173. smftools/tools/spatial_autocorrelation.py +365 -192
  174. smftools/tools/subset_adata.py +23 -21
  175. smftools-0.3.0.dist-info/METADATA +147 -0
  176. smftools-0.3.0.dist-info/RECORD +182 -0
  177. smftools-0.2.4.dist-info/METADATA +0 -141
  178. smftools-0.2.4.dist-info/RECORD +0 -176
  179. {smftools-0.2.4.dist-info → smftools-0.3.0.dist-info}/WHEEL +0 -0
  180. {smftools-0.2.4.dist-info → smftools-0.3.0.dist-info}/entry_points.txt +0 -0
  181. {smftools-0.2.4.dist-info → smftools-0.3.0.dist-info}/licenses/LICENSE +0 -0
@@ -1,28 +1,30 @@
1
1
  # subset_adata
2
2
 
3
- def subset_adata(adata, columns, cat_type='obs'):
4
- """
5
- Adds subset metadata to an AnnData object based on categorical values in specified .obs or .var columns.
6
-
7
- Parameters:
8
- adata (AnnData): The AnnData object to add subset metadata to.
9
- columns (list of str): List of .obs or .var column names to subset by. The order matters.
10
- cat_type (str): obs or var. Default is obs
11
-
12
- Returns:
13
- None
14
- """
15
- import pandas as pd
3
+ from __future__ import annotations
4
+
5
+ from typing import TYPE_CHECKING, Sequence
6
+
7
+ if TYPE_CHECKING:
16
8
  import anndata as ad
17
9
 
18
- subgroup_name = '_'.join(columns)
19
- if 'obs' in cat_type:
10
+
11
+ def subset_adata(adata: "ad.AnnData", columns: Sequence[str], cat_type: str = "obs") -> None:
12
+ """Add subset metadata based on categorical values in ``.obs`` or ``.var`` columns.
13
+
14
+ Args:
15
+ adata: AnnData object to annotate.
16
+ columns: Obs or var column names to subset by (order matters).
17
+ cat_type: ``"obs"`` or ``"var"``.
18
+ """
19
+
20
+ subgroup_name = "_".join(columns)
21
+ if "obs" in cat_type:
20
22
  df = adata.obs[columns]
21
- adata.obs[subgroup_name] = df.apply(lambda row: '_'.join(row.astype(str)), axis=1)
22
- adata.obs[subgroup_name] = adata.obs[subgroup_name].astype('category')
23
- elif 'var' in cat_type:
23
+ adata.obs[subgroup_name] = df.apply(lambda row: "_".join(row.astype(str)), axis=1)
24
+ adata.obs[subgroup_name] = adata.obs[subgroup_name].astype("category")
25
+ elif "var" in cat_type:
24
26
  df = adata.var[columns]
25
- adata.var[subgroup_name] = df.apply(lambda row: '_'.join(row.astype(str)), axis=1)
26
- adata.var[subgroup_name] = adata.var[subgroup_name].astype('category')
27
+ adata.var[subgroup_name] = df.apply(lambda row: "_".join(row.astype(str)), axis=1)
28
+ adata.var[subgroup_name] = adata.var[subgroup_name].astype("category")
27
29
 
28
- return None
30
+ return None
@@ -0,0 +1,147 @@
1
+ Metadata-Version: 2.3
2
+ Name: smftools
3
+ Version: 0.3.0
4
+ Summary: Single Molecule Footprinting Analysis in Python.
5
+ Project-URL: Source, https://github.com/jkmckenna/smftools
6
+ Project-URL: Documentation, https://smftools.readthedocs.io/
7
+ Author: Joseph McKenna
8
+ Maintainer-email: Joseph McKenna <jkmckenna@berkeley.edu>
9
+ License: MIT License
10
+
11
+ Copyright (c) 2024 jkmckenna
12
+
13
+ Permission is hereby granted, free of charge, to any person obtaining a copy
14
+ of this software and associated documentation files (the "Software"), to deal
15
+ in the Software without restriction, including without limitation the rights
16
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
17
+ copies of the Software, and to permit persons to whom the Software is
18
+ furnished to do so, subject to the following conditions:
19
+
20
+ The above copyright notice and this permission notice shall be included in all
21
+ copies or substantial portions of the Software.
22
+
23
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
24
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
26
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
28
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29
+ SOFTWARE.
30
+ License-File: LICENSE
31
+ Keywords: anndata,chromatin-accessibility,machine-learning,nanopore,protein-dna-binding,single-locus,single-molecule-footprinting
32
+ Classifier: Development Status :: 3 - Alpha
33
+ Classifier: Environment :: Console
34
+ Classifier: Intended Audience :: Developers
35
+ Classifier: Intended Audience :: Science/Research
36
+ Classifier: License :: OSI Approved :: MIT License
37
+ Classifier: Natural Language :: English
38
+ Classifier: Operating System :: MacOS :: MacOS X
39
+ Classifier: Programming Language :: Python :: 3
40
+ Classifier: Programming Language :: Python :: 3.10
41
+ Classifier: Programming Language :: Python :: 3.11
42
+ Classifier: Programming Language :: Python :: 3.12
43
+ Classifier: Programming Language :: Python :: 3.13
44
+ Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
45
+ Classifier: Topic :: Scientific/Engineering :: Visualization
46
+ Requires-Python: >=3.10
47
+ Requires-Dist: anndata>=0.10.0
48
+ Requires-Dist: biopython>=1.79
49
+ Requires-Dist: click
50
+ Requires-Dist: numpy<2,>=1.22.0
51
+ Requires-Dist: pandas>=1.4.2
52
+ Requires-Dist: scipy>=1.7.3
53
+ Requires-Dist: tqdm
54
+ Provides-Extra: all
55
+ Requires-Dist: captum; extra == 'all'
56
+ Requires-Dist: fastcluster; extra == 'all'
57
+ Requires-Dist: hydra-core; extra == 'all'
58
+ Requires-Dist: igraph; extra == 'all'
59
+ Requires-Dist: leidenalg; extra == 'all'
60
+ Requires-Dist: lightning; extra == 'all'
61
+ Requires-Dist: matplotlib>=3.6.2; extra == 'all'
62
+ Requires-Dist: multiqc; extra == 'all'
63
