smftools 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- smftools/__init__.py +27 -0
- smftools/_settings.py +19 -0
- smftools/datasets/F1_hybrid_NKG2A_enhander_promoter_GpC_conversion_SMF.h5ad.gz +0 -0
- smftools/datasets/__init__.py +9 -0
- smftools/datasets/dCas9_m6A_invitro_kinetics.h5ad.gz +0 -0
- smftools/datasets/datasets.py +25 -0
- smftools/informatics/__init__.py +11 -0
- smftools/informatics/helpers/__init__.py +42 -0
- smftools/informatics/helpers/align_BAM.py +49 -0
- smftools/informatics/helpers/binarize_converted_base_identities.py +24 -0
- smftools/informatics/helpers/canoncall.py +12 -0
- smftools/informatics/helpers/converted_BAM_to_adata.py +147 -0
- smftools/informatics/helpers/count_aligned_reads.py +32 -0
- smftools/informatics/helpers/extract_base_identities.py +36 -0
- smftools/informatics/helpers/extract_mods.py +39 -0
- smftools/informatics/helpers/find_conversion_sites.py +53 -0
- smftools/informatics/helpers/generate_converted_FASTA.py +59 -0
- smftools/informatics/helpers/get_native_references.py +25 -0
- smftools/informatics/helpers/informatics.py +260 -0
- smftools/informatics/helpers/load_adata.py +516 -0
- smftools/informatics/helpers/load_experiment_config.py +17 -0
- smftools/informatics/helpers/make_dirs.py +15 -0
- smftools/informatics/helpers/make_modbed.py +21 -0
- smftools/informatics/helpers/modQC.py +19 -0
- smftools/informatics/helpers/modcall.py +14 -0
- smftools/informatics/helpers/modkit_extract_to_adata.py +355 -0
- smftools/informatics/helpers/one_hot_encode.py +14 -0
- smftools/informatics/helpers/separate_bam_by_bc.py +28 -0
- smftools/informatics/helpers/split_and_index_BAM.py +21 -0
- smftools/informatics/pod5_conversion.py +26 -0
- smftools/informatics/pod5_direct.py +29 -0
- smftools/informatics/pod5_to_adata.py +17 -0
- smftools/informatics/readwrite.py +109 -0
- smftools/plotting/__init__.py +0 -0
- smftools/preprocessing/__init__.py +35 -0
- smftools/preprocessing/append_C_context.py +39 -0
- smftools/preprocessing/binarize_on_Youden.py +38 -0
- smftools/preprocessing/binary_layers_to_ohe.py +25 -0
- smftools/preprocessing/calculate_complexity.py +59 -0
- smftools/preprocessing/calculate_converted_read_methylation_stats.py +38 -0
- smftools/preprocessing/calculate_coverage.py +35 -0
- smftools/preprocessing/calculate_pairwise_hamming_distances.py +22 -0
- smftools/preprocessing/calculate_position_Youden.py +95 -0
- smftools/preprocessing/calculate_read_length_stats.py +27 -0
- smftools/preprocessing/clean_NaN.py +31 -0
- smftools/preprocessing/filter_converted_reads_on_methylation.py +20 -0
- smftools/preprocessing/filter_reads_on_length.py +31 -0
- smftools/preprocessing/invert_adata.py +18 -0
- smftools/preprocessing/mark_duplicates.py +110 -0
- smftools/preprocessing/min_non_diagonal.py +20 -0
- smftools/preprocessing/preprocessing.py +614 -0
- smftools/preprocessing/remove_duplicates.py +12 -0
- smftools/readwrite.py +109 -0
- smftools/tools/__init__.py +0 -0
- smftools-0.1.0.dist-info/METADATA +75 -0
- smftools-0.1.0.dist-info/RECORD +58 -0
- smftools-0.1.0.dist-info/WHEEL +4 -0
- smftools-0.1.0.dist-info/licenses/LICENSE +21 -0
|
@@ -0,0 +1,355 @@
|
|
|
1
|
+
## modkit_extract_to_adata
|
|
2
|
+
from .. import readwrite
|
|
3
|
+
from .get_native_references import get_native_references
|
|
4
|
+
from .count_aligned_reads import count_aligned_reads
|
|
5
|
+
from .extract_base_identities import extract_base_identities
|
|
6
|
+
from .one_hot_encode import one_hot_encode
|
|
7
|
+
import pandas as pd
|
|
8
|
+
import anndata as ad
|
|
9
|
+
import os
|
|
10
|
+
import gc
|
|
11
|
+
import math
|
|
12
|
+
import numpy as np
|
|
13
|
+
|
|
14
|
+
def modkit_extract_to_adata(fasta, bam, mapping_threshold, experiment_name, mods, batch_size):
|
|
15
|
+
"""
|
|
16
|
+
|
|
17
|
+
"""
|
|
18
|
+
###################################################
|
|
19
|
+
### Get input tsv file names into a sorted list ###
|
|
20
|
+
# List all files in the directory
|
|
21
|
+
files = os.listdir(os.getcwd())
|
|
22
|
+
# get current working directory
|
|
23
|
+
cwd = os.getcwd()
|
|
24
|
+
# Filter file names that contain the search string in their filename and keep them in a list
|
|
25
|
+
tsvs = [tsv for tsv in files if 'extract.tsv' in tsv]
|
|
26
|
+
# Sort file list by names and print the list of file names
|
|
27
|
+
tsvs.sort()
|
|
28
|
+
print(f'{len(tsvs)} sample tsv files found: {tsvs}')
|
|
29
|
+
print(f'sample bam file found: {bam}')
|
|
30
|
+
|
|
31
|
+
# Get all references within the FASTA and indicate the length and identity of the record sequence
|
|
32
|
+
max_reference_length = 0
|
|
33
|
+
reference_dict = get_native_references(fasta)
|
|
34
|
+
for record in reference_dict.keys():
|
|
35
|
+
if reference_dict[record][0] > max_reference_length:
|
|
36
|
+
max_reference_length = reference_dict[record][0]
|
|
37
|
+
|
|
38
|
+
print(f'{readwrite.time_string()}: Max reference length in dataset: {max_reference_length}')
|
|
39
|
+
batches = math.ceil(len(tsvs) / batch_size) # Number of batches to process
|
|
40
|
+
print('{0}: Processing input tsvs in {1} batches of {2} tsvs '.format(readwrite.time_string(), batches, batch_size))
|
|
41
|
+
|
|
42
|
+
# look at aligned read proportions in the bam
|
|
43
|
+
aligned_reads_count, unaligned_reads_count, record_counts = count_aligned_reads(bam)
|
|
44
|
+
print('{} percent of reads in bam aligned successfully'.format(aligned_reads_count*100 / (aligned_reads_count+unaligned_reads_count)))
|
|
45
|
+
records_to_analyze = []
|
|
46
|
+
