sliceline 0.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sliceline/__init__.py +3 -0
- sliceline/slicefinder.py +732 -0
- sliceline/validation.py +858 -0
- sliceline-0.0.0.dist-info/LICENSE +29 -0
- sliceline-0.0.0.dist-info/METADATA +119 -0
- sliceline-0.0.0.dist-info/RECORD +7 -0
- sliceline-0.0.0.dist-info/WHEEL +4 -0
sliceline/validation.py
ADDED
|
@@ -0,0 +1,858 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Overwritten sklearn validation file to handle string values.
|
|
3
|
+
|
|
4
|
+
Utilities for input validation
|
|
5
|
+
Authors: Olivier Grisel
|
|
6
|
+
Gael Varoquaux
|
|
7
|
+
Andreas Mueller
|
|
8
|
+
Lars Buitinck
|
|
9
|
+
Alexandre Gramfort
|
|
10
|
+
Nicolas Tresegnie
|
|
11
|
+
Sylvain Marie
|
|
12
|
+
License: BSD 3 clause
|
|
13
|
+
"""
|
|
14
|
+
|
|
15
|
+
import numbers
|
|
16
|
+
import warnings
|
|
17
|
+
from contextlib import suppress
|
|
18
|
+
|
|
19
|
+
import numpy as np
|
|
20
|
+
import scipy.sparse as sp
|
|
21
|
+
|
|
22
|
+
# mypy error: Module 'numpy.core.numeric' has no attribute 'ComplexWarning'
|
|
23
|
+
from numpy.core.numeric import ComplexWarning # type: ignore
|
|
24
|
+
from sklearn._config import get_config as _get_config
|
|
25
|
+
from sklearn.exceptions import DataConversionWarning
|
|
26
|
+
from sklearn.utils.fixes import _object_dtype_isnan
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def _assert_all_finite(
|
|
30
|
+
X, allow_nan=False, msg_dtype=None, estimator_name=None, input_name=""
|
|
31
|
+
):
|
|
32
|
+
"""Like assert_all_finite, but only for ndarray."""
|
|
33
|
+
# validation is also imported in extmath
|
|
34
|
+
from sklearn.utils.extmath import _safe_accumulator_op
|
|
35
|
+
|
|
36
|
+
if _get_config()["assume_finite"]:
|
|
37
|
+
return
|
|
38
|
+
X = np.asanyarray(X)
|
|
39
|
+
# First try an O(n) time, O(1) space solution for the common case that
|
|
40
|
+
# everything is finite; fall back to O(n) space np.isfinite to prevent
|
|
41
|
+
# false positives from overflow in sum method. The sum is also calculated
|
|
42
|
+
# safely to reduce dtype induced overflows.
|
|
43
|
+
is_float = X.dtype.kind in "fc"
|
|
44
|
+
if is_float and (np.isfinite(_safe_accumulator_op(np.sum, X))):
|
|
45
|
+
pass
|
|
46
|
+
elif is_float:
|
|
47
|
+
if (
|
|
48
|
+
allow_nan
|
|
49
|
+
and np.isinf(X).any()
|
|
50
|
+
or not allow_nan
|
|
51
|
+
and not np.isfinite(X).all()
|
|
52
|
+
):
|
|
53
|
+
if not allow_nan and np.isnan(X).any():
|
|
54
|
+
type_err = "NaN"
|
|
55
|
+
else:
|
|
56
|
+
msg_dtype = msg_dtype if msg_dtype is not None else X.dtype
|
|
57
|
+
type_err = f"infinity or a value too large for {msg_dtype!r}"
|
|
58
|
+
padded_input_name = input_name + " " if input_name else ""
|
|
59
|
+
msg_err = f"Input {padded_input_name}contains {type_err}."
|
|
60
|
+
if (
|
|
61
|
+
not allow_nan
|
|
62
|
+
and estimator_name
|
|
63
|
+
and input_name == "X"
|
|
64
|
+
and np.isnan(X).any()
|
|
65
|
+
):
|
|
66
|
+
# Improve the error message on how to handle missing values in
|
|
67
|
+
# scikit-learn.
|
|
68
|
+
msg_err += (
|
|
69
|
+
f"\n{estimator_name} does not accept missing values"
|
|
70
|
+
" encoded as NaN natively. For supervised learning, you might want"
|
|
71
|
+
" to consider sklearn.ensemble.HistGradientBoostingClassifier and"
|
|
72
|
+
" Regressor which accept missing values encoded as NaNs natively."
|
|
73
|
+
" Alternatively, it is possible to preprocess the data, for"
|
|
74
|
+
" instance by using an imputer transformer in a pipeline or drop"
|
|
75
|
+
" samples with missing values. See"
|
|
76
|
+
" https://scikit-learn.org/stable/modules/impute.html"
|
|
77
|
+
)
|
|
78
|
+
raise ValueError(msg_err)
|
|
79
|
+
|
|
80
|
+
# for object dtype data, we only check for NaNs (GH-13254)
|
|
81
|
+
elif X.dtype == np.dtype("object") and not allow_nan:
|
|
82
|
+
if _object_dtype_isnan(X).any():
|
|
83
|
+
raise ValueError("Input contains NaN")
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
def _num_samples(x):
|
|
87
|
+
"""Return number of samples in array-like x."""
|
|
88
|
+
message = "Expected sequence or array-like, got %s" % type(x)
|
|
89
|
+
if hasattr(x, "fit") and callable(x.fit):
|
|
90
|
+
# Don't get num_samples from an ensembles length!
|
|
91
|
+
raise TypeError(message)
|
|
92
|
+
|
|
93
|
+
if not hasattr(x, "__len__") and not hasattr(x, "shape"):
|
|
94
|
+
if hasattr(x, "__array__"):
|
|
95
|
+
x = np.asarray(x)
|
|
96
|
+
else:
|
|
97
|
+
raise TypeError(message)
|
|
98
|
+
|
|
99
|
+
if hasattr(x, "shape") and x.shape is not None:
|
|
100
|
+
if len(x.shape) == 0:
|
|
101
|
+
raise TypeError(
|
|
102
|
+
"Singleton array %r cannot be considered a valid collection."
