smftools 0.2.1__py3-none-any.whl → 0.2.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- smftools/__init__.py +2 -6
- smftools/_version.py +1 -1
- smftools/cli/__init__.py +0 -0
- smftools/cli/cli_flows.py +94 -0
- smftools/cli/hmm_adata.py +338 -0
- smftools/cli/load_adata.py +577 -0
- smftools/cli/preprocess_adata.py +363 -0
- smftools/cli/spatial_adata.py +564 -0
- smftools/cli_entry.py +435 -0
- smftools/config/conversion.yaml +11 -6
- smftools/config/deaminase.yaml +12 -7
- smftools/config/default.yaml +36 -25
- smftools/config/direct.yaml +25 -1
- smftools/config/discover_input_files.py +115 -0
- smftools/config/experiment_config.py +109 -12
- smftools/informatics/__init__.py +13 -7
- smftools/informatics/archived/fast5_to_pod5.py +43 -0
- smftools/informatics/archived/helpers/archived/__init__.py +71 -0
- smftools/informatics/archived/helpers/archived/align_and_sort_BAM.py +126 -0
- smftools/informatics/{helpers → archived/helpers/archived}/aligned_BAM_to_bed.py +6 -4
- smftools/informatics/archived/helpers/archived/bam_qc.py +213 -0
- smftools/informatics/archived/helpers/archived/bed_to_bigwig.py +90 -0
- smftools/informatics/archived/helpers/archived/concatenate_fastqs_to_bam.py +259 -0
- smftools/informatics/{helpers → archived/helpers/archived}/count_aligned_reads.py +2 -2
- smftools/informatics/{helpers → archived/helpers/archived}/demux_and_index_BAM.py +8 -10
- smftools/informatics/{helpers → archived/helpers/archived}/extract_base_identities.py +1 -1
- smftools/informatics/{helpers → archived/helpers/archived}/extract_mods.py +15 -13
- smftools/informatics/{helpers → archived/helpers/archived}/generate_converted_FASTA.py +2 -0
- smftools/informatics/{helpers → archived/helpers/archived}/get_chromosome_lengths.py +9 -8
- smftools/informatics/archived/helpers/archived/index_fasta.py +24 -0
- smftools/informatics/{helpers → archived/helpers/archived}/make_modbed.py +1 -2
- smftools/informatics/{helpers → archived/helpers/archived}/modQC.py +2 -2
- smftools/informatics/{helpers → archived/helpers/archived}/plot_bed_histograms.py +0 -19
- smftools/informatics/{helpers → archived/helpers/archived}/separate_bam_by_bc.py +6 -5
- smftools/informatics/{helpers → archived/helpers/archived}/split_and_index_BAM.py +7 -7
- smftools/informatics/archived/subsample_fasta_from_bed.py +49 -0
- smftools/informatics/bam_functions.py +812 -0
- smftools/informatics/basecalling.py +67 -0
- smftools/informatics/bed_functions.py +366 -0
- smftools/informatics/{helpers/converted_BAM_to_adata_II.py → converted_BAM_to_adata.py} +42 -30
- smftools/informatics/fasta_functions.py +255 -0
- smftools/informatics/h5ad_functions.py +197 -0
- smftools/informatics/{helpers/modkit_extract_to_adata.py → modkit_extract_to_adata.py} +142 -59
- smftools/informatics/modkit_functions.py +129 -0
- smftools/informatics/ohe.py +160 -0
- smftools/informatics/pod5_functions.py +224 -0
- smftools/informatics/{helpers/run_multiqc.py → run_multiqc.py} +5 -2
- smftools/plotting/autocorrelation_plotting.py +1 -3
- smftools/plotting/general_plotting.py +1037 -362
- smftools/preprocessing/__init__.py +2 -0
- smftools/preprocessing/append_base_context.py +3 -3
- smftools/preprocessing/append_binary_layer_by_base_context.py +4 -4
- smftools/preprocessing/binarize.py +17 -0
- smftools/preprocessing/binarize_on_Youden.py +2 -2
- smftools/preprocessing/calculate_position_Youden.py +1 -1
- smftools/preprocessing/calculate_read_modification_stats.py +1 -1
- smftools/preprocessing/filter_reads_on_modification_thresholds.py +19 -19
- smftools/preprocessing/flag_duplicate_reads.py +1 -1
- smftools/readwrite.py +266 -140
- {smftools-0.2.1.dist-info → smftools-0.2.3.dist-info}/METADATA +10 -9
- {smftools-0.2.1.dist-info → smftools-0.2.3.dist-info}/RECORD +82 -70
- smftools-0.2.3.dist-info/entry_points.txt +2 -0
- smftools/cli.py +0 -184
- smftools/informatics/fast5_to_pod5.py +0 -24
- smftools/informatics/helpers/__init__.py +0 -73
- smftools/informatics/helpers/align_and_sort_BAM.py +0 -86
- smftools/informatics/helpers/bam_qc.py +0 -66
- smftools/informatics/helpers/bed_to_bigwig.py +0 -39
- smftools/informatics/helpers/concatenate_fastqs_to_bam.py +0 -378
- smftools/informatics/helpers/discover_input_files.py +0 -100
- smftools/informatics/helpers/index_fasta.py +0 -12
- smftools/informatics/helpers/make_dirs.py +0 -21
- smftools/informatics/readwrite.py +0 -106
- smftools/informatics/subsample_fasta_from_bed.py +0 -47
- smftools/load_adata.py +0 -1346
- smftools-0.2.1.dist-info/entry_points.txt +0 -2
- /smftools/informatics/{basecall_pod5s.py → archived/basecall_pod5s.py} +0 -0
- /smftools/informatics/{helpers → archived/helpers/archived}/canoncall.py +0 -0
- /smftools/informatics/{helpers → archived/helpers/archived}/converted_BAM_to_adata.py +0 -0
- /smftools/informatics/{helpers → archived/helpers/archived}/extract_read_features_from_bam.py +0 -0
- /smftools/informatics/{helpers → archived/helpers/archived}/extract_read_lengths_from_bed.py +0 -0
- /smftools/informatics/{helpers → archived/helpers/archived}/extract_readnames_from_BAM.py +0 -0
- /smftools/informatics/{helpers → archived/helpers/archived}/find_conversion_sites.py +0 -0
- /smftools/informatics/{helpers → archived/helpers/archived}/get_native_references.py +0 -0
- /smftools/informatics/{helpers → archived/helpers}/archived/informatics.py +0 -0
- /smftools/informatics/{helpers → archived/helpers}/archived/load_adata.py +0 -0
- /smftools/informatics/{helpers → archived/helpers/archived}/modcall.py +0 -0
- /smftools/informatics/{helpers → archived/helpers/archived}/ohe_batching.py +0 -0
- /smftools/informatics/{helpers → archived/helpers/archived}/ohe_layers_decode.py +0 -0
- /smftools/informatics/{helpers → archived/helpers/archived}/one_hot_decode.py +0 -0
- /smftools/informatics/{helpers → archived/helpers/archived}/one_hot_encode.py +0 -0
- /smftools/informatics/{subsample_pod5.py → archived/subsample_pod5.py} +0 -0
- /smftools/informatics/{helpers/binarize_converted_base_identities.py → binarize_converted_base_identities.py} +0 -0
- /smftools/informatics/{helpers/complement_base_list.py → complement_base_list.py} +0 -0
- {smftools-0.2.1.dist-info → smftools-0.2.3.dist-info}/WHEEL +0 -0
- {smftools-0.2.1.dist-info → smftools-0.2.3.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,6 +1,40 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
import numpy as np
|
|
2
4
|
import seaborn as sns
|
|
3
5
|
import matplotlib.pyplot as plt
|
|
6
|
+
import scipy.cluster.hierarchy as sch
|
|
7
|
+
import matplotlib.gridspec as gridspec
|
|
8
|
+
import os
|
|
9
|
+
import math
|
|
10
|
+
import pandas as pd
|
|
11
|
+
|
|
12
|
+
from typing import Optional, Mapping, Sequence, Any, Dict, List
|
|
13
|
+
from pathlib import Path
|
|
14
|
+
|
|
15
|
+
def normalized_mean(matrix: np.ndarray) -> np.ndarray:
|
|
16
|
+
mean = np.nanmean(matrix, axis=0)
|
|
17
|
+
denom = (mean.max() - mean.min()) + 1e-9
|
|
18
|
+
return (mean - mean.min()) / denom
|
|
19
|
+
|
|
20
|
+
def methylation_fraction(matrix: np.ndarray) -> np.ndarray:
|
|
21
|
+
"""
|
|
22
|
+
Fraction methylated per column.
