sleap-nn 0.1.0__py3-none-any.whl → 0.1.0a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sleap_nn/__init__.py +1 -1
- sleap_nn/architectures/convnext.py +0 -5
- sleap_nn/architectures/encoder_decoder.py +6 -25
- sleap_nn/architectures/swint.py +0 -8
- sleap_nn/cli.py +60 -364
- sleap_nn/config/data_config.py +5 -11
- sleap_nn/config/get_config.py +4 -5
- sleap_nn/config/trainer_config.py +0 -71
- sleap_nn/data/augmentation.py +241 -50
- sleap_nn/data/custom_datasets.py +34 -364
- sleap_nn/data/instance_cropping.py +1 -1
- sleap_nn/data/resizing.py +2 -2
- sleap_nn/data/utils.py +17 -135
- sleap_nn/evaluation.py +22 -81
- sleap_nn/inference/bottomup.py +20 -86
- sleap_nn/inference/peak_finding.py +19 -88
- sleap_nn/inference/predictors.py +117 -224
- sleap_nn/legacy_models.py +11 -65
- sleap_nn/predict.py +9 -37
- sleap_nn/train.py +4 -69
- sleap_nn/training/callbacks.py +105 -1046
- sleap_nn/training/lightning_modules.py +65 -602
- sleap_nn/training/model_trainer.py +204 -201
- {sleap_nn-0.1.0.dist-info → sleap_nn-0.1.0a1.dist-info}/METADATA +3 -15
- sleap_nn-0.1.0a1.dist-info/RECORD +65 -0
- {sleap_nn-0.1.0.dist-info → sleap_nn-0.1.0a1.dist-info}/WHEEL +1 -1
- sleap_nn/data/skia_augmentation.py +0 -414
- sleap_nn/export/__init__.py +0 -21
- sleap_nn/export/cli.py +0 -1778
- sleap_nn/export/exporters/__init__.py +0 -51
- sleap_nn/export/exporters/onnx_exporter.py +0 -80
- sleap_nn/export/exporters/tensorrt_exporter.py +0 -291
- sleap_nn/export/metadata.py +0 -225
- sleap_nn/export/predictors/__init__.py +0 -63
- sleap_nn/export/predictors/base.py +0 -22
- sleap_nn/export/predictors/onnx.py +0 -154
- sleap_nn/export/predictors/tensorrt.py +0 -312
- sleap_nn/export/utils.py +0 -307
- sleap_nn/export/wrappers/__init__.py +0 -25
- sleap_nn/export/wrappers/base.py +0 -96
- sleap_nn/export/wrappers/bottomup.py +0 -243
- sleap_nn/export/wrappers/bottomup_multiclass.py +0 -195
- sleap_nn/export/wrappers/centered_instance.py +0 -56
- sleap_nn/export/wrappers/centroid.py +0 -58
- sleap_nn/export/wrappers/single_instance.py +0 -83
- sleap_nn/export/wrappers/topdown.py +0 -180
- sleap_nn/export/wrappers/topdown_multiclass.py +0 -304
- sleap_nn/inference/postprocessing.py +0 -284
- sleap_nn/training/schedulers.py +0 -191
- sleap_nn-0.1.0.dist-info/RECORD +0 -88
- {sleap_nn-0.1.0.dist-info → sleap_nn-0.1.0a1.dist-info}/entry_points.txt +0 -0
- {sleap_nn-0.1.0.dist-info → sleap_nn-0.1.0a1.dist-info}/licenses/LICENSE +0 -0
- {sleap_nn-0.1.0.dist-info → sleap_nn-0.1.0a1.dist-info}/top_level.txt +0 -0
sleap_nn/training/schedulers.py
DELETED
|
@@ -1,191 +0,0 @@
|
|
|
1
|
-
"""Custom learning rate schedulers for sleap-nn training.
|
|
2
|
-
|
|
3
|
-
This module provides learning rate schedulers with warmup phases that are commonly
|
|
4
|
-
used in deep learning for pose estimation and computer vision tasks.
