smftools 0.1.1__py3-none-any.whl → 0.1.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- smftools/_settings.py +3 -2
- smftools/_version.py +1 -1
- smftools/datasets/F1_sample_sheet.csv +5 -0
- smftools/datasets/datasets.py +8 -7
- smftools/informatics/__init__.py +7 -5
- smftools/informatics/{bam_conversion.py → archived/bam_conversion.py} +16 -4
- smftools/informatics/{bam_direct.py → archived/bam_direct.py} +22 -8
- smftools/informatics/archived/basecalls_to_adata.py +71 -0
- smftools/informatics/conversion_smf.py +79 -0
- smftools/informatics/direct_smf.py +89 -0
- smftools/informatics/fast5_to_pod5.py +8 -6
- smftools/informatics/helpers/__init__.py +18 -0
- smftools/informatics/helpers/align_and_sort_BAM.py +9 -13
- smftools/informatics/helpers/aligned_BAM_to_bed.py +73 -0
- smftools/informatics/helpers/bed_to_bigwig.py +39 -0
- smftools/informatics/helpers/binarize_converted_base_identities.py +2 -2
- smftools/informatics/helpers/canoncall.py +2 -0
- smftools/informatics/helpers/complement_base_list.py +21 -0
- smftools/informatics/helpers/concatenate_fastqs_to_bam.py +54 -0
- smftools/informatics/helpers/converted_BAM_to_adata.py +161 -92
- smftools/informatics/helpers/count_aligned_reads.py +13 -9
- smftools/informatics/helpers/extract_base_identities.py +34 -20
- smftools/informatics/helpers/extract_readnames_from_BAM.py +22 -0
- smftools/informatics/helpers/find_conversion_sites.py +11 -9
- smftools/informatics/helpers/generate_converted_FASTA.py +33 -14
- smftools/informatics/helpers/get_chromosome_lengths.py +32 -0
- smftools/informatics/helpers/index_fasta.py +12 -0
- smftools/informatics/helpers/modcall.py +3 -1
- smftools/informatics/helpers/modkit_extract_to_adata.py +467 -316
- smftools/informatics/helpers/ohe_batching.py +52 -0
- smftools/informatics/helpers/one_hot_encode.py +10 -8
- smftools/informatics/helpers/plot_read_length_and_coverage_histograms.py +52 -0
- smftools/informatics/helpers/separate_bam_by_bc.py +4 -2
- smftools/informatics/helpers/split_and_index_BAM.py +16 -4
- smftools/informatics/load_adata.py +127 -0
- smftools/informatics/subsample_fasta_from_bed.py +47 -0
- smftools/informatics/subsample_pod5.py +69 -13
- smftools/preprocessing/__init__.py +6 -1
- smftools/preprocessing/append_C_context.py +37 -14
- smftools/preprocessing/calculate_complexity.py +2 -2
- smftools/preprocessing/calculate_consensus.py +47 -0
- smftools/preprocessing/calculate_converted_read_methylation_stats.py +60 -9
- smftools/preprocessing/calculate_coverage.py +2 -2
- smftools/preprocessing/calculate_pairwise_hamming_distances.py +1 -1
- smftools/preprocessing/calculate_read_length_stats.py +56 -2
- smftools/preprocessing/clean_NaN.py +2 -2
- smftools/preprocessing/filter_converted_reads_on_methylation.py +4 -2
- smftools/preprocessing/filter_reads_on_length.py +4 -2
- smftools/preprocessing/invert_adata.py +1 -0
- smftools/preprocessing/load_sample_sheet.py +24 -0
- smftools/preprocessing/make_dirs.py +21 -0
- smftools/preprocessing/mark_duplicates.py +34 -19
- smftools/preprocessing/recipes.py +125 -0
- smftools/preprocessing/remove_duplicates.py +7 -4
- smftools/tools/apply_HMM.py +1 -0
- smftools/tools/cluster.py +0 -0
- smftools/tools/read_HMM.py +1 -0
- smftools/tools/subset_adata.py +32 -0
- smftools/tools/train_HMM.py +43 -0
- {smftools-0.1.1.dist-info → smftools-0.1.3.dist-info}/METADATA +13 -7
- smftools-0.1.3.dist-info/RECORD +84 -0
- smftools/informatics/basecalls_to_adata.py +0 -42
- smftools/informatics/pod5_conversion.py +0 -53
- smftools/informatics/pod5_direct.py +0 -55
- smftools/informatics/pod5_to_adata.py +0 -40
- smftools-0.1.1.dist-info/RECORD +0 -64
- {smftools-0.1.1.dist-info → smftools-0.1.3.dist-info}/WHEEL +0 -0
- {smftools-0.1.1.dist-info → smftools-0.1.3.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,8 +1,9 @@
|
|
|
1
1
|
Metadata-Version: 2.3
|
|
2
2
|
Name: smftools
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.3
|
|
4
4
|
Summary: Single Molecule Footprinting Analysis in Python.
|
|
5
5
|
Project-URL: Source, https://github.com/jkmckenna/smftools
|
|
6
|
+
Project-URL: Documentation, https://smftools.readthedocs.io/
|
|
6
7
|
Author: Joseph McKenna
|
|
7
8
|
Maintainer-email: Joseph McKenna <jkmckenna@berkeley.edu>
|
|
8
9
|
License-Expression: MIT
|
|
@@ -31,6 +32,7 @@ Requires-Dist: numpy<2,>=1.22.0
|
|
|
31
32
|
Requires-Dist: pandas>=1.4.2
|
|
32
33
|
Requires-Dist: pod5>=0.1.21
|
|
33
34
|
Requires-Dist: pomegranate>1.0.0
|
|
35
|
+
Requires-Dist: pyfaidx>=0.8.0
|
|
34
36
|
Requires-Dist: pysam>=0.19.1
|
|
35
37
|
Requires-Dist: scanpy>=1.9
|
|
36
38
|
Requires-Dist: scikit-learn>=1.0.2
|
|
@@ -38,9 +40,6 @@ Requires-Dist: scipy>=1.7.3
|
|
|
38
40
|
Requires-Dist: seaborn>=0.11
|
|
39
41
|
Requires-Dist: torch>=1.9.0
|
|
40
42
|
Requires-Dist: tqdm
|
|
41
|
-
Provides-Extra: base-tests
|
|
42
|
-
Requires-Dist: pytest; extra == 'base-tests'
|
|
43
|
-
Requires-Dist: pytest-cov; extra == 'base-tests'
|
|
44
43
|
Provides-Extra: docs
|
|
45
44
|
Requires-Dist: ipython>=7.20; extra == 'docs'
|
|
46
45
|
Requires-Dist: matplotlib!=3.6.1; extra == 'docs'
|
|
@@ -56,13 +55,16 @@ Requires-Dist: sphinx-design; extra == 'docs'
|
|
|
56
55
|
Requires-Dist: sphinx>=7; extra == 'docs'
|
|
57
56
|
Requires-Dist: sphinxcontrib-bibtex; extra == 'docs'
|
|
58
57
|
Requires-Dist: sphinxext-opengraph; extra == 'docs'
|
|
58
|
+
Provides-Extra: tests
|
|
59
|
+
Requires-Dist: pytest; extra == 'tests'
|
|
60
|
+
Requires-Dist: pytest-cov; extra == 'tests'
|
|
59
61
|
Description-Content-Type: text/markdown
|
|
60
62
|
|
|
61
63
|
[](https://pypi.org/project/smftools)
|
|
62
64
|
[](https://smftools.readthedocs.io/en/latest/?badge=latest)
|
|
63
65
|
|
|
64
66
|
# smftools
|
|
65
|
-
A Python tool for processing raw sequencing data derived from single molecule footprinting experiments into [anndata](https://anndata.readthedocs.io/en/latest/) objects. Additional functionality for preprocessing, analysis, and visualization.