+ Requires-Dist: networkx>=3.2; extra == 'all'
64
+ Requires-Dist: omegaconf; extra == 'all'
65
+ Requires-Dist: pod5>=0.1.21; extra == 'all'
66
+ Requires-Dist: pybedtools>=0.12.0; extra == 'all'
67
+ Requires-Dist: pybigwig>=0.3.24; extra == 'all'
68
+ Requires-Dist: pysam>=0.19.1; extra == 'all'
69
+ Requires-Dist: scanpy>=1.9; extra == 'all'
70
+ Requires-Dist: scikit-learn>=1.0.2; extra == 'all'
71
+ Requires-Dist: seaborn>=0.11; extra == 'all'
72
+ Requires-Dist: shap; extra == 'all'
73
+ Requires-Dist: torch>=1.9.0; extra == 'all'
74
+ Requires-Dist: upsetplot; extra == 'all'
75
+ Requires-Dist: wandb; extra == 'all'
76
+ Provides-Extra: cluster
77
+ Requires-Dist: fastcluster; extra == 'cluster'
78
+ Requires-Dist: leidenalg; extra == 'cluster'
79
+ Provides-Extra: dev
80
+ Requires-Dist: pre-commit; extra == 'dev'
81
+ Requires-Dist: pytest; extra == 'dev'
82
+ Requires-Dist: pytest-cov; extra == 'dev'
83
+ Requires-Dist: ruff; extra == 'dev'
84
+ Provides-Extra: docs
85
+ Requires-Dist: ipython>=7.20; extra == 'docs'
86
+ Requires-Dist: matplotlib!=3.6.1; extra == 'docs'
87
+ Requires-Dist: myst-nb<2,>=1; extra == 'docs'
88
+ Requires-Dist: myst-parser<3,>=2; extra == 'docs'
89
+ Requires-Dist: nbsphinx>=0.9; extra == 'docs'
90
+ Requires-Dist: pyyaml; extra == 'docs'
91
+ Requires-Dist: readthedocs-sphinx-search; extra == 'docs'
92
+ Requires-Dist: setuptools; extra == 'docs'
93
+ Requires-Dist: sphinx-autodoc-typehints<4,>=1.25.2; extra == 'docs'
94
+ Requires-Dist: sphinx-book-theme<2,>=1.1; extra == 'docs'
95
+ Requires-Dist: sphinx-click<7,>=5; extra == 'docs'
96
+ Requires-Dist: sphinx-copybutton<0.6,>=0.5; extra == 'docs'
97
+ Requires-Dist: sphinx-design; extra == 'docs'
98
+ Requires-Dist: sphinx<8,>=7; extra == 'docs'
99
+ Requires-Dist: sphinxcontrib-bibtex<3,>=2; extra == 'docs'
100
+ Requires-Dist: sphinxext-opengraph<0.10,>=0.9; extra == 'docs'
101
+ Provides-Extra: misc
102
+ Requires-Dist: networkx>=3.2; extra == 'misc'
103
+ Requires-Dist: upsetplot; extra == 'misc'
104
+ Provides-Extra: ml-base
105
+ Requires-Dist: scikit-learn>=1.0.2; extra == 'ml-base'
106
+ Requires-Dist: torch>=1.9.0; extra == 'ml-base'
107
+ Provides-Extra: ml-extended
108
+ Requires-Dist: captum; extra == 'ml-extended'
109
+ Requires-Dist: hydra-core; extra == 'ml-extended'
110
+ Requires-Dist: lightning; extra == 'ml-extended'
111
+ Requires-Dist: omegaconf; extra == 'ml-extended'
112
+ Requires-Dist: shap; extra == 'ml-extended'
113
+ Requires-Dist: wandb; extra == 'ml-extended'
114
+ Provides-Extra: ont
115
+ Requires-Dist: pod5>=0.1.21; extra == 'ont'
116
+ Provides-Extra: plotting
117
+ Requires-Dist: matplotlib>=3.6.2; extra == 'plotting'
118
+ Requires-Dist: seaborn>=0.11; extra == 'plotting'
119
+ Provides-Extra: pybedtools
120
+ Requires-Dist: pybedtools>=0.12.0; extra == 'pybedtools'
121
+ Provides-Extra: pybigwig
122
+ Requires-Dist: pybigwig>=0.3.24; extra == 'pybigwig'
123
+ Provides-Extra: pysam
124
+ Requires-Dist: pysam>=0.19.1; extra == 'pysam'
125
+ Provides-Extra: qc
126
+ Requires-Dist: multiqc; extra == 'qc'
127
+ Provides-Extra: scanpy
128
+ Requires-Dist: igraph; extra == 'scanpy'
129
+ Requires-Dist: scanpy>=1.9; extra == 'scanpy'
130
+ Provides-Extra: torch
131
+ Requires-Dist: torch>=1.9.0; extra == 'torch'
132
+ Description-Content-Type: text/markdown
133
+
134
+ [![PyPI](https://img.shields.io/pypi/v/smftools.svg)](https://pypi.org/project/smftools)
135
+ [![Docs](https://readthedocs.org/projects/smftools/badge/?version=latest)](https://smftools.readthedocs.io/en/latest/?badge=latest)
136
+
137
+ # smftools
138
+ A Python tool for processing raw sequencing data derived from single molecule footprinting experiments into [anndata](https://anndata.readthedocs.io/en/latest/) objects. Additional functionality for preprocessing, spatial analyses, and HMM based feature annotation.
139
+
140
+ ## Philosophy
141
+ While genomic data structures (SAM/BAM) were built to handle low-coverage data (<1000X) along large references, smftools prioritizes high-coverage data (scalable to >1,000,000X coverage) of a few genomic loci at a time. This enables efficient data storage, rapid data operations, hierarchical metadata handling, seamless integration with various machine-learning packages, and ease of visualization. Furthermore, functionality is modularized, enabling analysis sessions to be saved, reloaded, and easily shared with collaborators. Analyses are centered around the [anndata](https://anndata.readthedocs.io/en/latest/) object, and are heavily inspired by the work conducted within the single-cell genomics community.
142
+
143
+ ## Dependencies
144
+ The following CLI tools need to be installed and configured before using the informatics (smftools.inform) module of smftools, which is used by the smftools load CLI command:
145
+ 1) [Dorado](https://github.com/nanoporetech/dorado) -> Basecalling, alignment, demultiplexing. Required for Nanopore SMF experiments, but not Illumina SMF experiments.
146
+ 2) [Minimap2](https://github.com/lh3/minimap2) -> Aligner if not using dorado. Support for other aligners could eventually be added if needed.
147
+ 3) [Modkit](https://github.com/nanoporetech/modkit) -> Extracting read level methylation metrics from the MM/ML tags in BAM files. Only required for direct modification detection SMF protocols.