|
|
23
|
+
Methylated = 1
|
|
24
|
+
Valid = finite AND not 0
|
|
25
|
+
"""
|
|
26
|
+
matrix = np.asarray(matrix)
|
|
27
|
+
valid_mask = np.isfinite(matrix) & (matrix != 0)
|
|
28
|
+
methyl_mask = (matrix == 1) & np.isfinite(matrix)
|
|
29
|
+
|
|
30
|
+
methylated = methyl_mask.sum(axis=0)
|
|
31
|
+
valid = valid_mask.sum(axis=0)
|
|
32
|
+
|
|
33
|
+
return np.divide(
|
|
34
|
+
methylated, valid,
|
|
35
|
+
out=np.zeros_like(methylated, dtype=float),
|
|
36
|
+
where=valid != 0
|
|
37
|
+
)
|
|
4
38
|
|
|
5
39
|
def clean_barplot(ax, mean_values, title):
|
|
6
40
|
x = np.arange(len(mean_values))
|
|
@@ -17,438 +51,1079 @@ def clean_barplot(ax, mean_values, title):
|
|
|
17
51
|
|
|
18
52
|
ax.tick_params(axis='x', which='both', bottom=False, top=False, labelbottom=False)
|
|
19
53
|
|
|
54
|
+
# def combined_hmm_raw_clustermap(
|
|
55
|
+
# adata,
|
|
56
|
+
# sample_col='Sample_Names',
|
|
57
|
+
# reference_col='Reference_strand',
|
|
58
|
+
# hmm_feature_layer="hmm_combined",
|
|
59
|
+
# layer_gpc="nan0_0minus1",
|
|
60
|
+
# layer_cpg="nan0_0minus1",
|
|
61
|
+
# layer_any_c="nan0_0minus1",
|
|
62
|
+
# cmap_hmm="tab10",
|
|
63
|
+
# cmap_gpc="coolwarm",
|
|
64
|
+
# cmap_cpg="viridis",
|
|
65
|
+
# cmap_any_c='coolwarm',
|
|
66
|
+
# min_quality=20,
|
|
67
|
+
# min_length=200,
|
|
68
|
+
# min_mapped_length_to_reference_length_ratio=0.8,
|
|
69
|
+
# min_position_valid_fraction=0.5,
|
|
70
|
+
# sample_mapping=None,
|
|
71
|
+
# save_path=None,
|
|
72
|
+
# normalize_hmm=False,
|
|
73
|
+
# sort_by="gpc", # options: 'gpc', 'cpg', 'gpc_cpg', 'none', or 'obs:<column>'
|
|
74
|
+
# bins=None,
|
|
75
|
+
# deaminase=False,
|
|
76
|
+
# min_signal=0
|
|
77
|
+
# ):
|
|
78
|
+
|
|
79
|
+
# results = []
|
|
80
|
+
# if deaminase:
|
|
81
|
+
# signal_type = 'deamination'
|
|
82
|
+
# else:
|
|
83
|
+
# signal_type = 'methylation'
|
|
84
|
+
|
|
85
|
+
# for ref in adata.obs[reference_col].cat.categories:
|
|
86
|
+
# for sample in adata.obs[sample_col].cat.categories:
|
|
87
|
+
# try:
|
|
88
|
+
# subset = adata[
|
|
89
|
+
# (adata.obs[reference_col] == ref) &
|
|
90
|
+
# (adata.obs[sample_col] == sample) &
|
|
91
|
+
# (adata.obs['read_quality'] >= min_quality) &
|
|
92
|
+
# (adata.obs['read_length'] >= min_length) &
|
|
93
|
+
# (adata.obs['mapped_length_to_reference_length_ratio'] > min_mapped_length_to_reference_length_ratio)
|
|
94
|
+
# ]
|
|
95
|
+
|
|
96
|
+
# mask = subset.var[f"{ref}_valid_fraction"].astype(float) > float(min_position_valid_fraction)
|
|
97
|
+
# subset = subset[:, mask]
|
|
98
|
+
|
|
99
|
+
# if subset.shape[0] == 0:
|
|
100
|
+
# print(f" No reads left after filtering for {sample} - {ref}")
|
|
101
|
+
# continue
|
|
102
|
+
|
|
103
|
+
# if bins:
|
|
104
|
+
# print(f"Using defined bins to subset clustermap for {sample} - {ref}")
|
|
105
|
+
# bins_temp = bins
|
|
106
|
+
# else:
|
|
107
|
+
# print(f"Using all reads for clustermap for {sample} - {ref}")
|
|
108
|
+
# bins_temp = {"All": (subset.obs['Reference_strand'] == ref)}
|
|
109
|
+
|
|
110
|
+
# # Get column positions (not var_names!) of site masks
|
|
111
|
+
# gpc_sites = np.where(subset.var[f"{ref}_GpC_site"].values)[0]
|
|
112
|
+
# cpg_sites = np.where(subset.var[f"{ref}_CpG_site"].values)[0]
|
|
113
|
+
# any_c_sites = np.where(subset.var[f"{ref}_any_C_site"].values)[0]
|
|
114
|
+
# num_gpc = len(gpc_sites)
|
|
115
|
+
# num_cpg = len(cpg_sites)
|
|
116
|
+
# num_c = len(any_c_sites)
|
|
117
|
+
# print(f"Found {num_gpc} GpC sites at {gpc_sites} \nand {num_cpg} CpG sites at {cpg_sites} for {sample} - {ref}")
|
|
118
|
+
|
|
119
|
+
# # Use var_names for x-axis tick labels
|
|
120
|
+
# gpc_labels = subset.var_names[gpc_sites].astype(int)
|
|
121
|
+
# cpg_labels = subset.var_names[cpg_sites].astype(int)
|
|
122
|
+
# any_c_labels = subset.var_names[any_c_sites].astype(int)
|
|
123
|
+
|
|
124
|
+
# stacked_hmm_feature, stacked_gpc, stacked_cpg, stacked_any_c = [], [], [], []
|
|
125
|
+
# row_labels, bin_labels = [], []
|
|
126
|
+
# bin_boundaries = []
|
|
127
|
+
|
|
128
|
+
# total_reads = subset.shape[0]
|
|
129
|
+
# percentages = {}
|
|
130
|
+
# last_idx = 0
|
|
131
|
+
|
|
132
|
+
# for bin_label, bin_filter in bins_temp.items():
|
|
133
|
+
# subset_bin = subset[bin_filter].copy()
|
|
134
|
+
# num_reads = subset_bin.shape[0]
|
|
135
|
+
# print(f"analyzing {num_reads} reads for {bin_label} bin in {sample} - {ref}")
|
|
136
|
+
# percent_reads = (num_reads / total_reads) * 100 if total_reads > 0 else 0
|
|
137
|
+
# percentages[bin_label] = percent_reads
|
|
138
|
+
|
|
139
|
+
# if num_reads > 0 and num_cpg > 0 and num_gpc > 0:
|
|
140
|
+
# # Determine sorting order
|
|
141
|
+
# if sort_by.startswith("obs:"):
|
|
142
|
+
# colname = sort_by.split("obs:")[1]
|
|
143
|
+
# order = np.argsort(subset_bin.obs[colname].values)
|
|
144
|
+
# elif sort_by == "gpc":
|
|
145
|
+
# linkage = sch.linkage(subset_bin[:, gpc_sites].layers[layer_gpc], method="ward")
|
|
146
|
+
# order = sch.leaves_list(linkage)
|
|
147
|
+
# elif sort_by == "cpg":
|
|
148
|
+
# linkage = sch.linkage(subset_bin[:, cpg_sites].layers[layer_cpg], method="ward")
|
|
149
|
+
# order = sch.leaves_list(linkage)
|
|
150
|
+
# elif sort_by == "gpc_cpg":
|
|
151
|
+
# linkage = sch.linkage(subset_bin.layers[layer_gpc], method="ward")
|
|
152
|
+
# order = sch.leaves_list(linkage)
|
|
153
|
+
# elif sort_by == "none":
|
|
154
|
+
# order = np.arange(num_reads)
|
|
155
|
+
# elif sort_by == "any_c":
|
|
156
|
+
# linkage = sch.linkage(subset_bin.layers[layer_any_c], method="ward")
|
|
157
|
+
# order = sch.leaves_list(linkage)
|
|
158
|
+
# else:
|
|
159
|
+
# raise ValueError(f"Unsupported sort_by option: {sort_by}")
|
|
160
|
+
|
|
161
|
+
# stacked_hmm_feature.append(subset_bin[order].layers[hmm_feature_layer])
|
|
162
|
+
# stacked_gpc.append(subset_bin[order][:, gpc_sites].layers[layer_gpc])
|
|
163
|
+
# stacked_cpg.append(subset_bin[order][:, cpg_sites].layers[layer_cpg])
|
|
164
|
+
# stacked_any_c.append(subset_bin[order][:, any_c_sites].layers[layer_any_c])
|
|
165
|
+
|
|
166
|
+
# row_labels.extend([bin_label] * num_reads)
|
|
167
|
+
# bin_labels.append(f"{bin_label}: {num_reads} reads ({percent_reads:.1f}%)")
|
|
168
|
+
# last_idx += num_reads
|
|
169
|
+
# bin_boundaries.append(last_idx)
|
|
170
|
+
|
|
171
|
+
# if stacked_hmm_feature:
|
|
172
|
+
# hmm_matrix = np.vstack(stacked_hmm_feature)
|
|
173
|
+
# gpc_matrix = np.vstack(stacked_gpc)
|
|
174
|
+
# cpg_matrix = np.vstack(stacked_cpg)
|
|
175
|
+
# any_c_matrix = np.vstack(stacked_any_c)
|
|
176
|
+
|
|
177
|
+
# if hmm_matrix.size > 0:
|
|
178
|
+
# def normalized_mean(matrix):
|
|
179
|
+
# mean = np.nanmean(matrix, axis=0)
|
|
180
|
+
# normalized = (mean - mean.min()) / (mean.max() - mean.min() + 1e-9)
|
|
181
|
+
# return normalized
|
|
182
|
+
|
|
183
|
+
# def methylation_fraction(matrix):
|
|
184
|
+
# methylated = (matrix == 1).sum(axis=0)
|
|
185
|
+
# valid = (matrix != 0).sum(axis=0)
|
|
186
|
+
# return np.divide(methylated, valid, out=np.zeros_like(methylated, dtype=float), where=valid != 0)
|
|
187
|
+
|
|
188
|
+
# if normalize_hmm:
|
|
189
|
+
# mean_hmm = normalized_mean(hmm_matrix)
|
|
190
|
+
# else:
|
|
191
|
+
# mean_hmm = np.nanmean(hmm_matrix, axis=0)
|
|
192
|
+
# mean_gpc = methylation_fraction(gpc_matrix)
|
|
193
|
+
# mean_cpg = methylation_fraction(cpg_matrix)
|
|
194
|
+
# mean_any_c = methylation_fraction(any_c_matrix)
|
|
195
|
+
|
|
196
|
+
# fig = plt.figure(figsize=(18, 12))
|
|
197
|
+
# gs = gridspec.GridSpec(2, 4, height_ratios=[1, 6], hspace=0.01)
|
|
198
|
+
# fig.suptitle(f"{sample} - {ref} - {total_reads} reads", fontsize=14, y=0.95)
|
|
199
|
+
|
|
200
|
+
# axes_heat = [fig.add_subplot(gs[1, i]) for i in range(4)]
|
|
201
|
+
# axes_bar = [fig.add_subplot(gs[0, i], sharex=axes_heat[i]) for i in range(4)]
|
|
202
|
+
|
|
203
|
+
# clean_barplot(axes_bar[0], mean_hmm, f"{hmm_feature_layer} HMM Features")
|
|
204
|
+
# clean_barplot(axes_bar[1], mean_gpc, f"GpC Accessibility Signal")
|
|
205
|
+
# clean_barplot(axes_bar[2], mean_cpg, f"CpG Accessibility Signal")
|
|
206
|
+
# clean_barplot(axes_bar[3], mean_any_c, f"Any C Accessibility Signal")
|
|
207
|
+
|
|
208
|
+
# hmm_labels = subset.var_names.astype(int)
|
|
209
|
+
# hmm_label_spacing = 150
|
|
210
|
+
# sns.heatmap(hmm_matrix, cmap=cmap_hmm, ax=axes_heat[0], xticklabels=hmm_labels[::hmm_label_spacing], yticklabels=False, cbar=False)
|
|
211
|
+
# axes_heat[0].set_xticks(range(0, len(hmm_labels), hmm_label_spacing))
|
|
212
|
+
# axes_heat[0].set_xticklabels(hmm_labels[::hmm_label_spacing], rotation=90, fontsize=10)
|
|
213
|
+
# for boundary in bin_boundaries[:-1]:
|
|
214
|
+
# axes_heat[0].axhline(y=boundary, color="black", linewidth=2)
|