|
|
67
|
+
A Python tool for processing raw sequencing data derived from single molecule footprinting experiments into [anndata](https://anndata.readthedocs.io/en/latest/) objects. Additional functionality for preprocessing, analysis, and visualization.
|
|
66
68
|
|
|
67
69
|
## Philosophy
|
|
68
70
|
While most genomic data structures handle low-coverage data (<100X) along large references, smftools prioritizes high-coverage data (scalable to at least 1 million X coverage) of a few genomic loci at a time. This enables efficient data storage, rapid data operations, hierarchical metadata handling, seamless integration with various machine-learning packages, and ease of visualization. Furthermore, functionality is modularized, enabling analysis sessions to be saved, reloaded, and easily shared with collaborators. Analyses are centered around the [anndata](https://anndata.readthedocs.io/en/latest/) object, and are heavily inspired by the work conducted within the single-cell genomics community.
|
|
@@ -73,10 +75,14 @@ The following CLI tools need to be installed and configured before using the inf
|
|
|
73
75
|
2) [Samtools](https://github.com/samtools/samtools) -> For working with SAM/BAM files
|
|
74
76
|
3) [Minimap2](https://github.com/lh3/minimap2) -> The aligner used by Dorado
|
|
75
77
|
4) [Modkit](https://github.com/nanoporetech/modkit) -> Extracting summary statistics and read level methylation calls from modified BAM files
|
|
78
|
+
5) [Bedtools](https://github.com/arq5x/bedtools2) -> For generating Bedgraphs from BAM alignment files.
|
|
79
|
+
6) [BedGraphToBigWig](https://genome.ucsc.edu/goldenPath/help/bigWig.html) -> For converting BedGraphs to BigWig files for IGV sessions.
|
|
76
80
|
|
|
77
81
|
## Modules
|
|
78
|
-
|
|
79
|
-
|
|
82
|
+
### Informatics: Processes raw Nanopore/Illumina data from SMF experiments into an AnnData object.
|
|
83
|
+

|
|
84
|
+
### Preprocessing: Appends QC metrics to the AnnData object and perfroms filtering.
|
|
85
|
+

|
|
80
86
|
- Tools: Appends various analyses to the AnnData object.
|
|
81
87
|
- Plotting: Visualization of analyses stored within the AnnData object.
|
|
82
88
|
|
|
@@ -0,0 +1,84 @@
|
|
|
1
|
+
smftools/__init__.py,sha256=zy4ckT7hKrLrlm6NiZQoupvc6oSN7wJsyOBCYdzukcQ,401
|
|
2
|
+
smftools/_settings.py,sha256=Ed8lzKUA5ncq5ZRfSp0t6_rphEEjMxts6guttwTZP5Y,409
|
|
3
|
+
smftools/_version.py,sha256=R5TtpJu7Qu6sOarfDpp-5Oyy8Pi2Ir3VewCvsCQiAgo,21
|
|
4
|
+
smftools/readwrite.py,sha256=DgVisHYdkjzaO7suPbUvluImeTc3jqGDlioNveHUxPc,4158
|
|
5
|
+
smftools/datasets/F1_hybrid_NKG2A_enhander_promoter_GpC_conversion_SMF.h5ad.gz,sha256=q6wJtgFRDln0o20XNCx1qad3lwcdCoylqPN7wskTfI8,2926497
|
|
6
|
+
smftools/datasets/F1_sample_sheet.csv,sha256=9PodIIOXK2eamYPbC6DGnXdzgi9bRDovf296j1aM0ak,259
|
|
7
|
+
smftools/datasets/__init__.py,sha256=xkSTlPuakVYVCuRurif9BceNBDt6bsngJvvjI8757QI,142
|
|
8
|
+
smftools/datasets/dCas9_m6A_invitro_kinetics.h5ad.gz,sha256=niOcVHaYY7h3XyvwSkN-V_NMBaRt2vTP5TrJO0CwMCs,8385050
|
|
9
|
+
smftools/datasets/datasets.py,sha256=0y597Ntp707bOgDwN6O-JEt9yxgplj66p0aj6Zs_IB4,779
|
|
10
|
+
smftools/informatics/__init__.py,sha256=WQiMBr1yjDrlmHg8UNgW2MJsq4fPrVfh-UBr5tYI9x4,326
|
|
11
|
+
smftools/informatics/conversion_smf.py,sha256=PS-TjgMttr3VRrT0zg5L_L01xMOewB_OXSsQyoM7DWI,4333
|
|
12
|
+
smftools/informatics/direct_smf.py,sha256=ue7p7deuRwaZtEh9EFV1YTE8HKRAmOsx9oaRJdjCrbY,4697
|
|
13
|
+
smftools/informatics/fast5_to_pod5.py,sha256=xfdZU3QluaAcR-q2uBRz8hcBwYt73nCnrFeahvi0OKQ,704
|
|
14
|
+
smftools/informatics/load_adata.py,sha256=i-2YCSaeLzbPfNtKPrLwfkv-9u_TrTAZrbtNAj3FRWY,7271
|
|
15
|
+
smftools/informatics/readwrite.py,sha256=DgVisHYdkjzaO7suPbUvluImeTc3jqGDlioNveHUxPc,4158
|
|
16
|
+
smftools/informatics/subsample_fasta_from_bed.py,sha256=YqYV09rvEQdeiS5hTTrKa8xYmJfeM3Vk-UUqwpw0qBk,1983
|
|
17
|
+