|
|
103
|
+
% x
|
|
104
|
+
)
|
|
105
|
+
# Check that shape is returning an integer or default to len
|
|
106
|
+
# Dask dataframes may not return numeric shape[0] value
|
|
107
|
+
if isinstance(x.shape[0], numbers.Integral):
|
|
108
|
+
return x.shape[0]
|
|
109
|
+
|
|
110
|
+
try:
|
|
111
|
+
return len(x)
|
|
112
|
+
except TypeError as type_error:
|
|
113
|
+
raise TypeError(message) from type_error
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
def check_consistent_length(*arrays):
|
|
117
|
+
"""Check that all arrays have consistent first dimensions.
|
|
118
|
+
|
|
119
|
+
Checks whether all objects in arrays have the same shape or length.
|
|
120
|
+
|
|
121
|
+
Parameters
|
|
122
|
+
----------
|
|
123
|
+
*arrays : list or tuple of input objects.
|
|
124
|
+
Objects that will be checked for consistent length.
|
|
125
|
+
"""
|
|
126
|
+
|
|
127
|
+
lengths = [_num_samples(X) for X in arrays if X is not None]
|
|
128
|
+
uniques = np.unique(lengths)
|
|
129
|
+
if len(uniques) > 1:
|
|
130
|
+
int_lengths = [int(length) for length in lengths]
|
|
131
|
+
raise ValueError(
|
|
132
|
+
f"Found input variables with inconsistent numbers of samples: {int_lengths!r}"
|
|
133
|
+
)
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
def _ensure_sparse_format(
|
|
137
|
+
spmatrix,
|
|
138
|
+
accept_sparse,
|
|
139
|
+
dtype,
|
|
140
|
+
copy,
|
|
141
|
+
force_all_finite,
|
|
142
|
+
accept_large_sparse,
|
|
143
|
+
estimator_name=None,
|
|
144
|
+
input_name="",
|
|
145
|
+
):
|
|
146
|
+
"""Convert a sparse matrix to a given format.
|
|
147
|
+
|
|
148
|
+
Checks the sparse format of spmatrix and converts if necessary.
|
|
149
|
+
|
|
150
|
+
Parameters
|
|
151
|
+
----------
|
|
152
|
+
spmatrix : sparse matrix
|
|
153
|
+
Input to validate and convert.
|
|
154
|
+
|
|
155
|
+
accept_sparse : str, bool or list/tuple of str
|
|
156
|
+
String[s] representing allowed sparse matrix formats ('csc',
|
|
157
|
+
'csr', 'coo', 'dok', 'bsr', 'lil', 'dia'). If the input is sparse but
|
|
158
|
+
not in the allowed format, it will be converted to the first listed
|
|
159
|
+
format. True allows the input to be any format. False means
|
|
160
|
+
that a sparse matrix input will raise an error.
|
|
161
|
+
|
|
162
|
+
dtype : str, type or None
|
|
163
|
+
Data type of result. If None, the dtype of the input is preserved.
|
|
164
|
+
|
|
165
|
+
copy : bool
|
|
166
|
+
Whether a forced copy will be triggered. If copy=False, a copy might
|
|
167
|
+
be triggered by a conversion.
|
|
168
|
+
|
|
169
|
+
force_all_finite : bool or 'allow-nan'
|
|
170
|
+
Whether to raise an error on np.inf, np.nan, pd.NA in X. The
|
|
171
|
+
possibilities are:
|
|
172
|
+
|
|
173
|
+
- True: Force all values of X to be finite.
|
|
174
|
+
- False: accepts np.inf, np.nan, pd.NA in X.
|
|
175
|
+
- 'allow-nan': accepts only np.nan and pd.NA values in X. Values cannot
|
|
176
|
+
be infinite.
|
|
177
|
+
|
|
178
|
+
.. versionadded:: 0.20
|
|
179
|
+
``force_all_finite`` accepts the string ``'allow-nan'``.
|
|
180
|
+
|
|
181
|
+
.. versionchanged:: 0.23
|
|
182
|
+
Accepts `pd.NA` and converts it into `np.nan`
|
|
183
|
+
|
|
184
|
+
|
|
185
|
+
estimator_name : str, default=None
|
|
186
|
+
The estimator name, used to construct the error message.
|
|
187
|
+
|
|
188
|
+
input_name : str, default=""
|
|
189
|
+
The data name used to construct the error message. In particular
|
|
190
|
+
if `input_name` is "X" and the data has NaN values and
|
|
191
|
+
allow_nan is False, the error message will link to the imputer
|
|
192
|
+
documentation.
|
|
193
|
+
|
|
194
|
+
Returns
|
|
195
|
+
-------
|
|
196
|
+
spmatrix_converted : sparse matrix.
|
|
197
|
+
Matrix that is ensured to have an allowed type.
|
|
198
|
+
"""
|
|
199
|
+
if dtype is None:
|
|
200
|
+
dtype = spmatrix.dtype
|
|
201
|
+
|
|
202
|
+
changed_format = False
|
|
203
|
+
|
|
204
|
+
if isinstance(accept_sparse, str):
|
|
205
|
+
accept_sparse = [accept_sparse]
|
|
206
|
+
|
|
207
|
+
# Indices dtype validation
|
|
208
|
+
_check_large_sparse(spmatrix, accept_large_sparse)
|
|
209
|
+
|
|
210
|
+
if accept_sparse is False:
|
|
211
|
+
raise TypeError(
|
|
212
|
+
"A sparse matrix was passed, but dense "
|
|
213
|
+
"data is required. Use X.toarray() to "
|
|
214
|
+
"convert to a dense numpy array."