@@ -0,0 +1,182 @@
1
+ smftools/__init__.py,sha256=Wun5eO3FHy7sAelTLlLdFj3NurqZFQxfO3U5YHJ3KcY,1247
2
+ smftools/_settings.py,sha256=QqZzjz6Y_-gZH4VJAPRCL68HRlGjzl3hXU7d-dMi8-M,418
3
+ smftools/_version.py,sha256=KdHlm9KKc9XEB182bG2710ZrIpNwJdS5TBcAjXA8U_M,58
4
+ smftools/cli_entry.py,sha256=wTjwx520HJIez2I1CGXAHhWXUC-nsRBZ6yUFJd_84XM,10519
5
+ smftools/constants.py,sha256=SWOJ76KTP2p3geyVkNQ8LB96NOmDDtjFEur2hSw7iyU,1289
6
+ smftools/logging_utils.py,sha256=jOptBgSW7NQcw7JTnw2-oWcN2qyrtfJkDpIZsfcU1Mk,1323
7
+ smftools/metadata.py,sha256=yGTMof2hAUR43QfgRSwK9mnOiTAznV3Usxzsvt185s4,14898
8
+ smftools/optional_imports.py,sha256=PpjWa-H-rlxwXJjkPLSHkiuim922xwDVsqlgFY8wWqw,1039
9
+ smftools/readwrite.py,sha256=GCCBAWXQezTtXMBr-2NeV-jJfdnl_yB_x5nuz7Bt11c,52413
10
+ smftools/cli/__init__.py,sha256=U4S_2y3zgLZVfMenHRaJFBW8yqh2mUBuI291LGQVOJ8,35
11
+ smftools/cli/helpers.py,sha256=Euf0e3rNgKAlnghlJvr5fKaiMxqPum1HD6CYI__Z3Ko,1435
12
+ smftools/cli/hmm_adata.py,sha256=2W1OLU_KaEtwUzkL_ZaecK4rQA9XyHJEurZEKQqnU00,40795
13
+ smftools/cli/load_adata.py,sha256=mVsXQQB8sRIIettJhC1Y1xnrBcSTrRs-p-O72TlhO1o,32453
14
+ smftools/cli/preprocess_adata.py,sha256=m_IWvUEBwIA5goJ2W7FQdqaA8tqQZB7gAXjjCWrcFCU,22632
15
+ smftools/cli/spatial_adata.py,sha256=rzEPJ5pM78zE27rp-Sgif0fw_I6NiPK71xyGnZnXYcc,32001
16
+ smftools/cli/archived/cli_flows.py,sha256=w1rPHSH8WzZn7owz0ra7WOUGlJSEsaRw_W3x-9Ra42k,4977
17
+ smftools/config/__init__.py,sha256=rcI3qG1DGfRcvQzh8bffiHuRPcmPsas5T8MN6uhScxA,106
18
+ smftools/config/conversion.yaml,sha256=N7lUO7-yAaJR6VhxRGCRc-ceAi0cp5xNASSIsXl9KwI,1242
19
+ smftools/config/deaminase.yaml,sha256=JCE1nF39AX436-3RyvuZN24gdJfriDijNv5XNHrMT8I,1357
20
+ smftools/config/default.yaml,sha256=yhcMASjqqccuHpTFepyjt6KHfNNR6IDNSH0rmEERXm4,13933
21
+ smftools/config/direct.yaml,sha256=Jw8Nj3QKQrCfJpVl8sGgCKdRvjk5cV66dzRlNfoDOzI,2269
22
+ smftools/config/discover_input_files.py,sha256=NcOqNYoXggLDieam8UMJAc2sWmoYOZ_Wqp2mApnlBfs,4015
23
+ smftools/config/experiment_config.py,sha256=IqSN7JwnnWWjOoDZWbQ2zATwjm_uywSSs8mhagII6ms,67521
24
+ smftools/datasets/F1_hybrid_NKG2A_enhander_promoter_GpC_conversion_SMF.h5ad.gz,sha256=q6wJtgFRDln0o20XNCx1qad3lwcdCoylqPN7wskTfI8,2926497
25
+ smftools/datasets/F1_sample_sheet.csv,sha256=9PodIIOXK2eamYPbC6DGnXdzgi9bRDovf296j1aM0ak,259
26
+ smftools/datasets/__init__.py,sha256=_G08ZAMlA9zpY5UjWTVlpAbW2YPS4PLCmz5g1pZdcCw,157
27
+ smftools/datasets/dCas9_m6A_invitro_kinetics.h5ad.gz,sha256=niOcVHaYY7h3XyvwSkN-V_NMBaRt2vTP5TrJO0CwMCs,8385050
28
+ smftools/datasets/datasets.py,sha256=-VOdONP-K_ftLDtLktRKbq3S6vSB4pzRQ6VYBxAy_4A,1074
29
+ smftools/hmm/HMM.py,sha256=_kYhqfmz46XBbx9Y12KF6dKp2XPcSHreZiQgavgx6h4,82437
30
+ smftools/hmm/__init__.py,sha256=vs-fjo-v9y8EwdoErK6KDBm-YzD_XmTtflsdTJlRgTg,746
31
+ smftools/hmm/call_hmm_peaks.py,sha256=CzTEz3EP_LNLirIVYzRxbV7_5fCBpLa9azLPSEt6s7s,13529
32
+ smftools/hmm/display_hmm.py,sha256=N94hmEKZGehPdsB9yLyY7U1_tTWDk2NTMU-PuWnEQqA,1321
33
+ smftools/hmm/hmm_readwrite.py,sha256=n-ok3wH1-anSn90vEA91jWKRbtq0bxM66hp2eYoWk34,687
34
+ smftools/hmm/nucleosome_hmm_refinement.py,sha256=lHB6XVJWhwN-jR1TjBOMIOBQ5soncAJbv3djbkyH1NU,6882
35
+ smftools/hmm/archived/apply_hmm_batched.py,sha256=W2-qx1XbcDJz4q38YCxb1eQn9h-hqAbFwDNK9SpGiw4,10684
36
+ smftools/hmm/archived/calculate_distances.py,sha256=MfBhXZNkjQvu9Y8LVMDpiQ4aS9uyfa4TUQbLGjQ1aM0,680
37
+ smftools/hmm/archived/call_hmm_peaks.py,sha256=6SklWXCn4H8LnlGvBncIsLhnf2gaNy8Qro_jxGJn7I0,5249
38
+ smftools/hmm/archived/train_hmm.py,sha256=sYF4RTEKPhE6MwK2eTAv4ghf-f7_33-FvhwUG6tegTU,2513
39
+ smftools/informatics/__init__.py,sha256=jxyzu37yR1lho4LP3WhQ6_Oez4f-un7vCqP80s8xR3g,2885
40
+ smftools/informatics/bam_functions.py,sha256=ErTV3ZrguIaGAqMnLnf-0QmfvvDRix0h_ehSRqKU2Ls,59008
41
+ smftools/informatics/basecalling.py,sha256=PgjWoOgfQaUOCoKpyaKO8m8sauMW3el6wdEtzGlvy4s,3699
42
+ smftools/informatics/bed_functions.py,sha256=9y3XNNl6QivqkWEfoH5XszP3Qsj0P-rCopgfd0HpFgs,21268
43
+ smftools/informatics/binarize_converted_base_identities.py,sha256=KRL-KT8MYADadHgRbTgoOFD30LlZazKHe10Hz9nO6Z4,7850
44
+ smftools/informatics/complement_base_list.py,sha256=6DInlD4cdjKJmmUv4Cp4UU9HHLe60Pm8RF9AoBfBfF0,571
45