# Iterate over references and decide which to use in the analysis based on the mapping_threshold
|
|
47
|
+
for record in record_counts:
|
|
48
|
+
print('{0} reads mapped to reference record {1}. This is {2} percent of all mapped reads'.format(record_counts[record][0], record, record_counts[record][1]*100))
|
|
49
|
+
if record_counts[record][1] >= mapping_threshold:
|
|
50
|
+
records_to_analyze.append(record)
|
|
51
|
+
print(f'Records to analyze: {records_to_analyze}')
|
|
52
|
+
# Iterate over records to analyze and return a dictionary keyed by the reference name that points to another dictionary keyed by read names that map to that reference. This internal dictionary points to a one-hot encoding of the mapped read
|
|
53
|
+
record_seq_dict = {}
|
|
54
|
+
for record in records_to_analyze:
|
|
55
|
+
current_reference_length = reference_dict[record][0]
|
|
56
|
+
delta_max_length = max_reference_length - current_reference_length
|
|
57
|
+
sequence = reference_dict[record][1] + 'N'*delta_max_length
|
|
58
|
+
# Get a dictionary of positional base identities keyed by read id
|
|
59
|
+
base_identities = extract_base_identities(bam, record, current_reference_length, max_reference_length)
|
|
60
|
+
# One hot encode the sequence string of the reads
|
|
61
|
+
one_hot_reads = {read_name: one_hot_encode(seq) for read_name, seq in base_identities.items()}
|
|
62
|
+
record_seq_dict[record] = (one_hot_reads, sequence)
|
|
63
|
+
|
|
64
|
+
###################################################
|
|
65
|
+
|
|
66
|
+
###################################################
|
|
67
|
+
# Begin iterating over batches
|
|
68
|
+
for batch in range(batches):
|
|
69
|
+
print('{0}: Processing tsvs for batch {1} '.format(readwrite.time_string(), batch))
|
|
70
|
+
# For the final batch, just take the remaining tsv files
|
|
71
|
+
if batch == batches - 1:
|
|
72
|
+
tsv_batch = tsvs
|
|
73
|
+
# For all other batches, take the next batch of tsvs out of the file queue.
|
|
74
|
+
else:
|
|
75
|
+
tsv_batch = tsvs[:batch_size]
|
|
76
|
+
tsvs = tsvs[batch_size:]
|
|
77
|
+
print('{0}: tsvs in batch {1} '.format(readwrite.time_string(), tsv_batch))
|
|
78
|
+
###################################################
|
|
79
|
+
|
|
80
|
+
###################################################
|
|
81
|
+
### Add the tsvs as dataframes to a dictionary (dict_total) keyed by integer index. Also make modification specific dictionaries and strand specific dictionaries.
|
|
82
|
+
# Initialize dictionaries and place them in a list
|
|
83
|
+
dict_total, dict_a, dict_a_bottom, dict_a_top, dict_c, dict_c_bottom, dict_c_top, dict_combined_bottom, dict_combined_top = {},{},{},{},{},{},{},{},{}
|
|
84
|
+
dict_list = [dict_total, dict_a, dict_a_bottom, dict_a_top, dict_c, dict_c_bottom, dict_c_top, dict_combined_bottom, dict_combined_top]
|
|
85
|
+
|
|
86
|
+
# Give names to represent each dictionary in the list
|
|
87
|
+
sample_types = ['total', 'm6A', 'm6A_bottom_strand', 'm6A_top_strand', '5mC', '5mC_bottom_strand', '5mC_top_strand', 'combined_bottom_strand', 'combined_top_strand']
|
|
88
|
+
|
|
89
|
+
# Give indices of dictionaries to skip for analysis and final dictionary saving.
|
|
90
|
+
dict_to_skip = [0, 1, 4]
|
|
91
|
+
combined_dicts = [7, 8]
|
|
92
|
+
A_stranded_dicts = [2, 3]
|
|
93
|
+
C_stranded_dicts = [5, 6]
|
|
94
|
+
dict_to_skip = dict_to_skip + combined_dicts + A_stranded_dicts + C_stranded_dicts
|
|
95
|
+
dict_to_skip = set(dict_to_skip)
|
|
96
|
+
|
|
97
|
+
# Load the dict_total dictionary with all of the tsv files as dataframes.
|
|
98
|
+
for i, tsv in enumerate(tsv_batch):
|
|
99
|
+
print('{0}: Loading sample tsv {1} into dataframe'.format(readwrite.time_string(), tsv))
|
|
100
|
+
temp_df = pd.read_csv(tsv, sep='\t', header=0)
|
|
101
|
+
for record in records_to_analyze:
|
|
102
|
+
if record not in dict_total.keys():
|
|
103
|
+
dict_total[record] = {}
|
|
104
|
+
# Only keep the reads aligned to the chromosomes of interest
|
|
105
|
+
print('{0}: Filtering sample dataframe to keep chromosome of interest'.format(readwrite.time_string()))
|
|
106
|
+
dict_total[record][i] = temp_df[temp_df['chrom'] == record]
|
|
107
|
+
# Only keep the read positions that fall within the region of interest
|
|
108
|
+
print('{0}: Filtering sample dataframe to keep positions falling within region of interest'.format(readwrite.time_string()))
|
|
109
|
+
current_reference_length = reference_dict[record][0]
|
|
110
|
+
dict_total[record][i] = dict_total[record][i][(current_reference_length > dict_total[record][i]['ref_position']) & (dict_total[record][i]['ref_position']>= 0)]
|
|
111
|
+
|
|
112
|
+
# Iterate over dict_total of all the tsv files and extract the modification specific and strand specific dataframes into dictionaries
|
|
113
|
+
for record in dict_total.keys():
|
|
114
|
+
for i in dict_total[record].keys():
|
|
115
|
+
if '6mA' in mods:
|
|
116
|
+
# Remove Adenine stranded dicts from the dicts to skip set
|
|
117
|
+
dict_to_skip.difference_update(A_stranded_dicts)
|
|
118
|
+
|
|
119
|
+
if record not in dict_a.keys() and record not in dict_a_bottom.keys() and record not in dict_a_top.keys():
|
|
120
|
+
dict_a[record], dict_a_bottom[record], dict_a_top[record] = {}, {}, {}
|
|
121
|
+
|
|
122
|
+
# get a dictionary of dataframes that only contain methylated adenine positions
|
|
123
|
+
dict_a[record][i] = dict_total[record][i][dict_total[record][i]['modified_primary_base'] == 'A']
|
|
124
|
+
print('{}: Successfully created a methyl-adenine dictionary for '.format(readwrite.time_string()) + str(i))
