sl-shared-assets 1.0.0rc1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sl-shared-assets might be problematic. Click here for more details.

@@ -0,0 +1,133 @@
1
+ """This module provides methods for packaging session runtime data for transmission over the network. The methods from
2
+ this module work in tandem with methods offered by transfer_tools.py to ensure the integrity of the transferred data.
3
+ """
4
+
5
+ import os
6
+ from pathlib import Path
7
+ from functools import partial
8
+ from concurrent.futures import ProcessPoolExecutor, as_completed
9
+
10
+ from tqdm import tqdm
11
+ import xxhash
12
+
13
+
14
+ def _calculate_file_checksum(base_directory: Path, file_path: Path) -> tuple[str, bytes]:
15
+ """Calculates xxHash3-128 checksum for a single file and its path relative to the base directory.
16
+
17
+ This function is passed to parallel workers used by the calculate_directory_hash() method that iteratively
18
+ calculates the checksum for all files inside a directory. Each call to this function returns the checksum for the
19
+ target file, which includes both the contents of the file and its path relative to the base directory.
20
+
21
+ Args:
22
+ base_directory: The path to the base (root) directory which is being checksummed by the main
23
+ 'calculate_directory_checksum' function.
24
+ file_path: The absolute path to the target file.
25
+
26
+ Returns:
27
+ A tuple with two elements. The first element is the path to the file relative to the base directory. The second
28
+ element is the xxHash3-128 checksum that covers the relative path and the contents of the file.
29
+ """
30
+ # Initializes the hashsum object.
31
+ checksum = xxhash.xxh3_128()
32
+
33
+ # Encodes the relative path and appends it to the checksum. This ensures that the hashsum reflects both the state
34
+ # of individual files and the layout of the overall encoded directory structure.
35
+ relative_path = str(file_path.relative_to(base_directory))
36
+ checksum.update(relative_path.encode())
37
+
38
+ # Extends the checksum to reflect the file data state. Uses 8 MB chunks to avoid excessive RAM hogging at the cost
39
+ # of slightly reduced throughput.
40
+ with open(file_path, "rb") as f:
41
+ for chunk in iter(lambda: f.read(1024 * 1024 * 8), b""):
42
+ checksum.update(chunk)
43
+
44
+ # Returns both path and file checksum. Although the relative path information is already encoded in the hashsum, the
45
+ # relative path information is re-encoded at the directory level to protect against future changes to the per-file
46
+ # hashsum calculation logic. It is extra work, but it improves the overall checksum security.
47
+ return relative_path, checksum.digest()
48
+
49
+
50
+ def calculate_directory_checksum(
51
+ directory: Path, num_processes: int | None = None, batch: bool = False, save_checksum: bool = True
52
+ ) -> str:
53
+ """Calculates xxHash3-128 checksum for the input directory, which includes the data of all contained files and
54
+ the directory structure information.
55
+
56
+ This function is used to generate a checksum for the raw_data directory of each experiment or training session.
57
+ Checksums are used to verify the session data integrity during transmission between the PC that acquired the data
58
+ and long-term storage locations, such as the Synology NAS or the BioHPC server. The function can be configured to
59
+ write the generated checksum as a hexadecimal string to the ax_checksum.txt file stored at the highest level of the
60
+ input directory.
61
+
62
+ Note:
63
+ This method uses multiprocessing to efficiently parallelize checksum calculation for multiple files. In
64
+ combination with xxHash3, this achieves a significant speedup over more common checksums, such as MD5 and
65
+ SHA256. Note that xxHash3 is not suitable for security purposes and is only used to ensure data integrity.
66
+
67
+ The method notifies the user about the checksum calculation process via the terminal.
68
+
69
+ The returned checksum accounts for both the contents of each file and the layout of the input directory
70
+ structure.
71
+
72
+ Args:
73
+ directory: The Path to the directory to be checksummed.
74
+ num_processes: The number of CPU processes to use for parallelizing checksum calculation. If set to None, the
75
+ function defaults to using (logical CPU count - 4).