|
215
|
+
|
|
216
|
+
# sns.heatmap(gpc_matrix, cmap=cmap_gpc, ax=axes_heat[1], xticklabels=gpc_labels[::5], yticklabels=False, cbar=False)
|
|
217
|
+
# axes_heat[1].set_xticks(range(0, len(gpc_labels), 5))
|
|
218
|
+
# axes_heat[1].set_xticklabels(gpc_labels[::5], rotation=90, fontsize=10)
|
|
219
|
+
# for boundary in bin_boundaries[:-1]:
|
|
220
|
+
# axes_heat[1].axhline(y=boundary, color="black", linewidth=2)
|
|
221
|
+
|
|
222
|
+
# sns.heatmap(cpg_matrix, cmap=cmap_cpg, ax=axes_heat[2], xticklabels=cpg_labels, yticklabels=False, cbar=False)
|
|
223
|
+
# axes_heat[2].set_xticklabels(cpg_labels, rotation=90, fontsize=10)
|
|
224
|
+
# for boundary in bin_boundaries[:-1]:
|
|
225
|
+
# axes_heat[2].axhline(y=boundary, color="black", linewidth=2)
|
|
226
|
+
|
|
227
|
+
# sns.heatmap(any_c_matrix, cmap=cmap_any_c, ax=axes_heat[3], xticklabels=any_c_labels[::20], yticklabels=False, cbar=False)
|
|
228
|
+
# axes_heat[3].set_xticks(range(0, len(any_c_labels), 20))
|
|
229
|
+
# axes_heat[3].set_xticklabels(any_c_labels[::20], rotation=90, fontsize=10)
|
|
230
|
+
# for boundary in bin_boundaries[:-1]:
|
|
231
|
+
# axes_heat[3].axhline(y=boundary, color="black", linewidth=2)
|
|
232
|
+
|
|
233
|
+
# plt.tight_layout()
|
|
234
|
+
|
|
235
|
+
# if save_path:
|
|
236
|
+
# save_name = f"{ref} — {sample}"
|
|
237
|
+
# os.makedirs(save_path, exist_ok=True)
|
|
238
|
+
# safe_name = save_name.replace("=", "").replace("__", "_").replace(",", "_")
|
|
239
|
+
# out_file = os.path.join(save_path, f"{safe_name}.png")
|
|
240
|
+
# plt.savefig(out_file, dpi=300)
|
|
241
|
+
# print(f"Saved: {out_file}")
|
|
242
|
+
# plt.close()
|
|
243
|
+
# else:
|
|
244
|
+
# plt.show()
|
|
245
|
+
|
|
246
|
+
# print(f"Summary for {sample} - {ref}:")
|
|
247
|
+
# for bin_label, percent in percentages.items():
|
|
248
|
+
# print(f" - {bin_label}: {percent:.1f}%")
|
|
249
|
+
|
|
250
|
+
# results.append({
|
|
251
|
+
# "sample": sample,
|
|
252
|
+
# "ref": ref,
|
|
253
|
+
# "hmm_matrix": hmm_matrix,
|
|
254
|
+
# "gpc_matrix": gpc_matrix,
|
|
255
|
+
# "cpg_matrix": cpg_matrix,
|
|
256
|
+
# "row_labels": row_labels,
|
|
257
|
+
# "bin_labels": bin_labels,
|
|
258
|
+
# "bin_boundaries": bin_boundaries,
|
|
259
|
+
# "percentages": percentages
|
|
260
|
+
# })
|
|
261
|
+
|
|
262
|
+
# #adata.uns['clustermap_results'] = results
|
|
263
|
+
|
|
264
|
+
# except Exception as e:
|
|
265
|
+
# import traceback
|
|
266
|
+
# traceback.print_exc()
|
|
267
|
+
# continue
|
|
268
|
+
|
|
269
|
+
|
|
20
270
|
def combined_hmm_raw_clustermap(
|
|
21
271
|
adata,
|
|
22
|
-
sample_col=
|
|
23
|
-
reference_col=
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
272
|
+
sample_col: str = "Sample_Names",
|
|
273
|
+
reference_col: str = "Reference_strand",
|
|
274
|
+
|
|
275
|
+
hmm_feature_layer: str = "hmm_combined",
|
|
276
|
+
|
|
277
|
+
layer_gpc: str = "nan0_0minus1",
|
|
278
|
+
layer_cpg: str = "nan0_0minus1",
|
|
279
|
+
layer_any_c: str = "nan0_0minus1",
|
|
280
|
+
layer_a: str = "nan0_0minus1",
|
|
281
|
+
|
|
282
|
+
cmap_hmm: str = "tab10",
|
|
283
|
+
cmap_gpc: str = "coolwarm",
|
|
284
|
+
cmap_cpg: str = "viridis",
|
|
285
|
+
cmap_any_c: str = "coolwarm",
|
|
286
|
+
cmap_a: str = "coolwarm",
|
|
287
|
+
|
|
288
|
+
min_quality: int = 20,
|
|
289
|
+
min_length: int = 200,
|
|
290
|
+
min_mapped_length_to_reference_length_ratio: float = 0.8,
|
|
291
|
+
min_position_valid_fraction: float = 0.5,
|
|
292
|
+
|
|
293
|
+
save_path: str | Path | None = None,
|
|
294
|
+
normalize_hmm: bool = False,
|
|
295
|
+
|
|
296
|
+
sort_by: str = "gpc",
|
|
297
|
+
bins: Optional[Dict[str, Any]] = None,
|
|
298
|
+
|
|
299
|
+
deaminase: bool = False,
|
|
300
|
+
min_signal: float = 0.0,
|
|
301
|
+
|
|
302
|
+
# ---- fixed tick label controls (counts, not spacing)
|
|
303
|
+
n_xticks_hmm: int = 10,
|
|
304
|
+
n_xticks_any_c: int = 8,
|
|
305
|
+
n_xticks_gpc: int = 8,
|
|
306
|
+
n_xticks_cpg: int = 8,
|
|
307
|
+
n_xticks_a: int = 8,
|
|
308
|
+
):
|
|
309
|
+
"""
|
|
310
|
+
Makes a multi-panel clustermap per (sample, reference):
|
|
311
|
+
HMM panel (always) + optional raw panels for any_C, GpC, CpG, and A sites.
|
|
312
|
+
|
|
313
|
+
Panels are added only if the corresponding site mask exists AND has >0 sites.
|
|
51
314
|
|
|
315
|
+
sort_by options:
|
|
316
|
+
'gpc', 'cpg', 'any_c', 'any_a', 'gpc_cpg', 'none', or 'obs:<col>'
|
|
317
|
+
"""
|
|
318
|
+
def pick_xticks(labels: np.ndarray, n_ticks: int):
|
|
319
|
+
if labels.size == 0:
|
|
320
|
+
return [], []
|
|
321
|
+
idx = np.linspace(0, len(labels) - 1, n_ticks).round().astype(int)
|
|
322
|
+
idx = np.unique(idx)
|
|
323
|
+
return idx.tolist(), labels[idx].tolist()
|
|
324
|
+
|
|
52
325
|
results = []
|
|
53
|
-
if deaminase
|
|
54
|
-
signal_type = 'deamination'
|
|
55
|
-
else:
|
|
56
|
-
signal_type = 'methylation'
|
|
326
|
+
signal_type = "deamination" if deaminase else "methylation"
|
|
57
327
|
|
|
58
328
|
for ref in adata.obs[reference_col].cat.categories:
|
|
59
329
|
for sample in adata.obs[sample_col].cat.categories:
|
|
330
|
+
|
|
60
331
|
try:
|
|
332
|
+
# ---- subset reads ----
|
|
61
333
|
subset = adata[
|
|
62
334
|
(adata.obs[reference_col] == ref) &
|
|
63
335
|
(adata.obs[sample_col] == sample) &
|
|
64
|
-
(adata.obs[
|
|
65
|
-
(adata.obs[
|
|
66
|
-
(
|
|
336
|
+
(adata.obs["read_quality"] >= min_quality) &
|
|
337
|
+
(adata.obs["read_length"] >= min_length) &
|
|
338
|
+
(
|
|
339
|
+
adata.obs["mapped_length_to_reference_length_ratio"]
|
|
340
|
+
> min_mapped_length_to_reference_length_ratio
|
|
341
|
+
)
|
|
67
342
|
]
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
343
|
+
|
|
344
|
+
# ---- valid fraction filter ----
|
|
345
|
+
vf_key = f"{ref}_valid_fraction"
|
|
346
|
+
if vf_key in subset.var:
|
|
347
|
+
mask = subset.var[vf_key].astype(float) > float(min_position_valid_fraction)
|
|
348
|
+
subset = subset[:, mask]
|
|
71
349
|
|
|
72
350
|
if subset.shape[0] == 0:
|
|
73
|
-
print(f" No reads left after filtering for {sample} - {ref}")
|
|
74
351
|
continue
|
|
75
352
|
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
bins_temp =
|
|
353
|
+
# ---- bins ----
|
|
354
|
+
if bins is None:
|
|
355
|
+
bins_temp = {"All": np.ones(subset.n_obs, dtype=bool)}
|
|
79
356
|
else:
|
|
80
|
-
|
|
81
|
-
bins_temp = {"All": (subset.obs['Reference_strand'] == ref)}
|
|
82
|
-
|
|
83
|
-
# Get column positions (not var_names!) of site masks
|
|
84
|
-
gpc_sites = np.where(subset.var[f"{ref}_GpC_site"].values)[0]
|
|
85
|
-
cpg_sites = np.where(subset.var[f"{ref}_CpG_site"].values)[0]
|
|
86
|
-
any_c_sites = np.where(subset.var[f"{ref}_any_C_site"].values)[0]
|
|
87
|
-
num_gpc = len(gpc_sites)
|
|
88
|
-
num_cpg = len(cpg_sites)
|
|
89
|
-
num_c = len(any_c_sites)
|
|
90
|
-
print(f"Found {num_gpc} GpC sites at {gpc_sites} \nand {num_cpg} CpG sites at {cpg_sites} for {sample} - {ref}")
|
|
91
|
-
|
|
92
|
-
# Use var_names for x-axis tick labels
|
|
93
|
-
gpc_labels = subset.var_names[gpc_sites].astype(int)
|
|
94
|
-
cpg_labels = subset.var_names[cpg_sites].astype(int)
|
|
95
|
-
any_c_labels = subset.var_names[any_c_sites].astype(int)
|
|
96
|
-
|
|
97
|
-
stacked_hmm_feature, stacked_gpc, stacked_cpg, stacked_any_c = [], [], [], []
|
|
98
|
-
row_labels, bin_labels = [], []
|
|
99
|
-
bin_boundaries = []
|
|
357
|
+
bins_temp = bins
|
|
100
358
|
|
|
101
|
-
|
|
359
|
+
# ---- site masks (robust) ----
|
|
360
|
+
def _sites(*keys):
|
|
361
|
+
for k in keys:
|
|
362
|
+
if k in subset.var:
|
|
363
|
+
return np.where(subset.var[k].values)[0]
|
|
364
|
+
return np.array([], dtype=int)
|
|
365
|
+
|
|
366
|
+
gpc_sites = _sites(f"{ref}_GpC_site")
|
|
367
|
+
cpg_sites = _sites(f"{ref}_CpG_site")
|
|
368
|
+
any_c_sites = _sites(f"{ref}_any_C_site", f"{ref}_C_site")
|
|
369
|
+
any_a_sites = _sites(f"{ref}_A_site", f"{ref}_any_A_site")
|
|
370
|
+
|
|
371
|
+
def _labels(sites):
|
|
372
|
+
return subset.var_names[sites].astype(int) if sites.size else np.array([])
|
|
373
|
+
|
|
374
|
+
gpc_labels = _labels(gpc_sites)
|
|
375
|
+
cpg_labels = _labels(cpg_sites)
|
|
376
|
+
any_c_labels = _labels(any_c_sites)
|
|
377
|
+
any_a_labels = _labels(any_a_sites)
|
|
378
|
+
|
|
379
|
+
# storage
|
|
380
|
+
stacked_hmm = []
|
|
381
|
+
stacked_any_c = []
|
|
382
|
+
stacked_gpc = []
|
|
383
|
+
stacked_cpg = []
|
|
384
|
+
stacked_any_a = []
|
|
385
|
+
|
|
386
|
+
row_labels, bin_labels, bin_boundaries = [], [], []
|
|
387
|
+
total_reads = subset.n_obs
|
|
102
388
|
percentages = {}
|
|
103
389
|
last_idx = 0
|
|
104
390
|
|
|
391
|
+
# ---------------- process bins ----------------
|
|
105
392
|
for bin_label, bin_filter in bins_temp.items():