|
|
125
|
+
# Stratify the adenine dictionary into two strand specific dictionaries.
|
|
126
|
+
dict_a_bottom[record][i] = dict_a[record][i][dict_a[record][i]['ref_strand'] == '-']
|
|
127
|
+
print('{}: Successfully created a minus strand methyl-adenine dictionary for '.format(readwrite.time_string()) + str(i))
|
|
128
|
+
dict_a_top[record][i] = dict_a[record][i][dict_a[record][i]['ref_strand'] == '+']
|
|
129
|
+
print('{}: Successfully created a plus strand methyl-adenine dictionary for '.format(readwrite.time_string()) + str(i))
|
|
130
|
+
|
|
131
|
+
if '5mC' in mods:
|
|
132
|
+
# Remove Cytosine stranded dicts from the dicts to skip set
|
|
133
|
+
dict_to_skip.difference_update(C_stranded_dicts)
|
|
134
|
+
|
|
135
|
+
if record not in dict_c.keys() and record not in dict_c_bottom.keys() and record not in dict_c_top.keys():
|
|
136
|
+
dict_c[record], dict_c_bottom[record], dict_c_top[record] = {}, {}, {}
|
|
137
|
+
|
|
138
|
+
# get a dictionary of dataframes that only contain methylated cytosine positions
|
|
139
|
+
dict_c[record][i] = dict_total[record][i][dict_total[record][i]['modified_primary_base'] == 'C']
|
|
140
|
+
print('{}: Successfully created a methyl-cytosine dictionary for '.format(readwrite.time_string()) + str(i))
|
|
141
|
+
# Stratify the cytosine dictionary into two strand specific dictionaries.
|
|
142
|
+
dict_c_bottom[record][i] = dict_c[record][i][dict_c[record][i]['ref_strand'] == '-']
|
|
143
|
+
print('{}: Successfully created a minus strand methyl-cytosine dictionary for '.format(readwrite.time_string()) + str(i))
|
|
144
|
+
dict_c_top[record][i] = dict_c[record][i][dict_c[record][i]['ref_strand'] == '+']
|
|
145
|
+
print('{}: Successfully created a plus strand methyl-cytosine dictionary for '.format(readwrite.time_string()) + str(i))
|
|
146
|
+
# In the strand specific dictionaries, only keep positions that are informative for GpC SMF
|
|
147
|
+
|
|
148
|
+
if '6mA' in mods and '5mC' in mods:
|
|
149
|
+
# Remove combined stranded dicts from the dicts to skip set
|
|
150
|
+
dict_to_skip.difference_update(combined_dicts)
|
|
151
|
+
# Initialize the sample keys for the combined dictionaries
|
|
152
|
+
|
|
153
|
+
if record not in dict_combined_bottom.keys() and record not in dict_combined_top.keys():
|
|
154
|
+
dict_combined_bottom[record], dict_combined_top[record]= {}, {}
|
|
155
|
+
|
|
156
|
+
print('{}: Successfully created a minus strand combined methylation dictionary for '.format(readwrite.time_string()) + str(i))
|
|
157
|
+
dict_combined_bottom[record][i] = []
|
|
158
|
+
print('{}: Successfully created a plus strand combined methylation dictionary for '.format(readwrite.time_string()) + str(i))
|
|
159
|
+
dict_combined_top[record][i] = []
|
|
160
|
+
|
|
161
|
+
# Iterate over the stranded modification dictionaries and replace the dataframes with a dictionary of read names pointing to a list of values from the dataframe
|
|
162
|
+
for i, dict_type in enumerate(dict_list):
|
|
163
|
+
# Only iterate over stranded dictionaries
|
|
164
|
+
if i not in dict_to_skip:
|
|
165
|
+
print('{0}: Extracting methylation states for {1} dictionary'.format(readwrite.time_string(), sample_types[i]))
|
|
166
|
+
for record in dict_type.keys():
|
|
167
|
+
# Get the dictionary for the modification type of interest from the reference mapping of interest
|
|
168
|
+
dict = dict_type[record]
|
|
169
|
+
print('{0}: Extracting methylation states for {1} dictionary'.format(readwrite.time_string(), record))
|
|
170
|
+
# For each sample in a stranded dictionary
|
|
171
|
+
for sample in dict.keys():
|
|
172
|
+
print('{0}: Extracting {1} dictionary from record {2} for sample {3}'.format(readwrite.time_string(), sample_types[i], record, sample))
|
|
173
|
+
# Load the combined bottom strand dictionary after all the individual dictionaries have been made for the sample
|
|
174
|
+
if i == 7:
|
|
175
|
+
# Load the minus strand dictionaries for each sample into temporary variables
|
|
176
|
+
temp_a_dict = dict_list[2][record][sample].copy()
|
|
177
|
+
temp_c_dict = dict_list[5][record][sample].copy()
|
|
178
|
+
dict[sample] = {}
|
|
179
|
+
# Iterate over the reads present in the merge of both dictionaries
|
|
180
|
+
for read in set(temp_a_dict) | set(temp_c_dict):
|
|
181
|
+
# Add the arrays element-wise if the read is present in both dictionaries
|
|
182
|
+
if read in temp_a_dict and read in temp_c_dict:
|
|
183
|
+
dict[sample][read] = np.nansum([temp_a_dict[read], temp_c_dict[read]], axis=0)
|
|
184
|
+
# If the read is present in only one dictionary, copy its value
|
|
185
|
+
elif read in temp_a_dict:
|
|
186
|
+
dict[sample][read] = temp_a_dict[read]
|
|
187
|
+
else:
|
|
188
|
+
dict[sample][read] = temp_c_dict[read]
|
|
189
|
+
# Load the combined top strand dictionary after all the individual dictionaries have been made for the sample
|
|
190
|
+
elif i == 8:
|
|
191
|
+
# Load the plus strand dictionaries for each sample into temporary variables
|
|
192
|
+
temp_a_dict = dict_list[3][record][sample].copy()
|
|
193
|
+
temp_c_dict = dict_list[6][record][sample].copy()
|
|
194
|
+
dict[sample] = {}
|
|
195
|
+
# Iterate over the reads present in the merge of both dictionaries
|
|
196
|
+
for read in set(temp_a_dict) | set(temp_c_dict):
|
|
197
|
+
# Add the arrays element-wise if the read is present in both dictionaries
|
|
198
|
+
if read in temp_a_dict and read in temp_c_dict:
|
|
199
|
+
dict[sample][read] = np.nansum([temp_a_dict[read], temp_c_dict[read]], axis=0)
|
|
200
|
+
# If the read is present in only one dictionary, copy its value
|
|
201
|
+
elif read in temp_a_dict:
|
|
202
|
+
dict[sample][read] = temp_a_dict[read]
|
|
203
|
+
else:
|
|
204
|
+
dict[sample][read] = temp_c_dict[read]
|
|
205
|
+
# For all other dictionaries
|
|
206
|
+
else:
|
|
207
|
+
# extract the dataframe from the dictionary into a temporary variable
|
|
208
|
+
temp_df = dict[sample]