76
+ batch: Determines whether the function is called as part of batch-processing multiple directories. This is used
77
+ to optimize progress reporting to avoid cluttering the terminal.
78
+ save_checksum: Determines whether the checksum should be saved (written to) a .txt file.
79
+
80
+ Returns:
81
+ The xxHash3-128 checksum for the input directory as a hexadecimal string.
82
+ """
83
+ # Determines the number of parallel processes to use.
84
+ if num_processes is None:
85
+ num_processes = max(1, os.cpu_count() - 4) # type: ignore
86
+
87
+ # Determines the path to each file inside the input directory structure and sorts them for consistency
88
+ path: Path
89
+ files = sorted(
90
+ path
91
+ for path in directory.rglob("*")
92
+ if path.is_file() and path.stem != "ax_checksum" and path.suffix != ".txt" # Excludes checksum files
93
+ )
94
+
95
+ # Precreates the directory checksum
96
+ checksum = xxhash.xxh3_128()
97
+
98
+ # Process files in parallel
99
+ with ProcessPoolExecutor(max_workers=num_processes) as executor:
100
+ # Creates the partial function with fixed base_directory (the first argument of _calculate_file_hash())
101
+ process_file = partial(_calculate_file_checksum, directory)
102
+
103
+ # Submits all tasks to be executed in parallel
104
+ future_to_path = {executor.submit(process_file, file): file for file in files}
105
+
106
+ # Collects results as they complete
107
+ results = []
108
+ if not batch:
109
+ with tqdm(
110
+ total=len(files), desc=f"Calculating checksum for {Path(*directory.parts[-6:])}", unit="files"
111
+ ) as pbar:
112
+ for future in as_completed(future_to_path):
113
+ results.append(future.result())
114
+ pbar.update(1)
115
+ else:
116
+ # For batch mode, uses a direct list comprehension with as_completed. This avoids the overhead of progress
117
+ # tracking while maintaining parallel processing, avoiding terminal clutter in batched contexts.
118
+ results = [future.result() for future in as_completed(future_to_path)]
119
+
120
+ # Sorts results for consistency and combines them into the final checksum
121
+ for file_path, file_checksum in sorted(results):
122
+ checksum.update(file_path.encode())
123
+ checksum.update(file_checksum)
124
+
125
+ checksum_hexstr = checksum.hexdigest()
126
+
127
+ # Writes the hash to ax_checksum.txt in the root directory
128
+ if save_checksum:
129
+ checksum_path = directory / "ax_checksum.txt"
130
+ with open(checksum_path, "w") as f:
131
+ f.write(checksum_hexstr)
132
+
133
+ return checksum_hexstr
@@ -0,0 +1,52 @@
1
+ from pathlib import Path
2
+
3
+ def _calculate_file_checksum(base_directory: Path, file_path: Path) -> tuple[str, bytes]:
4
+ """Calculates xxHash3-128 checksum for a single file and its path relative to the base directory.
5
+
6
+ This function is passed to parallel workers used by the calculate_directory_hash() method that iteratively
7
+ calculates the checksum for all files inside a directory. Each call to this function returns the checksum for the
8
+ target file, which includes both the contents of the file and its path relative to the base directory.
9
+
10
+ Args:
11
+ base_directory: The path to the base (root) directory which is being checksummed by the main
12
+ 'calculate_directory_checksum' function.
13
+ file_path: The absolute path to the target file.
14
+
15
+ Returns:
16
+ A tuple with two elements. The first element is the path to the file relative to the base directory. The second
17
+ element is the xxHash3-128 checksum that covers the relative path and the contents of the file.
18
+ """
19
+
20
+ def calculate_directory_checksum(
21
+ directory: Path, num_processes: int | None = None, batch: bool = False, save_checksum: bool = True
22
+ ) -> str:
23
+ """Calculates xxHash3-128 checksum for the input directory, which includes the data of all contained files and
24
+ the directory structure information.