|
|
5
|
-
"""
|
|
6
|
-
|
|
7
|
-
import math
|
|
8
|
-
from torch.optim.lr_scheduler import LRScheduler
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
class LinearWarmupCosineAnnealingLR(LRScheduler):
|
|
12
|
-
"""Cosine annealing learning rate scheduler with linear warmup.
|
|
13
|
-
|
|
14
|
-
The learning rate increases linearly from `warmup_start_lr` to the optimizer's
|
|
15
|
-
base learning rate over `warmup_epochs`, then decreases following a cosine
|
|
16
|
-
curve to `eta_min` over the remaining epochs.
|
|
17
|
-
|
|
18
|
-
This schedule is widely used in vision transformers and modern CNN architectures
|
|
19
|
-
as it provides stable early training (warmup) and smooth convergence (cosine decay).
|
|
20
|
-
|
|
21
|
-
Args:
|
|
22
|
-
optimizer: Wrapped optimizer.
|
|
23
|
-
warmup_epochs: Number of epochs for the linear warmup phase.
|
|
24
|
-
max_epochs: Total number of training epochs.
|
|
25
|
-
warmup_start_lr: Learning rate at the start of warmup. Default: 0.0.
|
|
26
|
-
eta_min: Minimum learning rate at the end of the schedule. Default: 0.0.
|
|
27
|
-
last_epoch: The index of the last epoch. Default: -1.
|
|
28
|
-
|
|
29
|
-
Example:
|
|
30
|
-
>>> optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
|
|
31
|
-
>>> scheduler = LinearWarmupCosineAnnealingLR(
|
|
32
|
-
... optimizer, warmup_epochs=5, max_epochs=100, eta_min=1e-6
|
|
33
|
-
... )
|
|
34
|
-
>>> for epoch in range(100):
|
|
35
|
-
... train(...)
|
|
36
|
-
... scheduler.step()
|
|
37
|
-
"""
|
|
38
|
-
|
|
39
|
-
def __init__(
|
|
40
|
-
self,
|
|
41
|
-
optimizer,
|
|
42
|
-
warmup_epochs: int,
|
|
43
|
-
max_epochs: int,
|
|
44
|
-
warmup_start_lr: float = 0.0,
|
|
45
|
-
eta_min: float = 0.0,
|
|
46
|
-
last_epoch: int = -1,
|
|
47
|
-
):
|
|
48
|
-
"""Initialize the scheduler.
|
|
49
|
-
|
|
50
|
-
Args:
|
|
51
|
-
optimizer: Wrapped optimizer.
|
|
52
|
-
warmup_epochs: Number of epochs for the linear warmup phase.
|
|
53
|
-
max_epochs: Total number of training epochs.
|
|
54
|
-
warmup_start_lr: Learning rate at the start of warmup. Default: 0.0.
|
|
55
|
-
eta_min: Minimum learning rate at the end of the schedule. Default: 0.0.
|
|
56
|
-
last_epoch: The index of the last epoch. Default: -1.
|
|
57
|
-
"""
|
|
58
|
-
if warmup_epochs < 0:
|
|
59
|
-
raise ValueError(f"warmup_epochs must be >= 0, got {warmup_epochs}")
|
|
60
|
-
if max_epochs <= 0:
|
|
61
|
-
raise ValueError(f"max_epochs must be > 0, got {max_epochs}")
|
|
62
|
-
if warmup_epochs >= max_epochs:
|
|
63
|
-
raise ValueError(
|
|
64
|
-
f"warmup_epochs ({warmup_epochs}) must be < max_epochs ({max_epochs})"
|
|
65
|
-
)
|
|
66
|
-
if warmup_start_lr < 0:
|
|
67
|
-
raise ValueError(f"warmup_start_lr must be >= 0, got {warmup_start_lr}")
|
|
68
|
-
if eta_min < 0:
|
|
69
|
-
raise ValueError(f"eta_min must be >= 0, got {eta_min}")
|
|
70
|
-
|
|
71
|
-
self.warmup_epochs = warmup_epochs
|
|
72
|
-
self.max_epochs = max_epochs
|
|
73
|
-
self.warmup_start_lr = warmup_start_lr
|
|
74
|
-
self.eta_min = eta_min
|
|
75
|
-
super().__init__(optimizer, last_epoch)
|
|
76
|
-
|
|
77
|
-
def get_lr(self):
|
|
78
|
-
"""Compute the learning rate at the current epoch."""