+ smftools/informatics/converted_BAM_to_adata.py,sha256=YU7KBHgr0ulYZBv0I9PKI-p71JMZRvJbY9SlECWcQ3Q,25741
46
+ smftools/informatics/fasta_functions.py,sha256=MD-fL0BkExiDXMUSPkHaHrkOK7aqzOozWREGr5Gzw8w,14111
47
+ smftools/informatics/h5ad_functions.py,sha256=fX4CgO9ZSgYh9VbCmgGPXwNg5uolLJoNPcBZgzNwgMk,13167
48
+ smftools/informatics/modkit_extract_to_adata.py,sha256=wcat5i002BxBpSMPCLENDdu-cnH0K87p6NN1vFSbfc4,63551
49
+ smftools/informatics/modkit_functions.py,sha256=BvWd_qulVOQKZJFMd4pLTVD3ruo1dT48BmvQsdHB0_E,6103
50
+ smftools/informatics/ohe.py,sha256=fdMEdXG45hiCsHtmYkPsXJKLJ-SBaZktdGx-bmfI3a0,5997
51
+ smftools/informatics/pod5_functions.py,sha256=6_EA2StpslOe0phSwR9TDB_U-Tmx4ykuBcTAiOL0LPU,10327
52
+ smftools/informatics/run_multiqc.py,sha256=M67HhO5FIJl8qn3Qc9YUlnbk7kdDWyYVL0B9SenrqMo,1115
53
+ smftools/informatics/archived/bam_conversion.py,sha256=Gvy8X8AmCNYQEiwGjnmzs4YRMO3b5Cy6YDuVX8uLwJc,3366
54
+ smftools/informatics/archived/bam_direct.py,sha256=Dj0YGeQzPb2jdFdO6qW6gyTxgdfCHI_c-xpYUc2MARQ,3642
55
+ smftools/informatics/archived/basecall_pod5s.py,sha256=EAGHhKeCkFHybZmJrVR12kInnY5k0TXM__gLuplUOu4,3966
56
+ smftools/informatics/archived/basecalls_to_adata.py,sha256=sp9Lg8SVYMFzTmyL8AJNonzs77LUBgeyuCYEKUpX42k,3728
57
+ smftools/informatics/archived/conversion_smf.py,sha256=WizSqicLGNKXSKpy8BDhA0zau5Kp07zv4dZsasmbR-U,7213
58
+ smftools/informatics/archived/deaminase_smf.py,sha256=112-1F-xwR81uH713jDzdBXWmlZO0P10sCrFZrjgPCA,7256
59
+ smftools/informatics/archived/direct_smf.py,sha256=slFfojwKrZOOpiTXc52dSCmPATRkV754cmtdCbwWawY,7521
60
+ smftools/informatics/archived/fast5_to_pod5.py,sha256=5D1mcZ11WvQG0LFQAPzseaFxCkZOU4c3ShiIxexcda4,1434
61
+ smftools/informatics/archived/print_bam_query_seq.py,sha256=Dt0qfU6FU0qVoEBYhAd7C19Z_OexsD2YKx6aEIELcTk,1040
62
+ smftools/informatics/archived/subsample_fasta_from_bed.py,sha256=KsQ10HlsL86xhgqcSCCVTVyqzjGKaN78echFJNo_2t4,1669
63
+ smftools/informatics/archived/subsample_pod5.py,sha256=DLRUUBtvNRMkDc-ZHfvhXFFNbaUsdtmpr0Yxn8z5-fc,4737
64
+ smftools/informatics/archived/helpers/archived/__init__.py,sha256=U3l2rSkWBFXr_CH2l1tXSpizRoIxjVWpqS5zU2-xptE,2819
65
+ smftools/informatics/archived/helpers/archived/align_and_sort_BAM.py,sha256=62WEW3BvPQ1Dm1vhuO3_ADVSjO0Qe5fU8OJYX6UDFcM,5824
66
+ smftools/informatics/archived/helpers/archived/aligned_BAM_to_bed.py,sha256=I4RsezvaVxRWLkCM3n5ntGh5u0ixC8-0RW-2X4rbDGA,3427
67
+ smftools/informatics/archived/helpers/archived/bam_qc.py,sha256=r_NVoOnhDQp9sBOdLuqqSkR7rocSN0USOAcCfkBTtiQ,8482
68
+ smftools/informatics/archived/helpers/archived/bed_to_bigwig.py,sha256=gVTd542uxqzeb0qqR_MYdBHeVOvIrAdiEvQiDyrbv-g,3022
69
+ smftools/informatics/archived/helpers/archived/canoncall.py,sha256=0JC6rvUAkqqIafnA1tJmGr5lYO4-Epnlc88pur1CeFI,1777
70
+ smftools/informatics/archived/helpers/archived/concatenate_fastqs_to_bam.py,sha256=chc4yyrwuZVQewSDMFLHmphs6JovAIak4jvmGwUdQNQ,10237
71
+ smftools/informatics/archived/helpers/archived/converted_BAM_to_adata.py,sha256=EGhaftbGjhRLibTGKkQ9ngXYMcGnJfEOT2hZnH9ugLw,14627
72
+ smftools/informatics/archived/helpers/archived/count_aligned_reads.py,sha256=T3_KNtvf7CNL-Dr6JdnmfeJXf_0TTYHW80R7_0uFJSw,2212
73
+ smftools/informatics/archived/helpers/archived/demux_and_index_BAM.py,sha256=p9R4Imp6sSwGONkQnj3uespssIENQeW-3NzAFRYsWvg,2036
74
+ smftools/informatics/archived/helpers/archived/extract_base_identities.py,sha256=zrFXV2keqRxPJlpoRdT9Z4nrELb4ODUc2wx68OR57Ok,3079
75
+ smftools/informatics/archived/helpers/archived/extract_mods.py,sha256=6MMy-G_VNFwDSdzRoc-OJiCQ2FYyVejxUr6zZIpd-Dc,3931
76
+ smftools/informatics/archived/helpers/archived/extract_read_features_from_bam.py,sha256=F7f4hdA_6vMg9lCGVz49Sbo-eKAGpgfsm17nBVtSgTA,1527
77
+ smftools/informatics/archived/helpers/archived/extract_read_lengths_from_bed.py,sha256=pkk6PeNfAo1OHMMELF0MsIlL6E4tMO66czslVORaVzs,714
78
+ smftools/informatics/archived/helpers/archived/extract_readnames_from_BAM.py,sha256=3y2-u8dMoAdB2meycC7pTFQ_Mwesw9xnTtvfZtg9JPc,795
79
+ smftools/informatics/archived/helpers/archived/find_conversion_sites.py,sha256=VKqFabPqdwaXhVaRLbf7vOy9wAke-QYh2aZbYSlQuIA,2516
80
+ smftools/informatics/archived/helpers/archived/generate_converted_FASTA.py,sha256=n0eTfmMuInrfps_bZL4maCHznPEAjpEJzm6QMx719ZA,3855