|
|
209
|
+
# reassign the dictionary pointer to a nested dictionary.
|
|
210
|
+
dict[sample] = {}
|
|
211
|
+
# # Iterate through rows in the temp DataFrame
|
|
212
|
+
for index, row in temp_df.iterrows():
|
|
213
|
+
read = row['read_id'] # read name
|
|
214
|
+
position = row['ref_position'] # positional coordinate
|
|
215
|
+
probability = row['call_prob'] # Get the probability of the given call
|
|
216
|
+
# if the call_code is modified change methylated value to the probability of methylation
|
|
217
|
+
if (row['call_code'] in ['a', 'h', 'm']):
|
|
218
|
+
methylated = probability
|
|
219
|
+
# If the call code is canonical, change the methylated value to 1 - the probability of canonical
|
|
220
|
+
elif (row['call_code'] in ['-']):
|
|
221
|
+
methylated = 1 - probability
|
|
222
|
+
|
|
223
|
+
# If the current read is not in the dictionary yet, initalize the dictionary with a nan filled numpy array of proper size.
|
|
224
|
+
if read not in dict[sample]:
|
|
225
|
+
dict[sample][read] = np.full(max_reference_length, np.nan)
|
|
226
|
+
else:
|
|
227
|
+
pass
|
|
228
|
+
# add the positional methylation state to the numpy array
|
|
229
|
+
dict[sample][read][position-1] = methylated
|
|
230
|
+
|
|
231
|
+
# Save the sample files in the batch as gzipped hdf5 files
|
|
232
|
+
print('{0}: Converting batch {1} dictionaries to anndata objects'.format(readwrite.time_string(), batch))
|
|
233
|
+
for i, dict_type in enumerate(dict_list):
|
|
234
|
+
if i not in dict_to_skip:
|
|
235
|
+
# Initialize an hdf5 file for the current modified strand
|
|
236
|
+
adata = None
|
|
237
|
+
print('{0}: Converting {1} dictionary to an anndata object'.format(readwrite.time_string(), sample_types[i]))
|
|
238
|
+
for record in dict_type.keys():
|
|
239
|
+
# Get the dictionary for the modification type of interest from the reference mapping of interest
|
|
240
|
+
dict = dict_type[record]
|
|
241
|
+
for sample in dict.keys():
|
|
242
|
+
print('{0}: Converting {1} dictionary for sample {2} to an anndata object'.format(readwrite.time_string(), sample_types[i], sample))
|
|
243
|
+
sample = int(sample)
|
|
244
|
+
final_sample_index = sample + (batch * batch_size)
|
|
245
|
+
print('{0}: Final sample index for sample: {1}'.format(readwrite.time_string(), final_sample_index))
|
|
246
|
+
print('{0}: Converting {1} dictionary for sample {2} to a dataframe'.format(readwrite.time_string(), sample_types[i], final_sample_index))
|
|
247
|
+
temp_df = pd.DataFrame.from_dict(dict[sample], orient='index')
|
|
248
|
+
sorted_index = sorted(temp_df.index)
|
|
249
|
+
temp_df = temp_df.reindex(sorted_index)
|
|
250
|
+
X = temp_df.values
|
|
251
|
+
one_hot_encodings = record_seq_dict[record][0]
|
|
252
|
+
read_names = list(one_hot_encodings.keys())
|
|
253
|
+
sequence_length = one_hot_encodings[read_names[0]].shape[0]
|
|
254
|
+
dict_A, dict_C, dict_G, dict_T, dict_N = {}, {}, {}, {}, {}
|
|
255
|
+
# Loop through each read name and its corresponding one-hot array
|
|
256
|
+
print('{0}: Extracting one hot encodings into dictionaries'.format(readwrite.time_string()))
|
|
257
|
+
for read_name, one_hot_array in one_hot_encodings.items():
|
|
258
|
+
dict_A[read_name] = one_hot_array[:, 0]
|
|
259
|
+
dict_C[read_name] = one_hot_array[:, 1]
|
|
260
|
+
dict_G[read_name] = one_hot_array[:, 2]
|
|
261
|
+
dict_T[read_name] = one_hot_array[:, 3]
|
|
262
|
+
dict_N[read_name] = one_hot_array[:, 4]
|
|
263
|
+
# Load dfs with data from the dictionaries
|
|
264
|
+
print('{0}: Loading dataframes from one hot encoded dictionaries'.format(readwrite.time_string()))
|
|
265
|
+
df_A = pd.DataFrame.from_dict(dict_A, orient='index').reindex(sorted_index)
|
|
266
|
+
df_C = pd.DataFrame.from_dict(dict_C, orient='index').reindex(sorted_index)
|
|
267
|
+
df_G = pd.DataFrame.from_dict(dict_G, orient='index').reindex(sorted_index)
|
|
268
|
+
df_T = pd.DataFrame.from_dict(dict_T, orient='index').reindex(sorted_index)
|
|
269
|
+
df_N = pd.DataFrame.from_dict(dict_N, orient='index').reindex(sorted_index)
|
|
270
|
+
|
|
271
|
+
ohe_df_map = {0: df_A, 1: df_C, 2: df_G, 3: df_T, 4: df_N}
|
|
272
|
+
|
|
273
|
+
print('{0}: Loading {1} dataframe for sample {2} into a temp anndata object'.format(readwrite.time_string(), sample_types[i], final_sample_index))
|
|
274
|
+
temp_adata = ad.AnnData(X, dtype=X.dtype)
|
|
275
|
+
print('{0}: Adding read names and position ids to {1} anndata for sample {2}'.format(readwrite.time_string(), sample_types[i], final_sample_index))
|
|
276
|
+
temp_adata.obs_names = temp_df.index
|
|
277
|
+
temp_adata.obs_names = temp_adata.obs_names.astype(str)
|
|
278
|
+
temp_adata.var_names = temp_df.columns
|
|
279
|
+
temp_adata.var_names = temp_adata.var_names.astype(str)
|
|
280
|
+
print('{0}: Adding final sample id to {1} anndata for sample {2}'.format(readwrite.time_string(), sample_types[i], final_sample_index))