|
|
79
|
-
if self.last_epoch < self.warmup_epochs:
|
|
80
|
-
# Linear warmup phase
|
|
81
|
-
if self.warmup_epochs == 0:
|
|
82
|
-
return list(self.base_lrs)
|
|
83
|
-
alpha = self.last_epoch / self.warmup_epochs
|
|
84
|
-
return [
|
|
85
|
-
self.warmup_start_lr + alpha * (base_lr - self.warmup_start_lr)
|
|
86
|
-
for base_lr in self.base_lrs
|
|
87
|
-
]
|
|
88
|
-
else:
|
|
89
|
-
# Cosine annealing phase
|
|
90
|
-
decay_epochs = self.max_epochs - self.warmup_epochs
|
|
91
|
-
if decay_epochs == 0:
|
|
92
|
-
return [self.eta_min for _ in self.base_lrs]
|
|
93
|
-
progress = (self.last_epoch - self.warmup_epochs) / decay_epochs
|
|
94
|
-
# Clamp progress to [0, 1] to handle epochs beyond max_epochs
|
|
95
|
-
progress = min(1.0, progress)
|
|
96
|
-
return [
|
|
97
|
-
self.eta_min
|
|
98
|
-
+ (base_lr - self.eta_min) * (1 + math.cos(math.pi * progress)) / 2
|
|
99
|
-
for base_lr in self.base_lrs
|
|
100
|
-
]
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
class LinearWarmupLinearDecayLR(LRScheduler):
|
|
104
|
-
"""Linear warmup followed by linear decay learning rate scheduler.
|
|
105
|
-
|
|
106
|
-
The learning rate increases linearly from `warmup_start_lr` to the optimizer's
|
|
107
|
-
base learning rate over `warmup_epochs`, then decreases linearly to `end_lr`
|
|
108
|
-
over the remaining epochs.
|
|
109
|
-
|
|
110
|
-
This schedule provides a simple, interpretable learning rate trajectory and is
|
|
111
|
-
commonly used in transformer-based models and NLP tasks.
|
|
112
|
-
|
|
113
|
-
Args:
|
|
114
|
-
optimizer: Wrapped optimizer.
|
|
115
|
-
warmup_epochs: Number of epochs for the linear warmup phase.
|
|
116
|
-
max_epochs: Total number of training epochs.
|
|
117
|
-
warmup_start_lr: Learning rate at the start of warmup. Default: 0.0.
|
|
118
|
-
end_lr: Learning rate at the end of training. Default: 0.0.
|
|
119
|
-
last_epoch: The index of the last epoch. Default: -1.
|
|
120
|
-
|
|
121
|
-
Example:
|
|
122
|
-
>>> optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
|
|
123
|
-
>>> scheduler = LinearWarmupLinearDecayLR(
|
|
124
|
-
... optimizer, warmup_epochs=5, max_epochs=100, end_lr=1e-6
|
|
125
|
-
... )
|
|
126
|
-
>>> for epoch in range(100):
|
|
127
|
-
... train(...)
|
|
128
|
-
... scheduler.step()
|
|
129
|
-
"""
|
|
130
|
-
|
|
131
|
-
def __init__(
|
|
132
|
-
self,
|
|
133
|
-
optimizer,
|
|
134
|
-
warmup_epochs: int,
|
|
135
|
-
max_epochs: int,
|
|
136
|
-
warmup_start_lr: float = 0.0,
|
|
137
|
-
end_lr: float = 0.0,
|
|
138
|
-
last_epoch: int = -1,
|
|
139
|
-
):
|
|
140
|
-
"""Initialize the scheduler.
