smftools 0.1.7__py3-none-any.whl → 0.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- smftools/__init__.py +9 -4
- smftools/_version.py +1 -1
- smftools/cli.py +184 -0
- smftools/config/__init__.py +1 -0
- smftools/config/conversion.yaml +33 -0
- smftools/config/deaminase.yaml +56 -0
- smftools/config/default.yaml +253 -0
- smftools/config/direct.yaml +17 -0
- smftools/config/experiment_config.py +1191 -0
- smftools/hmm/HMM.py +1576 -0
- smftools/hmm/__init__.py +20 -0
- smftools/{tools → hmm}/apply_hmm_batched.py +8 -7
- smftools/hmm/call_hmm_peaks.py +106 -0
- smftools/{tools → hmm}/display_hmm.py +3 -3
- smftools/{tools → hmm}/nucleosome_hmm_refinement.py +2 -2
- smftools/{tools → hmm}/train_hmm.py +1 -1
- smftools/informatics/__init__.py +0 -2
- smftools/informatics/archived/deaminase_smf.py +132 -0
- smftools/informatics/fast5_to_pod5.py +4 -1
- smftools/informatics/helpers/__init__.py +3 -4
- smftools/informatics/helpers/align_and_sort_BAM.py +34 -7
- smftools/informatics/helpers/aligned_BAM_to_bed.py +35 -24
- smftools/informatics/helpers/binarize_converted_base_identities.py +116 -23
- smftools/informatics/helpers/concatenate_fastqs_to_bam.py +365 -42
- smftools/informatics/helpers/converted_BAM_to_adata_II.py +165 -29
- smftools/informatics/helpers/discover_input_files.py +100 -0
- smftools/informatics/helpers/extract_base_identities.py +29 -3
- smftools/informatics/helpers/extract_read_features_from_bam.py +4 -2
- smftools/informatics/helpers/find_conversion_sites.py +5 -4
- smftools/informatics/helpers/modkit_extract_to_adata.py +6 -3
- smftools/informatics/helpers/plot_bed_histograms.py +269 -0
- smftools/informatics/helpers/separate_bam_by_bc.py +2 -2
- smftools/informatics/helpers/split_and_index_BAM.py +1 -5
- smftools/load_adata.py +1346 -0
- smftools/machine_learning/__init__.py +12 -0
- smftools/machine_learning/data/__init__.py +2 -0
- smftools/machine_learning/data/anndata_data_module.py +234 -0
- smftools/machine_learning/evaluation/__init__.py +2 -0
- smftools/machine_learning/evaluation/eval_utils.py +31 -0
- smftools/machine_learning/evaluation/evaluators.py +223 -0
- smftools/machine_learning/inference/__init__.py +3 -0
- smftools/machine_learning/inference/inference_utils.py +27 -0
- smftools/machine_learning/inference/lightning_inference.py +68 -0
- smftools/machine_learning/inference/sklearn_inference.py +55 -0
- smftools/machine_learning/inference/sliding_window_inference.py +114 -0
- smftools/machine_learning/models/base.py +295 -0
- smftools/machine_learning/models/cnn.py +138 -0
- smftools/machine_learning/models/lightning_base.py +345 -0
- smftools/machine_learning/models/mlp.py +26 -0
- smftools/{tools → machine_learning}/models/positional.py +3 -2
- smftools/{tools → machine_learning}/models/rnn.py +2 -1
- smftools/machine_learning/models/sklearn_models.py +273 -0
- smftools/machine_learning/models/transformer.py +303 -0
- smftools/machine_learning/training/__init__.py +2 -0
- smftools/machine_learning/training/train_lightning_model.py +135 -0
- smftools/machine_learning/training/train_sklearn_model.py +114 -0
- smftools/plotting/__init__.py +4 -1
- smftools/plotting/autocorrelation_plotting.py +611 -0
- smftools/plotting/general_plotting.py +566 -89
- smftools/plotting/hmm_plotting.py +260 -0
- smftools/plotting/qc_plotting.py +270 -0
- smftools/preprocessing/__init__.py +13 -8
- smftools/preprocessing/add_read_length_and_mapping_qc.py +129 -0