81
+ smftools/informatics/archived/helpers/archived/get_chromosome_lengths.py,sha256=KWCu671FbaXNImI7bNB2PMYzuDinKxPzibM2tmoaVeM,1036
82
+ smftools/informatics/archived/helpers/archived/get_native_references.py,sha256=cEUIrVytDT2b8TikhYN0LD-lRhmLUR4fO2-rKDuEwyg,1017
83
+ smftools/informatics/archived/helpers/archived/index_fasta.py,sha256=yw4o_ZyB4_dOYk1eDcuQgW28PNpYzKo1Dtr57-3RFNc,815
84
+ smftools/informatics/archived/helpers/archived/informatics.py,sha256=oBwZYK5VyzcZq2dOe_bj26WeAiS3ETSQgoVCEwNYMhk,14608
85
+ smftools/informatics/archived/helpers/archived/load_adata.py,sha256=o81rKNBziO3tq70g4mA335Z3rkb47tag01dgGxTFYAw,33747
86
+ smftools/informatics/archived/helpers/archived/make_modbed.py,sha256=st9KCRQeqGz5cLQs3assW58Qixir38xCz57X3Z-X5jw,959
87
+ smftools/informatics/archived/helpers/archived/modQC.py,sha256=UvDEjWFtmNlnooJqpFpQxDdLJDKpL1vhTSeqfudc_f8,1087
88
+ smftools/informatics/archived/helpers/archived/modcall.py,sha256=8oq3yyaX4OUC0QpM3ulAqr3G83JYrkN_iBflYBuJNNg,1813
89
+ smftools/informatics/archived/helpers/archived/ohe_batching.py,sha256=3MiQ0jG4oBAGG_OXhyB4wK8nIYib-zP1ktCVBFzZrSQ,3011
90
+ smftools/informatics/archived/helpers/archived/ohe_layers_decode.py,sha256=b7qcPfQlVsdELxTpPgJKDP8ExHzZ2y78LkW1iNwNLwc,1078
91
+ smftools/informatics/archived/helpers/archived/one_hot_decode.py,sha256=P4Q3qQNJgpjZj90QIsXGrrGlWos4RCITvFA6a5ii4lQ,942
92
+ smftools/informatics/archived/helpers/archived/one_hot_encode.py,sha256=-XF7W300FDnIhHzpU9yInkkRqaDNcEqeGCSFl8WU2p4,2004
93
+ smftools/informatics/archived/helpers/archived/plot_bed_histograms.py,sha256=EGLGhE311_bqJjoUji-OC76YNq5ShmGoE-Jj2thpVT0,10066
94
+ smftools/informatics/archived/helpers/archived/separate_bam_by_bc.py,sha256=Bjgj0VsiX_yqWiUaZj8qyW4QF3CTXbsdSAzl03lVgT4,1836
95
+ smftools/informatics/archived/helpers/archived/split_and_index_BAM.py,sha256=X3ttYpnaMnf3jmbnOvFFmfzu25jIVcOwQ2mfsa5nijQ,1260
96
+ smftools/machine_learning/__init__.py,sha256=KsXx4KmwoBttbWjZbpgBXcslEKDJuGD2Xh9J4mBzln0,686
97
+ smftools/machine_learning/data/__init__.py,sha256=HHNNB0S-doKMW3L9Rtaz7PzNMsCYoBpacCWZfyEayVk,149
98
+ smftools/machine_learning/data/anndata_data_module.py,sha256=TkiTO-rngYGc3uXLIUNQxouuuqwcf6pl02nLB4KRW0c,11210
99
+ smftools/machine_learning/data/preprocessing.py,sha256=EWYWWp1HfVbEVZvClUcEB8BZWX97yzQcT59KyINOJlw,175
100
+ smftools/machine_learning/evaluation/__init__.py,sha256=7i2AWDMv3cSxAPRPGZKCXD9AJ9RMC7XxN9gVkaW7DLc,159
101
+ smftools/machine_learning/evaluation/eval_utils.py,sha256=ose14IPCkeiZvpbjogc1bOepkM7tagxwsAViT1N5r7I,1036
102
+ smftools/machine_learning/evaluation/evaluators.py,sha256=wbggnCWiViNRee_wNyJFooTxXOp1jPnZyoU8GY0ckKY,8625
103
+ smftools/machine_learning/inference/__init__.py,sha256=c-RGoMpW8B1PgHKAsVmgXuStBFUYQyhRpi-eB6zWb3M,209
104
+ smftools/machine_learning/inference/inference_utils.py,sha256=57_JcIVi8S3NAVqILi5rJ9abPWQp1-6x2Ll3mDu00CI,986
105
+ smftools/machine_learning/inference/lightning_inference.py,sha256=1axpyfnfJysWNpRoe6MiXpqxKUEifiASTSzv3kybKnA,2257
106
+ smftools/machine_learning/inference/sklearn_inference.py,sha256=vlI6nCxfCARTnHhJcUlQjEVbefCzZG7lbbM6CBepuvQ,1644
107
+ smftools/machine_learning/inference/sliding_window_inference.py,sha256=x0d4134iR6Mr2FdZlyrObM95fy2XM0vpLUMQvtExlPE,4465
108
+ smftools/machine_learning/models/__init__.py,sha256=oZCTXLpeqMhTaGAmZhYi91F148UYkS_ghvJnh80yjUA,479
109
+ smftools/machine_learning/models/base.py,sha256=WM47fmiYmIazo5yvphAka8r-3eb8XOs7fVjoiOj97ng,9547
110
+ smftools/machine_learning/models/cnn.py,sha256=KnwjrtEtblwxq3tDhXKL_VVeDhwBsaUBn1zxaGBAE5U,4585
111
+ smftools/machine_learning/models/lightning_base.py,sha256=hdFgRUj-r2bkb_zjYeAEryGrGbAAOQqypeSg7jJlY8o,14503
112
+ smftools/machine_learning/models/mlp.py,sha256=AfcL8tDPKhFATNwEbI8XDXz7OpFvtJViXEPjUUNMNso,994
113
+ smftools/machine_learning/models/positional.py,sha256=8EpNWWEpozN7XeU9GpV2wgNOGt2T7UQGE5Yr0SmrqXM,791
114
+ smftools/machine_learning/models/rnn.py,sha256=Ss1hfOIW-Ppctllu_10Fu0HH1w9jc93mCgU04xPqB0g,832
115
+ smftools/machine_learning/models/sklearn_models.py,sha256=8jm5C0dtGOwp-joVCcgRCFzZHgY4bX2F8VML3SqKyiU,10831
116