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
percentages[bin_label] = percent_reads
|
|
393
|
+
sb = subset[bin_filter].copy()
|
|
394
|
+
n = sb.n_obs
|
|
395
|
+
if n == 0:
|
|
396
|
+
continue
|
|
111
397
|
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
if sort_by.startswith("obs:"):
|
|
115
|
-
colname = sort_by.split("obs:")[1]
|
|
116
|
-
order = np.argsort(subset_bin.obs[colname].values)
|
|
117
|
-
elif sort_by == "gpc":
|
|
118
|
-
linkage = sch.linkage(subset_bin[:, gpc_sites].layers[layer_gpc], method="ward")
|
|
119
|
-
order = sch.leaves_list(linkage)
|
|
120
|
-
elif sort_by == "cpg":
|
|
121
|
-
linkage = sch.linkage(subset_bin[:, cpg_sites].layers[layer_cpg], method="ward")
|
|
122
|
-
order = sch.leaves_list(linkage)
|
|
123
|
-
elif sort_by == "gpc_cpg":
|
|
124
|
-
linkage = sch.linkage(subset_bin.layers[layer_gpc], method="ward")
|
|
125
|
-
order = sch.leaves_list(linkage)
|
|
126
|
-
elif sort_by == "none":
|
|
127
|
-
order = np.arange(num_reads)
|
|
128
|
-
elif sort_by == "any_c":
|
|
129
|
-
linkage = sch.linkage(subset_bin.layers[layer_any_c], method="ward")
|
|
130
|
-
order = sch.leaves_list(linkage)
|
|
131
|
-
else:
|
|
132
|
-
raise ValueError(f"Unsupported sort_by option: {sort_by}")
|
|
133
|
-
|
|
134
|
-
stacked_hmm_feature.append(subset_bin[order].layers[hmm_feature_layer])
|
|
135
|
-
stacked_gpc.append(subset_bin[order][:, gpc_sites].layers[layer_gpc])
|
|
136
|
-
stacked_cpg.append(subset_bin[order][:, cpg_sites].layers[layer_cpg])
|
|
137
|
-
stacked_any_c.append(subset_bin[order][:, any_c_sites].layers[layer_any_c])
|
|
138
|
-
|
|
139
|
-
row_labels.extend([bin_label] * num_reads)
|
|
140
|
-
bin_labels.append(f"{bin_label}: {num_reads} reads ({percent_reads:.1f}%)")
|
|
141
|
-
last_idx += num_reads
|
|
142
|
-
bin_boundaries.append(last_idx)
|
|
143
|
-
|
|
144
|
-
if stacked_hmm_feature:
|
|
145
|
-
hmm_matrix = np.vstack(stacked_hmm_feature)
|
|
146
|
-
gpc_matrix = np.vstack(stacked_gpc)
|
|
147
|
-
cpg_matrix = np.vstack(stacked_cpg)
|
|
148
|
-
any_c_matrix = np.vstack(stacked_any_c)
|
|
398
|
+
pct = (n / total_reads) * 100 if total_reads else 0
|
|
399
|
+
percentages[bin_label] = pct
|
|
149
400
|
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
return normalized
|
|
401
|
+
# ---- sorting ----
|
|
402
|
+
if sort_by.startswith("obs:"):
|
|
403
|
+
colname = sort_by.split("obs:")[1]
|
|
404
|
+
order = np.argsort(sb.obs[colname].values)
|
|
155
405
|
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
return np.divide(methylated, valid, out=np.zeros_like(methylated, dtype=float), where=valid != 0)
|
|
406
|
+
elif sort_by == "gpc" and gpc_sites.size:
|
|
407
|
+
linkage = sch.linkage(sb[:, gpc_sites].layers[layer_gpc], method="ward")
|
|
408
|
+
order = sch.leaves_list(linkage)
|
|
160
409
|
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
mean_hmm = np.nanmean(hmm_matrix, axis=0)
|
|
165
|
-
mean_gpc = methylation_fraction(gpc_matrix)
|
|
166
|
-
mean_cpg = methylation_fraction(cpg_matrix)
|
|
167
|
-
mean_any_c = methylation_fraction(any_c_matrix)
|
|
168
|
-
|
|
169
|
-
fig = plt.figure(figsize=(18, 12))
|
|
170
|
-
gs = gridspec.GridSpec(2, 4, height_ratios=[1, 6], hspace=0.01)
|
|
171
|
-
fig.suptitle(f"{sample} - {ref}", fontsize=14, y=0.95)
|
|
172
|
-
|
|
173
|
-
axes_heat = [fig.add_subplot(gs[1, i]) for i in range(4)]
|
|
174
|
-
axes_bar = [fig.add_subplot(gs[0, i], sharex=axes_heat[i]) for i in range(4)]
|
|
175
|
-
|
|
176
|
-
clean_barplot(axes_bar[0], mean_hmm, f"{hmm_feature_layer} HMM Features")
|
|
177
|
-
clean_barplot(axes_bar[1], mean_gpc, f"GpC Accessibility Signal")
|
|
178
|
-
clean_barplot(axes_bar[2], mean_cpg, f"CpG Accessibility Signal")
|
|
179
|
-
clean_barplot(axes_bar[3], mean_any_c, f"Any C Accessibility Signal")
|
|
180
|
-
|
|
181
|
-
hmm_labels = subset.var_names.astype(int)
|
|
182
|
-
hmm_label_spacing = 150
|
|
183
|
-
sns.heatmap(hmm_matrix, cmap=cmap_hmm, ax=axes_heat[0], xticklabels=hmm_labels[::hmm_label_spacing], yticklabels=False, cbar=False)
|
|
184
|
-
axes_heat[0].set_xticks(range(0, len(hmm_labels), hmm_label_spacing))
|
|
185
|
-
axes_heat[0].set_xticklabels(hmm_labels[::hmm_label_spacing], rotation=90, fontsize=10)
|
|
186
|
-
for boundary in bin_boundaries[:-1]:
|
|
187
|
-
axes_heat[0].axhline(y=boundary, color="black", linewidth=2)
|
|
188
|
-
|
|
189
|
-
sns.heatmap(gpc_matrix, cmap=cmap_gpc, ax=axes_heat[1], xticklabels=gpc_labels[::5], yticklabels=False, cbar=False)
|
|
190
|
-
axes_heat[1].set_xticks(range(0, len(gpc_labels), 5))
|
|
191
|
-
axes_heat[1].set_xticklabels(gpc_labels[::5], rotation=90, fontsize=10)
|
|
192
|
-
for boundary in bin_boundaries[:-1]:
|
|
193
|
-
axes_heat[1].axhline(y=boundary, color="black", linewidth=2)
|
|
194
|
-
|
|
195
|
-
sns.heatmap(cpg_matrix, cmap=cmap_cpg, ax=axes_heat[2], xticklabels=cpg_labels, yticklabels=False, cbar=False)
|
|
196
|
-
axes_heat[2].set_xticklabels(cpg_labels, rotation=90, fontsize=10)
|
|
197
|
-
for boundary in bin_boundaries[:-1]:
|
|
198
|
-
axes_heat[2].axhline(y=boundary, color="black", linewidth=2)
|
|
199
|
-
|
|
200
|
-
sns.heatmap(any_c_matrix, cmap=cmap_any_c, ax=axes_heat[3], xticklabels=any_c_labels[::20], yticklabels=False, cbar=False)
|
|
201
|
-
axes_heat[3].set_xticks(range(0, len(any_c_labels), 20))
|
|
202
|
-
axes_heat[3].set_xticklabels(any_c_labels[::20], rotation=90, fontsize=10)
|
|
203
|
-
for boundary in bin_boundaries[:-1]:
|
|
204
|
-
axes_heat[3].axhline(y=boundary, color="black", linewidth=2)
|
|
205
|
-
|
|
206
|
-
plt.tight_layout()
|
|
207
|
-
|
|
208
|
-
if save_path:
|
|
209
|
-
save_name = f"{ref} — {sample}"
|
|
210
|
-
os.makedirs(save_path, exist_ok=True)
|
|
211
|
-
safe_name = save_name.replace("=", "").replace("__", "_").replace(",", "_")
|
|
212
|
-
out_file = os.path.join(save_path, f"{safe_name}.png")
|
|
213
|
-
plt.savefig(out_file, dpi=300)
|
|
214
|
-
print(f"Saved: {out_file}")
|
|
215
|
-
plt.close()
|
|
216
|
-
else:
|
|
217
|
-
plt.show()
|
|
218
|
-
|
|
219
|
-
print(f"Summary for {sample} - {ref}:")
|
|
220
|
-
for bin_label, percent in percentages.items():
|
|
221
|
-
print(f" - {bin_label}: {percent:.1f}%")
|
|
222
|
-
|
|
223
|
-
results.append({
|
|
224
|
-
"sample": sample,
|
|
225
|
-
"ref": ref,
|
|
226
|
-
"hmm_matrix": hmm_matrix,
|
|
227
|
-
"gpc_matrix": gpc_matrix,
|
|
228
|
-
"cpg_matrix": cpg_matrix,
|
|
229
|
-
"row_labels": row_labels,
|
|
230
|
-
"bin_labels": bin_labels,
|
|
231
|
-
"bin_boundaries": bin_boundaries,
|
|
232
|
-
"percentages": percentages
|
|
233
|
-
})
|
|
234
|
-
|
|
235
|
-
adata.uns['clustermap_results'] = results
|
|
410
|
+
elif sort_by == "cpg" and cpg_sites.size:
|
|
411
|
+
linkage = sch.linkage(sb[:, cpg_sites].layers[layer_cpg], method="ward")
|
|
412
|
+
order = sch.leaves_list(linkage)
|
|
236
413
|
|
|
237
|
-
|
|
414
|
+
elif sort_by == "any_c" and any_c_sites.size:
|
|
415
|
+
linkage = sch.linkage(sb[:, any_c_sites].layers[layer_any_c], method="ward")
|
|
416
|
+
order = sch.leaves_list(linkage)
|
|
417
|
+
|
|
418
|
+
elif sort_by == "any_a" and any_a_sites.size:
|
|
419
|
+
linkage = sch.linkage(sb[:, any_a_sites].layers[layer_a], method="ward")
|
|
420
|
+
order = sch.leaves_list(linkage)
|
|
421
|
+
|
|
422
|
+
elif sort_by == "gpc_cpg" and gpc_sites.size and cpg_sites.size:
|
|
423
|
+
linkage = sch.linkage(sb.layers[layer_gpc], method="ward")
|
|
424
|
+
order = sch.leaves_list(linkage)
|
|
425
|
+
|
|
426
|
+
else:
|
|
427
|
+
order = np.arange(n)
|
|
428
|
+
|
|
429
|
+
sb = sb[order]
|
|
430
|
+
|
|
431
|
+
# ---- collect matrices ----
|
|
432
|
+
stacked_hmm.append(sb.layers[hmm_feature_layer])
|
|
433
|
+
if any_c_sites.size:
|
|
434
|
+
stacked_any_c.append(sb[:, any_c_sites].layers[layer_any_c])
|
|
435
|
+
if gpc_sites.size:
|
|
436
|
+
stacked_gpc.append(sb[:, gpc_sites].layers[layer_gpc])
|
|
437
|
+
if cpg_sites.size:
|
|
438
|
+
stacked_cpg.append(sb[:, cpg_sites].layers[layer_cpg])
|
|
439
|
+
if any_a_sites.size:
|
|
440
|
+
stacked_any_a.append(sb[:, any_a_sites].layers[layer_a])
|
|
441
|
+
|
|
442
|
+
row_labels.extend([bin_label] * n)
|
|
443
|
+
bin_labels.append(f"{bin_label}: {n} reads ({pct:.1f}%)")
|
|
444
|
+
last_idx += n
|
|
445
|
+
bin_boundaries.append(last_idx)
|
|
446
|
+
|
|
447
|
+
# ---------------- stack ----------------
|
|
448
|
+
hmm_matrix = np.vstack(stacked_hmm)
|
|
449
|
+
mean_hmm = normalized_mean(hmm_matrix) if normalize_hmm else np.nanmean(hmm_matrix, axis=0)
|
|
450
|
+
|
|
451
|
+
panels = [
|
|
452
|
+
("HMM", hmm_matrix, subset.var_names.astype(int), cmap_hmm, mean_hmm, n_xticks_hmm),
|
|
453
|
+
]
|
|
454
|
+
|
|
455
|
+
if stacked_any_c:
|
|
456
|
+
m = np.vstack(stacked_any_c)
|
|
457
|
+