- smftools/preprocessing/append_base_context.py +122 -0
- smftools/preprocessing/append_binary_layer_by_base_context.py +143 -0
- smftools/preprocessing/calculate_complexity_II.py +248 -0
- smftools/preprocessing/calculate_coverage.py +10 -1
- smftools/preprocessing/calculate_read_modification_stats.py +101 -0
- smftools/preprocessing/clean_NaN.py +17 -1
- smftools/preprocessing/filter_reads_on_length_quality_mapping.py +158 -0
- smftools/preprocessing/filter_reads_on_modification_thresholds.py +352 -0
- smftools/preprocessing/flag_duplicate_reads.py +1326 -124
- smftools/preprocessing/invert_adata.py +12 -5
- smftools/preprocessing/load_sample_sheet.py +19 -4
- smftools/readwrite.py +849 -43
- smftools/tools/__init__.py +3 -32
- smftools/tools/calculate_umap.py +5 -5
- smftools/tools/general_tools.py +3 -3
- smftools/tools/position_stats.py +468 -106
- smftools/tools/read_stats.py +115 -1
- smftools/tools/spatial_autocorrelation.py +562 -0
- {smftools-0.1.7.dist-info → smftools-0.2.1.dist-info}/METADATA +5 -1
- smftools-0.2.1.dist-info/RECORD +161 -0
- smftools-0.2.1.dist-info/entry_points.txt +2 -0
- smftools/informatics/helpers/LoadExperimentConfig.py +0 -75
- smftools/informatics/helpers/plot_read_length_and_coverage_histograms.py +0 -53
- smftools/informatics/load_adata.py +0 -182
- smftools/preprocessing/append_C_context.py +0 -82
- smftools/preprocessing/calculate_converted_read_methylation_stats.py +0 -94
- smftools/preprocessing/filter_converted_reads_on_methylation.py +0 -44
- smftools/preprocessing/filter_reads_on_length.py +0 -51
- smftools/tools/call_hmm_peaks.py +0 -105
- smftools/tools/data/__init__.py +0 -2
- smftools/tools/data/anndata_data_module.py +0 -90
- smftools/tools/evaluation/__init__.py +0 -0
- smftools/tools/inference/__init__.py +0 -1
- smftools/tools/inference/lightning_inference.py +0 -41
- smftools/tools/models/base.py +0 -14
- smftools/tools/models/cnn.py +0 -34
- smftools/tools/models/lightning_base.py +0 -41
- smftools/tools/models/mlp.py +0 -17
- smftools/tools/models/sklearn_models.py +0 -40
- smftools/tools/models/transformer.py +0 -133
- smftools/tools/training/__init__.py +0 -1
- smftools/tools/training/train_lightning_model.py +0 -47
- smftools-0.1.7.dist-info/RECORD +0 -136
- /smftools/{tools → hmm}/calculate_distances.py +0 -0
- /smftools/{tools → hmm}/hmm_readwrite.py +0 -0
- /smftools/informatics/{conversion_smf.py → archived/conversion_smf.py} +0 -0
- /smftools/informatics/{direct_smf.py → archived/direct_smf.py} +0 -0
- /smftools/{tools → machine_learning}/data/preprocessing.py +0 -0
- /smftools/{tools → machine_learning}/models/__init__.py +0 -0
- /smftools/{tools → machine_learning}/models/wrappers.py +0 -0
- /smftools/{tools → machine_learning}/utils/__init__.py +0 -0
- /smftools/{tools → machine_learning}/utils/device.py +0 -0
- /smftools/{tools → machine_learning}/utils/grl.py +0 -0
- /smftools/tools/{apply_hmm.py → archived/apply_hmm.py} +0 -0
- /smftools/tools/{classifiers.py → archived/classifiers.py} +0 -0
- {smftools-0.1.7.dist-info → smftools-0.2.1.dist-info}/WHEEL +0 -0
- {smftools-0.1.7.dist-info → smftools-0.2.1.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,269 @@
|
|
|
1
|
+
# plot_bed_histograms
|
|
2
|
+
|
|
3
|
+
def plot_bed_histograms(bed_file, plotting_directory, fasta):
|
|
4
|
+
"""
|
|
5
|
+
Plots read length, coverage, mapq, read quality stats for each record.