+ smftools/machine_learning/models/transformer.py,sha256=Xjmwno1RjPEuEemo5NKkvatjd9q0g-RKjwYI7ptLf00,10968
117
+ smftools/machine_learning/models/wrappers.py,sha256=71ppq58Kyss_i2yIHhj5vA0SsfNc8oCtH8LzuYofVlo,829
118
+ smftools/machine_learning/training/__init__.py,sha256=t1UjYKGngmgMcUCaVLDlL5QVyIILIkKSuqJQoeXpM0w,222
119
+ smftools/machine_learning/training/train_lightning_model.py,sha256=POq6Qds-Y1m3IRxBkvMcQBNYT0N156laqW5nVBBMpKo,4538
120
+ smftools/machine_learning/training/train_sklearn_model.py,sha256=zQ5SQpu_sl7IVcZ0yaelzN4WJLJjbo-DEGXsvRyOeUw,3147
121
+ smftools/machine_learning/utils/__init__.py,sha256=aiCNpHD08ENEBtz8jzDfVZ8cB7ef9uOE7YaOPDkQUYg,99
122
+ smftools/machine_learning/utils/device.py,sha256=2D5TF6DQIZKTcyNqIcJ7UMFeiWS_kCAvZUBK6XngCXk,432
123
+ smftools/machine_learning/utils/grl.py,sha256=ptr-08dRKAGBZ1cySy_B90GgMn5kXtNXlcUC4PJ5mNA,485
124
+ smftools/plotting/__init__.py,sha256=JrfnlocBQdW2QeP207PDUcx_4DMiOPLszxZBBml9POw,1478
125
+ smftools/plotting/autocorrelation_plotting.py,sha256=gc3iyGgFEvMcyHXE2K8S956Nx6IfduglOOeJj3te8nU,30590
126
+ smftools/plotting/classifiers.py,sha256=9Qt0eixvgE3WXl6jcwPm7O3ATA7Q6mfqRh_B_9M2qTQ,16749
127
+ smftools/plotting/general_plotting.py,sha256=ShN8R0yauo-Br_IDy3ZlM5VR3wuetFaEtLxK5r6Nn8A,69455
128
+ smftools/plotting/hmm_plotting.py,sha256=wPROxP-IJj-lY1I70s5YYy-H-XFfbcVol8PS2aw7srQ,11644
129
+ smftools/plotting/position_stats.py,sha256=yxZx0Hjx4MsKINe9kkq-R7TkjODBGaDrbH9y0mrrTWs,19351
130
+ smftools/plotting/qc_plotting.py,sha256=ODK8UrjVrAJeG8Qfu09DmAJ_o9GJaXRxGwN0pEgbHAU,10358
131
+ smftools/preprocessing/__init__.py,sha256=l_oNlEOjrzoAZbTa66y9prIkEPbGcH4F1J2MyyMmesE,1855
132
+ smftools/preprocessing/append_base_context.py,sha256=Z18Izb9-gZ4_ifXOHFZqcmPOradjCiyJZMZ5oTDfiLQ,7102
133
+ smftools/preprocessing/append_binary_layer_by_base_context.py,sha256=7mFG7xjAPgm_60AcdCnnjJZK5gJe4VuLohopkrAHmvQ,7640
134
+ smftools/preprocessing/binarize.py,sha256=eDFLybKKIF2wcrtN3JWVjeGXSUayezxLhX76UllAhVc,888
135
+ smftools/preprocessing/binarize_on_Youden.py,sha256=JTHosTDy9-gJ0bPrHkGnz_Ao_AeE8IiutqFA6MksdM8,4887
136
+ smftools/preprocessing/binary_layers_to_ohe.py,sha256=nYvAefdIKGj-JyNtBqHcekJKI4BI2CM9pN-Mq1BT-28,1931
137
+ smftools/preprocessing/calculate_complexity_II.py,sha256=iVh5BcLCPOndVeN4A7Gw74pMBa83UQuxtV5o_sVFUNs,10367
138
+ smftools/preprocessing/calculate_consensus.py,sha256=1_-ldkwQ3JT5Rns9thIfV-HJbSKFW2b1Auida96lhGE,2377
139
+ smftools/preprocessing/calculate_coverage.py,sha256=HZ8rtEmb-z6XCr-EvMfl4rc_9nbTJRztyEk8xUg7feE,2777
140
+ smftools/preprocessing/calculate_pairwise_differences.py,sha256=BRht5E8BtmJp_mxUSH5WfguhXaYV1zdPXZQLL1Wu6lI,1799
141
+ smftools/preprocessing/calculate_pairwise_hamming_distances.py,sha256=86MioHtN6mpH04bj-3UNv2Vistglt8I0ZMALKNEAq7g,999
142
+ smftools/preprocessing/calculate_position_Youden.py,sha256=HKnQAZvff1i8FVSxLkhcGwR2kmAq63izsOBGdCd3ws8,9146
143
+ smftools/preprocessing/calculate_read_length_stats.py,sha256=y2R5lU6ObRBCAhSHKLEZYpgm88woPd9d15NWVthIi_A,4790
144
+ smftools/preprocessing/calculate_read_modification_stats.py,sha256=L1X0LatpjPI5wA1j7MjFgukePYGo75DcgJCYPlhVAGM,5319
145
+ smftools/preprocessing/clean_NaN.py,sha256=hrPhbKfqDpSiXLXXJxvcmtwqFhOecJVC29Z7PMIxi5I,2163
146
+ smftools/preprocessing/filter_adata_by_nan_proportion.py,sha256=5V1PNJISYm92QtEGmS9XSqx456Ult8RY8LMBclNylno,1490
147
+ smftools/preprocessing/filter_reads_on_length_quality_mapping.py,sha256=83G8ovetiAmh8EbikqAUhNnzaX_KnWe0rZ7vfrgeye4,8018
148
+ smftools/preprocessing/filter_reads_on_modification_thresholds.py,sha256=yxYZB9Ran1ZxuZm9iHi5bpLo6xcro5zKyv9rnYUtT6g,21688
149
+ smftools/preprocessing/flag_duplicate_reads.py,sha256=7MooUKnUULJY6IiCNO7P0idE7_6X0usMtX7F9us8n4U,75420
150
+ smftools/preprocessing/invert_adata.py,sha256=-aiidr_PXSf8IIpC4PMRm2RlLAWi-dtZDpr0iSOY-PY,1367
151
+ smftools/preprocessing/load_sample_sheet.py,sha256=rzY76rCYVf3idu2ZRw4pEjVRBB5AyUkSYY-UzpmE_aw,2193
152
+ smftools/preprocessing/make_dirs.py,sha256=SjeiXoWsy_SldM-RoQbpfo2mXdnP78xhHVHywTD7IZI,662
153
+ smftools/preprocessing/min_non_diagonal.py,sha256=2sOWl7zKWltNmv-Jv-ZXb099dYBX28suAOE6DUlUO-U,749
154
+ smftools/preprocessing/recipes.py,sha256=2IcPTSaiZb5_heWPxFsp5t6wqrCT-66zSQN6TI8S6jI,7169
155