panels.append(("any_C", m, any_c_labels, cmap_any_c, methylation_fraction(m), n_xticks_any_c))
|
|
458
|
+
|
|
459
|
+
if stacked_gpc:
|
|
460
|
+
m = np.vstack(stacked_gpc)
|
|
461
|
+
panels.append(("GpC", m, gpc_labels, cmap_gpc, methylation_fraction(m), n_xticks_gpc))
|
|
462
|
+
|
|
463
|
+
if stacked_cpg:
|
|
464
|
+
m = np.vstack(stacked_cpg)
|
|
465
|
+
panels.append(("CpG", m, cpg_labels, cmap_cpg, methylation_fraction(m), n_xticks_cpg))
|
|
466
|
+
|
|
467
|
+
if stacked_any_a:
|
|
468
|
+
m = np.vstack(stacked_any_a)
|
|
469
|
+
panels.append(("A", m, any_a_labels, cmap_a, methylation_fraction(m), n_xticks_a))
|
|
470
|
+
|
|
471
|
+
# ---------------- plotting ----------------
|
|
472
|
+
n_panels = len(panels)
|
|
473
|
+
fig = plt.figure(figsize=(4.5 * n_panels, 10))
|
|
474
|
+
gs = gridspec.GridSpec(2, n_panels, height_ratios=[1, 6], hspace=0.01)
|
|
475
|
+
fig.suptitle(f"{sample} — {ref} — {total_reads} reads ({signal_type})",
|
|
476
|
+
fontsize=14, y=0.98)
|
|
477
|
+
|
|
478
|
+
axes_heat = [fig.add_subplot(gs[1, i]) for i in range(n_panels)]
|
|
479
|
+
axes_bar = [fig.add_subplot(gs[0, i], sharex=axes_heat[i]) for i in range(n_panels)]
|
|
480
|
+
|
|
481
|
+
for i, (name, matrix, labels, cmap, mean_vec, n_ticks) in enumerate(panels):
|
|
482
|
+
|
|
483
|
+
# ---- your clean barplot ----
|
|
484
|
+
clean_barplot(axes_bar[i], mean_vec, name)
|
|
485
|
+
|
|
486
|
+
# ---- heatmap ----
|
|
487
|
+
sns.heatmap(matrix, cmap=cmap, ax=axes_heat[i],
|
|
488
|
+
yticklabels=False, cbar=False)
|
|
489
|
+
|
|
490
|
+
# ---- xticks ----
|
|
491
|
+
xtick_pos, xtick_labels = pick_xticks(np.asarray(labels), n_ticks)
|
|
492
|
+
axes_heat[i].set_xticks(xtick_pos)
|
|
493
|
+
axes_heat[i].set_xticklabels(xtick_labels, rotation=90, fontsize=8)
|
|
494
|
+
|
|
495
|
+
for boundary in bin_boundaries[:-1]:
|
|
496
|
+
axes_heat[i].axhline(y=boundary, color="black", linewidth=1.2)
|
|
497
|
+
|
|
498
|
+
plt.tight_layout()
|
|
499
|
+
|
|
500
|
+
if save_path:
|
|
501
|
+
save_path = Path(save_path)
|
|
502
|
+
save_path.mkdir(parents=True, exist_ok=True)
|
|
503
|
+
safe_name = f"{ref}__{sample}".replace("/", "_")
|
|
504
|
+
out_file = save_path / f"{safe_name}.png"
|
|
505
|
+
plt.savefig(out_file, dpi=300)
|
|
506
|
+
plt.close(fig)
|
|
507
|
+
else:
|
|
508
|
+
plt.show()
|
|
509
|
+
|
|
510
|
+
except Exception:
|
|
238
511
|
import traceback
|
|
239
512
|
traceback.print_exc()
|
|
240
513
|
continue
|
|
241
514
|
|
|
242
515
|
|
|
516
|
+
# def combined_raw_clustermap(
|
|
517
|
+
# adata,
|
|
518
|
+
# sample_col='Sample_Names',
|
|
519
|
+
# reference_col='Reference_strand',
|
|
520
|
+
# mod_target_bases=['GpC', 'CpG'],
|
|
521
|
+
# layer_any_c="nan0_0minus1",
|
|
522
|
+
# layer_gpc="nan0_0minus1",
|
|
523
|
+
# layer_cpg="nan0_0minus1",
|
|
524
|
+
# layer_a="nan0_0minus1",
|
|
525
|
+
# cmap_any_c="coolwarm",
|
|
526
|
+
# cmap_gpc="coolwarm",
|
|
527
|
+
# cmap_cpg="viridis",
|
|
528
|
+
# cmap_a="coolwarm",
|
|
529
|
+
# min_quality=20,
|
|
530
|
+
# min_length=200,
|
|
531
|
+
# min_mapped_length_to_reference_length_ratio=0.8,
|
|
532
|
+
# min_position_valid_fraction=0.5,
|
|
533
|
+
# sample_mapping=None,
|
|
534
|
+
# save_path=None,
|
|
535
|
+
# sort_by="gpc", # options: 'gpc', 'cpg', 'gpc_cpg', 'none', 'any_a', or 'obs:<column>'
|
|
536
|
+
# bins=None,
|
|
537
|
+
# deaminase=False,
|
|
538
|
+
# min_signal=0
|
|
539
|
+
# ):
|
|
540
|
+
|
|
541
|
+
# results = []
|
|
542
|
+
|
|
543
|
+
# for ref in adata.obs[reference_col].cat.categories:
|
|
544
|
+
# for sample in adata.obs[sample_col].cat.categories:
|
|
545
|
+
# try:
|
|
546
|
+
# subset = adata[
|
|
547
|
+
# (adata.obs[reference_col] == ref) &
|
|
548
|
+
# (adata.obs[sample_col] == sample) &
|
|
549
|
+
# (adata.obs['read_quality'] >= min_quality) &
|
|
550
|
+
# (adata.obs['mapped_length'] >= min_length) &
|
|
551
|
+
# (adata.obs['mapped_length_to_reference_length_ratio'] >= min_mapped_length_to_reference_length_ratio)
|
|
552
|
+
# ]
|
|
553
|
+
|
|
554
|
+
# mask = subset.var[f"{ref}_valid_fraction"].astype(float) > float(min_position_valid_fraction)
|
|
555
|
+
# subset = subset[:, mask]
|
|
556
|
+
|
|
557
|
+
# if subset.shape[0] == 0:
|
|
558
|
+
# print(f" No reads left after filtering for {sample} - {ref}")
|
|
559
|
+
# continue
|
|
560
|
+
|
|
561
|
+
# if bins:
|
|
562
|
+
# print(f"Using defined bins to subset clustermap for {sample} - {ref}")
|
|
563
|
+
# bins_temp = bins
|
|
564
|
+
# else:
|
|
565
|
+
# print(f"Using all reads for clustermap for {sample} - {ref}")
|
|
566
|
+
# bins_temp = {"All": (subset.obs['Reference_strand'] == ref)}
|
|
567
|
+
|
|
568
|
+
# num_any_c = 0
|
|
569
|
+
# num_gpc = 0
|
|
570
|
+
# num_cpg = 0
|
|
571
|
+
# num_any_a = 0
|
|
572
|
+
|
|
573
|
+
# # Get column positions (not var_names!) of site masks
|
|
574
|
+
# if any(base in ["C", "CpG", "GpC"] for base in mod_target_bases):
|
|
575
|
+
# any_c_sites = np.where(subset.var[f"{ref}_C_site"].values)[0]
|
|
576
|
+
# gpc_sites = np.where(subset.var[f"{ref}_GpC_site"].values)[0]
|
|
577
|
+
# cpg_sites = np.where(subset.var[f"{ref}_CpG_site"].values)[0]
|
|
578
|
+
# num_any_c = len(any_c_sites)
|
|
579
|
+
# num_gpc = len(gpc_sites)
|
|
580
|
+
# num_cpg = len(cpg_sites)
|
|
581
|
+
# print(f"Found {num_gpc} GpC sites at {gpc_sites} \nand {num_cpg} CpG sites at {cpg_sites}\n and {num_any_c} any_C sites at {any_c_sites} for {sample} - {ref}")
|
|
582
|
+
|
|
583
|
+
# # Use var_names for x-axis tick labels
|
|
584
|
+
# gpc_labels = subset.var_names[gpc_sites].astype(int)
|
|
585
|
+
# cpg_labels = subset.var_names[cpg_sites].astype(int)
|
|
586
|
+
# any_c_labels = subset.var_names[any_c_sites].astype(int)
|
|
587
|
+
# stacked_any_c, stacked_gpc, stacked_cpg = [], [], []
|
|
588
|
+
|
|
589
|
+
# if "A" in mod_target_bases:
|
|
590
|
+
# any_a_sites = np.where(subset.var[f"{ref}_A_site"].values)[0]
|
|
591
|
+
# num_any_a = len(any_a_sites)
|
|
592
|
+
# print(f"Found {num_any_a} any_A sites at {any_a_sites} for {sample} - {ref}")
|
|
593
|
+
# any_a_labels = subset.var_names[any_a_sites].astype(int)
|
|
594
|
+
# stacked_any_a = []
|
|
595
|
+
|
|
596
|
+
# row_labels, bin_labels = [], []
|
|
597
|
+
# bin_boundaries = []
|
|
598
|
+
|
|
599
|
+
# total_reads = subset.shape[0]
|
|
600
|
+
# percentages = {}
|
|
601
|
+
# last_idx = 0
|
|
602
|
+
|
|
603
|
+
# for bin_label, bin_filter in bins_temp.items():
|
|
604
|
+
# subset_bin = subset[bin_filter].copy()
|
|
605
|
+
# num_reads = subset_bin.shape[0]
|
|
606
|
+
# print(f"analyzing {num_reads} reads for {bin_label} bin in {sample} - {ref}")
|
|
607
|
+
# percent_reads = (num_reads / total_reads) * 100 if total_reads > 0 else 0
|
|
608
|
+
# percentages[bin_label] = percent_reads
|
|
609
|
+
|
|
610
|
+
# if num_reads > 0 and num_cpg > 0 and num_gpc > 0:
|
|
611
|
+
# # Determine sorting order
|
|
612
|
+
# if sort_by.startswith("obs:"):
|
|
613
|
+
# colname = sort_by.split("obs:")[1]
|
|
614
|
+
# order = np.argsort(subset_bin.obs[colname].values)
|
|
615
|
+
# elif sort_by == "gpc":
|
|
616
|
+
# linkage = sch.linkage(subset_bin[:, gpc_sites].layers[layer_gpc], method="ward")
|
|
617
|
+
# order = sch.leaves_list(linkage)
|
|
618
|
+
# elif sort_by == "cpg":
|
|
619
|
+
# linkage = sch.linkage(subset_bin[:, cpg_sites].layers[layer_cpg], method="ward")
|
|
620
|
+
# order = sch.leaves_list(linkage)
|
|
621
|
+
# elif sort_by == "any_c":
|
|
622
|
+
# linkage = sch.linkage(subset_bin[:, any_c_sites].layers[layer_any_c], method="ward")
|
|
623
|
+
# order = sch.leaves_list(linkage)
|
|
624
|
+
# elif sort_by == "gpc_cpg":
|
|
625
|
+
# linkage = sch.linkage(subset_bin.layers[layer_gpc], method="ward")
|
|
626
|
+
# order = sch.leaves_list(linkage)
|
|
627
|
+
# elif sort_by == "none":
|
|
628
|
+
# order = np.arange(num_reads)
|
|
629
|
+
# elif sort_by == "any_a":
|
|
630
|
+
# linkage = sch.linkage(subset_bin.layers[layer_a], method="ward")
|
|
631
|
+
# order = sch.leaves_list(linkage)
|
|
632
|
+
# else:
|
|
633
|
+
# raise ValueError(f"Unsupported sort_by option: {sort_by}")
|
|
634
|
+
|
|
635
|
+
# stacked_any_c.append(subset_bin[order][:, any_c_sites].layers[layer_any_c])
|
|
636
|
+
# stacked_gpc.append(subset_bin[order][:, gpc_sites].layers[layer_gpc])
|
|
637
|
+
# stacked_cpg.append(subset_bin[order][:, cpg_sites].layers[layer_cpg])
|
|
638
|
+
|
|
639
|
+
# if num_reads > 0 and num_any_a > 0:
|
|
640
|
+
# # Determine sorting order
|
|
641
|
+
# if sort_by.startswith("obs:"):
|
|
642
|
+
# colname = sort_by.split("obs:")[1]
|
|
643
|
+
# order = np.argsort(subset_bin.obs[colname].values)
|
|
644
|
+
# elif sort_by == "gpc":
|
|
645
|
+
# linkage = sch.linkage(subset_bin[:, gpc_sites].layers[layer_gpc], method="ward")
|