|
|
6
|
+
|
|
7
|
+
Parameters:
|
|
8
|
+
bed_file (str): Path to the bed file to derive metrics from.
|
|
9
|
+
plot_directory (str): Path to the directory to write out historgrams.
|
|
10
|
+
fasta (str): Path to FASTA corresponding to bed
|
|
11
|
+
|
|
12
|
+
Returns:
|
|
13
|
+
None
|
|
14
|
+
"""
|
|
15
|
+
import pandas as pd
|
|
16
|
+
import matplotlib.pyplot as plt
|
|
17
|
+
import numpy as np
|
|
18
|
+
import os
|
|
19
|
+
|
|
20
|
+
# plot_bed_histograms.py
|
|
21
|
+
|
|
22
|
+
def plot_bed_histograms(
|
|
23
|
+
bed_file,
|
|
24
|
+
plotting_directory,
|
|
25
|
+
fasta,
|
|
26
|
+
*,
|
|
27
|
+
bins=60,
|
|
28
|
+
clip_quantiles=(0.0, 0.995),
|
|
29
|
+
cov_bin_size=1000, # coverage bin size in bp
|
|
30
|
+
rows_per_fig=6, # paginate if many chromosomes
|
|
31
|
+
include_mapq_quality=True, # add MAPQ + avg read quality columns to grid
|
|
32
|
+
coordinate_mode="one_based", # "one_based" (your BED-like) or "zero_based"
|
|
33
|
+
):
|
|
34
|
+
"""
|
|
35
|
+
Plot per-chromosome QC grids from a BED-like file.
|
|
36
|
+
|
|
37
|
+
Expects columns:
|
|
38
|
+
chrom, start, end, read_len, qname, mapq, avg_base_qual
|
|
39
|
+
|
|
40
|
+
For each chromosome:
|
|
41
|
+
- Column 1: Read length histogram
|
|
42
|
+
- Column 2: Coverage across the chromosome (binned)
|
|
43
|
+
- (optional) Column 3: MAPQ histogram
|
|
44
|
+
- (optional) Column 4: Avg base quality histogram
|
|
45
|
+
|
|
46
|
+
The figure is paginated: rows = chromosomes (up to rows_per_fig), columns depend on include_mapq_quality.
|
|
47
|
+
Saves one PNG per page under `plotting_directory`.
|
|
48
|
+
|
|
49
|
+
Parameters
|
|
50
|
+
----------
|
|
51
|
+
bed_file : str
|
|
52
|
+
plotting_directory : str
|
|
53
|
+
fasta : str
|
|
54
|
+
Reference FASTA (used to get chromosome lengths).
|
|
55
|
+
bins : int
|
|
56
|
+
Histogram bins for read length / MAPQ / quality.
|
|
57
|
+
clip_quantiles : (float, float)
|
|
58
|
+
Clip hist tails for readability (e.g., (0, 0.995)).
|
|
59
|
+
cov_bin_size : int
|
|
60
|
+
Bin size (bp) for coverage plot; bigger = faster/coarser.
|
|
61
|
+
rows_per_fig : int
|
|
62
|
+
Number of chromosomes per page.
|
|
63
|
+
include_mapq_quality : bool
|
|
64
|
+
If True, add MAPQ and avg base quality histograms as extra columns.
|
|
65
|
+
coordinate_mode : {"one_based","zero_based"}
|
|
66
|
+
One-based, inclusive (your file) vs BED-standard zero-based, half-open.