|
|
215
|
+
)
|
|
216
|
+
if isinstance(accept_sparse, (list, tuple)):
|
|
217
|
+
if len(accept_sparse) == 0:
|
|
218
|
+
raise ValueError(
|
|
219
|
+
"When providing 'accept_sparse' "
|
|
220
|
+
"as a tuple or list, it must contain at "
|
|
221
|
+
"least one string value."
|
|
222
|
+
)
|
|
223
|
+
# ensure correct sparse format
|
|
224
|
+
if spmatrix.format not in accept_sparse:
|
|
225
|
+
# create new with correct sparse
|
|
226
|
+
spmatrix = spmatrix.asformat(accept_sparse[0])
|
|
227
|
+
changed_format = True
|
|
228
|
+
elif accept_sparse is not True:
|
|
229
|
+
# any other type
|
|
230
|
+
raise ValueError(
|
|
231
|
+
"Parameter 'accept_sparse' should be a string, "
|
|
232
|
+
"boolean or list of strings. You provided "
|
|
233
|
+
f"'accept_sparse={accept_sparse}'."
|
|
234
|
+
)
|
|
235
|
+
|
|
236
|
+
if dtype != spmatrix.dtype:
|
|
237
|
+
# convert dtype
|
|
238
|
+
spmatrix = spmatrix.astype(dtype)
|
|
239
|
+
elif copy and not changed_format:
|
|
240
|
+
# force copy
|
|
241
|
+
spmatrix = spmatrix.copy()
|
|
242
|
+
|
|
243
|
+
if force_all_finite:
|
|
244
|
+
if not hasattr(spmatrix, "data"):
|
|
245
|
+
warnings.warn(
|
|
246
|
+
"Can't check %s sparse matrix for nan or inf."
|
|
247
|
+
% spmatrix.format,
|
|
248
|
+
stacklevel=2,
|
|
249
|
+
)
|
|
250
|
+
else:
|
|
251
|
+
_assert_all_finite(
|
|
252
|
+
spmatrix.data,
|
|
253
|
+
allow_nan=force_all_finite == "allow-nan",
|
|
254
|
+
estimator_name=estimator_name,
|
|
255
|
+
input_name=input_name,
|
|
256
|
+
)
|
|
257
|
+
|
|
258
|
+
return spmatrix
|
|
259
|
+
|
|
260
|
+
|
|
261
|
+
def _ensure_no_complex_data(array):
|
|
262
|
+
if (
|
|
263
|
+
hasattr(array, "dtype")
|
|
264
|
+
and array.dtype is not None
|
|
265
|
+
and hasattr(array.dtype, "kind")
|
|
266
|
+
and array.dtype.kind == "c"
|
|
267
|
+
):
|
|
268
|
+
raise ValueError(f"Complex data not supported\n{array}\n")
|
|
269
|
+
|
|
270
|
+
|
|
271
|
+
def _check_estimator_name(estimator):
|
|
272
|
+
if estimator is not None:
|
|
273
|
+
if isinstance(estimator, str):
|
|
274
|
+
return estimator
|
|
275
|
+
return estimator.__class__.__name__
|
|
276
|
+
return None
|
|
277
|
+
|
|
278
|
+
|
|
279
|
+
def _pandas_dtype_needs_early_conversion(pd_dtype):
|
|
280
|
+
"""Return True if pandas extension pd_dtype need to be converted early."""
|
|
281
|
+
# Check these early for pandas versions without extension dtypes
|
|
282
|
+
from pandas.api.types import (
|
|
283
|
+
is_bool_dtype,
|
|
284
|
+
is_float_dtype,
|
|
285
|
+
is_integer_dtype,
|
|
286
|
+
is_sparse,
|
|
287
|
+
)
|
|
288
|
+
|
|
289
|
+
if is_bool_dtype(pd_dtype):
|
|
290
|
+
# bool and extension booleans need early converstion because __array__
|
|
291
|
+
# converts mixed dtype dataframes into object dtypes
|
|
292
|
+
return True
|
|
293
|
+
|
|
294
|
+
if is_sparse(pd_dtype):
|
|
295
|
+
# Sparse arrays will be converted later in `check_array`
|
|
296
|
+
return False
|
|
297
|
+
|
|
298
|
+
try:
|
|
299
|
+
from pandas.api.types import is_extension_array_dtype
|
|
300
|
+
except ImportError:
|
|
301
|
+
return False
|
|
302
|
+
|
|
303
|
+
if is_sparse(pd_dtype) or not is_extension_array_dtype(pd_dtype):
|
|
304
|
+
# Sparse arrays will be converted later in `check_array`
|
|
305
|
+
# Only handle extension arrays for integer and floats
|
|
306
|
+
return False
|
|
307
|
+
elif is_float_dtype(pd_dtype):
|
|
308
|
+
# Float ndarrays can normally support nans. They need to be converted
|
|
309
|
+
# first to map pd.NA to np.nan
|
|
310
|
+
return True
|
|
311
|
+
elif is_integer_dtype(pd_dtype):
|
|
312
|
+
return True
|
|
313
|
+
|
|
314
|
+
return False
|
|
315
|
+
|
|
316
|
+
|
|
317
|
+
def check_array(
|
|
318
|
+
array,
|
|
319
|
+
accept_sparse=False,
|
|
320
|
+
*,
|
|
321
|
+
accept_large_sparse=True,
|
|
322
|
+
dtype="numeric",
|
|
323
|
+
order=None,
|
|
324
|
+
copy=False,
|
|
325
|
+
force_all_finite=True,
|
|
326
|
+
ensure_2d=True,
|
|
327
|
+
allow_nd=False,
|
|
328
|
+
ensure_min_samples=1,
|
|
329
|
+
ensure_min_features=1,
|
|
330
|
+
estimator=None,
|
|
331
|
+
input_name="",
|
|
332
|
+
):
|
|
333
|
+
"""Input validation on an array, list, sparse matrix or similar.