|
|
141
|
-
|
|
142
|
-
Args:
|
|
143
|
-
optimizer: Wrapped optimizer.
|
|
144
|
-
warmup_epochs: Number of epochs for the linear warmup phase.
|
|
145
|
-
max_epochs: Total number of training epochs.
|
|
146
|
-
warmup_start_lr: Learning rate at the start of warmup. Default: 0.0.
|
|
147
|
-
end_lr: Learning rate at the end of training. Default: 0.0.
|
|
148
|
-
last_epoch: The index of the last epoch. Default: -1.
|
|
149
|
-
"""
|
|
150
|
-
if warmup_epochs < 0:
|
|
151
|
-
raise ValueError(f"warmup_epochs must be >= 0, got {warmup_epochs}")
|
|
152
|
-
if max_epochs <= 0:
|
|
153
|
-
raise ValueError(f"max_epochs must be > 0, got {max_epochs}")
|
|
154
|
-
if warmup_epochs >= max_epochs:
|
|
155
|
-
raise ValueError(
|
|
156
|
-
f"warmup_epochs ({warmup_epochs}) must be < max_epochs ({max_epochs})"
|
|
157
|
-
)
|
|
158
|
-
if warmup_start_lr < 0:
|
|
159
|
-
raise ValueError(f"warmup_start_lr must be >= 0, got {warmup_start_lr}")
|
|
160
|
-
if end_lr < 0:
|
|
161
|
-
raise ValueError(f"end_lr must be >= 0, got {end_lr}")
|
|
162
|
-
|
|
163
|
-
self.warmup_epochs = warmup_epochs
|
|
164
|
-
self.max_epochs = max_epochs
|
|
165
|
-
self.warmup_start_lr = warmup_start_lr
|
|
166
|
-
self.end_lr = end_lr
|
|
167
|
-
super().__init__(optimizer, last_epoch)
|
|
168
|
-
|
|
169
|
-
def get_lr(self):
|
|
170
|
-
"""Compute the learning rate at the current epoch."""
|
|
171
|
-
if self.last_epoch < self.warmup_epochs:
|
|
172
|
-
# Linear warmup phase
|
|
173
|
-
if self.warmup_epochs == 0:
|
|
174
|
-
return list(self.base_lrs)
|
|
175
|
-
alpha = self.last_epoch / self.warmup_epochs
|
|
176
|
-
return [
|
|
177
|
-
self.warmup_start_lr + alpha * (base_lr - self.warmup_start_lr)
|
|
178
|
-
for base_lr in self.base_lrs
|
|
179
|
-
]
|
|
180
|
-
else:
|
|
181
|
-
# Linear decay phase
|
|
182
|
-
decay_epochs = self.max_epochs - self.warmup_epochs
|
|
183
|
-
if decay_epochs == 0:
|
|
184
|
-
return [self.end_lr for _ in self.base_lrs]
|
|
185
|
-
progress = (self.last_epoch - self.warmup_epochs) / decay_epochs
|
|
186
|
-
# Clamp progress to [0, 1] to handle epochs beyond max_epochs
|
|
187
|
-
progress = min(1.0, progress)
|
|
188
|
-
return [
|
|
189
|
-