|
|
67
|
+
"""
|
|
68
|
+
import os
|
|
69
|
+
import numpy as np
|
|
70
|
+
import pandas as pd
|
|
71
|
+
import matplotlib.pyplot as plt
|
|
72
|
+
import pysam
|
|
73
|
+
|
|
74
|
+
os.makedirs(plotting_directory, exist_ok=True)
|
|
75
|
+
|
|
76
|
+
bed_basename = os.path.basename(bed_file).rsplit(".bed", 1)[0]
|
|
77
|
+
print(f"[plot_bed_histograms] Loading: {bed_file}")
|
|
78
|
+
|
|
79
|
+
# Load BED-like table
|
|
80
|
+
cols = ['chrom', 'start', 'end', 'read_len', 'qname', 'mapq', 'avg_q']
|
|
81
|
+
df = pd.read_csv(bed_file, sep="\t", header=None, names=cols, dtype={
|
|
82
|
+
'chrom': str, 'start': int, 'end': int, 'read_len': int, 'qname': str,
|
|
83
|
+
'mapq': float, 'avg_q': float
|
|
84
|
+
})
|
|
85
|
+
|
|
86
|
+
# Drop unaligned records (chrom == '*') if present
|
|
87
|
+
df = df[df['chrom'] != '*'].copy()
|
|
88
|
+
if df.empty:
|
|
89
|
+
print("[plot_bed_histograms] No aligned reads found; nothing to plot.")
|
|
90
|
+
return
|
|
91
|
+
|
|
92
|
+
# Ensure coordinate mode consistent; convert to 0-based half-open for bin math internally
|
|
93
|
+
# Input is typically one_based inclusive (from your writer).
|
|
94
|
+
if coordinate_mode not in {"one_based", "zero_based"}:
|
|
95
|
+
raise ValueError("coordinate_mode must be 'one_based' or 'zero_based'")
|
|
96
|
+
|
|
97
|
+
if coordinate_mode == "one_based":
|
|
98
|
+
# convert to 0-based half-open [start0, end0)
|
|
99
|
+
start0 = df['start'].to_numpy() - 1
|
|
100
|
+
end0 = df['end'].to_numpy() # inclusive in input -> +1 already handled by not subtracting
|
|
101
|
+
else:
|
|
102
|
+
# already 0-based half-open (assumption)
|
|
103
|
+
start0 = df['start'].to_numpy()
|
|
104
|
+
end0 = df['end'].to_numpy()
|
|
105
|
+
|
|
106
|
+
# Clip helper for hist tails
|
|
107
|
+
def _clip_series(s, q=(0.0, 0.995)):
|
|
108
|
+
if q is None:
|
|
109
|
+
return s.to_numpy()
|
|
110
|
+
lo = s.quantile(q[0]) if q[0] is not None else s.min()
|
|
111
|
+
hi = s.quantile(q[1]) if q[1] is not None else s.max()
|
|
112
|
+
x = s.to_numpy(dtype=float)
|
|
113
|
+
return np.clip(x, lo, hi)
|
|
114
|
+
|
|
115
|
+
# Load chromosome order/lengths from FASTA
|
|
116
|
+
with pysam.FastaFile(fasta) as fa:
|
|
117
|
+
ref_names = list(fa.references)
|
|
118
|
+
ref_lengths = dict(zip(ref_names, fa.lengths))
|
|
119
|
+
|
|
120
|
+
# Keep only chroms present in FASTA and with at least one read
|
|
121
|
+
chroms = [c for c in df['chrom'].unique() if c in ref_lengths]
|
|
122
|
+
# Order chromosomes by FASTA order
|
|
123
|
+
chrom_order = [c for c in ref_names if c in chroms]
|
|
124
|
+
|
|
125
|
+
if not chrom_order:
|
|
126
|
+
print("[plot_bed_histograms] No chromosomes from BED are present in FASTA; aborting.")