|
|
334
|
+
|
|
335
|
+
By default, the input is checked to be a non-empty 2D array containing
|
|
336
|
+
only finite values. If the dtype of the array is object, attempt
|
|
337
|
+
converting to float, raising on failure.
|
|
338
|
+
|
|
339
|
+
Parameters
|
|
340
|
+
----------
|
|
341
|
+
array : object
|
|
342
|
+
Input object to check / convert.
|
|
343
|
+
|
|
344
|
+
accept_sparse : str, bool or list/tuple of str, default=False
|
|
345
|
+
String[s] representing allowed sparse matrix formats, such as 'csc',
|
|
346
|
+
'csr', etc. If the input is sparse but not in the allowed format,
|
|
347
|
+
it will be converted to the first listed format. True allows the input
|
|
348
|
+
to be any format. False means that a sparse matrix input will
|
|
349
|
+
raise an error.
|
|
350
|
+
|
|
351
|
+
accept_large_sparse : bool, default=True
|
|
352
|
+
If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by
|
|
353
|
+
accept_sparse, accept_large_sparse=False will cause it to be accepted
|
|
354
|
+
only if its indices are stored with a 32-bit dtype.
|
|
355
|
+
|
|
356
|
+
.. versionadded:: 0.20
|
|
357
|
+
|
|
358
|
+
dtype : 'numeric', type, list of type or None, default='numeric'
|
|
359
|
+
Data type of result. If None, the dtype of the input is preserved.
|
|
360
|
+
If "numeric", dtype is preserved unless array.dtype is object.
|
|
361
|
+
If dtype is a list of types, conversion on the first type is only
|
|
362
|
+
performed if the dtype of the input is not in the list.
|
|
363
|
+
|
|
364
|
+
order : {'F', 'C'} or None, default=None
|
|
365
|
+
Whether an array will be forced to be fortran or c-style.
|
|
366
|
+
When order is None (default), then if copy=False, nothing is ensured
|
|
367
|
+
about the memory layout of the output array; otherwise (copy=True)
|
|
368
|
+
the memory layout of the returned array is kept as close as possible
|
|
369
|
+
to the original array.
|
|
370
|
+
|
|
371
|
+
copy : bool, default=False
|
|
372
|
+
Whether a forced copy will be triggered. If copy=False, a copy might
|
|
373
|
+
be triggered by a conversion.
|
|
374
|
+
|
|
375
|
+
force_all_finite : bool or 'allow-nan', default=True
|
|
376
|
+
Whether to raise an error on np.inf, np.nan, pd.NA in array. The
|
|
377
|
+
possibilities are:
|
|
378
|
+
|
|
379
|
+
- True: Force all values of array to be finite.
|
|
380
|
+
- False: accepts np.inf, np.nan, pd.NA in array.
|
|
381
|
+
- 'allow-nan': accepts only np.nan and pd.NA values in array. Values
|
|
382
|
+
cannot be infinite.
|
|
383
|
+
|
|
384
|
+
.. versionadded:: 0.20
|
|
385
|
+
``force_all_finite`` accepts the string ``'allow-nan'``.
|
|
386
|
+
|
|
387
|
+
.. versionchanged:: 0.23
|
|
388
|
+
Accepts `pd.NA` and converts it into `np.nan`
|
|
389
|
+
|
|
390
|
+
ensure_2d : bool, default=True
|
|
391
|
+
Whether to raise a value error if array is not 2D.
|
|
392
|
+
|
|
393
|
+
allow_nd : bool, default=False
|
|
394
|
+
Whether to allow array.ndim > 2.
|
|
395
|
+
|
|
396
|
+
ensure_min_samples : int, default=1
|
|
397
|
+
Make sure that the array has a minimum number of samples in its first
|
|
398
|
+
axis (rows for a 2D array). Setting to 0 disables this check.
|
|
399
|
+
|
|
400
|
+
ensure_min_features : int, default=1
|
|
401
|
+
Make sure that the 2D array has some minimum number of features
|
|
402
|
+
(columns). The default value of 1 rejects empty datasets.
|
|
403
|
+
This check is only enforced when the input data has effectively 2
|
|
404
|
+
dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0
|
|
405
|
+
disables this check.
|
|
406
|
+
|
|
407
|
+
estimator : str or estimator instance, default=None
|
|
408
|
+
If passed, include the name of the estimator in warning messages.
|
|
409
|
+
|
|
410
|
+
input_name : str, default=""
|
|
411
|
+
The data name used to construct the error message. In particular
|
|
412
|
+
if `input_name` is "X" and the data has NaN values and
|
|
413
|
+
allow_nan is False, the error message will link to the imputer
|
|
414
|
+
documentation.
|
|
415
|
+
|
|
416
|
+
.. versionadded:: 1.1.0
|
|
417
|
+
|
|
418
|
+
Returns
|
|
419
|
+
-------
|
|
420
|
+
array_converted : object
|
|
421
|
+
The converted and validated array.