smftools/informatics/subsample_pod5.py,sha256=zDw9tRcrFRmPI62xkcy9dh8IfsJcuYm7R-FVeBC_g3s,4701
|
|
18
|
+
smftools/informatics/archived/bam_conversion.py,sha256=I8EzXjQixMmqx2oWnoNSH5NURBhfT-krbWHkoi_M964,3330
|
|
19
|
+
smftools/informatics/archived/bam_direct.py,sha256=jbEFtUIiUR8Wlp3po_sWkr19AUNS9WZjglojb9j28vo,3606
|
|
20
|
+
smftools/informatics/archived/basecalls_to_adata.py,sha256=-Nag6lr_NAtU4t8jo0GSMdgIAIfmDge-5VEUPQbEatE,3692
|
|
21
|
+
smftools/informatics/helpers/LoadExperimentConfig.py,sha256=gsWGoa9cydwY4Kd-hTXF2gtmxc8glRRD2V1JB88e9js,2822
|
|
22
|
+
smftools/informatics/helpers/__init__.py,sha256=KrfyM08_RgDf3Ajvb4KNTvcOqZiWYSIVhEznCr01Gcc,2255
|
|
23
|
+
smftools/informatics/helpers/align_and_sort_BAM.py,sha256=DouG6nGWXtz2ulZD5p0sEShE-4dbPudHaWcHFm4-oJA,2184
|
|
24
|
+
smftools/informatics/helpers/aligned_BAM_to_bed.py,sha256=eYkGQFSM2gPEauASkY_-9Yvy6727vP8Q4wx_st85Dpc,2638
|
|
25
|
+
smftools/informatics/helpers/bed_to_bigwig.py,sha256=AazYEZzKgKgukSFwCpeiApzxh1kbt11X4RFqRIiBIaY,1466
|
|
26
|
+
smftools/informatics/helpers/binarize_converted_base_identities.py,sha256=iJlDah-YJ0zx0UrlHdtgvrALVNSA0TTTdDoKmNCVg0Q,1846
|
|
27
|
+
smftools/informatics/helpers/canoncall.py,sha256=M7HEqhYsWMUB0tLP3hzMM0L7PhcOTXgetl5lV3GgIaw,1062
|
|
28
|
+
smftools/informatics/helpers/complement_base_list.py,sha256=k6EkLtxFoajaIufxw1p0pShJ2nPHyGLTbzZmIFFjB4o,532
|
|
29
|
+
smftools/informatics/helpers/concatenate_fastqs_to_bam.py,sha256=RXPn7e6Dcwol9tnUsfXJu3EuZcMSOJJo5LNWouovvZs,2715
|
|
30
|
+
smftools/informatics/helpers/converted_BAM_to_adata.py,sha256=Rsnydzpf9lMS3TQjXpbXJSSfCzhVTPn3rBDLiK-8utA,13991
|
|
31
|
+
smftools/informatics/helpers/count_aligned_reads.py,sha256=uYyUYglF1asiaoxr-LKxPMUEbfyD7FS-dumTg2hJHzQ,2170
|
|
32
|
+
smftools/informatics/helpers/extract_base_identities.py,sha256=E-_m9W82N52NjX5kz9Af5YH0S2k58hnq9KTrm4S5vgM,4370
|
|
33
|
+
smftools/informatics/helpers/extract_mods.py,sha256=UBFjXDKz_A6ivjcocYT1_pKjvygY2Fdg0RjQmMS8UuA,2269
|
|
34
|
+
smftools/informatics/helpers/extract_readnames_from_BAM.py,sha256=3FxSNqbZ1VsOK2RfHrvevQTzhWATf5E8bZ5yVOqayvk,759
|
|
35
|
+
smftools/informatics/helpers/find_conversion_sites.py,sha256=5AghDQzEoSvE2Og98VsKoeWUFSLnIGY1LnRu1BtQavM,3700
|
|
36
|
+
smftools/informatics/helpers/generate_converted_FASTA.py,sha256=ueaAsFnBuc7zKwkBivBR3DJg4DtkxkHHIQcVVSWzv-w,5161
|
|
37
|
+
smftools/informatics/helpers/get_chromosome_lengths.py,sha256=sLumLrGsU_Xg_oJcdOpQyjUGpJoT2HbcmxWwbwzXUlE,1036
|
|
38
|
+
smftools/informatics/helpers/get_native_references.py,sha256=fRuyEm9UJkfd5DwHmFb1bxEtNvtSI1_BxGRmrCymGkw,981
|
|
39
|
+
smftools/informatics/helpers/index_fasta.py,sha256=N3IErfSiavYldeaat8xcQgA1MpykoQHcE0gHUeWuClE,267
|
|
40
|
+
smftools/informatics/helpers/make_dirs.py,sha256=lWHXpwC76MFM5sSme9i_WeYUaxutzybendokhny03ds,537
|
|
41
|
+
smftools/informatics/helpers/make_modbed.py,sha256=cOQ97gPfRiCcw_fqboxousXIiOYjp78IFYLbu749U1Y,939
|
|
42
|
+
smftools/informatics/helpers/modQC.py,sha256=LeOBObG8gAVVdgESIMceYhd5AW1gfN7ABo91OQtOzTM,1041
|
|
43
|
+
smftools/informatics/helpers/modcall.py,sha256=9PH7Peq4y-VBqQcMkbv0TwgePBlD5aM4_FmI7H4hbQQ,1142
|
|
44
|
+
smftools/informatics/helpers/modkit_extract_to_adata.py,sha256=duPlRAIz4VWM-jm9iaLY7N6JHQcun_L0nhr2VyUjNTI,38184
|
|
45
|
+
smftools/informatics/helpers/ohe_batching.py,sha256=_Mz2p1We5PVIb8S6Hbq_hREKJ9mGQiADwfFK_NgMGhA,1909
|
|
46
|
+
smftools/informatics/helpers/one_hot_encode.py,sha256=hpZAuwa9ndkhyCm9sO65KVHE0lbFDKqRylfliEKyD4o,632
|
|
47
|
+
smftools/informatics/helpers/plot_read_length_and_coverage_histograms.py,sha256=tAnXFleGzXJNjHRAgZ0NUJuZ0P3aKmUYIrK-V9VoJKY,1860
|
|
48
|
+
smftools/informatics/helpers/separate_bam_by_bc.py,sha256=Fsi8OEmv5Ny13cWoHVV9JmEjVFEXT_ZxbBOlRdmyPbE,1742
|
|
49
|
+
smftools/informatics/helpers/split_and_index_BAM.py,sha256=_TFJ8fcLbIf37JG83hSc1zgs1yxX70-NhA8y-PbhTpo,1966
|
|
50
|
+
smftools/informatics/helpers/archived/informatics.py,sha256=gKb2ZJ_LcAeEXuQqn9e-QDF_sS4tMpMTr2vZlqa7n54,14572