|
646
|
+
# order = sch.leaves_list(linkage)
|
|
647
|
+
# elif sort_by == "cpg":
|
|
648
|
+
# linkage = sch.linkage(subset_bin[:, cpg_sites].layers[layer_cpg], method="ward")
|
|
649
|
+
# order = sch.leaves_list(linkage)
|
|
650
|
+
# elif sort_by == "any_c":
|
|
651
|
+
# linkage = sch.linkage(subset_bin[:, any_c_sites].layers[layer_any_c], method="ward")
|
|
652
|
+
# order = sch.leaves_list(linkage)
|
|
653
|
+
# elif sort_by == "gpc_cpg":
|
|
654
|
+
# linkage = sch.linkage(subset_bin.layers[layer_gpc], method="ward")
|
|
655
|
+
# order = sch.leaves_list(linkage)
|
|
656
|
+
# elif sort_by == "none":
|
|
657
|
+
# order = np.arange(num_reads)
|
|
658
|
+
# elif sort_by == "any_a":
|
|
659
|
+
# linkage = sch.linkage(subset_bin.layers[layer_a], method="ward")
|
|
660
|
+
# order = sch.leaves_list(linkage)
|
|
661
|
+
# else:
|
|
662
|
+
# raise ValueError(f"Unsupported sort_by option: {sort_by}")
|
|
663
|
+
|
|
664
|
+
# stacked_any_a.append(subset_bin[order][:, any_a_sites].layers[layer_a])
|
|
665
|
+
|
|
666
|
+
|
|
667
|
+
# row_labels.extend([bin_label] * num_reads)
|
|
668
|
+
# bin_labels.append(f"{bin_label}: {num_reads} reads ({percent_reads:.1f}%)")
|
|
669
|
+
# last_idx += num_reads
|
|
670
|
+
# bin_boundaries.append(last_idx)
|
|
671
|
+
|
|
672
|
+
# gs_dim = 0
|
|
673
|
+
|
|
674
|
+
# if stacked_any_c:
|
|
675
|
+
# any_c_matrix = np.vstack(stacked_any_c)
|
|
676
|
+
# gpc_matrix = np.vstack(stacked_gpc)
|
|
677
|
+
# cpg_matrix = np.vstack(stacked_cpg)
|
|
678
|
+
# if any_c_matrix.size > 0:
|
|
679
|
+
# mean_gpc = methylation_fraction(gpc_matrix)
|
|
680
|
+
# mean_cpg = methylation_fraction(cpg_matrix)
|
|
681
|
+
# mean_any_c = methylation_fraction(any_c_matrix)
|
|
682
|
+
# gs_dim += 3
|
|
683
|
+
|
|
684
|
+
# if stacked_any_a:
|
|
685
|
+
# any_a_matrix = np.vstack(stacked_any_a)
|
|
686
|
+
# if any_a_matrix.size > 0:
|
|
687
|
+
# mean_any_a = methylation_fraction(any_a_matrix)
|
|
688
|
+
# gs_dim += 1
|
|
689
|
+
|
|
690
|
+
|
|
691
|
+
# fig = plt.figure(figsize=(18, 12))
|
|
692
|
+
# gs = gridspec.GridSpec(2, gs_dim, height_ratios=[1, 6], hspace=0.01)
|
|
693
|
+
# fig.suptitle(f"{sample} - {ref} - {total_reads} reads", fontsize=14, y=0.95)
|
|
694
|
+
# axes_heat = [fig.add_subplot(gs[1, i]) for i in range(gs_dim)]
|
|
695
|
+
# axes_bar = [fig.add_subplot(gs[0, i], sharex=axes_heat[i]) for i in range(gs_dim)]
|
|
696
|
+
|
|
697
|
+
# current_ax = 0
|
|
698
|
+
|
|
699
|
+
# if stacked_any_c:
|
|
700
|
+
# if any_c_matrix.size > 0:
|
|
701
|
+
# clean_barplot(axes_bar[current_ax], mean_any_c, f"any C site Modification Signal")
|
|
702
|
+
# sns.heatmap(any_c_matrix, cmap=cmap_any_c, ax=axes_heat[current_ax], xticklabels=any_c_labels[::20], yticklabels=False, cbar=False)
|
|
703
|
+
# axes_heat[current_ax].set_xticks(range(0, len(any_c_labels), 20))
|
|
704
|
+
# axes_heat[current_ax].set_xticklabels(any_c_labels[::20], rotation=90, fontsize=10)
|
|
705
|
+
# for boundary in bin_boundaries[:-1]:
|
|
706
|
+
# axes_heat[current_ax].axhline(y=boundary, color="black", linewidth=2)
|
|
707
|
+
# current_ax +=1
|
|
708
|
+
|
|
709
|
+
# clean_barplot(axes_bar[current_ax], mean_gpc, f"GpC Modification Signal")
|
|
710
|
+
# sns.heatmap(gpc_matrix, cmap=cmap_gpc, ax=axes_heat[current_ax], xticklabels=gpc_labels[::5], yticklabels=False, cbar=False)
|
|
711
|
+
# axes_heat[current_ax].set_xticks(range(0, len(gpc_labels), 5))
|
|
712
|
+
# axes_heat[current_ax].set_xticklabels(gpc_labels[::5], rotation=90, fontsize=10)
|
|
713
|
+
# for boundary in bin_boundaries[:-1]:
|
|
714
|
+
# axes_heat[current_ax].axhline(y=boundary, color="black", linewidth=2)
|
|
715
|
+
# current_ax +=1
|
|
716
|
+
|
|
717
|
+
# clean_barplot(axes_bar[current_ax], mean_cpg, f"CpG Modification Signal")
|
|
718
|
+
# sns.heatmap(cpg_matrix, cmap=cmap_cpg, ax=axes_heat[2], xticklabels=cpg_labels, yticklabels=False, cbar=False)
|
|
719
|
+
# axes_heat[current_ax].set_xticklabels(cpg_labels, rotation=90, fontsize=10)
|
|
720
|
+
# for boundary in bin_boundaries[:-1]:
|
|
721
|
+
# axes_heat[current_ax].axhline(y=boundary, color="black", linewidth=2)
|
|
722
|
+
# current_ax +=1
|
|
723
|
+
|
|
724
|
+
# results.append({
|
|
725
|
+
# "sample": sample,
|
|
726
|
+
# "ref": ref,
|
|
727
|
+
# "any_c_matrix": any_c_matrix,
|
|
728
|
+
# "gpc_matrix": gpc_matrix,
|
|
729
|
+
# "cpg_matrix": cpg_matrix,
|
|
730
|
+
# "row_labels": row_labels,
|
|
731
|
+
# "bin_labels": bin_labels,
|
|
732
|
+
# "bin_boundaries": bin_boundaries,
|
|
733
|
+
# "percentages": percentages
|
|
734
|
+
# })
|
|
735
|
+
|
|
736
|
+
# if stacked_any_a:
|
|
737
|
+
# if any_a_matrix.size > 0:
|
|
738
|
+
# clean_barplot(axes_bar[current_ax], mean_any_a, f"any A site Modification Signal")
|
|
739
|
+
# sns.heatmap(any_a_matrix, cmap=cmap_a, ax=axes_heat[current_ax], xticklabels=any_a_labels[::20], yticklabels=False, cbar=False)
|
|
740
|
+
# axes_heat[current_ax].set_xticks(range(0, len(any_a_labels), 20))
|
|
741
|
+
# axes_heat[current_ax].set_xticklabels(any_a_labels[::20], rotation=90, fontsize=10)
|
|
742
|
+
# for boundary in bin_boundaries[:-1]:
|
|
743
|
+
# axes_heat[current_ax].axhline(y=boundary, color="black", linewidth=2)
|
|
744
|
+
# current_ax +=1
|
|
745
|
+
|
|
746
|
+
# results.append({
|
|
747
|
+
# "sample": sample,
|
|
748
|
+
# "ref": ref,
|
|
749
|
+
# "any_a_matrix": any_a_matrix,
|
|
750
|
+
# "row_labels": row_labels,
|
|
751
|
+
# "bin_labels": bin_labels,
|
|
752
|
+
# "bin_boundaries": bin_boundaries,
|
|
753
|
+
# "percentages": percentages
|
|
754
|
+
# })
|
|
755
|
+
|
|
756
|
+
# plt.tight_layout()
|
|
757
|
+
|
|
758
|
+
# if save_path:
|
|
759
|
+
# save_name = f"{ref} — {sample}"
|
|
760
|
+
# os.makedirs(save_path, exist_ok=True)
|
|
761
|
+
# safe_name = save_name.replace("=", "").replace("__", "_").replace(",", "_")
|
|
762
|
+
# out_file = os.path.join(save_path, f"{safe_name}.png")
|
|
763
|
+
# plt.savefig(out_file, dpi=300)
|
|
764
|
+
# print(f"Saved: {out_file}")
|
|
765
|
+
# plt.close()
|
|
766
|
+
# else:
|
|
767
|
+
# plt.show()
|
|
768
|
+
|
|
769
|
+
# print(f"Summary for {sample} - {ref}:")
|
|
770
|
+
# for bin_label, percent in percentages.items():
|
|
771
|
+
# print(f" - {bin_label}: {percent:.1f}%")
|
|
772
|
+
|
|
773
|
+
# adata.uns['clustermap_results'] = results
|
|
774
|
+
|
|
775
|
+
# except Exception as e:
|
|
776
|
+
# import traceback
|
|
777
|
+
# traceback.print_exc()
|
|
778
|
+
# continue
|
|
779
|
+
|
|
780
|
+
def _fixed_tick_positions(n_positions: int, n_ticks: int) -> np.ndarray:
|
|
781
|
+
"""
|
|
782
|
+
Return indices for ~n_ticks evenly spaced labels across [0, n_positions-1].
|
|
783
|
+
Always includes 0 and n_positions-1 when possible.
|
|
784
|
+
"""
|
|
785
|
+
n_ticks = int(max(2, n_ticks))
|
|
786
|
+
if n_positions <= n_ticks:
|
|
787
|
+
return np.arange(n_positions)
|
|
788
|
+
|
|
789
|
+
# linspace gives fixed count
|
|
790
|
+
pos = np.linspace(0, n_positions - 1, n_ticks)
|
|
791
|
+
return np.unique(np.round(pos).astype(int))
|
|
792
|
+
|
|
243
793
|
def combined_raw_clustermap(
|
|
244
794
|
adata,
|
|
245
|
-
sample_col=
|
|
246
|
-
reference_col=
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
|
|
252
|
-
|
|
253
|
-
|
|
254
|
-
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
|
|
795
|
+
sample_col: str = "Sample_Names",
|
|
796
|
+
reference_col: str = "Reference_strand",
|
|
797
|
+
mod_target_bases: Sequence[str] = ("GpC", "CpG"),
|
|
798
|
+
layer_any_c: str = "nan0_0minus1",
|
|
799
|
+
layer_gpc: str = "nan0_0minus1",
|
|
800
|
+
layer_cpg: str = "nan0_0minus1",
|
|
801
|
+
layer_a: str = "nan0_0minus1",
|
|
802
|
+
cmap_any_c: str = "coolwarm",
|
|
803
|
+
cmap_gpc: str = "coolwarm",
|
|
804
|
+
cmap_cpg: str = "viridis",
|
|
805
|
+
cmap_a: str = "coolwarm",
|
|
806
|
+
min_quality: float = 20,
|
|
807
|
+
min_length: int = 200,
|
|
808
|
+
min_mapped_length_to_reference_length_ratio: float = 0.8,
|
|
809
|
+
min_position_valid_fraction: float = 0.5,
|
|
810
|
+
sample_mapping: Optional[Mapping[str, str]] = None,
|
|
811
|
+
save_path: str | Path | None = None,
|
|
812
|
+
sort_by: str = "gpc", # 'gpc','cpg','any_c','gpc_cpg','any_a','none','obs:<col>'
|
|
813
|
+
bins: Optional[Dict[str, Any]] = None,
|
|
814
|
+
deaminase: bool = False,
|
|
815
|
+
min_signal: float = 0,
|
|
816
|
+
# NEW tick controls
|
|
817
|
+
n_xticks_any_c: int = 10,
|
|
818
|
+
n_xticks_gpc: int = 10,
|
|
819
|
+
n_xticks_cpg: int = 10,
|
|
820
|
+
n_xticks_any_a: int = 10,
|
|
821
|
+
xtick_rotation: int = 90,
|
|
822
|
+
xtick_fontsize: int = 9,
|
|
823
|
+
):
|
|
824
|
+
"""
|
|
825
|
+
Plot stacked heatmaps + per-position mean barplots for any_C, GpC, CpG, and optional A.