25
+
26
+ This function is used to generate a checksum for the raw_data directory of each experiment or training session.
27
+ Checksums are used to verify the session data integrity during transmission between the PC that acquired the data
28
+ and long-term storage locations, such as the Synology NAS or the BioHPC server. The function can be configured to
29
+ write the generated checksum as a hexadecimal string to the ax_checksum.txt file stored at the highest level of the
30
+ input directory.
31
+
32
+ Note:
33
+ This method uses multiprocessing to efficiently parallelize checksum calculation for multiple files. In
34
+ combination with xxHash3, this achieves a significant speedup over more common checksums, such as MD5 and
35
+ SHA256. Note that xxHash3 is not suitable for security purposes and is only used to ensure data integrity.
36
+
37
+ The method notifies the user about the checksum calculation process via the terminal.
38
+
39
+ The returned checksum accounts for both the contents of each file and the layout of the input directory
40
+ structure.
41
+
42
+ Args:
43
+ directory: The Path to the directory to be checksummed.
44
+ num_processes: The number of CPU processes to use for parallelizing checksum calculation. If set to None, the
45
+ function defaults to using (logical CPU count - 4).
46
+ batch: Determines whether the function is called as part of batch-processing multiple directories. This is used
47
+ to optimize progress reporting to avoid cluttering the terminal.
48
+ save_checksum: Determines whether the checksum should be saved (written to) a .txt file.
49
+
50
+ Returns:
51
+ The xxHash3-128 checksum for the input directory as a hexadecimal string.
52
+ """
File without changes
@@ -0,0 +1,293 @@
1
+ """This module provides the tools for working with the Sun lab BioHPC cluster. Specifically, the classes from this
2
+ module establish an API for submitting jobs to the shared data processing cluster (managed via SLURM) and monitoring
3
+ the running job status. All lab processing and analysis pipelines use this interface for accessing shared compute
4
+ resources.
5
+ """
6
+
7
+ import re
8
+ import time
9
+ from pathlib import Path
10
+ import datetime
11
+ from dataclasses import dataclass
12
+
13
+ import paramiko
14
+ from simple_slurm import Slurm # type: ignore
15
+ from paramiko.client import SSHClient
16
+ from ataraxis_base_utilities import LogLevel, console
17
+ from ataraxis_data_structures import YamlConfig
18
+
19
+
20
+ def generate_server_credentials(
21
+ output_directory: Path, username: str, password: str, host: str = "cbsuwsun.biohpc.cornell.edu"
22
+ ) -> None:
23
+ """Generates a new server_credentials.yaml file under the specified directory, using input information.
24
+
25
+ This function provides a convenience interface for generating new BioHPC server credential files. Generally, this is
26
+ only used when setting up new host-computers in the lab.
27
+ """
28
+ ServerCredentials(username=username, password=password, host=host).to_yaml(
29
+ file_path=output_directory.joinpath("server_credentials.yaml")
30
+ )
31
+
32
+
33
+ @dataclass()
34
+ class ServerCredentials(YamlConfig):
35
+ """This class stores the hostname and credentials used to log into the BioHPC cluster to run Sun lab processing
36
+ pipelines.
37
+
38
+ Primarily, this is used as part of the sl-experiment library runtime to start data processing once it is
39
+ transferred to the BioHPC server during preprocessing.
40
+ """
41
+
42
+ username: str = "YourNetID"
43
+ """The username to use for server authentication."""
44
+ password: str = "YourPassword"
45
+ """The password to use for server authentication."""
46
+ host: str = "cbsuwsun.biohpc.cornell.edu"
47
+ """The hostname or IP address of the server to connect to."""
48
+
49
+
50
+ class Server:
51
+ """Encapsulates access to the Sun lab BioHPC processing server.
52
+
53
+ This class provides the API that allows accessing the BioHPC server and creating and submitting various
54
+ SLURM-managed jobs to the server. It functions as the central interface used by all processing pipelines in the
55
+ lab to execute costly data processing on the server.