base_lr + progress * (self.end_lr - base_lr)
|
|
190
|
-
for base_lr in self.base_lrs
|
|
191
|
-
]
|
sleap_nn-0.1.0.dist-info/RECORD
DELETED
|
@@ -1,88 +0,0 @@
|
|
|
1
|
-
sleap_nn/.DS_Store,sha256=HY8amA79eHkt7o5VUiNsMxkc9YwW6WIPyZbYRj_JdSU,6148
|
|
2
|
-
sleap_nn/__init__.py,sha256=nl_xOwr4X0BDdND9odwKF63zX2EytLkDx0S4EDMJjeo,1360
|
|
3
|
-
sleap_nn/cli.py,sha256=VU0fHIy02BErq8aQs0s9bNAKx__qpwzbfpsA7j3jHVI,31285
|
|
4
|
-
sleap_nn/evaluation.py,sha256=SRO3qNOyyGoNBLLA2OKIUhvwyk0oI2ax1rtYmccx6m0,33785
|
|
5
|
-
sleap_nn/legacy_models.py,sha256=fKUzmsmHpkEACk2uSDYcILoV1gNFoOXwxlzP_NO3jWo,22426
|
|
6
|
-
sleap_nn/predict.py,sha256=ai-0nfknh6JT0BrJL_DECq6QVRe1cCwfpvXQCaDVC7o,36515
|
|
7
|
-
sleap_nn/system_info.py,sha256=7tWe3y6s872nDbrZoHIdSs-w4w46Z4dEV2qCV-Fe7No,14711
|
|
8
|
-
sleap_nn/train.py,sha256=afRzm5t0S1GTFXAkPB1Qh4sa71sIwnNwFZjmvZ33wwI,30765
|
|
9
|
-
sleap_nn/architectures/__init__.py,sha256=w0XxQcx-CYyooszzvxRkKWiJkUg-26IlwQoGna8gn40,46
|
|
10
|
-
sleap_nn/architectures/common.py,sha256=MLv-zdHsWL5Q2ct_Wv6SQbRS-5hrFtjK_pvBEfwx-vU,3660
|
|
11
|
-
sleap_nn/architectures/convnext.py,sha256=Ba9SFQHBdfz8gcMYZPMItuW-FyQuHBgUU0M8MWhaHuY,14210
|
|
12
|
-
sleap_nn/architectures/encoder_decoder.py,sha256=1cBk9WU0zkXC2aK9XZy6VKHEe2hJEpIa-rwCxNgObZg,29292
|
|
13
|
-
sleap_nn/architectures/heads.py,sha256=5E-7kQ-b2gsL0EviQ8z3KS1DAAMT4F2ZnEzx7eSG5gg,21001
|
|
14
|
-
sleap_nn/architectures/model.py,sha256=1_dsP_4T9fsEVJjDt3er0haMKtbeM6w6JC6tc2jD0Gw,7139
|
|
15
|
-
sleap_nn/architectures/swint.py,sha256=hlShh1Br0eTijir2U3np8sAaNJa12Xny0VzPx8HSaRo,15060
|
|
16
|
-
sleap_nn/architectures/unet.py,sha256=rAy2Omi6tv1MNW2nBn0Tw-94Nw_-1wFfCT3-IUyPcgo,11723
|
|
17
|
-
sleap_nn/architectures/utils.py,sha256=L0KVs0gbtG8U75Sl40oH_r_w2ySawh3oQPqIGi54HGo,2171
|
|
18
|
-
sleap_nn/config/__init__.py,sha256=l0xV1uJsGJfMPfWAqlUR7Ivu4cSCWsP-3Y9ueyPESuk,42
|
|
19
|
-
sleap_nn/config/data_config.py,sha256=LiZ3TGUZk6EiLJXXsu9kGOf84eUyGNMWrQ3XvsIYuAA,24426
|
|
20
|
-
sleap_nn/config/get_config.py,sha256=er-ZTMQT68uhDNbQUDVhY8FzqeyFDcgEpLn1ZRMjATQ,42449
|
|
21
|
-
sleap_nn/config/model_config.py,sha256=XFIbqFno7IkX0Se5WF_2_7aUalAlC2SvpDe-uP2TttM,57582
|
|
22
|
-
sleap_nn/config/trainer_config.py,sha256=JBbojDcxDZR5RqpM4eNqEko6-nOYuvT3eDPSpb1OLFQ,31715