|
|
422
|
+
"""
|
|
423
|
+
if isinstance(array, np.matrix):
|
|
424
|
+
warnings.warn(
|
|
425
|
+
"np.matrix usage is deprecated in 1.0 and will raise a TypeError "
|
|
426
|
+
"in 1.2. Please convert to a numpy array with np.asarray. For "
|
|
427
|
+
"more information see: "
|
|
428
|
+
"https://numpy.org/doc/stable/reference/generated/numpy.matrix.html", # noqa
|
|
429
|
+
FutureWarning,
|
|
430
|
+
)
|
|
431
|
+
|
|
432
|
+
# store reference to original array to check if copy is needed when
|
|
433
|
+
# function returns
|
|
434
|
+
array_orig = array
|
|
435
|
+
|
|
436
|
+
# store whether originally we wanted numeric dtype
|
|
437
|
+
dtype_numeric = isinstance(dtype, str) and dtype == "numeric"
|
|
438
|
+
|
|
439
|
+
dtype_orig = getattr(array, "dtype", None)
|
|
440
|
+
if not hasattr(dtype_orig, "kind"):
|
|
441
|
+
# not a data type (e.g. a column named dtype in a pandas DataFrame)
|
|
442
|
+
dtype_orig = None
|
|
443
|
+
|
|
444
|
+
# check if the object contains several dtypes (typically a pandas
|
|
445
|
+
# DataFrame), and store them. If not, store None.
|
|
446
|
+
dtypes_orig = None
|
|
447
|
+
pandas_requires_conversion = False
|
|
448
|
+
if hasattr(array, "dtypes") and hasattr(array.dtypes, "__array__"):
|
|
449
|
+
# throw warning if columns are sparse. If all columns are sparse, then
|
|
450
|
+
# array.sparse exists and sparsity will be preserved (later).
|
|
451
|
+
with suppress(ImportError):
|
|
452
|
+
from pandas.api.types import is_sparse
|
|
453
|
+
|
|
454
|
+
if (
|
|
455
|
+
not hasattr(array, "sparse")
|
|
456
|
+
and array.dtypes.apply(is_sparse).any()
|
|
457
|
+
):
|
|
458
|
+
warnings.warn(
|
|
459
|
+
"pandas.DataFrame with sparse columns found."
|
|
460
|
+
"It will be converted to a dense numpy array."
|
|
461
|
+
)
|
|
462
|
+
|
|
463
|
+
dtypes_orig = list(array.dtypes)
|
|
464
|
+
pandas_requires_conversion = any(
|
|
465
|
+
_pandas_dtype_needs_early_conversion(i) for i in dtypes_orig
|
|
466
|
+
)
|
|
467
|
+
if all(isinstance(dtype_iter, np.dtype) for dtype_iter in dtypes_orig):
|
|
468
|
+
dtype_orig = np.result_type(*dtypes_orig)
|
|
469
|
+
|
|
470
|
+
if dtype_numeric:
|
|
471
|
+
if dtype_orig is not None and dtype_orig.kind == "O":
|
|
472
|
+
# if input is object, convert to float.
|
|
473
|
+
dtype = np.float64
|
|
474
|
+
else:
|
|
475
|
+
dtype = None
|
|
476
|
+
|
|
477
|
+
if isinstance(dtype, (list, tuple)):
|
|
478
|
+
if dtype_orig is not None and dtype_orig in dtype:
|
|
479
|
+
# no dtype conversion required
|
|
480
|
+
dtype = None
|
|
481
|
+
else:
|
|
482
|
+
# dtype conversion required. Let's select the first element of the
|
|
483
|
+
# list of accepted types.
|
|
484
|
+
dtype = dtype[0]
|
|
485
|
+
|
|
486
|
+
if pandas_requires_conversion:
|
|
487
|
+
# pandas dataframe requires conversion earlier to handle extension dtypes with
|
|
488
|
+
# nans
|
|
489
|
+
# Use the original dtype for conversion if dtype is None
|
|
490
|
+
new_dtype = dtype_orig if dtype is None else dtype
|
|
491
|
+
array = array.astype(new_dtype)
|
|
492
|
+
# Since we converted here, we do not need to convert again later
|
|
493
|
+
dtype = None
|
|
494
|
+
|
|
495
|
+
if force_all_finite not in (True, False, "allow-nan"):
|
|
496
|
+
raise ValueError(
|
|
497
|
+
f'force_all_finite should be a bool or "allow-nan". Got {force_all_finite!r} instead'
|
|
498
|
+
)
|
|
499
|
+
|
|
500
|
+
estimator_name = _check_estimator_name(estimator)
|
|
501
|
+
context = " by %s" % estimator_name if estimator is not None else ""
|
|
502
|
+
|
|
503
|
+
# When all dataframe columns are sparse, convert to a sparse array
|
|
504
|
+
if hasattr(array, "sparse") and array.ndim > 1:
|
|
505
|
+
# DataFrame.sparse only supports `to_coo`
|
|
506
|
+
array = array.sparse.to_coo()
|
|
507
|
+
if array.dtype == np.dtype("object"):
|
|
508
|
+
unique_dtypes = set([dt.subtype.name for dt in array_orig.dtypes])
|
|
509
|
+
if len(unique_dtypes) > 1:
|
|
510
|
+
raise ValueError(
|
|
511
|
+
"Pandas DataFrame with mixed sparse extension arrays "
|
|
512
|
+
"generated a sparse matrix with object dtype which "
|
|
513
|
+
"can not be converted to a scipy sparse matrix."
|
|
514
|
+
"Sparse extension arrays should all have the same "
|
|
515
|
+
"numeric type."