|
|
51
|
+
smftools/informatics/helpers/archived/load_adata.py,sha256=DhvYYqO9VLsZqhL1WjN9sd-e3fgvdXGlgTP18z1h0L0,33654
|
|
52
|
+
smftools/plotting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
53
|
+
smftools/preprocessing/__init__.py,sha256=5FQNrj51KmaDLeAGGBA8iWMkYiSOe7O91ES8mT4aVtE,1399
|
|
54
|
+
smftools/preprocessing/append_C_context.py,sha256=pP5u9o5U4JmHras0PK6yas65u4-U5KlX3sKLb-duo80,3728
|
|
55
|
+
smftools/preprocessing/binarize_on_Youden.py,sha256=slkkt56DZ1FZWy8Un5mNJEZ49JlPnPKow2zU4GoHEr8,2303
|
|
56
|
+
smftools/preprocessing/binary_layers_to_ohe.py,sha256=931eHuVda6pMZTvC7jVTKkY2a_KQWpSfgi-nkA5NmaI,1238
|
|
57
|
+
smftools/preprocessing/calculate_complexity.py,sha256=ut60et8bmIswtiLhctJWHNseIV4ZRQultYdtJPHcRPs,3224
|
|
58
|
+
smftools/preprocessing/calculate_consensus.py,sha256=6zRpRmb2xdfDu5hctZrReALRb7Pjn8sy8xJZTm3o0nU,2442
|
|
59
|
+
smftools/preprocessing/calculate_converted_read_methylation_stats.py,sha256=Si0DcES0lLMvg3XgdKpedxfPnXQ14tEFKrOAFRn3fHs,6059
|
|
60
|
+
smftools/preprocessing/calculate_coverage.py,sha256=ZgRxQGpydxQg1exkvSiy8nHmzDIPGGqL5vL9XQ2PZQ4,2068
|
|
61
|
+
smftools/preprocessing/calculate_pairwise_hamming_distances.py,sha256=e5Mzyex7pT29H2PY014uU4Fi_eewbut1JkzC1ffBbCg,961
|
|
62
|
+
smftools/preprocessing/calculate_position_Youden.py,sha256=mfQ6nFfUaEaKg_icyHA1zZlhh0wHjpLE56BZDXOdP_4,6364
|
|
63
|
+
smftools/preprocessing/calculate_read_length_stats.py,sha256=6m362JaCKlD0QoBUMnM2qsB6Jo_4shl7xFzqU1uZccU,4945
|
|
64
|
+
smftools/preprocessing/clean_NaN.py,sha256=1vieT026p0gDJCbqB_CiLvAGGxlc-5xufoKJgZuBFFk,1150
|
|
65
|
+
smftools/preprocessing/filter_converted_reads_on_methylation.py,sha256=SN5q0rqYtYW9j3i0sVSyTv9EmR_uLKI7GkjmJixeOU0,1307
|
|
66
|
+
smftools/preprocessing/filter_reads_on_length.py,sha256=sAT66bjuI8ZtXyQc9SuPzq1dPIB1CNVx6VfWqVng4Dg,2191
|
|
67
|
+
smftools/preprocessing/invert_adata.py,sha256=u6Y70EH0B5mXb9-HuukIlzpMgZ6rhzcJuy3YZZTx3SA,684
|
|
68
|
+
smftools/preprocessing/load_sample_sheet.py,sha256=uGjzG9x-1t_1lCooH85P8Tfg80GdvVx8Jv1LPl9XNFM,915
|
|
69
|
+
smftools/preprocessing/make_dirs.py,sha256=lWHXpwC76MFM5sSme9i_WeYUaxutzybendokhny03ds,537
|
|
70
|
+
smftools/preprocessing/mark_duplicates.py,sha256=sQuPcTw8JsQoONOk-kMlAF965sIk2Pu-M7rIyfbyGGs,8145
|
|
71
|
+
smftools/preprocessing/min_non_diagonal.py,sha256=hx1asW8CEmLaIroZISW8EcAf_RnBEC_nofGD8QG0b1E,711
|
|
72
|
+
smftools/preprocessing/recipes.py,sha256=KzSw5JW0WJGzSis5Fm7moQY5PxOYl6-uYYf1NDj6nOE,7117
|
|
73
|
+
smftools/preprocessing/remove_duplicates.py,sha256=Erooi5_1VOUNfWpzddzmMNYMCl1U1jJryt7ZtMhabAs,699
|
|
74
|
+
smftools/preprocessing/archives/preprocessing.py,sha256=4mLT09A7vwRZ78FHmuwtv38mH9TQ9qrZc_WjHRhhkIw,34379
|
|
75
|
+
smftools/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
76
|
+
smftools/tools/apply_HMM.py,sha256=AuVtOki69-Xs4mhjhTXJzd49KCVXwixFyWSUgDjtR6s,11
|
|
77
|
+
smftools/tools/cluster.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
78
|
+
smftools/tools/read_HMM.py,sha256=N0MGG494VjlxYJcCVz1jN4OasGtRITZS98SJ2xB_j8k,10
|
|
79
|
+
smftools/tools/subset_adata.py,sha256=qyU9iCal03edb5aUS3AZ2U4TlL3uQ42jGI9hX3QF7Fc,1047
|
|
80
|
+
smftools/tools/train_HMM.py,sha256=x5ZcXj-heWQqDOX86nuuDoj1tPkYKl04fYA1fCKNQ0c,1380
|
|
81
|
+
smftools-0.1.3.dist-info/METADATA,sha256=u26Og8tpAF2TgXZztotk3Q4EuP7Fvf73s1tlIjBDD-A,6410
|
|
82
|
+
smftools-0.1.3.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
|
83
|
+
smftools-0.1.3.dist-info/licenses/LICENSE,sha256=F8LwmL6vMPddaCt1z1S83Kh_OZv50alTlY7BvVx1RXw,1066
|
|
84
|
+
smftools-0.1.3.dist-info/RECORD,,
|
|
@@ -1,42 +0,0 @@
|
|
|
1
|
-
## basecalls_to_adata
|
|
2
|
-
|
|
3
|
-
def basecalls_to_adata(config_path):
|
|
4
|
-
"""
|
|
5
|
-
High-level function to call for loading basecalled SMF data from a BAM file into an adata object. Also works with FASTQ for conversion SMF.