|
|
127
|
+
return
|
|
128
|
+
|
|
129
|
+
# Pagination
|
|
130
|
+
def _sanitize(name: str) -> str:
|
|
131
|
+
return "".join(ch if ch.isalnum() or ch in "-._" else "_" for ch in name)
|
|
132
|
+
|
|
133
|
+
cols_per_fig = 4 if include_mapq_quality else 2
|
|
134
|
+
|
|
135
|
+
for start_idx in range(0, len(chrom_order), rows_per_fig):
|
|
136
|
+
chunk = chrom_order[start_idx:start_idx + rows_per_fig]
|
|
137
|
+
nrows = len(chunk)
|
|
138
|
+
ncols = cols_per_fig
|
|
139
|
+
|
|
140
|
+
fig, axes = plt.subplots(
|
|
141
|
+
nrows=nrows, ncols=ncols,
|
|
142
|
+
figsize=(4.0 * ncols, 2.6 * nrows),
|
|
143
|
+
dpi=160,
|
|
144
|
+
squeeze=False
|
|
145
|
+
)
|
|
146
|
+
|
|
147
|
+
for r, chrom in enumerate(chunk):
|
|
148
|
+
chrom_len = ref_lengths[chrom]
|
|
149
|
+
mask = (df['chrom'].to_numpy() == chrom)
|
|
150
|
+
|
|
151
|
+
# Slice per-chrom arrays for speed
|
|
152
|
+
s0 = start0[mask]
|
|
153
|
+
e0 = end0[mask]
|
|
154
|
+
len_arr = df.loc[mask, 'read_len']
|
|
155
|
+
mapq_arr = df.loc[mask, 'mapq']
|
|
156
|
+
q_arr = df.loc[mask, 'avg_q']
|
|
157
|
+
|
|
158
|
+
# --- Col 1: Read length histogram (clipped) ---
|
|
159
|
+
ax = axes[r, 0]
|
|
160
|
+
ax.hist(_clip_series(len_arr, clip_quantiles), bins=bins, edgecolor="black", alpha=0.7)
|
|
161
|
+
if r == 0:
|
|
162
|
+
ax.set_title("Read length")
|
|
163
|
+
ax.set_ylabel(f"{chrom}\n(n={mask.sum()})")
|
|
164
|
+
ax.set_xlabel("bp")
|
|
165
|
+
ax.grid(alpha=0.25)
|
|
166
|
+
|
|
167
|
+
# --- Col 2: Coverage (binned over genome) ---
|
|
168
|
+
ax = axes[r, 1]
|
|
169
|
+
nb = max(1, int(np.ceil(chrom_len / cov_bin_size)))
|
|
170
|
+
# Bin edges in 0-based coords
|
|
171
|
+
edges = np.linspace(0, chrom_len, nb + 1, dtype=int)
|
|
172
|
+
|
|
173
|
+
# Compute per-bin "read count coverage": number of reads overlapping each bin.
|
|
174
|
+
# Approximate by incrementing all bins touched by the interval.
|
|
175
|
+
# (Fast and memory-light; for exact base coverage use smaller cov_bin_size.)
|
|
176
|
+
cov = np.zeros(nb, dtype=np.int32)
|
|
177
|
+
# bin indices overlapped by each read (0-based half-open)
|
|
178
|
+
b0 = np.minimum(np.searchsorted(edges, s0, side="right") - 1, nb - 1)
|
|
179
|
+
b1 = np.maximum(np.searchsorted(edges, np.maximum(e0 - 1, 0), side="right") - 1, 0)
|
|
180
|
+
# ensure valid ordering
|
|
181
|
+
b_lo = np.minimum(b0, b1)
|
|
182
|
+
b_hi = np.maximum(b0, b1)