|
|
23
|
-
sleap_nn/config/training_job_config.py,sha256=v12_ME_tBUg8JFwOxJNW4sDQn-SedDhiJOGz-TlRwT0,5861
|
|
24
|
-
sleap_nn/config/utils.py,sha256=GgWgVs7_N7ifsJ5OQG3_EyOagNyN3Dx7wS2BAlkaRkg,5553
|
|
25
|
-
sleap_nn/data/__init__.py,sha256=eMNvFJFa3gv5Rq8oK5wzo6zt1pOlwUGYf8EQii6bq7c,54
|
|
26
|
-
sleap_nn/data/augmentation.py,sha256=1tTHphaD021SYvt27dpGnlgZAxjRIcGetnWvz20YXtc,6454
|
|
27
|
-
sleap_nn/data/confidence_maps.py,sha256=PTRqZWSAz1S7viJhxu7QgIC1aHiek97c_dCUsKUwG1o,6217
|
|
28
|
-
sleap_nn/data/custom_datasets.py,sha256=CdZ_hblKHvIf4zYD0CWGU511uA3_7Ca1oq2r3mbyz5I,112101
|
|
29
|
-
sleap_nn/data/edge_maps.py,sha256=75qG_7zHRw7fC8JUCVI2tzYakIoxxneWWmcrTwjcHPo,12519
|
|
30
|
-
sleap_nn/data/identity.py,sha256=7vNup6PudST4yDLyDT9wDO-cunRirTEvx4sP77xrlfk,5193
|
|
31
|
-
sleap_nn/data/instance_centroids.py,sha256=SF-3zJt_VMTbZI5ssbrvmZQZDd3684bn55EAtvcbQ6o,2172
|
|
32
|
-
sleap_nn/data/instance_cropping.py,sha256=1DQJDmSM18gUVofXfoVg-hQnXPeLdtY-buGSbTPLy1c,8334
|
|
33
|
-
sleap_nn/data/normalization.py,sha256=5xEvcguG-fvAGObl4nWPZ9TEM5gvv0uYPGDuni34XII,2930
|
|
34
|
-
sleap_nn/data/providers.py,sha256=0x6GFP1s1c08ji4p0M5V6p-dhT4Z9c-SI_Aw1DWX-uM,14272
|
|
35
|
-
sleap_nn/data/resizing.py,sha256=bYxELbDJZen3tiwEbv__EtNgmJcQJhQ7CRIJ30t-UvI,5040
|
|
36
|
-
sleap_nn/data/skia_augmentation.py,sha256=CQYy592-poPfiwOcTR6X9eY1lm-e7piJU-LlBHEe37w,14593
|
|
37
|
-
sleap_nn/data/utils.py,sha256=ap3fYqk2UFiCS4cAdZz8x3ahMrkLmvXnHfRx6R-_5OQ,11130
|
|
38
|
-
sleap_nn/export/__init__.py,sha256=E5FN_dG7583V_poTMS8jthL0Bf07qFCUA0kY2iewlvk,574
|
|
39
|
-
sleap_nn/export/cli.py,sha256=UcXrefi7YKunaIzbW97QeBQmbG3_-7Xa4XZgcwOGd9k,63568
|
|
40
|
-
sleap_nn/export/metadata.py,sha256=ory-smt2tpgObmld7WicxEFFHM03hl6yasl4N3KVTmA,7427
|
|
41
|
-
sleap_nn/export/utils.py,sha256=oSVf_PCG1IUZd6ZpgwOMPgqVkMxaO50tt2C-cTUMGg4,11414
|
|
42
|
-
sleap_nn/export/exporters/__init__.py,sha256=zBZMEjqzjGDq1KvIiKSVrHPplE4zVtUW3MHQ5kGg1M4,1459
|
|
43
|
-
sleap_nn/export/exporters/onnx_exporter.py,sha256=i3GWYn9NH2i_SJd2OmVHZgUfJJW9w-Swms1YDM-HhEc,2129
|
|
44
|
-
sleap_nn/export/exporters/tensorrt_exporter.py,sha256=5v_wnkal7bPKgrhQRL8akYikmQ_8PdqVr1ajpmU1oGo,9069
|
|
45
|
-