|
|
516
|
+
)
|
|
517
|
+
|
|
518
|
+
if sp.issparse(array):
|
|
519
|
+
_ensure_no_complex_data(array)
|
|
520
|
+
array = _ensure_sparse_format(
|
|
521
|
+
array,
|
|
522
|
+
accept_sparse=accept_sparse,
|
|
523
|
+
dtype=dtype,
|
|
524
|
+
copy=copy,
|
|
525
|
+
force_all_finite=force_all_finite,
|
|
526
|
+
accept_large_sparse=accept_large_sparse,
|
|
527
|
+
estimator_name=estimator_name,
|
|
528
|
+
input_name=input_name,
|
|
529
|
+
)
|
|
530
|
+
else:
|
|
531
|
+
# If np.array(..) gives ComplexWarning, then we convert the warning
|
|
532
|
+
# to an error. This is needed because specifying a non complex
|
|
533
|
+
# dtype to the function converts complex to real dtype,
|
|
534
|
+
# thereby passing the test made in the lines following the scope
|
|
535
|
+
# of warnings context manager.
|
|
536
|
+
with warnings.catch_warnings():
|
|
537
|
+
try:
|
|
538
|
+
warnings.simplefilter("error", ComplexWarning)
|
|
539
|
+
if dtype is not None and np.dtype(dtype).kind in "iu":
|
|
540
|
+
# Conversion float -> int should not contain NaN or
|
|
541
|
+
# inf (numpy#14412). We cannot use casting='safe' because
|
|
542
|
+
# then conversion float -> int would be disallowed.
|
|
543
|
+
array = np.asarray(array, order=order)
|
|
544
|
+
if array.dtype.kind == "f":
|
|
545
|
+
_assert_all_finite(
|
|
546
|
+
array,
|
|
547
|
+
allow_nan=False,
|
|
548
|
+
msg_dtype=dtype,
|
|
549
|
+
estimator_name=estimator_name,
|
|
550
|
+
input_name=input_name,
|
|
551
|
+
)
|
|
552
|
+
array = array.astype(dtype, casting="unsafe", copy=False)
|
|
553
|
+
else:
|
|
554
|
+
# Overwritten line to accept string input
|
|
555
|
+
array = np.asarray(array, order=order)
|
|
556
|
+
except ComplexWarning as complex_warning:
|
|
557
|
+
raise ValueError(
|
|
558
|
+
f"Complex data not supported\n{array}\n"
|
|
559
|
+
) from complex_warning
|
|
560
|
+
|
|
561
|
+
# It is possible that the np.array(..) gave no warning. This happens
|
|
562
|
+
# when no dtype conversion happened, for example dtype = None. The
|
|
563
|
+
# result is that np.array(..) produces an array of complex dtype
|
|
564
|
+
# and we need to catch and raise exception for such cases.
|
|
565
|
+
_ensure_no_complex_data(array)
|
|
566
|
+
|
|
567
|
+
if ensure_2d:
|
|
568
|
+
# If input is scalar raise error
|
|
569
|
+
if array.ndim == 0:
|
|
570
|
+
raise ValueError(
|
|
571
|
+
f"Expected 2D array, got scalar array instead:\narray={array}.\n"
|
|
572
|
+
"Reshape your data either using array.reshape(-1, 1) if "
|
|
573
|
+
"your data has a single feature or array.reshape(1, -1) "
|
|
574
|
+
"if it contains a single sample."
|
|
575
|
+
)
|
|
576
|
+
# If input is 1D raise error
|
|
577
|
+
if array.ndim == 1:
|
|
578
|
+
raise ValueError(
|
|
579
|
+
f"Expected 2D array, got 1D array instead:\narray={array}.\n"
|
|
580
|
+
"Reshape your data either using array.reshape(-1, 1) if "
|
|
581
|
+
"your data has a single feature or array.reshape(1, -1) "
|
|
582
|
+
"if it contains a single sample."
|
|
583
|
+
)
|
|
584
|
+
|
|
585
|
+
if dtype_numeric and array.dtype.kind in "USV":
|
|
586
|
+
raise ValueError(
|
|
587
|
+
"dtype='numeric' is not compatible with arrays of bytes/strings."
|
|
588
|
+
"Convert your data to numeric values explicitly instead."
|
|
589
|
+
)
|
|
590
|
+
|
|
591
|
+
if not allow_nd and array.ndim >= 3:
|
|
592
|
+
raise ValueError(
|
|
593
|
+
f"Found array with dim {array.ndim}. {estimator_name} expected <= 2."
|
|
594
|
+
)
|
|
595
|
+
|
|
596
|
+
if force_all_finite:
|
|
597
|
+
_assert_all_finite(
|
|
598
|
+
array,
|
|
599
|
+
input_name=input_name,
|
|
600
|
+
estimator_name=estimator_name,
|
|
601
|
+
allow_nan=force_all_finite == "allow-nan",
|
|
602
|
+
)
|
|
603
|
+
|
|
604
|
+
if ensure_min_samples > 0:
|
|
605
|
+
n_samples = _num_samples(array)
|
|
606
|
+
if n_samples < ensure_min_samples:
|
|
607
|
+
raise ValueError(
|
|
608
|
+
"Found array with %d sample(s) (shape=%s) while a"
|
|
609
|
+
" minimum of %d is required%s."
|
|
610
|
+
% (n_samples, array.shape, ensure_min_samples, context)
|
|
611
|
+
)
|
|
612
|
+
|
|
613
|
+
if ensure_min_features > 0 and array.ndim == 2:
|
|
614
|
+
n_features = array.shape[1]
|
|
615
|
+
if n_features < ensure_min_features:
|
|
616
|
+
raise ValueError(
|
|
617
|
+
"Found array with %d feature(s) (shape=%s) while"
|
|
618
|
+
" a minimum of %d is required%s."