|
|
6
|
-
|
|
7
|
-
Parameters:
|
|
8
|
-
config_path (str): A string representing the file path to the experiment configuration csv file.
|
|
9
|
-
|
|
10
|
-
Returns:
|
|
11
|
-
None
|
|
12
|
-
"""
|
|
13
|
-
from .helpers import LoadExperimentConfig, make_dirs
|
|
14
|
-
import os
|
|
15
|
-
bam_suffix = '.bam' # If different, change from here.
|
|
16
|
-
split_dir = 'split_BAMs' # If different, change from here.
|
|
17
|
-
strands = ['bottom', 'top'] # If different, change from here. Having both listed generally doesn't slow things down too much.
|
|
18
|
-
conversions = ['unconverted'] # The name to use for the unconverted files. If different, change from here.
|
|
19
|
-
|
|
20
|
-
# Load experiment config parameters into global variables
|
|
21
|
-
experiment_config = LoadExperimentConfig(config_path)
|
|
22
|
-
var_dict = experiment_config.var_dict
|
|
23
|
-
for key, value in var_dict.items():
|
|
24
|
-
globals()[key] = value
|
|
25
|
-
|
|
26
|
-
split_path = os.path.join(output_directory, split_dir)
|
|
27
|
-
make_dirs([output_directory, split_path])
|
|
28
|
-
os.chdir(output_directory)
|
|
29
|
-
|
|
30
|
-
conversions += conversion_types
|
|
31
|
-
|
|
32
|
-
if smf_modality == 'conversion':
|
|
33
|
-
from .bam_conversion import bam_conversion
|
|
34
|
-
bam_conversion(fasta, output_directory, conversions, strands, basecalled_path, split_path, mapping_threshold, experiment_name, bam_suffix)
|
|
35
|
-
elif smf_modality == 'direct':
|
|
36
|
-
if bam_suffix in basecalled_path:
|
|
37
|
-
from .bam_direct import bam_direct
|
|
38
|
-
bam_direct(fasta, output_directory, mod_list, thresholds, basecalled_path, split_path, mapping_threshold, experiment_name, bam_suffix, batch_size)
|
|
39
|
-
else:
|
|
40
|
-
print('basecalls_to_adata function only work with the direct modality when the input filetype is BAM and not FASTQ.')
|
|
41
|
-
else:
|
|
42
|
-
print("Error")
|
|
@@ -1,53 +0,0 @@
|
|
|
1
|
-
## pod5_conversion
|
|
2
|
-
|
|
3
|
-
def pod5_conversion(fasta, output_directory, conversion_types, strands, model, pod5_dir, split_dir, barcode_kit, mapping_threshold, experiment_name, bam_suffix):
|
|
4
|
-
"""
|
|
5
|
-
Converts a POD5 file from a nanopore conversion SMF experiment to an adata object.
|
|
6
|
-
|
|
7
|
-
Parameters:
|
|
8
|
-
fasta (str): File path to the reference genome to align to.
|
|
9
|
-
output_directory (str): A file path to the directory to output all the analyses.
|
|
10
|
-
conversion_type (list): A list of strings of the conversion types to use in the analysis.
|
|
11
|
-
strands (list): A list of converstion strands to use in the experiment.
|
|
12
|
-
model (str): a string representing the file path to the dorado basecalling model.
|
|
13
|
-
pod5_dir (str): a string representing the file path to the experiment directory containing the POD5 files.
|
|
14
|
-
split_dir (str): A string representing the file path to the directory to split the BAMs into.
|
|
15
|
-
barcode_kit (str): A string representing the barcoding kit used in the experiment.
|
|
16
|
-
mapping_threshold (float): A value in between 0 and 1 to threshold the minimal fraction of aligned reads which map to the reference region. References with values above the threshold are included in the output adata.
|
|
17
|
-
experiment_name (str): A string to provide an experiment name to the output adata file.
|
|
18
|
-
bam_suffix (str): A suffix to add to the bam file.
|
|
19
|
-
|
|
20
|
-
Returns:
|
|
21
|
-
None
|
|
22
|
-
"""
|
|
23
|
-
from .helpers import align_and_sort_BAM, canoncall, converted_BAM_to_adata, generate_converted_FASTA, split_and_index_BAM
|
|
24
|
-
import os
|
|
25
|
-
model_basename = os.path.basename(model)
|
|
26
|
-
model_basename = model_basename.replace('.', '_')
|
|
27
|
-
bam=f"{output_directory}/{model_basename}_canonical_basecalls"
|
|
28
|
-
aligned_BAM=f"{bam}_aligned"
|
|
29
|
-
aligned_sorted_BAM=f"{aligned_BAM}_sorted"
|
|
30
|
-
|
|
31
|
-
os.chdir(output_directory)
|
|
32
|
-
|
|
33
|
-
# 1) Convert FASTA file
|
|
34
|
-
fasta_basename = os.path.basename(fasta)
|
|
35
|
-
converted_FASTA_basename = fasta_basename.split('.fa')[0]+'_converted.fasta'
|
|
36
|
-
converted_FASTA = os.path.join(output_directory, converted_FASTA_basename)
|
|
37
|
-
if os.path.exists(converted_FASTA):
|
|
38
|
-
print(converted_FASTA + ' already exists. Using existing converted FASTA.')
|
|
39
|
-
else:
|
|
40
|
-
generate_converted_FASTA(fasta, conversion_types, strands, converted_FASTA)
|
|
41
|
-
|
|
42
|
-
# 2) Basecall from the input POD5 to generate a singular output BAM
|
|
43
|
-
canoncall(model, pod5_dir, barcode_kit, bam, bam_suffix)
|
|
44
|
-
|
|
45
|
-
# 3) Align the BAM to the converted reference FASTA and sort the bam on positional coordinates. Also make an index and a bed file of mapped reads
|
|
46
|
-
input_BAM = bam + bam_suffix
|
|
47
|
-
align_and_sort_BAM(converted_FASTA, input_BAM, bam_suffix, output_directory)
|
|
48
|
-
|
|
49
|
-
### 4) Split the aligned and sorted BAM files by barcode (BC Tag) into the split_BAM directory###
|
|
50
|
-
split_and_index_BAM(aligned_sorted_BAM, split_dir, bam_suffix)
|
|
51
|
-
|
|
52
|
-
# 5) Take the converted BAM and load it into an adata object.
|
|
53
|
-
converted_BAM_to_adata(converted_FASTA, split_dir, mapping_threshold, experiment_name, conversion_types, bam_suffix)
|
|
@@ -1,55 +0,0 @@
|
|
|
1
|
-
## pod5_direct
|
|
2
|
-
|
|
3
|
-
def pod5_direct(fasta, output_directory, mod_list, model, thresholds, pod5_dir, split_dir, barcode_kit, mapping_threshold, experiment_name, bam_suffix, batch_size):
|
|
4
|
-
"""
|
|
5
|
-
Converts a POD5 file from a nanopore native SMF experiment to an adata object.