|
|
281
|
+
temp_adata.obs['Sample'] = [str(final_sample_index)] * len(temp_adata)
|
|
282
|
+
dataset, strand = sample_types[i].split('_')[:2]
|
|
283
|
+
temp_adata.obs['Strand'] = [strand] * len(temp_adata)
|
|
284
|
+
temp_adata.obs['Dataset'] = [dataset] * len(temp_adata)
|
|
285
|
+
temp_adata.obs['Reference'] = [f'{record}_{dataset}_{strand}'] * len(temp_adata)
|
|
286
|
+
temp_adata.obs['Reference_chromosome'] = [f'{record}'] * len(temp_adata)
|
|
287
|
+
|
|
288
|
+
for j, base in enumerate(['A', 'C', 'G', 'T', 'N']):
|
|
289
|
+
temp_adata.layers[f'{base}_binary_encoding'] = ohe_df_map[j].values
|
|
290
|
+
|
|
291
|
+
# If final adata object already has a sample loaded, concatenate the current sample into the existing adata object
|
|
292
|
+
if adata:
|
|
293
|
+
print('{0}: Concatenating {1} anndata object for sample {2}'.format(readwrite.time_string(), sample_types[i], final_sample_index))
|
|
294
|
+
adata = ad.concat([adata, temp_adata], join='outer', index_unique=None)
|
|
295
|
+
else:
|
|
296
|
+
print('{0}: Initializing {1} anndata object for sample {2}'.format(readwrite.time_string(), sample_types[i], final_sample_index))
|
|
297
|
+
adata = temp_adata
|
|
298
|
+
|
|
299
|
+
print('{0}: Writing {1} anndata out as a gzipped hdf5 file'.format(readwrite.time_string(), sample_types[i]))
|
|
300
|
+
adata.write_h5ad('{0}_{1}_{2}_SMF_binarized_sample_hdf5.h5ad.gz'.format(readwrite.date_string(), batch, sample_types[i]), compression='gzip')
|
|
301
|
+
|
|
302
|
+
# Delete the batch dictionaries from memory
|
|
303
|
+
del dict_list
|
|
304
|
+
gc.collect()
|
|
305
|
+
|
|
306
|
+
# Iterate over all of the batched hdf5 files and concatenate them.
|
|
307
|
+
files = os.listdir(os.getcwd())
|
|
308
|
+
# Name the final output file
|
|
309
|
+
final_hdf = '{0}_{1}_final_experiment_hdf5.h5ad.gz'.format(readwrite.date_string(), experiment_name)
|
|
310
|
+
# Filter file names that contain the search string in their filename and keep them in a list
|
|
311
|
+
hdfs = [hdf for hdf in files if 'hdf5.h5ad' in hdf and hdf != final_hdf]
|
|
312
|
+
# Sort file list by names and print the list of file names
|
|
313
|
+
hdfs.sort()
|
|
314
|
+
print('{0} sample files found: {1}'.format(len(hdfs), hdfs))
|
|
315
|
+
final_adata = None
|
|
316
|
+
for hdf in hdfs:
|
|
317
|
+
print('{0}: Reading in {1} hdf5 file'.format(readwrite.time_string(), hdf))
|
|
318
|
+
temp_adata = ad.read_h5ad(hdf)
|
|
319
|
+
if final_adata:
|
|
320
|
+
print('{0}: Concatenating final adata object with {1} hdf5 file'.format(readwrite.time_string(), hdf))
|
|
321
|
+
final_adata = ad.concat([final_adata, temp_adata], join='outer', index_unique=None)
|
|
322
|
+
else:
|
|
323
|
+
print('{0}: Initializing final adata object with {1} hdf5 file'.format(readwrite.time_string(), hdf))
|
|
324
|
+
final_adata = temp_adata
|
|
325
|
+
print('{0}: Writing final concatenated hdf5 file'.format(readwrite.time_string()))
|
|
326
|
+
|
|
327
|
+
for record in records_to_analyze:
|
|
328
|
+
# Add FASTA sequence to the object
|
|
329
|
+
sequence = record_seq_dict[record][1]
|
|
330
|
+
final_adata.uns[f'{record}_FASTA_sequence'] = sequence
|
|
331
|
+
final_adata.var[f'{record}_FASTA_sequence_base'] = list(sequence)
|
|
332
|
+
|
|
333
|
+
# Add consensus sequence of samples mapped to the record to the object
|
|
334
|
+
record_subset = final_adata[final_adata.obs['Reference_chromosome'] == record].copy()
|
|
335
|
+
layer_map, layer_counts = {}, []
|
|
336
|
+
for i, layer in enumerate(record_subset.layers):
|
|
337
|
+
layer_map[i] = layer.split('_')[0]
|
|
338
|
+
layer_counts.append(np.sum(record_subset.layers[layer], axis=0))
|
|
339
|
+
count_array = np.array(layer_counts)
|
|
340
|
+
nucleotide_indexes = np.argmax(count_array, axis=0)
|
|
341
|
+
consensus_sequence_list = [layer_map[i] for i in nucleotide_indexes]
|
|
342
|
+
final_adata.var[f'{record}_consensus_across_samples'] = consensus_sequence_list
|
|
343
|
+
|
|
344
|
+
final_adata.write_h5ad(final_hdf, compression='gzip')
|
|
345
|
+
|
|
346
|
+
# Delete the individual h5ad files and only keep the final concatenated file
|
|
347
|
+
files = os.listdir(os.getcwd())
|
|
348
|
+
hdfs_to_delete = [hdf for hdf in files if 'hdf5.h5ad' in hdf and hdf != final_hdf]
|
|
349
|
+
# Iterate over the files and delete them
|
|
350
|
+
for hdf in hdfs_to_delete:
|
|
351
|
+
try:
|
|
352
|
+
os.remove(hdf)
|
|
353
|
+
print(f"Deleted file: {hdf}")
|
|
354
|
+
except OSError as e:
|
|
355
|
+
print(f"Error deleting file {hdf}: {e}")
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
# one_hot_encode
|
|
2
|
+
from .. import readwrite
|
|
3
|
+
|
|
4
|
+
# String encodings
|
|
5
|
+
def one_hot_encode(sequence):
|
|
6
|
+
"""
|
|
7
|
+
Input: A sequence string of a read.