|
|
619
|
+
% (n_features, array.shape, ensure_min_features, context)
|
|
620
|
+
)
|
|
621
|
+
|
|
622
|
+
if copy and np.may_share_memory(array, array_orig):
|
|
623
|
+
array = np.array(array, dtype=dtype, order=order)
|
|
624
|
+
|
|
625
|
+
return array
|
|
626
|
+
|
|
627
|
+
|
|
628
|
+
def _check_large_sparse(X, accept_large_sparse=False):
|
|
629
|
+
"""Raise a ValueError if X has 64bit indices and accept_large_sparse=False"""
|
|
630
|
+
if not accept_large_sparse:
|
|
631
|
+
supported_indices = ["int32"]
|
|
632
|
+
if X.getformat() == "coo":
|
|
633
|
+
index_keys = ["col", "row"]
|
|
634
|
+
elif X.getformat() in ["csr", "csc", "bsr"]:
|
|
635
|
+
index_keys = ["indices", "indptr"]
|
|
636
|
+
else:
|
|
637
|
+
return
|
|
638
|
+
for key in index_keys:
|
|
639
|
+
indices_datatype = getattr(X, key).dtype
|
|
640
|
+
if indices_datatype not in supported_indices:
|
|
641
|
+
raise ValueError(
|
|
642
|
+
"Only sparse matrices with 32-bit integer"
|
|
643
|
+
" indices are accepted. Got %s indices." % indices_datatype
|
|
644
|
+
)
|
|
645
|
+
|
|
646
|
+
|
|
647
|
+
def check_X_e(
|
|
648
|
+
X,
|
|
649
|
+
y,
|
|
650
|
+
accept_sparse=False,
|
|
651
|
+
*,
|
|
652
|
+
accept_large_sparse=True,
|
|
653
|
+
dtype="numeric",
|
|
654
|
+
order=None,
|
|
655
|
+
copy=False,
|
|
656
|
+
force_all_finite=True,
|
|
657
|
+
ensure_2d=True,
|
|
658
|
+
allow_nd=False,
|
|
659
|
+
multi_output=False,
|
|
660
|
+
ensure_min_samples=1,
|
|
661
|
+
ensure_min_features=1,
|
|
662
|
+
y_numeric=False,
|
|
663
|
+
estimator=None,
|
|
664
|
+
):
|
|
665
|
+
"""Input validation for standard estimators.
|
|
666
|
+
|
|
667
|
+
Checks X and y for consistent length, enforces X to be 2D and y 1D. By
|
|
668
|
+
default, X is checked to be non-empty and containing only finite values.
|
|
669
|
+
Standard input checks are also applied to y, such as checking that y
|
|
670
|
+
does not have np.nan or np.inf targets. For multi-label y, set
|
|
671
|
+
multi_output=True to allow 2D and sparse y. If the dtype of X is
|
|
672
|
+
object, attempt converting to float, raising on failure.
|
|
673
|
+
|
|
674
|
+
Parameters
|
|
675
|
+
----------
|
|
676
|
+
X : {ndarray, list, sparse matrix}
|
|
677
|
+
Input data.
|
|
678
|
+
|
|
679
|
+
y : {ndarray, list, sparse matrix}
|
|
680
|
+
Labels.
|
|
681
|
+
|
|
682
|
+
accept_sparse : str, bool or list of str, default=False
|
|
683
|
+
String[s] representing allowed sparse matrix formats, such as 'csc',
|
|
684
|
+
'csr', etc. If the input is sparse but not in the allowed format,
|
|
685
|
+
it will be converted to the first listed format. True allows the input
|
|
686
|
+
to be any format. False means that a sparse matrix input will
|
|
687
|
+
raise an error.
|
|
688
|
+
|
|
689
|
+
accept_large_sparse : bool, default=True
|
|
690
|
+
If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by
|
|
691
|
+
accept_sparse, accept_large_sparse will cause it to be accepted only
|
|
692
|
+
if its indices are stored with a 32-bit dtype.
|
|
693
|
+
|
|
694
|
+
.. versionadded:: 0.20
|
|
695
|
+
|
|
696
|
+
dtype : 'numeric', type, list of type or None, default='numeric'
|
|
697
|
+
Data type of result. If None, the dtype of the input is preserved.
|
|
698
|
+
If "numeric", dtype is preserved unless array.dtype is object.
|
|
699
|
+
If dtype is a list of types, conversion on the first type is only
|
|
700
|
+
performed if the dtype of the input is not in the list.
|
|
701
|
+
|
|
702
|
+
order : {'F', 'C'}, default=None
|
|
703
|
+
Whether an array will be forced to be fortran or c-style.
|
|
704
|
+
|
|
705
|
+
copy : bool, default=False
|
|
706
|
+
Whether a forced copy will be triggered. If copy=False, a copy might
|
|
707
|
+
be triggered by a conversion.
|
|
708
|
+
|
|
709
|
+
force_all_finite : bool or 'allow-nan', default=True
|
|
710
|
+
Whether to raise an error on np.inf, np.nan, pd.NA in X. This parameter
|
|
711
|
+
does not influence whether y can have np.inf, np.nan, pd.NA values.
|
|
712
|
+
The possibilities are:
|
|
713
|
+
|
|
714
|
+
- True: Force all values of X to be finite.
|
|
715
|
+
- False: accepts np.inf, np.nan, pd.NA in X.
|
|
716
|
+
- 'allow-nan': accepts only np.nan or pd.NA values in X. Values cannot
|
|
717
|
+
be infinite.
|
|
718
|
+
|
|
719
|
+
.. versionadded:: 0.20
|
|
720
|
+
``force_all_finite`` accepts the string ``'allow-nan'``.
|
|
721
|
+
|
|
722
|
+
.. versionchanged:: 0.23
|
|
723
|
+
Accepts `pd.NA` and converts it into `np.nan`
|
|
724
|
+
|
|
725
|
+
ensure_2d : bool, default=True
|
|
726
|
+
Whether to raise a value error if X is not 2D.
|
|
727
|
+
|
|
728
|
+
allow_nd : bool, default=False
|
|
729
|
+
Whether to allow X.ndim > 2.
|
|
730
|
+
|
|
731
|
+
multi_output : bool, default=False
|
|
732
|
+
Whether to allow 2D y (array or sparse matrix). If false, y will be
|
|
733
|
+
validated as a vector. y cannot have np.nan or np.inf values if
|
|
734
|
+
multi_output=True.
|
|
735
|
+
|
|
736
|
+
ensure_min_samples : int, default=1
|
|
737
|
+
Make sure that X has a minimum number of samples in its first
|
|
738
|
+
axis (rows for a 2D array).