|
|
6
|
-
|
|
7
|
-
Parameters:
|
|
8
|
-
fasta (str): File path to the reference genome to align to.
|
|
9
|
-
output_directory (str): A file path to the directory to output all the analyses.
|
|
10
|
-
mod_list (list): A list of strings of the modification types to use in the analysis.
|
|
11
|
-
model (str): a string representing the file path to the dorado basecalling model.
|
|
12
|
-
thresholds (list): A list of floats to pass for call thresholds.
|
|
13
|
-
pod5_dir (str): a string representing the file path to the experiment directory containing the POD5 files.
|
|
14
|
-
split_dir (str): A string representing the file path to the directory to split the BAMs into.
|
|
15
|
-
barcode_kit (str): A string representing the barcoding kit used in the experiment.
|
|
16
|
-
mapping_threshold (float): A value in between 0 and 1 to threshold the minimal fraction of aligned reads which map to the reference region. References with values above the threshold are included in the output adata.
|
|
17
|
-
experiment_name (str): A string to provide an experiment name to the output adata file.
|
|
18
|
-
bam_suffix (str): A suffix to add to the bam file.
|
|
19
|
-
batch_size (int): An integer number of TSV files to analyze in memory at once while loading the final adata object.
|
|
20
|
-
|
|
21
|
-
Returns:
|
|
22
|
-
None
|
|
23
|
-
"""
|
|
24
|
-
from .helpers import align_and_sort_BAM, extract_mods, make_modbed, modcall, modkit_extract_to_adata, modQC, split_and_index_BAM, make_dirs
|
|
25
|
-
import os
|
|
26
|
-
model_basename = os.path.basename(model)
|
|
27
|
-
model_basename = model_basename.replace('.', '_')
|
|
28
|
-
mod_string = "_".join(mod_list)
|
|
29
|
-
bam=f"{output_directory}/{model_basename}_{mod_string}_calls"
|
|
30
|
-
aligned_BAM=f"{bam}_aligned"
|
|
31
|
-
aligned_sorted_BAM=f"{aligned_BAM}_sorted"
|
|
32
|
-
mod_bed_dir=f"{output_directory}/split_mod_beds"
|
|
33
|
-
mod_tsv_dir=f"{output_directory}/split_mod_tsvs"
|
|
34
|
-
|
|
35
|
-
make_dirs([mod_bed_dir, mod_tsv_dir])
|
|
36
|
-
|
|
37
|
-
aligned_sorted_output = aligned_sorted_BAM + bam_suffix
|
|
38
|
-
mod_map = {'6mA': '6mA', '5mC_5hmC': '5mC'}
|
|
39
|
-
mods = [mod_map[mod] for mod in mod_list]
|
|
40
|
-
|
|
41
|
-
os.chdir(output_directory)
|
|
42
|
-
|
|
43
|
-
# 1) Basecall using dorado
|
|
44
|
-
modcall(model, pod5_dir, barcode_kit, mod_list, bam, bam_suffix)
|
|
45
|
-
# 2) Align the BAM to the reference FASTA. Also make an index and a bed file of mapped reads
|
|
46
|
-
input_BAM = bam + bam_suffix
|
|
47
|
-
align_and_sort_BAM(fasta, input_BAM, bam_suffix, output_directory)
|
|
48
|
-
# 3) Split the aligned and sorted BAM files by barcode (BC Tag) into the split_BAM directory
|
|
49
|
-
split_and_index_BAM(aligned_sorted_BAM, split_dir, bam_suffix)
|
|
50
|
-
# 4) Using nanopore modkit to work with modified BAM files ###
|
|
51
|
-
modQC(aligned_sorted_output, thresholds) # get QC metrics for mod calls
|
|
52
|
-
make_modbed(aligned_sorted_output, thresholds, mod_bed_dir) # Generate bed files of position methylation summaries for every sample
|
|
53
|
-
extract_mods(thresholds, mod_tsv_dir, split_dir, bam_suffix) # Extract methylations calls for split BAM files into split TSV files
|
|
54
|
-
#5 Load the modification data from TSVs into an adata object
|
|
55
|
-
modkit_extract_to_adata(fasta, aligned_sorted_output, mapping_threshold, experiment_name, mods, batch_size)
|
|
@@ -1,40 +0,0 @@
|
|
|
1
|
-
## pod5_to_adata
|
|
2
|
-
|
|
3
|
-
def pod5_to_adata(config_path):
|
|
4
|
-
"""
|
|
5
|
-
High-level function to call for converting raw sequencing data to an adata object.
|
|
6
|
-
|
|
7
|
-
Parameters:
|
|
8
|
-
config_path (str): A string representing the file path to the experiment configuration csv file.
|
|
9
|
-
|
|
10
|
-
Returns:
|
|
11
|
-
None
|
|
12
|
-
"""
|
|
13
|
-
from .helpers import LoadExperimentConfig, make_dirs
|
|
14
|
-
import os
|
|
15
|
-
bam_suffix = '.bam' # If different, change from here.
|
|
16
|
-
split_dir = 'split_BAMs' # If different, change from here.
|
|
17
|
-
strands = ['bottom', 'top'] # If different, change from here. Having both listed generally doesn't slow things down too much.
|
|
18
|
-
conversions = ['unconverted'] # The name to use for the unconverted files. If different, change from here.