|
|
8
|
+
Output: One hot encoding of the sequence string.
|
|
9
|
+
"""
|
|
10
|
+
mapping = {'A': 0, 'C': 1, 'G': 2, 'T': 3, 'N': 4}
|
|
11
|
+
one_hot_matrix = np.zeros((len(sequence), 5), dtype=int)
|
|
12
|
+
for i, nucleotide in enumerate(sequence):
|
|
13
|
+
one_hot_matrix[i, mapping[nucleotide]] = 1
|
|
14
|
+
return one_hot_matrix
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
## separate_bam_by_bc
|
|
2
|
+
import pysam
|
|
3
|
+
|
|
4
|
+
# General
|
|
5
|
+
def separate_bam_by_bc(input_bam, output_prefix):
|
|
6
|
+
"""
|
|
7
|
+
Input: Takes a single BAM input. Also takes an output prefix to append to the output file.
|
|
8
|
+
Output: Splits the BAM based on the BC SAM tag value.
|
|
9
|
+
"""
|
|
10
|
+
# Open the input BAM file for reading
|
|
11
|
+
with pysam.AlignmentFile(input_bam, "rb") as bam:
|
|
12
|
+
# Create a dictionary to store output BAM files
|
|
13
|
+
output_files = {}
|
|
14
|
+
# Iterate over each read in the BAM file
|
|
15
|
+
for read in bam:
|
|
16
|
+
try:
|
|
17
|
+
# Get the barcode tag value
|
|
18
|
+
bc_tag = read.get_tag("BC", with_value_type=True)[0].split('barcode')[1]
|
|
19
|
+
# Open the output BAM file corresponding to the barcode
|
|
20
|
+
if bc_tag not in output_files:
|
|
21
|
+
output_files[bc_tag] = pysam.AlignmentFile(f"{output_prefix}_{bc_tag}.bam", "wb", header=bam.header)
|
|
22
|
+
# Write the read to the corresponding output BAM file
|
|
23
|
+
output_files[bc_tag].write(read)
|
|
24
|
+
except KeyError:
|
|
25
|
+
print(f"BC tag not present for read: {read.query_name}")
|
|
26
|
+
# Close all output BAM files
|
|
27
|
+
for output_file in output_files.values():
|
|
28
|
+
output_file.close()
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
## split_and_index_BAM
|
|
2
|
+
from .. import readwrite
|
|
3
|
+
import os
|
|
4
|
+
import subprocess
|
|
5
|
+
import glob
|
|
6
|
+
from .separate_bam_by_bc import separate_bam_by_bc
|
|
7
|
+
|
|
8
|
+
def split_and_index_BAM(aligned_sorted_BAM, split_dir, bam_suffix):
|
|
9
|
+
"""
|
|
10
|
+
A wrapper function for splitting BAMS and indexing them
|
|
11
|
+
"""
|
|
12
|
+
os.chdir(split_dir)
|
|
13
|
+
aligned_sorted_output = aligned_sorted_BAM + bam_suffix
|
|
14
|
+
file_prefix = readwrite.datestring()
|
|
15
|
+
separate_bam_by_bc(aligned_sorted_output, file_prefix)
|
|
16
|
+
# Make a BAM index file for the BAMs in that directory
|
|
17
|
+
bam_pattern = '*' + bam_suffix
|
|
18
|
+
bam_files = glob.glob(os.path.join(split_dir, bam_pattern))
|
|
19
|
+
for input_file in bam_files:
|
|
20
|
+
subprocess.run(["samtools", "index", input_file])
|
|
21
|
+
print(f"Indexed {input_file}")
|
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
## pod5_conversion
|
|
2
|
+
from .helpers import align_BAM, canoncall, converted_BAM_to_adata, generate_converted_FASTA, split_and_index_BAM
|
|
3
|
+
import subprocess
|
|
4
|
+
|
|
5
|
+
def pod5_conversion(fasta, output_directory, conversion_types, strands, model, pod5_dir, split_dir, barcode_kit, mapping_threshold, experiment_name, bam_suffix):
|
|
6
|
+
"""
|
|
7
|
+
Converts a POD5 file from a nanopore conversion SMF experiment to an adata object
|
|
8
|
+
"""
|
|
9
|
+
bam=f"{output_directory}/HAC_basecalls"
|
|
10
|
+
aligned_BAM=f"{bam}_aligned"
|
|
11
|
+
aligned_sorted_BAM=f"{aligned_BAM}_sorted"
|
|
12
|
+
# 1) Convert FASTA file
|
|
13
|
+
converted_FASTA=fasta.split('.fa')[0]+'_converted.fasta'
|
|
14
|
+
generate_converted_FASTA(fasta, conversion_types, strands, converted_FASTA)
|
|
15
|
+
|
|
16
|
+
# 2) Basecall from the input POD5 to generate a singular output BAM
|
|
17
|
+
canoncall(model, pod5_dir, barcode_kit, bam, bam_suffix)
|
|
18
|
+
|
|
19
|
+
# 3) Align the BAM to the converted reference FASTA and sort the bam on positional coordinates. Also make an index and a bed file of mapped reads
|
|
20
|
+
align_BAM(converted_FASTA, bam, bam_suffix)
|
|
21
|
+
|
|
22
|
+
### 4) Split the aligned and sorted BAM files by barcode (BC Tag) into the split_BAM directory###
|
|
23
|
+
split_and_index_BAM(aligned_sorted_BAM, split_dir, bam_suffix)