|
|
271
826
|
|
|
272
|
-
|
|
827
|
+
Key fixes vs old version:
|
|
828
|
+
- order computed ONCE per bin, applied to all matrices
|
|
829
|
+
- no hard-coded axes indices
|
|
830
|
+
- NaNs excluded from methylation denominators
|
|
831
|
+
- var_names not forced to int
|
|
832
|
+
- fixed count of x tick labels per block (controllable)
|
|
833
|
+
- adata.uns updated once at end
|
|
834
|
+
|
|
835
|
+
Returns
|
|
836
|
+
-------
|
|
837
|
+
results : list[dict]
|
|
838
|
+
One entry per (sample, ref) plot with matrices + bin metadata.
|
|
839
|
+
"""
|
|
840
|
+
|
|
841
|
+
results: List[Dict[str, Any]] = []
|
|
842
|
+
save_path = Path(save_path) if save_path is not None else None
|
|
843
|
+
if save_path is not None:
|
|
844
|
+
save_path.mkdir(parents=True, exist_ok=True)
|
|
845
|
+
|
|
846
|
+
# Ensure categorical
|
|
847
|
+
for col in (sample_col, reference_col):
|
|
848
|
+
if col not in adata.obs:
|
|
849
|
+
raise KeyError(f"{col} not in adata.obs")
|
|
850
|
+
if not pd.api.types.is_categorical_dtype(adata.obs[col]):
|
|
851
|
+
adata.obs[col] = adata.obs[col].astype("category")
|
|
852
|
+
|
|
853
|
+
base_set = set(mod_target_bases)
|
|
854
|
+
include_any_c = any(b in {"C", "CpG", "GpC"} for b in base_set)
|
|
855
|
+
include_any_a = "A" in base_set
|
|
273
856
|
|
|
274
857
|
for ref in adata.obs[reference_col].cat.categories:
|
|
275
858
|
for sample in adata.obs[sample_col].cat.categories:
|
|
859
|
+
|
|
860
|
+
# Optionally remap sample label for display
|
|
861
|
+
display_sample = sample_mapping.get(sample, sample) if sample_mapping else sample
|
|
862
|
+
|
|
276
863
|
try:
|
|
277
864
|
subset = adata[
|
|
278
865
|
(adata.obs[reference_col] == ref) &
|
|
279
866
|
(adata.obs[sample_col] == sample) &
|
|
280
|
-
(adata.obs[
|
|
281
|
-
(adata.obs[
|
|
282
|
-
(adata.obs[
|
|
867
|
+
(adata.obs["read_quality"] >= min_quality) &
|
|
868
|
+
(adata.obs["mapped_length"] >= min_length) &
|
|
869
|
+
(adata.obs["mapped_length_to_reference_length_ratio"] >= min_mapped_length_to_reference_length_ratio)
|
|
283
870
|
]
|
|
284
871
|
|
|
285
|
-
|
|
286
|
-
|
|
872
|
+
# position-level mask
|
|
873
|
+
valid_key = f"{ref}_valid_fraction"
|
|
874
|
+
if valid_key in subset.var:
|
|
875
|
+
mask = subset.var[valid_key].astype(float).values > float(min_position_valid_fraction)
|
|
876
|
+
subset = subset[:, mask]
|
|
287
877
|
|
|
288
878
|
if subset.shape[0] == 0:
|
|
289
|
-
print(f"
|
|
879
|
+
print(f"No reads left after filtering for {display_sample} - {ref}")
|
|
290
880
|
continue
|
|
291
881
|
|
|
292
|
-
|
|
293
|
-
|
|
294
|
-
bins_temp =
|
|
882
|
+
# bins mode
|
|
883
|
+
if bins is None:
|
|
884
|
+
bins_temp = {"All": (subset.obs[reference_col] == ref)}
|
|
295
885
|
else:
|
|
296
|
-
|
|
297
|
-
bins_temp = {"All": (subset.obs['Reference_strand'] == ref)}
|
|
298
|
-
|
|
299
|
-
# Get column positions (not var_names!) of site masks
|
|
300
|
-
any_c_sites = np.where(subset.var[f"{ref}_any_C_site"].values)[0]
|
|
301
|
-
gpc_sites = np.where(subset.var[f"{ref}_GpC_site"].values)[0]
|
|
302
|
-
cpg_sites = np.where(subset.var[f"{ref}_CpG_site"].values)[0]
|
|
303
|
-
num_any_c = len(any_c_sites)
|
|
304
|
-
num_gpc = len(gpc_sites)
|
|
305
|
-
num_cpg = len(cpg_sites)
|
|
306
|
-
print(f"Found {num_gpc} GpC sites at {gpc_sites} \nand {num_cpg} CpG sites at {cpg_sites}\n and {num_any_c} any_C sites at {any_c_sites} for {sample} - {ref}")
|
|
307
|
-
|
|
308
|
-
# Use var_names for x-axis tick labels
|
|
309
|
-
gpc_labels = subset.var_names[gpc_sites].astype(int)
|
|
310
|
-
cpg_labels = subset.var_names[cpg_sites].astype(int)
|
|
311
|
-
any_c_labels = subset.var_names[any_c_sites].astype(int)
|
|
312
|
-
|
|
313
|
-
stacked_any_c, stacked_gpc, stacked_cpg = [], [], []
|
|
314
|
-
row_labels, bin_labels = [], []
|
|
315
|
-
bin_boundaries = []
|
|
886
|
+
bins_temp = bins
|
|
316
887
|
|
|
317
|
-
|
|
888
|
+
# find sites (positions)
|
|
889
|
+
any_c_sites = gpc_sites = cpg_sites = np.array([], dtype=int)
|
|
890
|
+
any_a_sites = np.array([], dtype=int)
|
|
891
|
+
|
|
892
|
+
num_any_c = num_gpc = num_cpg = num_any_a = 0
|
|
893
|
+
|
|
894
|
+
if include_any_c:
|
|
895
|
+
any_c_sites = np.where(subset.var.get(f"{ref}_C_site", False).values)[0]
|
|
896
|
+
gpc_sites = np.where(subset.var.get(f"{ref}_GpC_site", False).values)[0]
|
|
897
|
+
cpg_sites = np.where(subset.var.get(f"{ref}_CpG_site", False).values)[0]
|
|
898
|
+
|
|
899
|
+
num_any_c, num_gpc, num_cpg = len(any_c_sites), len(gpc_sites), len(cpg_sites)
|
|
900
|
+
|
|
901
|
+
any_c_labels = subset.var_names[any_c_sites].astype(str)
|
|
902
|
+
gpc_labels = subset.var_names[gpc_sites].astype(str)
|
|
903
|
+
cpg_labels = subset.var_names[cpg_sites].astype(str)
|
|
904
|
+
|
|
905
|
+
if include_any_a:
|
|
906
|
+
any_a_sites = np.where(subset.var.get(f"{ref}_A_site", False).values)[0]
|
|
907
|
+
num_any_a = len(any_a_sites)
|
|
908
|
+
any_a_labels = subset.var_names[any_a_sites].astype(str)
|
|
909
|
+
|
|
910
|
+
stacked_any_c, stacked_gpc, stacked_cpg, stacked_any_a = [], [], [], []
|
|
911
|
+
row_labels, bin_labels, bin_boundaries = [], [], []
|
|
318
912
|
percentages = {}
|
|
319
913
|
last_idx = 0
|
|
914
|
+
total_reads = subset.shape[0]
|
|
320
915
|
|
|
916
|
+
# ----------------------------
|
|
917
|
+
# per-bin stacking
|
|
918
|
+
# ----------------------------
|
|
321
919
|
for bin_label, bin_filter in bins_temp.items():
|
|
322
920
|
subset_bin = subset[bin_filter].copy()
|
|
323
921
|
num_reads = subset_bin.shape[0]
|
|
324
|
-
|
|
325
|
-
|
|
922
|
+
if num_reads == 0:
|
|
923
|
+
percentages[bin_label] = 0.0
|
|
924
|
+
continue
|
|
925
|
+
|
|
926
|
+
percent_reads = (num_reads / total_reads) * 100
|
|
326
927
|
percentages[bin_label] = percent_reads
|
|
327
928
|
|
|
328
|
-
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
|
|
332
|
-
order = np.argsort(subset_bin.obs[colname].values)
|
|
333
|
-
elif sort_by == "gpc":
|
|
334
|
-
linkage = sch.linkage(subset_bin[:, gpc_sites].layers[layer_gpc], method="ward")
|
|
335
|
-
order = sch.leaves_list(linkage)
|
|
336
|
-
elif sort_by == "cpg":
|
|
337
|
-
linkage = sch.linkage(subset_bin[:, cpg_sites].layers[layer_cpg], method="ward")
|
|
338
|
-
order = sch.leaves_list(linkage)
|
|
339
|
-
elif sort_by == "any_c":
|
|
340
|
-
linkage = sch.linkage(subset_bin[:, any_c_sites].layers[layer_any_c], method="ward")
|
|
341
|
-
order = sch.leaves_list(linkage)
|
|
342
|
-
elif sort_by == "gpc_cpg":
|
|
343
|
-
linkage = sch.linkage(subset_bin.layers[layer_gpc], method="ward")
|
|
344
|
-
order = sch.leaves_list(linkage)
|
|
345
|
-
elif sort_by == "none":
|
|
346
|
-
order = np.arange(num_reads)
|
|
347
|
-
else:
|
|
348
|
-
raise ValueError(f"Unsupported sort_by option: {sort_by}")
|
|
929
|
+
# compute order ONCE
|
|
930
|
+
if sort_by.startswith("obs:"):
|
|
931
|
+
colname = sort_by.split("obs:")[1]
|
|
932
|
+
order = np.argsort(subset_bin.obs[colname].values)
|
|
349
933
|
|
|
350
|
-
|
|
351
|
-
|
|
352
|
-
|
|
934
|
+
elif sort_by == "gpc" and num_gpc > 0:
|
|
935
|
+
linkage = sch.linkage(subset_bin[:, gpc_sites].layers[layer_gpc], method="ward")
|
|
936
|
+
order = sch.leaves_list(linkage)
|
|
353
937
|
|
|
354
|
-
|
|
355
|
-
|
|
356
|
-
|
|
357
|
-
bin_boundaries.append(last_idx)
|
|
938
|
+
elif sort_by == "cpg" and num_cpg > 0:
|
|
939
|
+
linkage = sch.linkage(subset_bin[:, cpg_sites].layers[layer_cpg], method="ward")
|
|
940
|
+
order = sch.leaves_list(linkage)
|
|
358
941
|
|
|
359
|
-
|
|
942
|
+
elif sort_by == "any_c" and num_any_c > 0:
|
|
943
|
+
linkage = sch.linkage(subset_bin[:, any_c_sites].layers[layer_any_c], method="ward")
|
|
944
|
+
order = sch.leaves_list(linkage)
|
|
945
|
+
|
|
946
|
+
elif sort_by == "gpc_cpg":
|
|
947
|
+
linkage = sch.linkage(subset_bin.layers[layer_gpc], method="ward")
|
|
948
|
+
order = sch.leaves_list(linkage)
|
|
949
|
+
|
|
950
|
+
elif sort_by == "any_a" and num_any_a > 0:
|
|
951
|
+
linkage = sch.linkage(subset_bin[:, any_a_sites].layers[layer_a], method="ward")