|
|
19
|
-
|
|
20
|
-
# Load experiment config parameters into global variables
|
|
21
|
-
experiment_config = LoadExperimentConfig(config_path)
|
|
22
|
-
var_dict = experiment_config.var_dict
|
|
23
|
-
for key, value in var_dict.items():
|
|
24
|
-
globals()[key] = value
|
|
25
|
-
|
|
26
|
-
conversions += conversion_types
|
|
27
|
-
|
|
28
|
-
split_path = os.path.join(output_directory, split_dir)
|
|
29
|
-
make_dirs([output_directory, split_path])
|
|
30
|
-
os.chdir(output_directory)
|
|
31
|
-
|
|
32
|
-
if smf_modality == 'conversion':
|
|
33
|
-
from .pod5_conversion import pod5_conversion
|
|
34
|
-
pod5_conversion(fasta, output_directory, conversions, strands, model, pod5_dir, split_path, barcode_kit, mapping_threshold, experiment_name, bam_suffix)
|
|
35
|
-
elif smf_modality == 'direct':
|
|
36
|
-
from .pod5_direct import pod5_direct
|
|
37
|
-
thresholds = [filter_threshold, m6A_threshold, m5C_threshold, hm5C_threshold]
|
|
38
|
-
pod5_direct(fasta, output_directory, mod_list, model, thresholds, pod5_dir, split_path, barcode_kit, mapping_threshold, experiment_name, bam_suffix, batch_size)
|
|
39
|
-
else:
|
|
40
|
-
print("Error")
|
smftools-0.1.1.dist-info/RECORD
DELETED
|
@@ -1,64 +0,0 @@
|
|
|
1
|
-
smftools/__init__.py,sha256=zy4ckT7hKrLrlm6NiZQoupvc6oSN7wJsyOBCYdzukcQ,401
|
|
2
|
-
smftools/_settings.py,sha256=RkGSrezDzZnh6AODA3o2LiSAINBxxxal5weq-2RZuM0,379
|
|
3
|
-
smftools/_version.py,sha256=8oAxKUG747GUokmxjkrWejyJa5yPNEsoJDlXxoedxTw,21
|
|
4
|
-
smftools/readwrite.py,sha256=DgVisHYdkjzaO7suPbUvluImeTc3jqGDlioNveHUxPc,4158
|
|
5
|
-
smftools/datasets/F1_hybrid_NKG2A_enhander_promoter_GpC_conversion_SMF.h5ad.gz,sha256=q6wJtgFRDln0o20XNCx1qad3lwcdCoylqPN7wskTfI8,2926497
|
|
6
|
-
smftools/datasets/__init__.py,sha256=xkSTlPuakVYVCuRurif9BceNBDt6bsngJvvjI8757QI,142
|
|
7
|
-
smftools/datasets/dCas9_m6A_invitro_kinetics.h5ad.gz,sha256=niOcVHaYY7h3XyvwSkN-V_NMBaRt2vTP5TrJO0CwMCs,8385050
|
|
8
|
-
smftools/datasets/datasets.py,sha256=FZ6e7SU6Zt1-gf3az71AgQLpyNvAEiOb5ctbwyP3XSU,553
|
|
9
|
-
smftools/informatics/__init__.py,sha256=Aa-QNdfrpZrTPq8xqP4NBA7bb1VLLYaduH-US6pKNA4,280
|
|
10
|
-
smftools/informatics/bam_conversion.py,sha256=mLjIVx-07sa3TDQ_qhPKoAfTjqThvyh-MAq8BDtatHg,2719
|
|
11
|
-
smftools/informatics/bam_direct.py,sha256=2Y7C8N9QrgJyXqP3WEVZ7fi5qU-iNj_KN0ve-xvXD-U,2964
|
|
12
|
-
smftools/informatics/basecalls_to_adata.py,sha256=krnf5fdOuXZmnwW-y_eDC5hEjODUUyMEoY5z6R-65UI,1905
|
|
13
|
-
smftools/informatics/fast5_to_pod5.py,sha256=i2sPWME6p6jttG6WbcQFCzI22WVpwcXgZBG9RXqIlzU,717
|
|
14
|
-
smftools/informatics/pod5_conversion.py,sha256=x_d55jk2vX5hiSWH6-W4oWdmI-uTce8iRhhBqSzYS_I,3073
|
|
15
|
-
smftools/informatics/pod5_direct.py,sha256=aozZQdeYA5AFAEnku6un5gtGtZEdekk-6W7e7K_pBLw,3383
|
|
16
|
-
smftools/informatics/pod5_to_adata.py,sha256=1lSr32fAKXkxU5nV3C0UBDW6i2FnSbD_aqlKG4Yn9RU,1763
|
|
17
|
-
smftools/informatics/readwrite.py,sha256=DgVisHYdkjzaO7suPbUvluImeTc3jqGDlioNveHUxPc,4158
|
|
18
|
-
smftools/informatics/subsample_pod5.py,sha256=6g8fV2K1YJFEDVHs_bTJDuOSsIkMWpw5Lvk9uittW9k,2188
|
|
19
|
-
smftools/informatics/helpers/LoadExperimentConfig.py,sha256=gsWGoa9cydwY4Kd-hTXF2gtmxc8glRRD2V1JB88e9js,2822
|
|
20
|
-
smftools/informatics/helpers/__init__.py,sha256=luoFmS4B3XnG68XVziqtmPEZy-X3228LEZzQaHX84Cc,1487
|
|
21
|
-
smftools/informatics/helpers/align_and_sort_BAM.py,sha256=835lNQafsdY-PMQZAv3HgLcXNkeduZA4HUewXgGV87M,2447
|
|
22
|
-
smftools/informatics/helpers/binarize_converted_base_identities.py,sha256=kAYtPwMY5-gUL2muXOcbSiowQ2Mkls90GXXFaCKG5Pk,1773
|
|
23
|
-
smftools/informatics/helpers/canoncall.py,sha256=XaAM_Vd_Q3SQIIlb10-7z5Zo-YADnIcC4eMQjZt1H-E,961
|
|
24
|
-
smftools/informatics/helpers/converted_BAM_to_adata.py,sha256=cD-4gnJqCULGexedtETo-NGz-uqq16HwK_9zgCM7w_8,9769
|
|
25
|
-
smftools/informatics/helpers/count_aligned_reads.py,sha256=Jttzh94T2uALC-dCvjlq58tupj5VxuKj3j301ICj7eI,2058
|
|
26
|
-
smftools/informatics/helpers/extract_base_identities.py,sha256=-iBSEgnsp3EESSOupGcDGObGWykxucD5YC7aW_pEJ2k,2733
|
|
27
|
-
smftools/informatics/helpers/extract_mods.py,sha256=UBFjXDKz_A6ivjcocYT1_pKjvygY2Fdg0RjQmMS8UuA,2269