|
|
24
|
+
|
|
25
|
+
# 5) Take the converted BAM and load it into an adata object.
|
|
26
|
+
converted_BAM_to_adata(converted_FASTA, split_dir, mapping_threshold, experiment_name, conversion_types, bam_suffix)
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
## pod5_direct
|
|
2
|
+
from .helpers import align_BAM, extract_mods, make_modbed, modcall, modkit_extract_to_adata, modQC, split_and_index_BAM
|
|
3
|
+
|
|
4
|
+
def pod5_direct(fasta, output_directory, mod_list, model, thresholds, pod5_dir, split_dir, barcode_kit, mapping_threshold, experiment_name, bam_suffix, batch_size):
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
"""
|
|
8
|
+
bam=f"{output_directory}/HAC_mod_calls"
|
|
9
|
+
aligned_BAM=f"{bam}_aligned"
|
|
10
|
+
aligned_sorted_BAM=f"{aligned_BAM}_sorted"
|
|
11
|
+
mod_bed_dir=f"{output_directory}/split_mod_beds"
|
|
12
|
+
mod_tsv_dir=f"{output_directory}/split_mod_tsvs"
|
|
13
|
+
|
|
14
|
+
aligned_sorted_output = aligned_sorted_BAM + bam_suffix
|
|
15
|
+
mod_map = {'6mA': '6mA', '5mC_5hmC': '5mC'}
|
|
16
|
+
mods = [mod_map[mod] for mod in mod_list]
|
|
17
|
+
|
|
18
|
+
# 1) Basecall using dorado
|
|
19
|
+
modcall(model, pod5_dir, barcode_kit, mod_list, bam, bam_suffix)
|
|
20
|
+
# 2) Align the BAM to the converted reference FASTA. Also make an index and a bed file of mapped reads
|
|
21
|
+
align_BAM(fasta, bam, bam_suffix)
|
|
22
|
+
# 3) Split the aligned and sorted BAM files by barcode (BC Tag) into the split_BAM directory
|
|
23
|
+
split_and_index_BAM(aligned_sorted_BAM, split_dir, bam_suffix)
|
|
24
|
+
# 4) Using nanopore modkit to work with modified BAM files ###
|
|
25
|
+
modQC(aligned_sorted_output, thresholds) # get QC metrics for mod calls
|
|
26
|
+
make_modbed(aligned_sorted_output, thresholds, mod_bed_dir) # Generate bed files of position methylation summaries for every sample
|
|
27
|
+
extract_mods(thresholds, mod_tsv_dir, split_dir, bam_suffix) # Extract methylations calls for split BAM files into split TSV files
|
|
28
|
+
#5 Load the modification data from TSVs into an adata object
|
|
29
|
+
modkit_extract_to_adata(fasta, aligned_sorted_output, mapping_threshold, experiment_name, mods, batch_size)
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
## pod5_to_adata
|
|
2
|
+
from .helpers import load_experiment_config
|
|
3
|
+
from.pod5_direct import pod5_direct
|
|
4
|
+
from.pod5_conversion import pod5_conversion
|
|
5
|
+
|
|
6
|
+
def pod5_to_adata(config_path, ):
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
"""
|
|
10
|
+
# Load experiment config parameters into global variables
|
|
11
|
+
load_experiment_config(config_path)
|
|
12
|
+
if smf_modality == 'conversion':
|
|
13
|
+
(fasta, output_directory, conversion_types, strands, model, pod5_dir, split_dir, barcode_kit, mapping_threshold, experiment_name, bam_suffix)
|
|
14
|
+
elif smf_modality == 'direct':
|
|
15
|
+
pod5_direct(fasta, output_directory, mod_list, model, thresholds, pod5_dir, split_dir, barcode_kit, mapping_threshold, experiment_name, bam_suffix, batch_size)
|
|
16
|
+
else:
|
|
17
|
+
print("Error")
|
|
@@ -0,0 +1,109 @@
|
|
|
1
|
+
## readwrite ##
|
|
2
|
+
|
|
3
|
+
# Basic I/O
|
|
4
|
+
import os
|
|
5
|
+
# Datetime
|
|
6
|
+
from datetime import datetime
|
|
7
|
+
# Data structures and basic operations
|
|
8
|
+
import math
|
|
9
|
+
import numpy as np
|
|
10
|
+
import pandas as pd
|
|
11
|
+
import anndata as ad
|
|
12
|
+
import scipy.sparse as sp
|
|
13
|
+
|
|
14
|
+
# Runtime warnings
|
|
15
|
+
import warnings
|
|
16
|
+
warnings.filterwarnings('ignore', category=UserWarning, module='anndata')
|
|
17
|
+
warnings.filterwarnings('ignore', category=FutureWarning, module='anndata')
|
|
18
|
+
|
|
19
|
+
######################################################################################################
|
|
20
|
+
## Datetime functionality
|
|
21
|
+
def date_string():
|
|
22
|
+
"""
|
|
23
|
+
Each time this is called, it returns the current date string
|
|
24
|
+
"""
|
|
25
|
+
current_date = datetime.now()
|
|
26
|
+
date_string = current_date.strftime("%Y%m%d")
|
|
27
|
+
date_string = date_string[2:]
|
|
28
|
+
return date_string
|
|
29
|
+
|
|
30
|
+
def time_string():
|
|
31
|
+
"""
|
|
32
|
+
Each time this is called, it returns the current time string
|
|
33
|
+
"""
|
|
34
|
+
current_time = datetime.now()
|
|
35
|
+
return current_time.strftime("%H:%M:%S")
|
|
36
|
+
######################################################################################################
|
|
37
|
+
|
|
38
|
+
######################################################################################################
|
|
39
|
+
## Numpy, Pandas, Anndata functionality
|
|
40
|
+
def adata_to_df(adata, layer=None):
|
|
41
|
+
"""
|
|
42
|
+
Input: An adata object with a specified layer.
|
|
43
|
+
Output: A dataframe for the specific layer.