|
|
183
|
+
|
|
184
|
+
# Increment all bins in range; loop but at bin resolution (fast for reasonable cov_bin_size).
|
|
185
|
+
for lo, hi in zip(b_lo, b_hi):
|
|
186
|
+
cov[lo:hi + 1] += 1
|
|
187
|
+
|
|
188
|
+
x_mid = (edges[:-1] + edges[1:]) / 2.0
|
|
189
|
+
ax.plot(x_mid, cov)
|
|
190
|
+
if r == 0:
|
|
191
|
+
ax.set_title(f"Coverage (~{cov_bin_size} bp bins)")
|
|
192
|
+
ax.set_xlim(0, chrom_len)
|
|
193
|
+
ax.set_xlabel("Position (bp)")
|
|
194
|
+
ax.set_ylabel("") # already show chrom on col 1
|
|
195
|
+
ax.grid(alpha=0.25)
|
|
196
|
+
|
|
197
|
+
if include_mapq_quality:
|
|
198
|
+
# --- Col 3: MAPQ ---
|
|
199
|
+
ax = axes[r, 2]
|
|
200
|
+
# Clip MAPQ upper tail if needed (usually 60)
|
|
201
|
+
ax.hist(_clip_series(mapq_arr.fillna(0), clip_quantiles), bins=bins, edgecolor="black", alpha=0.7)
|
|
202
|
+
if r == 0:
|
|
203
|
+
ax.set_title("MAPQ")
|
|
204
|
+
ax.set_xlabel("MAPQ")
|
|
205
|
+
ax.grid(alpha=0.25)
|
|
206
|
+
|
|
207
|
+
# --- Col 4: Avg base quality ---
|
|
208
|
+
ax = axes[r, 3]
|
|
209
|
+
ax.hist(_clip_series(q_arr.fillna(np.nan), clip_quantiles), bins=bins, edgecolor="black", alpha=0.7)
|
|
210
|
+
if r == 0:
|
|
211
|
+
ax.set_title("Avg base qual")
|
|
212
|
+
ax.set_xlabel("Phred")
|
|
213
|
+
ax.grid(alpha=0.25)
|
|
214
|
+
|
|
215
|
+
fig.suptitle(
|
|
216
|
+
f"{bed_basename} — per-chromosome QC "
|
|
217
|
+
f"({'len,cov,MAPQ,qual' if include_mapq_quality else 'len,cov'})",
|
|
218
|
+
y=0.995, fontsize=11
|
|
219
|
+
)
|
|
220
|
+
fig.tight_layout(rect=[0, 0, 1, 0.98])
|
|
221
|
+
|
|
222
|
+
page = start_idx // rows_per_fig + 1
|
|
223
|
+
out_png = os.path.join(plotting_directory, f"{_sanitize(bed_basename)}_qc_page{page}.png")
|
|
224
|
+
plt.savefig(out_png, bbox_inches="tight")
|
|
225
|
+
plt.close(fig)
|
|
226
|
+
|
|
227
|
+
print("[plot_bed_histograms] Done.")
|
|
228
|
+
|
|
229
|
+
|
|
230
|
+
# bed_basename = os.path.basename(bed_file).split('.bed')[0]
|
|
231
|
+
# # Load the BED file into a DataFrame
|
|
232
|
+
# print(f"Loading BED to plot read length and coverage histograms: {bed_file}")
|
|
233
|
+
# df = pd.read_csv(bed_file, sep='\t', header=None, names=['chromosome', 'start', 'end', 'length', 'read_name', 'mapq', 'read_quality'])
|
|
234
|
+
|
|
235
|
+
# # Group by chromosome
|
|
236
|
+
# grouped = df.groupby('chromosome')
|
|
237
|
+
|
|
238
|
+
# # for each chromosome, get the record length of that chromosome from the fasta. Use from 0 to this length for the positional coverage plot.