|
|
28
|
-
smftools/informatics/helpers/find_conversion_sites.py,sha256=52RvFQkIBly-CqToFe2zaKkpsUSixe8rHxZfL32EygA,3570
|
|
29
|
-
smftools/informatics/helpers/generate_converted_FASTA.py,sha256=fKmjpvBQF8fHljzcGtqUgMwdWIfnmwnhI-Y3A59_qDk,3939
|
|
30
|
-
smftools/informatics/helpers/get_native_references.py,sha256=fRuyEm9UJkfd5DwHmFb1bxEtNvtSI1_BxGRmrCymGkw,981
|
|
31
|
-
smftools/informatics/helpers/make_dirs.py,sha256=lWHXpwC76MFM5sSme9i_WeYUaxutzybendokhny03ds,537
|
|
32
|
-
smftools/informatics/helpers/make_modbed.py,sha256=cOQ97gPfRiCcw_fqboxousXIiOYjp78IFYLbu749U1Y,939
|
|
33
|
-
smftools/informatics/helpers/modQC.py,sha256=LeOBObG8gAVVdgESIMceYhd5AW1gfN7ABo91OQtOzTM,1041
|
|
34
|
-
smftools/informatics/helpers/modcall.py,sha256=ZcBl3QK622gG1IFy6agOWVADvsjr7WZIcglhSmYl02E,1133
|
|
35
|
-
smftools/informatics/helpers/modkit_extract_to_adata.py,sha256=KDnFSHH0PdaANH6uzcVpoii7s5u5gIfkSMgsQCiWORs,25279
|
|
36
|
-
smftools/informatics/helpers/one_hot_encode.py,sha256=rNHAfLG8smkpSEDBYj73cVwCNNbFhVfMW4SB2ijydMk,577
|
|
37
|
-
smftools/informatics/helpers/separate_bam_by_bc.py,sha256=mGiB6y4xs_WATf-VDyVz4tg6BG3I6ZzYcpuEjeA1oVo,1580
|
|
38
|
-
smftools/informatics/helpers/split_and_index_BAM.py,sha256=p2qRV-bOXj1P0JcvBqmK3ihRyM7_bVnKCi3bog_2kR8,1143
|
|
39
|
-
smftools/informatics/helpers/archived/informatics.py,sha256=gKb2ZJ_LcAeEXuQqn9e-QDF_sS4tMpMTr2vZlqa7n54,14572
|
|
40
|
-
smftools/informatics/helpers/archived/load_adata.py,sha256=DhvYYqO9VLsZqhL1WjN9sd-e3fgvdXGlgTP18z1h0L0,33654
|
|
41
|
-
smftools/plotting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
42
|
-
smftools/preprocessing/__init__.py,sha256=PoemcyddUsfRPtJ7Ggr5G69nTXIQCFmz6lctpoEXYUA,1153
|
|
43
|
-
smftools/preprocessing/append_C_context.py,sha256=-4P3Dkq60QW57AB9NR6iRjmz-Dl27s2V-HqWWOTB21M,2485
|
|
44
|
-
smftools/preprocessing/binarize_on_Youden.py,sha256=slkkt56DZ1FZWy8Un5mNJEZ49JlPnPKow2zU4GoHEr8,2303
|
|
45
|
-
smftools/preprocessing/binary_layers_to_ohe.py,sha256=931eHuVda6pMZTvC7jVTKkY2a_KQWpSfgi-nkA5NmaI,1238
|
|
46
|
-
smftools/preprocessing/calculate_complexity.py,sha256=nDdEzHaN7KBN7QfqaFgQoTBT_6cpOa44l8IDHwa76fs,3224
|
|
47
|
-
smftools/preprocessing/calculate_converted_read_methylation_stats.py,sha256=FCDVLOxT8iHTBeG6EbEFt_S_mIQvYosEAb9-hbc8fhA,2720
|
|
48
|
-
smftools/preprocessing/calculate_coverage.py,sha256=46-U7YW98uL3pEVnfhBueGZOnNr3a3rWr3mT7YToglM,2019
|
|
49
|
-
smftools/preprocessing/calculate_pairwise_hamming_distances.py,sha256=EIcIOOw0tpECR9hfZeMNlq0J_L2-J-Jp5-RzVkoGO7o,951
|
|
50
|
-
smftools/preprocessing/calculate_position_Youden.py,sha256=mfQ6nFfUaEaKg_icyHA1zZlhh0wHjpLE56BZDXOdP_4,6364
|
|
51
|
-
smftools/preprocessing/calculate_read_length_stats.py,sha256=wIz-EtOz7S_RDSqAAv7SoiTIQq9Ovkfs4dE4BdHXyNo,1793
|
|
52
|
-
smftools/preprocessing/clean_NaN.py,sha256=nnm_zCEGilgDGvxxPBP81sYHJ9LrZ2MVvI1ydf0iPxk,1160
|
|
53
|
-
smftools/preprocessing/filter_converted_reads_on_methylation.py,sha256=3BwBWyPnVuOH46J2mgafRXcNzWYRxc4sr7nKTInLyfU,1242
|
|
54
|
-
smftools/preprocessing/filter_reads_on_length.py,sha256=LfGz0h3Xf8XUxv3ifXLbfeAOzSYYZVUJcHy73ykUu3A,2135
|
|
55
|
-
smftools/preprocessing/invert_adata.py,sha256=6ab7WjUjGUYd2uqXV93k1B4U6laxSwlWSgaR0Lg7apc,655
|
|
56
|
-
smftools/preprocessing/mark_duplicates.py,sha256=nKbdUEikJFekWuJ259J4XBPE5elcp44VkyY14jLLZEk,7167
|
|
57
|
-
smftools/preprocessing/min_non_diagonal.py,sha256=hx1asW8CEmLaIroZISW8EcAf_RnBEC_nofGD8QG0b1E,711
|
|
58
|
-
smftools/preprocessing/remove_duplicates.py,sha256=W0QQ5LLmIGj8OTfXuiTLJjFhOjv5r-TTipTupq-nf50,432
|
|
59
|
-
smftools/preprocessing/archives/preprocessing.py,sha256=4mLT09A7vwRZ78FHmuwtv38mH9TQ9qrZc_WjHRhhkIw,34379
|
|
60
|
-
smftools/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
61
|
-
smftools-0.1.1.dist-info/METADATA,sha256=8iWTWzl1ZIZvpYRbp6ov1NizrUJMwBbWNCs31QV3LjY,6262
|
|
62
|
-
smftools-0.1.1.dist-info/WHEEL,sha256=1yFddiXMmvYK7QYTqtRNtX66WJ0Mz8PYEiEUoOUUxRY,87
|
|
63
|
-
smftools-0.1.1.dist-info/licenses/LICENSE,sha256=F8LwmL6vMPddaCt1z1S83Kh_OZv50alTlY7BvVx1RXw,1066
|
|
64
|
-
smftools-0.1.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|