+ smftools/preprocessing/reindex_references_adata.py,sha256=9d7Lm1za0wztSaUVAMzbhVn-TCHeJXNLoLx3F6FNNJQ,3658
156
+ smftools/preprocessing/subsample_adata.py,sha256=G9tCpDw5mZ-W4oKgjZr_kXy9CGnnzVmchtQ8WLQYSc8,2525
157
+ smftools/preprocessing/archived/add_read_length_and_mapping_qc.py,sha256=OPLoxI17sg5revcaZ50KbPgLGO6ZCaGjychSHwQyd9U,5736
158
+ smftools/preprocessing/archived/calculate_complexity.py,sha256=fnaudGVLZPE-1dissVw3l5CAj5zUyOYzjU8Xb81DLL4,3456
159
+ smftools/preprocessing/archived/mark_duplicates.py,sha256=Acj27Xc8ht8e1HYZFgq57z7yLZi-IUAxHqqg8xRuZeE,8783
160
+ smftools/preprocessing/archived/preprocessing.py,sha256=l0Im9O45kaMYxipyFiPFBA8M7NLiOxWuONf8igmHaPc,34567
161
+ smftools/preprocessing/archived/remove_duplicates.py,sha256=W1Y2ufD2nE9Tnx3NXpEPxso08tiV50iRy77_X3RZkyQ,735
162
+ smftools/schema/__init__.py,sha256=0chkz2Zc3UKSJO4m0MUemfs-WjGUSSghiuuFM28UvsY,293
163
+ smftools/schema/anndata_schema_v1.yaml,sha256=uNFTrsTLNoE3kgJgrcg-hM6iYtDRsu6SHwWCkbcgIuk,7746
164
+ smftools/tools/__init__.py,sha256=MqvwhrFQsTvoSpbJ4HIzV9LWwNLef0RXe9iI3VZReMI,976
165
+ smftools/tools/calculate_umap.py,sha256=oj4EJP4M3cZ50T0bYNVAfZAssEG9ZxKmNgjgKmqxf-g,3594
166
+ smftools/tools/cluster_adata_on_methylation.py,sha256=NsU11zFyBB_TZFdVZxjqeSZsiVZgb8iCXaOBY54FA9U,7684
167
+ smftools/tools/general_tools.py,sha256=XO8em-clV4onfbYEH6JTfNj3svLQnwBZ1Tja7s8qsXg,3260
168
+ smftools/tools/position_stats.py,sha256=FiFidt3b5cdEMylFoPPrCZbLAXQHsehxFFcTaHvTtt4,27425
169
+ smftools/tools/read_stats.py,sha256=8rV2BXymdPuPihh0Ev-HqPT40lobyt5WExoYjbmrbcI,6534
170
+ smftools/tools/spatial_autocorrelation.py,sha256=euunec6Mmkm5iBDN7TM4q4NXLl9n8UP77-6GSGYCVOk,25473
171
+ smftools/tools/subset_adata.py,sha256=6xPf6hyKcYwg4L2n0iCnz-Pl84fS4jLgxmD47J-OEco,1012
172
+ smftools/tools/archived/apply_hmm.py,sha256=b1DKT_02weiPgkfQ0_Zfk7wN8FRZAMeYvBe74H3QuDU,9357
173
+ smftools/tools/archived/classifiers.py,sha256=iKkK9UyEwEdNwLx-t_r52CURkP3iZ-pFwmQtXF_lnLY,42191
174
+ smftools/tools/archived/classify_methylated_features.py,sha256=uXWXl4t9cP4inRiSvL4MxGbwC2MxT5uT-D1FFdex8oE,2933
175
+ smftools/tools/archived/classify_non_methylated_features.py,sha256=vhfLbR5fqALps5HXxQ91x3lUTGLcfciaEsQkSFeLOgM,3292
176
+ smftools/tools/archived/subset_adata_v1.py,sha256=CBTbHolOil7m4eR0bwIzxS7ZPvo3hmDsPVZGUBzWYrs,1361
177
+ smftools/tools/archived/subset_adata_v2.py,sha256=npic7cuFIOeUiyRjATVrP4A0O7cV0EgHvRXi9aMMOcI,2311
178
+ smftools-0.3.0.dist-info/METADATA,sha256=JuAG9ifECVbhIjC2lKmIqgzosM1Ao2naUcmGh7zgpHk,7840
179
+ smftools-0.3.0.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
180
+ smftools-0.3.0.dist-info/entry_points.txt,sha256=q4hg4w-mKkI2leekM_-YZc5XRJzp96Mh1FcU3hac82g,52
181
+ smftools-0.3.0.dist-info/licenses/LICENSE,sha256=F8LwmL6vMPddaCt1z1S83Kh_OZv50alTlY7BvVx1RXw,1066
182
+ smftools-0.3.0.dist-info/RECORD,,
@@ -1,141 +0,0 @@
1
- Metadata-Version: 2.3
2
- Name: smftools
3
- Version: 0.2.4
4
- Summary: Single Molecule Footprinting Analysis in Python.
5
- Project-URL: Source, https://github.com/jkmckenna/smftools
6
- Project-URL: Documentation, https://smftools.readthedocs.io/
7
- Author: Joseph McKenna
8
- Maintainer-email: Joseph McKenna <jkmckenna@berkeley.edu>
9
- License: MIT License
10
-
11
- Copyright (c) 2024 jkmckenna
12
-
13
- Permission is hereby granted, free of charge, to any person obtaining a copy
14
- of this software and associated documentation files (the "Software"), to deal
15
- in the Software without restriction, including without limitation the rights
16
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
17
- copies of the Software, and to permit persons to whom the Software is
18
- furnished to do so, subject to the following conditions:
19
-
20
- The above copyright notice and this permission notice shall be included in all
21
- copies or substantial portions of the Software.
22
-
23
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
24
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
25
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
26
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
27
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
28
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29
- SOFTWARE.