|
|
952
|
+
order = sch.leaves_list(linkage)
|
|
953
|
+
|
|
954
|
+
elif sort_by == "none":
|
|
955
|
+
order = np.arange(num_reads)
|
|
956
|
+
|
|
957
|
+
else:
|
|
958
|
+
order = np.arange(num_reads)
|
|
959
|
+
|
|
960
|
+
subset_bin = subset_bin[order]
|
|
961
|
+
|
|
962
|
+
# stack consistently
|
|
963
|
+
if include_any_c and num_any_c > 0:
|
|
964
|
+
stacked_any_c.append(subset_bin[:, any_c_sites].layers[layer_any_c])
|
|
965
|
+
if include_any_c and num_gpc > 0:
|
|
966
|
+
stacked_gpc.append(subset_bin[:, gpc_sites].layers[layer_gpc])
|
|
967
|
+
if include_any_c and num_cpg > 0:
|
|
968
|
+
stacked_cpg.append(subset_bin[:, cpg_sites].layers[layer_cpg])
|
|
969
|
+
if include_any_a and num_any_a > 0:
|
|
970
|
+
stacked_any_a.append(subset_bin[:, any_a_sites].layers[layer_a])
|
|
971
|
+
|
|
972
|
+
row_labels.extend([bin_label] * num_reads)
|
|
973
|
+
bin_labels.append(f"{bin_label}: {num_reads} reads ({percent_reads:.1f}%)")
|
|
974
|
+
last_idx += num_reads
|
|
975
|
+
bin_boundaries.append(last_idx)
|
|
976
|
+
|
|
977
|
+
# ----------------------------
|
|
978
|
+
# build matrices + means
|
|
979
|
+
# ----------------------------
|
|
980
|
+
blocks = [] # list of dicts describing what to plot in order
|
|
981
|
+
|
|
982
|
+
if include_any_c and stacked_any_c:
|
|
360
983
|
any_c_matrix = np.vstack(stacked_any_c)
|
|
361
|
-
gpc_matrix
|
|
362
|
-
cpg_matrix
|
|
363
|
-
|
|
364
|
-
if any_c_matrix.size
|
|
365
|
-
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
|
|
369
|
-
|
|
370
|
-
|
|
371
|
-
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
375
|
-
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
|
|
385
|
-
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
|
|
984
|
+
gpc_matrix = np.vstack(stacked_gpc) if stacked_gpc else np.empty((0, 0))
|
|
985
|
+
cpg_matrix = np.vstack(stacked_cpg) if stacked_cpg else np.empty((0, 0))
|
|
986
|
+
|
|
987
|
+
mean_any_c = methylation_fraction(any_c_matrix) if any_c_matrix.size else None
|
|
988
|
+
mean_gpc = methylation_fraction(gpc_matrix) if gpc_matrix.size else None
|
|
989
|
+
mean_cpg = methylation_fraction(cpg_matrix) if cpg_matrix.size else None
|
|
990
|
+
|
|
991
|
+
if any_c_matrix.size:
|
|
992
|
+
blocks.append(dict(
|
|
993
|
+
name="any_c",
|
|
994
|
+
matrix=any_c_matrix,
|
|
995
|
+
mean=mean_any_c,
|
|
996
|
+
labels=any_c_labels,
|
|
997
|
+
cmap=cmap_any_c,
|
|
998
|
+
n_xticks=n_xticks_any_c,
|
|
999
|
+
title="any C site Modification Signal"
|
|
1000
|
+
))
|
|
1001
|
+
if gpc_matrix.size:
|
|
1002
|
+
blocks.append(dict(
|
|
1003
|
+
name="gpc",
|
|
1004
|
+
matrix=gpc_matrix,
|
|
1005
|
+
mean=mean_gpc,
|
|
1006
|
+
labels=gpc_labels,
|
|
1007
|
+
cmap=cmap_gpc,
|
|
1008
|
+
n_xticks=n_xticks_gpc,
|
|
1009
|
+
title="GpC Modification Signal"
|
|
1010
|
+
))
|
|
1011
|
+
if cpg_matrix.size:
|
|
1012
|
+
blocks.append(dict(
|
|
1013
|
+
name="cpg",
|
|
1014
|
+
matrix=cpg_matrix,
|
|
1015
|
+
mean=mean_cpg,
|
|
1016
|
+
labels=cpg_labels,
|
|
1017
|
+
cmap=cmap_cpg,
|
|
1018
|
+
n_xticks=n_xticks_cpg,
|
|
1019
|
+
title="CpG Modification Signal"
|
|
1020
|
+
))
|
|
1021
|
+
|
|
1022
|
+
if include_any_a and stacked_any_a:
|
|
1023
|
+
any_a_matrix = np.vstack(stacked_any_a)
|
|
1024
|
+
mean_any_a = methylation_fraction(any_a_matrix) if any_a_matrix.size else None
|
|
1025
|
+
if any_a_matrix.size:
|
|
1026
|
+
blocks.append(dict(
|
|
1027
|
+
name="any_a",
|
|
1028
|
+
matrix=any_a_matrix,
|
|
1029
|
+
mean=mean_any_a,
|
|
1030
|
+
labels=any_a_labels,
|
|
1031
|
+
cmap=cmap_a,
|
|
1032
|
+
n_xticks=n_xticks_any_a,
|
|
1033
|
+
title="any A site Modification Signal"
|
|
1034
|
+
))
|
|
1035
|
+
|
|
1036
|
+
if not blocks:
|
|
1037
|
+
print(f"No matrices to plot for {display_sample} - {ref}")
|
|
1038
|
+
continue
|
|
390
1039
|
|
|
391
|
-
|
|
392
|
-
|
|
393
|
-
|
|
394
|
-
|
|
395
|
-
|
|
396
|
-
|
|
397
|
-
|
|
398
|
-
|
|
399
|
-
|
|
400
|
-
|
|
401
|
-
|
|
402
|
-
|
|
403
|
-
|
|
404
|
-
|
|
405
|
-
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
|
|
410
|
-
|
|
411
|
-
|
|
412
|
-
|
|
413
|
-
|
|
414
|
-
|
|
415
|
-
|
|
416
|
-
|
|
417
|
-
|
|
418
|
-
|
|
419
|
-
|
|
420
|
-
|
|
421
|
-
|
|
422
|
-
|
|
423
|
-
|
|
424
|
-
|
|
425
|
-
|
|
426
|
-
|
|
427
|
-
|
|
428
|
-
|
|
429
|
-
|
|
430
|
-
|
|
431
|
-
|
|
432
|
-
|
|
433
|
-
|
|
434
|
-
|
|
435
|
-
|
|
436
|
-
|
|
437
|
-
|
|
1040
|
+
gs_dim = len(blocks)
|
|
1041
|
+
fig = plt.figure(figsize=(5.5 * gs_dim, 11))
|
|
1042
|
+
gs = gridspec.GridSpec(2, gs_dim, height_ratios=[1, 6], hspace=0.02)
|
|
1043
|
+
fig.suptitle(f"{display_sample} - {ref} - {total_reads} reads", fontsize=14, y=0.97)
|
|
1044
|
+
|
|
1045
|
+
axes_heat = [fig.add_subplot(gs[1, i]) for i in range(gs_dim)]
|
|
1046
|
+
axes_bar = [fig.add_subplot(gs[0, i], sharex=axes_heat[i]) for i in range(gs_dim)]
|
|
1047
|
+
|
|
1048
|
+
# ----------------------------
|
|
1049
|
+
# plot blocks
|
|
1050
|
+
# ----------------------------
|
|
1051
|
+
for i, blk in enumerate(blocks):
|
|
1052
|
+
mat = blk["matrix"]
|
|
1053
|
+
mean = blk["mean"]
|
|
1054
|
+
labels = np.asarray(blk["labels"], dtype=str)
|
|
1055
|
+
n_xticks = blk["n_xticks"]
|
|
1056
|
+
|
|
1057
|
+
# barplot
|
|
1058
|
+
clean_barplot(axes_bar[i], mean, blk["title"])
|
|
1059
|
+
|
|
1060
|
+
# heatmap
|
|
1061
|
+
sns.heatmap(
|
|
1062
|
+
mat,
|
|
1063
|
+
cmap=blk["cmap"],
|
|
1064
|
+
ax=axes_heat[i],
|
|
1065
|
+
yticklabels=False,
|
|
1066
|
+
cbar=False
|
|
1067
|
+
)
|
|
1068
|
+
|
|
1069
|
+
# fixed tick labels
|
|
1070
|
+
tick_pos = _fixed_tick_positions(len(labels), n_xticks)
|
|
1071
|
+
axes_heat[i].set_xticks(tick_pos)
|
|
1072
|
+
axes_heat[i].set_xticklabels(
|
|
1073
|
+
labels[tick_pos],
|
|
1074
|
+
rotation=xtick_rotation,
|
|
1075
|
+
fontsize=xtick_fontsize
|
|
1076
|
+
)
|
|
1077
|
+
|
|
1078
|
+
# bin separators
|
|
1079
|
+
for boundary in bin_boundaries[:-1]:
|
|
1080
|
+
axes_heat[i].axhline(y=boundary, color="black", linewidth=2)
|
|
1081
|
+
|
|
1082
|
+
axes_heat[i].set_xlabel("Position", fontsize=9)
|
|
1083
|
+
|
|
1084
|
+
plt.tight_layout()
|
|
1085
|
+
|
|
1086
|
+
# save or show
|
|
1087
|
+
if save_path is not None:
|
|
1088
|
+
safe_name = f"{ref}__{display_sample}".replace("=", "").replace("__", "_").replace(",", "_").replace(" ", "_")
|
|
1089
|
+
out_file = save_path / f"{safe_name}.png"
|
|
1090
|
+
fig.savefig(out_file, dpi=300)
|
|
1091
|
+
plt.close(fig)
|
|
1092
|
+
print(f"Saved: {out_file}")
|
|
1093
|
+
else:
|
|
1094
|
+
plt.show()
|
|
1095
|
+
|
|
1096
|
+
# record results
|
|
1097
|
+
rec = {
|
|
1098
|
+
"sample": str(sample),
|
|
1099
|
+
"ref": str(ref),
|
|
1100
|
+
"row_labels": row_labels,
|
|
1101
|
+
"bin_labels": bin_labels,
|
|
1102
|
+
"bin_boundaries": bin_boundaries,
|
|
1103
|
+
"percentages": percentages,
|
|
1104
|
+
}
|
|
1105
|
+
for blk in blocks:
|
|
1106
|
+
rec[f"{blk['name']}_matrix"] = blk["matrix"]
|
|
1107
|
+
rec[f"{blk['name']}_labels"] = list(map(str, blk["labels"]))
|
|
1108
|
+
results.append(rec)
|
|
1109
|
+
|
|
1110
|
+
print(f"Summary for {display_sample} - {ref}:")
|
|
1111
|
+
for bin_label, percent in percentages.items():
|
|
1112
|
+
print(f" - {bin_label}: {percent:.1f}%")
|
|
438
1113
|
|
|
439
1114
|
except Exception as e:
|
|
440
1115
|
import traceback
|
|
441
1116
|
traceback.print_exc()
|
|
442
1117
|
continue
|
|
443
|
-
|
|
444
1118
|
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
|
|
1119
|
+
# store once at the end (HDF5 safe)
|
|
1120
|
+
# matrices won't be HDF5-safe; store only metadata + maybe hit counts
|
|
1121
|
+
# adata.uns["clustermap_results"] = [
|
|
1122
|
+
# {k: v for k, v in r.items() if not k.endswith("_matrix")}
|
|
1123
|
+
# for r in results
|
|
1124
|
+
# ]
|
|
448
1125
|
|
|
449
|
-
|
|
450
|
-
import pandas as pd
|
|
451
|
-
import matplotlib.pyplot as plt
|
|
1126
|
+
return results
|
|
452
1127
|
|
|
453
1128
|
def plot_hmm_layers_rolling_by_sample_ref(
|
|
454
1129
|
adata,
|