|
|
739
|
+
|
|
740
|
+
ensure_min_features : int, default=1
|
|
741
|
+
Make sure that the 2D array has some minimum number of features
|
|
742
|
+
(columns). The default value of 1 rejects empty datasets.
|
|
743
|
+
This check is only enforced when X has effectively 2 dimensions or
|
|
744
|
+
is originally 1D and ``ensure_2d`` is True. Setting to 0 disables
|
|
745
|
+
this check.
|
|
746
|
+
|
|
747
|
+
y_numeric : bool, default=False
|
|
748
|
+
Whether to ensure that y has a numeric type. If dtype of y is object,
|
|
749
|
+
it is converted to float64. Should only be used for regression
|
|
750
|
+
algorithms.
|
|
751
|
+
|
|
752
|
+
estimator : str or estimator instance, default=None
|
|
753
|
+
If passed, include the name of the estimator in warning messages.
|
|
754
|
+
|
|
755
|
+
Returns
|
|
756
|
+
-------
|
|
757
|
+
X_converted : object
|
|
758
|
+
The converted and validated X.
|
|
759
|
+
|
|
760
|
+
y_converted : object
|
|
761
|
+
The converted and validated y.
|
|
762
|
+
"""
|
|
763
|
+
if y is None:
|
|
764
|
+
if estimator is None:
|
|
765
|
+
estimator_name = "estimator"
|
|
766
|
+
else:
|
|
767
|
+
estimator_name = _check_estimator_name(estimator)
|
|
768
|
+
raise ValueError(
|
|
769
|
+
f"{estimator_name} requires y to be passed, but the target y is None"
|
|
770
|
+
)
|
|
771
|
+
|
|
772
|
+
X = check_array(
|
|
773
|
+
X,
|
|
774
|
+
accept_sparse=accept_sparse,
|
|
775
|
+
accept_large_sparse=accept_large_sparse,
|
|
776
|
+
dtype=dtype,
|
|
777
|
+
order=order,
|
|
778
|
+
copy=copy,
|
|
779
|
+
force_all_finite=force_all_finite,
|
|
780
|
+
ensure_2d=ensure_2d,
|
|
781
|
+
allow_nd=allow_nd,
|
|
782
|
+
ensure_min_samples=ensure_min_samples,
|
|
783
|
+
ensure_min_features=ensure_min_features,
|
|
784
|
+
estimator=estimator,
|
|
785
|
+
input_name="X",
|
|
786
|
+
)
|
|
787
|
+
|
|
788
|
+
y = _check_y(
|
|
789
|
+
y, multi_output=multi_output, y_numeric=y_numeric, estimator=estimator
|
|
790
|
+
)
|
|
791
|
+
|
|
792
|
+
check_consistent_length(X, y)
|
|
793
|
+
|
|
794
|
+
return X, y
|
|
795
|
+
|
|
796
|
+
|
|
797
|
+
def _check_y(y, multi_output=False, y_numeric=False, estimator=None):
|
|
798
|
+
"""Isolated part of check_X_e dedicated to y validation"""
|
|
799
|
+
if multi_output:
|
|
800
|
+
y = check_array(
|
|
801
|
+
y,
|
|
802
|
+
accept_sparse="csr",
|
|
803
|
+
force_all_finite=True,
|
|
804
|
+
ensure_2d=False,
|
|
805
|
+
dtype=None,
|
|
806
|
+
input_name="y",
|
|
807
|
+
estimator=estimator,
|
|
808
|
+
)
|
|
809
|
+
else:
|
|
810
|
+
estimator_name = _check_estimator_name(estimator)
|
|
811
|
+
y = column_or_1d(y, warn=True)
|
|
812
|
+
_assert_all_finite(y, input_name="y", estimator_name=estimator_name)
|
|
813
|
+
_ensure_no_complex_data(y)
|
|
814
|
+
if y_numeric and y.dtype.kind in ("O", "b"):
|
|
815
|
+
y = y.astype(np.float32)
|
|
816
|
+
|
|
817
|
+
return y
|
|
818
|
+
|
|
819
|
+
|
|
820
|
+
def column_or_1d(y, *, warn=False):
|
|
821
|
+
"""Ravel column or 1d numpy array, else raises an error.
|
|
822
|
+
|
|
823
|
+
Parameters
|
|
824
|
+
----------
|
|
825
|
+
y : array-like
|
|
826
|
+
Input data.
|
|
827
|
+
|
|
828
|
+
warn : bool, default=False
|
|
829
|
+
To control display of warnings.
|
|
830
|
+
|
|
831
|
+
Returns
|
|
832
|
+
-------
|
|
833
|
+
y : ndarray
|
|
834
|
+
Output data.
|
|
835
|
+
|
|
836
|
+
Raises
|
|
837
|
+
------
|
|
838
|
+
ValueError
|
|
839
|
+
If `y` is not a 1D array or a 2D array with a single row or column.
|
|
840
|
+
"""
|
|
841
|
+
y = np.asarray(y)
|
|
842
|
+
shape = np.shape(y)
|
|
843
|
+
if len(shape) == 1:
|
|
844
|
+
return np.ravel(y)
|
|
845
|
+
if len(shape) == 2 and shape[1] == 1:
|
|
846
|
+
if warn:
|
|
847
|
+
warnings.warn(
|
|
848
|
+
"A column-vector y was passed when a 1d array was"
|
|
849
|
+
" expected. Please change the shape of y to "
|
|
850
|
+
"(n_samples, ), for example using ravel().",
|
|
851
|
+
DataConversionWarning,
|
|
852
|
+
stacklevel=2,
|
|
853
|
+
)
|
|
854
|
+
return np.ravel(y)
|
|
855
|
+
|
|
856
|
+
raise ValueError(
|
|
857
|
+
f"y should be a 1d array, got an array of shape {shape} instead."
|
|
858
|
+
)
|