sleap_nn/export/predictors/__init__.py,sha256=xmDFeK05eHO9-Obue3jhBy4VMBW0NZjyGXSuL3RMhJY,1772
|
|
46
|
-
sleap_nn/export/predictors/base.py,sha256=5uJjMSuG4p-I3YPY9tpn6m8HdENcPqFtjpehL5mNuAg,584
|
|
47
|
-
sleap_nn/export/predictors/onnx.py,sha256=uiFIrCQBxZ_pK4x0JUx2N2k6qzN8KqfQtXAa4FkqVIs,5125
|
|
48
|
-
sleap_nn/export/predictors/tensorrt.py,sha256=lrYjw_lasjbGIku8aM5b26G92bXdvQaVAKrT6U4Xcco,10805
|
|
49
|
-
sleap_nn/export/wrappers/__init__.py,sha256=OeMCP8UCXNwmAYCrudKX-Gt4nhr9z13bzkdrZHjUNnk,984
|
|
50
|
-
sleap_nn/export/wrappers/base.py,sha256=sd55SCkjOdMYut9Yh8Yi1MMF8EY0U9oYtXadmi7xD80,3462
|
|
51
|
-
sleap_nn/export/wrappers/bottomup.py,sha256=rh4-wu4Oc8JWWW3K3xLhiTkyQ3dqhJ9QfMrPY65ck4Y,9237
|
|
52
|
-
sleap_nn/export/wrappers/bottomup_multiclass.py,sha256=r0-LJxv8zYTUr94ytlj1rp0GDuodY6CugLIl93IVhRA,7495
|
|
53
|
-
sleap_nn/export/wrappers/centered_instance.py,sha256=PShtVAlJhSbyuAVmRNjIM3PnOngaRFX3LtX-wO91Qqs,1704
|
|
54
|
-
sleap_nn/export/wrappers/centroid.py,sha256=3nbbysCkzHS9pRC2-37z4Z1Ol5XEdvYahyR4Gm25dqc,1840
|
|
55
|
-
sleap_nn/export/wrappers/single_instance.py,sha256=ZoQICK5_tuPjA19wsDmq8ljhM1Qus2_O8ZCDq6yd2L4,2826
|
|
56
|
-
sleap_nn/export/wrappers/topdown.py,sha256=_HAtEASBSfLTfFO9Q7honIpm4ECNoMR76JLkWyO-PF8,6809
|
|
57
|
-
sleap_nn/export/wrappers/topdown_multiclass.py,sha256=fJ3SC76BdB5QWOvMobCoKqf1OQBJGoi5MS0Bv6_gQmY,11920
|
|
58
|
-
sleap_nn/inference/__init__.py,sha256=eVkCmKrxHlDFJIlZTf8B5XEOcSyw-gPQymXMY5uShOM,170
|
|
59
|
-
sleap_nn/inference/bottomup.py,sha256=3s90aRlpIcRnSNe-R5-qiuX3S48kCWMpCl8YuNnTEDI,17084
|
|
60
|
-
sleap_nn/inference/identity.py,sha256=GjNDL9MfGqNyQaK4AE8JQCAE8gpMuE_Y-3r3Gpa53CE,6540
|
|
61
|
-
sleap_nn/inference/paf_grouping.py,sha256=7Fo9lCAj-zcHgv5rI5LIMYGcixCGNt_ZbSNs8Dik7l8,69973
|
|
62
|
-
sleap_nn/inference/peak_finding.py,sha256=JS4qIcl72Ep4vbbYYdngqu7rRl3MW8kFaH8W9BRoOyA,15920
|
|
63
|
-
sleap_nn/inference/postprocessing.py,sha256=ZM_OH7_WIprieaujZ2Rk_34JhSDDzCry6Pq2YM_u5sg,8998
|
|
64
|
-
sleap_nn/inference/predictors.py,sha256=dztVxdEPgSrc8bfB-t4DBa0wkg9p0HcVoZrZ-FcpP24,160720
|
|
65
|
-
sleap_nn/inference/provenance.py,sha256=0BekXyvpLMb0Vv6DjpctlLduG9RN-Q8jt5zDm783eZE,11204
|
|
66
|
-