30
- License-File: LICENSE
31
- Keywords: anndata,chromatin-accessibility,machine-learning,nanopore,protein-dna-binding,single-locus,single-molecule-footprinting
32
- Classifier: Development Status :: 2 - Pre-Alpha
33
- Classifier: Environment :: Console
34
- Classifier: Intended Audience :: Developers
35
- Classifier: Intended Audience :: Science/Research
36
- Classifier: License :: OSI Approved :: MIT License
37
- Classifier: Natural Language :: English
38
- Classifier: Operating System :: MacOS :: MacOS X
39
- Classifier: Programming Language :: Python :: 3
40
- Classifier: Programming Language :: Python :: 3.9
41
- Classifier: Programming Language :: Python :: 3.10
42
- Classifier: Programming Language :: Python :: 3.11
43
- Classifier: Programming Language :: Python :: 3.12
44
- Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
45
- Classifier: Topic :: Scientific/Engineering :: Visualization
46
- Requires-Python: <3.13,>=3.9
47
- Requires-Dist: anndata>=0.10.0
48
- Requires-Dist: biopython>=1.79
49
- Requires-Dist: captum
50
- Requires-Dist: click
51
- Requires-Dist: fastcluster
52
- Requires-Dist: hydra-core
53
- Requires-Dist: igraph
54
- Requires-Dist: leidenalg
55
- Requires-Dist: lightning
56
- Requires-Dist: multiqc
57
- Requires-Dist: networkx>=3.2
58
- Requires-Dist: numpy<2,>=1.22.0
59
- Requires-Dist: omegaconf
60
- Requires-Dist: pandas>=1.4.2
61
- Requires-Dist: pod5>=0.1.21
62
- Requires-Dist: pybedtools>=0.12.0
63
- Requires-Dist: pybigwig>=0.3.24
64
- Requires-Dist: pyfaidx>=0.8.0
65
- Requires-Dist: pysam>=0.19.1
66
- Requires-Dist: scanpy>=1.9
67
- Requires-Dist: scikit-learn>=1.0.2
68
- Requires-Dist: scipy>=1.7.3
69
- Requires-Dist: seaborn>=0.11
70
- Requires-Dist: shap
71
- Requires-Dist: torch>=1.9.0
72
- Requires-Dist: tqdm
73
- Requires-Dist: upsetplot
74
- Requires-Dist: wandb
75
- Provides-Extra: docs
76
- Requires-Dist: ipython>=7.20; extra == 'docs'
77
- Requires-Dist: matplotlib!=3.6.1; extra == 'docs'
78
- Requires-Dist: myst-nb>=1; extra == 'docs'
79
- Requires-Dist: myst-parser>=2; extra == 'docs'
80
- Requires-Dist: nbsphinx>=0.9; extra == 'docs'
81
- Requires-Dist: readthedocs-sphinx-search; extra == 'docs'
82
- Requires-Dist: setuptools; extra == 'docs'
83
- Requires-Dist: sphinx-autodoc-typehints>=1.25.2; extra == 'docs'
84
- Requires-Dist: sphinx-book-theme>=1.1.0; extra == 'docs'
85
- Requires-Dist: sphinx-copybutton; extra == 'docs'
86
- Requires-Dist: sphinx-design; extra == 'docs'
87
- Requires-Dist: sphinx>=7; extra == 'docs'
88
- Requires-Dist: sphinxcontrib-bibtex; extra == 'docs'
89
- Requires-Dist: sphinxext-opengraph; extra == 'docs'
90
- Provides-Extra: tests
91
- Requires-Dist: pytest; extra == 'tests'
92
- Requires-Dist: pytest-cov; extra == 'tests'
93
- Description-Content-Type: text/markdown
94
-
95
- [![PyPI](https://img.shields.io/pypi/v/smftools.svg)](https://pypi.org/project/smftools)
96
- [![Docs](https://readthedocs.org/projects/smftools/badge/?version=latest)](https://smftools.readthedocs.io/en/latest/?badge=latest)
97
-
98
- # smftools
99
- A Python tool for processing raw sequencing data derived from single molecule footprinting experiments into [anndata](https://anndata.readthedocs.io/en/latest/) objects. Additional functionality for preprocessing, spatial analyses, and HMM based feature annotation.
100
-
101
- ## Philosophy
102
- While genomic data structures (SAM/BAM) were built to handle low-coverage data (<1000X) along large references, smftools prioritizes high-coverage data (scalable to >1,000,000X coverage) of a few genomic loci at a time. This enables efficient data storage, rapid data operations, hierarchical metadata handling, seamless integration with various machine-learning packages, and ease of visualization. Furthermore, functionality is modularized, enabling analysis sessions to be saved, reloaded, and easily shared with collaborators. Analyses are centered around the [anndata](https://anndata.readthedocs.io/en/latest/) object, and are heavily inspired by the work conducted within the single-cell genomics community.
103
-
104
- ## Dependencies
105
- The following CLI tools need to be installed and configured before using the informatics (smftools.inform) module of smftools:
106
- 1) [Dorado](https://github.com/nanoporetech/dorado) -> Basecalling, alignment, demultiplexing.
107
- 2) [Minimap2](https://github.com/lh3/minimap2) -> Alignment if not using dorado.
108
- 3) [Modkit](https://github.com/nanoporetech/modkit) -> Extracting read level methylation metrics from modified BAM files. Only required for direct modification detection (ie methylation).
109
-
110
- ## Main Commands
111
- ### smftools load: Processes raw Nanopore/Illumina data from SMF experiments into an AnnData object.
112
- ![](docs/source/_static/smftools_informatics_diagram.png)
113
- ### smftools preprocess: Appends QC metrics to the AnnData object and performs filtering.
114
- ![](docs/source/_static/smftools_preprocessing_diagram.png)
115
- ### smftools spatial: Appends spatial analyses to the AnnData object.
116
- - Currently Includes: Position X Position correlation matrices, clustering, dimensionality reduction, spatial autocorrelation.
117
- ### smftools hmm: Fits a basic HMM to each sample and appends HMM feature layers
118
- - Main outputs wills be stored in adata.layers
119
- ### smftools batch <command>: Performs batch processing on a csv of config file pathes for any of the above commands.
120
- - Nice when analyzing multiple experiments
121
- ### smftools concatenate: Concatenates a list or directory of anndata objects.
122
- - Mainly used for combining multiple experiments into a single anndata object.
123
-
124
- ## Announcements
125
-
126
- ### 12/02/25 - Version 0.2.3 is available through PyPI
127
- Version 0.2.3 provides the core smftools functionality through several command line commands (load, preprocess, spatial, hmm).
128
-
129
- ### 11/05/25 - Version 0.2.1 is available through PyPI
130
- Version 0.2.1 makes the core workflow (smftools load) a command line tool that takes in an experiment_config.csv file for input/output and parameter management.
131
-
132
- ### 05/29/25 - Version 0.1.6 is available through PyPI.
133
- Informatics, preprocessing, tools, plotting modules have core functionality that is approaching stability on MacOS(Intel/Silicon) and Linux(Ubuntu). I will work on improving documentation/tutorials shortly. The base PyTorch/Scikit-Learn ML-infrastructure is going through some organizational changes to work with PyTorch Lightning, Hydra, and WanDB to facilitate organizational scaling, multi-device usage, and logging.
134
-
135
- ### 10/01/24 - More recent versions are being updated frequently. Installation from source over PyPI is recommended!
136
-
137
- ### 09/09/24 - The version 0.1.1 package ([smftools-0.1.1](https://pypi.org/project/smftools/)) is installable through pypi!
138
- The informatics module has been bumped to alpha-phase status. This module can deal with POD5s and unaligned BAMS from nanopore conversion and direct SMF experiments, as well as FASTQs from Illumina conversion SMF experiments. Primary output from this module is an AnnData object containing all relevant SMF data, which is compatible with all downstream smftools modules. The other modules are still in pre-alpha phase. Preprocessing, Tools, and Plotting modules should be promoted to alpha-phase within the next month or so.
139
-
140
- ### 08/30/24 - The version 0.1.0 package ([smftools-0.1.0](https://pypi.org/project/smftools/)) is installable through pypi!
141
- Currently, this package (smftools-0.1.0) is going through rapid improvement (dependency handling accross Linux and Mac OS, testing, documentation, debugging) and is still too early in development for widespread use. The underlying functionality was originally developed as a collection of scripts for single molecule footprinting (SMF) experiments in our lab, but is being packaged/developed to facilitate the expansion of SMF to any lab that is interested in performing these styles of experiments/analyses. The alpha-phase package is expected to be available within a couple months, so stay tuned!