|
|
239
|
+
|
|
240
|
+
# # Change below and make a plot grid instead. For each, make row for chromsome, col for read length and coverage
|
|
241
|
+
# # Clip the outliers to make plots cleaner
|
|
242
|
+
|
|
243
|
+
# for chrom, group in grouped:
|
|
244
|
+
# # Plot read length histogram
|
|
245
|
+
# plt.figure(figsize=(12, 6))
|
|
246
|
+
# plt.hist(group['length'], bins=50, edgecolor='k', alpha=0.7)
|
|
247
|
+
# plt.title(f'Read Length Histogram of reads aligned to {chrom}')
|
|
248
|
+
# plt.xlabel('Read Length')
|
|
249
|
+
# plt.ylabel('Count')
|
|
250
|
+
# plt.grid(True)
|
|
251
|
+
# save_name = os.path.join(plotting_directory, f'{bed_basename}_{chrom}_read_length_histogram.png')
|
|
252
|
+
# plt.savefig(save_name)
|
|
253
|
+
# plt.close()
|
|
254
|
+
|
|
255
|
+
# # Compute coverage
|
|
256
|
+
# coverage = np.zeros(group['end'].max())
|
|
257
|
+
# for _, row in group.iterrows():
|
|
258
|
+
# coverage[row['start']:row['end']] += 1
|
|
259
|
+
|
|
260
|
+
# # Plot coverage histogram
|
|
261
|
+
# plt.figure(figsize=(12, 6))
|
|
262
|
+
# plt.plot(coverage, color='b')
|
|
263
|
+
# plt.title(f'Coverage Histogram for {chrom}')
|
|
264
|
+
# plt.xlabel('Position')
|
|
265
|
+
# plt.ylabel('Coverage')
|
|
266
|
+
# plt.grid(True)
|
|
267
|
+
# save_name = os.path.join(plotting_directory, f'{bed_basename}_{chrom}_coverage_histogram.png')
|
|
268
|
+
# plt.savefig(save_name)
|
|
269
|
+
# plt.close()
|
|
@@ -1,6 +1,5 @@
|
|
|
1
1
|
## separate_bam_by_bc
|
|
2
2
|
|
|
3
|
-
# General
|
|
4
3
|
def separate_bam_by_bc(input_bam, output_prefix, bam_suffix, split_dir):
|
|
5
4
|
"""
|
|
6
5
|
Separates an input BAM file on the BC SAM tag values.
|
|
@@ -29,7 +28,8 @@ def separate_bam_by_bc(input_bam, output_prefix, bam_suffix, split_dir):
|
|
|
29
28
|
for read in bam:
|
|
30
29
|
try:
|
|
31
30
|
# Get the barcode tag value
|
|
32
|
-
bc_tag = read.get_tag("BC", with_value_type=True)[0]
|
|
31
|
+
bc_tag = read.get_tag("BC", with_value_type=True)[0]
|
|
32
|
+
#bc_tag = read.get_tag("BC", with_value_type=True)[0].split('barcode')[1]
|
|
33
33
|
# Open the output BAM file corresponding to the barcode
|
|
34
34
|
if bc_tag not in output_files:
|
|
35
35
|
output_path = os.path.join(split_dir, f"{output_prefix}_{bam_base_minus_suffix}_{bc_tag}{bam_suffix}")
|
|
@@ -1,13 +1,12 @@
|
|
|
1
1
|
## split_and_index_BAM
|
|
2
2
|
|
|
3
|
-
def split_and_index_BAM(aligned_sorted_BAM, split_dir, bam_suffix
|
|
3
|
+
def split_and_index_BAM(aligned_sorted_BAM, split_dir, bam_suffix):
|
|
4
4
|
"""
|
|
5
5
|
A wrapper function for splitting BAMS and indexing them.
|
|
6
6
|
Parameters:
|
|
7
7
|
aligned_sorted_BAM (str): A string representing the file path of the aligned_sorted BAM file.
|
|
8
8
|
split_dir (str): A string representing the file path to the directory to split the BAMs into.
|
|
9
9
|
bam_suffix (str): A suffix to add to the bam file.
|
|
10
|
-
output_directory (str): A file path to the directory to output all the analyses.
|
|
11
10
|
|
|
12
11
|
Returns:
|
|
13
12
|
None
|
|
@@ -20,9 +19,6 @@ def split_and_index_BAM(aligned_sorted_BAM, split_dir, bam_suffix, output_direct
|
|
|
20
19
|
from .separate_bam_by_bc import separate_bam_by_bc
|
|
21
20
|
from .make_dirs import make_dirs
|
|
22
21
|
|
|
23
|
-
plotting_dir = os.path.join(output_directory, 'demultiplexed_bed_histograms')
|
|
24
|
-
bed_dir = os.path.join(output_directory, 'demultiplexed_read_alignment_coordinates')
|
|
25
|
-
make_dirs([plotting_dir, bed_dir])
|
|
26
22
|
aligned_sorted_output = aligned_sorted_BAM + bam_suffix
|
|
27
23
|
file_prefix = readwrite.date_string()
|
|
28
24
|
separate_bam_by_bc(aligned_sorted_output, file_prefix, bam_suffix, split_dir)
|