sleap_nn/inference/single_instance.py,sha256=rOns_5TsJ1rb-lwmHG3ZY-pOhXGN2D-SfW9RmBxxzcI,4089
|
|
67
|
-
sleap_nn/inference/topdown.py,sha256=Ha0Nwx-XCH_rebIuIGhP0qW68QpjLB3XRr9rxt05JLs,35108
|
|
68
|
-
sleap_nn/inference/utils.py,sha256=JnaJK4S_qLtHkWOSkHf4oRZjOmgnU9BGADQnntgGxxs,4689
|
|
69
|
-
sleap_nn/tracking/__init__.py,sha256=rGR35wpSW-n5d3cMiQUzQQ_Dy5II5DPjlXAoPw2QhmM,31
|
|
70
|
-
sleap_nn/tracking/track_instance.py,sha256=9k0uVy9VmpleaLcJh7sVWSeFUPXiw7yj95EYNdXJcks,1373
|
|
71
|
-
sleap_nn/tracking/tracker.py,sha256=_WT-HFruzyOsvcq3AtLm3vnI9MYSwyBmq-HlQvj1vmU,41955
|
|
72
|
-
sleap_nn/tracking/utils.py,sha256=uHVd_mzzZjviVDdLSKXJJ1T96n5ObKvkqIuGsl9Yy8U,11276
|
|
73
|
-
sleap_nn/tracking/candidates/__init__.py,sha256=1O7NObIwshM7j1rLHmImbFphvkM9wY1j4j1TvO5scSE,49
|
|
74
|
-
sleap_nn/tracking/candidates/fixed_window.py,sha256=D80KMlTnenuQveQVVhk9j0G8yx6K324C7nMLHgG76e0,6296
|
|
75
|
-
sleap_nn/tracking/candidates/local_queues.py,sha256=Nx3R5wwEwq0gbfH-fi3oOumfkQo8_sYe5GN47pD9Be8,7305
|
|
76
|
-
sleap_nn/training/__init__.py,sha256=vNTKsIJPZHJwFSKn5PmjiiRJunR_9e7y4_v0S6rdF8U,32
|
|
77
|
-
sleap_nn/training/callbacks.py,sha256=k1WAe7ZdanwPyrJua08-wrzoD-fjWxPk252Q4ncL-Gs,63250
|
|
78
|
-
sleap_nn/training/lightning_modules.py,sha256=Py6aFV51URL-SOqjO-cbdS4VsjNoNwMj0RcAFAqQe_E,110241
|
|
79
|
-
sleap_nn/training/losses.py,sha256=gbdinUURh4QUzjmNd2UJpt4FXwecqKy9gHr65JZ1bZk,1632
|
|
80
|
-
sleap_nn/training/model_trainer.py,sha256=iYm2jGhNXNt6jc-FZRaIS6kJVOvdX0Ixk7lnvQEZBLc,59844
|
|
81
|
-
sleap_nn/training/schedulers.py,sha256=PFc1M-PM1khaNfndoi5VSW-A04lLYfPf_5gFA4pkrLk,7681
|
|
82
|
-
sleap_nn/training/utils.py,sha256=ivdkZEI0DkTCm6NPszsaDOh9jSfozkONZdl6TvvQUWI,20398
|
|
83
|
-
sleap_nn-0.1.0.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
|
84
|
-
sleap_nn-0.1.0.dist-info/METADATA,sha256=ta-irf2lxIi8zfDo8kb-nF_AobfqEX0_vsVS-5tQDzU,6302
|
|
85
|
-
sleap_nn-0.1.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
86
|
-
sleap_nn-0.1.0.dist-info/entry_points.txt,sha256=zfl5Y3hidZxWBvo8qXvu5piJAXJ_l6v7xVFm0gNiUoI,46
|
|
87
|
-
sleap_nn-0.1.0.dist-info/top_level.txt,sha256=Kz68iQ55K75LWgSeqz4V4SCMGeFFYH-KGBOyhQh3xZE,9
|
|
88
|
-
sleap_nn-0.1.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|