|
|
44
|
+
"""
|
|
45
|
+
# Extract the data matrix from the given layer
|
|
46
|
+
if layer:
|
|
47
|
+
data_matrix = adata.layers[layer]
|
|
48
|
+
else:
|
|
49
|
+
data_matrix = adata.X
|
|
50
|
+
# Extract observation (read) annotations
|
|
51
|
+
obs_df = adata.obs
|
|
52
|
+
# Extract variable (position) annotations
|
|
53
|
+
var_df = adata.var
|
|
54
|
+
# Convert data matrix and annotations to pandas DataFrames
|
|
55
|
+
df = pd.DataFrame(data_matrix, index=obs_df.index, columns=var_df.index)
|
|
56
|
+
return df
|
|
57
|
+
|
|
58
|
+
def save_matrix(matrix, save_name):
|
|
59
|
+
"""
|
|
60
|
+
Input: A numpy matrix and a save_name
|
|
61
|
+
Output: A txt file representation of the data matrix
|
|
62
|
+
"""
|
|
63
|
+
np.savetxt(f'{save_name}.txt', matrix)
|
|
64
|
+
|
|
65
|
+
def concatenate_h5ads(output_file, file_suffix='h5ad.gz', delete_inputs=True):
|
|
66
|
+
"""
|
|
67
|
+
Concatenate all h5ad files in a directory and delete them after the final adata is written out.
|
|
68
|
+
Input: an output file path relative to the directory in which the function is called
|
|
69
|
+
"""
|
|
70
|
+
# List all files in the directory
|
|
71
|
+
files = os.listdir(os.getcwd())
|
|
72
|
+
# get current working directory
|
|
73
|
+
cwd = os.getcwd()
|
|
74
|
+
suffix = file_suffix
|
|
75
|
+
# Filter file names that contain the search string in their filename and keep them in a list
|
|
76
|
+
hdfs = [hdf for hdf in files if suffix in hdf]
|
|
77
|
+
# Sort file list by names and print the list of file names
|
|
78
|
+
hdfs.sort()
|
|
79
|
+
print('{0} sample files found: {1}'.format(len(hdfs), hdfs))
|
|
80
|
+
# Iterate over all of the hdf5 files and concatenate them.
|
|
81
|
+
final_adata = None
|
|
82
|
+
for hdf in hdfs:
|
|
83
|
+
print('{0}: Reading in {1} hdf5 file'.format(time_string(), hdf))
|
|
84
|
+
temp_adata = ad.read_h5ad(hdf)
|
|
85
|
+
if final_adata:
|
|
86
|
+
print('{0}: Concatenating final adata object with {1} hdf5 file'.format(time_string(), hdf))
|
|
87
|
+
final_adata = ad.concat([final_adata, temp_adata], join='outer', index_unique=None)
|
|
88
|
+
else:
|
|
89
|
+
print('{0}: Initializing final adata object with {1} hdf5 file'.format(time_string(), hdf))
|
|
90
|
+
final_adata = temp_adata
|
|
91
|
+
print('{0}: Writing final concatenated hdf5 file'.format(time_string()))
|
|
92
|
+
final_adata.write_h5ad(output_file, compression='gzip')
|
|
93
|
+
|
|
94
|
+
# Delete the individual h5ad files and only keep the final concatenated file
|
|
95
|
+
if delete_inputs:
|
|
96
|
+
files = os.listdir(os.getcwd())
|
|
97
|
+
hdfs = [hdf for hdf in files if suffix in hdf]
|
|
98
|
+
if output_file in hdfs:
|
|
99
|
+
hdfs.remove(output_file)
|
|
100
|
+
# Iterate over the files and delete them
|
|
101
|
+
for hdf in hdfs:
|
|
102
|
+
try:
|
|
103
|
+
os.remove(hdf)
|
|
104
|
+
print(f"Deleted file: {hdf}")
|
|
105
|
+
except OSError as e:
|
|
106
|
+
print(f"Error deleting file {hdf}: {e}")
|
|
107
|
+
else:
|
|
108
|
+
print('Keeping input files')
|
|
109
|
+
######################################################################################################
|
|
File without changes
|
|
@@ -0,0 +1,35 @@
|
|
|
1
|
+
from .append_C_context import append_C_context
|
|
2
|
+
from .binarize_on_Youden import binarize_on_Youden
|
|
3
|
+
from .binary_layers_to_ohe import binary_layers_to_ohe
|
|
4
|
+
from .calculate_complexity import calculate_complexity
|
|
5
|
+
from .calculate_converted_read_methylation_stats import calculate_converted_read_methylation_stats
|
|
6
|
+
from .calculate_coverage import calculate_coverage
|
|
7
|
+
from .calculate_pairwise_hamming_distances import calculate_pairwise_hamming_distances
|
|
8
|
+
from .calculate_position_Youden import calculate_position_Youden
|
|
9
|
+
from .calculate_read_length_stats import calculate_read_length_stats
|
|
10
|
+
from .clean_NaN import clean_NaN
|
|
11
|
+
from .filter_converted_reads_on_methylation import filter_converted_reads_on_methylation
|
|
12
|
+
from .filter_reads_on_length import filter_reads_on_length
|
|
13
|
+
from .invert_adata import invert_adata
|
|
14
|
+
from .mark_duplicates import mark_duplicates
|
|
15
|
+
from .min_non_diagonal import min_non_diagonal
|
|
16
|
+
from .remove_duplicates import remove_duplicates
|
|
17
|
+
|
|
18
|
+
__all__ = [
|
|
19
|
+
"append_C_context",
|
|
20
|
+
"binarize_on_Youden",
|
|
21
|
+
"binary_layers_to_ohe",
|
|
22
|
+
"calculate_complexity",
|
|
23
|
+
"calculate_converted_read_methylation_stats",
|
|
24
|
+
"calculate_coverage",
|
|
25
|
+
"calculate_pairwise_hamming_distances",
|
|
26
|
+
"calculate_position_Youden",
|
|
27
|
+
"calculate_read_length_stats",
|
|
28
|
+
"clean_NaN",
|
|
29
|
+
"filter_converted_reads_on_methylation",
|
|
30
|
+
"filter_reads_on_length",
|
|
31
|
+
"invert_adata",
|
|
32
|
+
"mark_duplicates",
|
|
33
|
+
"min_non_diagonal",
|
|
34
|
+
"remove_duplicates"
|
|
35
|
+
]
|