56
+
57
+ Notes:
58
+ All lab processing pipelines expect the data to be stored on the server and all processing logic to be packaged
59
+ and installed into dedicated conda environments on the server.
60
+
61
+ Args:
62
+ credentials_path: The path to the.yaml file containing the server hostname and access credentials.
63
+
64
+ Attributes:
65
+ _open: Tracks whether the connection to the server is open or not.
66
+ _client: Stores the initialized SSHClient instance used to interface with the server.
67
+ """
68
+
69
+ def __init__(self, credentials_path: Path) -> None:
70
+ # Tracker used to prevent __del__ from classing stop() for a partially initialized class.
71
+ self._open: bool = False
72
+
73
+ # Loads the credentials from the provided .yaml file
74
+ self._credentials: ServerCredentials = ServerCredentials.from_yaml(credentials_path) # type: ignore
75
+
76
+ # Establishes the SSH connection to the specified processing server. At most, attempts to connect to the server
77
+ # 30 times before terminating with an error
78
+ attempt = 0
79
+ while True:
80
+ console.echo(
81
+ f"Trying to connect to {self._credentials.host} (attempt {attempt}/30)...", level=LogLevel.INFO
82
+ )
83
+ try:
84
+ self._client: SSHClient = paramiko.SSHClient()
85
+ self._client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
86
+ self._client.connect(
87
+ self._credentials.host, username=self._credentials.username, password=self._credentials.password
88
+ )
89
+ console.echo(f"Connected to {self._credentials.host}", level=LogLevel.SUCCESS)
90
+ break
91
+ except paramiko.AuthenticationException:
92
+ message = (
93
+ f"Authentication failed when connecting to {self._credentials.host} using "
94
+ f"{self._credentials.username} user."
95
+ )
96
+ console.error(message, RuntimeError)
97
+ raise RuntimeError
98
+ except:
99
+ if attempt == 30:
100
+ message = f"Could not connect to {self._credentials.host} after 30 attempts. Aborting runtime."
101
+ console.error(message, RuntimeError)
102
+ raise RuntimeError
103
+
104
+ console.echo(
105
+ f"Could not SSH to {self._credentials.host}, retrying after a 2-second delay...",
106
+ level=LogLevel.WARNING,
107
+ )
108
+ attempt += 1
109
+ time.sleep(2)
110
+
111
+ def __del__(self) -> None:
112
+ """If the instance is connected to the server, terminates the connection before the instance is destroyed."""
113
+ self.close()
114
+
115
+ @staticmethod
116
+ def generate_slurm_header(
117
+ job_name: str, output_log: Path, error_log: Path, cpus_to_use: int = 20, ram_gb: int = 4, time_limit: int = 60
118
+ ) -> Slurm:
119
+ """Creates a SLURM command object and fills it with initial job configuration data.
120
+
121
+ This method is used to generate the initial SLURM command object and fill it with job (SLURM) configuration and
122
+ (general!) conda initialization data. It is used by all processing pipelines in the lab as the initial
123
+ configuration point when writing job shell scripts.
124
+
125
+ Notes:
126
+ The command header generated by this method does not contain the command to initialize the specific conda
127
+ environment to be used during processing. This has to be provided as part of the additional command
128
+ configuration, typically by adding the "source activate {ENV_NAME}" subcommand to the end of the header
129
+ returned by this method.
130
+
131
+ Args:
132
+ job_name: The descriptive name of the SLURM job to be created.
133
+ output_log: The path to the .txt file on the processing server, where to store the standard output of the
134
+ job.
135
+ error_log: The path to the .txt file on the processing server, where to store the standard error of the
136
+ job.
137
+ cpus_to_use: The number of CPUs to use for the job.
138
+ ram_gb: The amount of RAM to allocate for the job in Gigabytes.
139
+ time_limit: The maximum time limit for the job, in minutes. It is highly advised to set an adequate maximum
140
+ runtime limit to prevent jobs from hogging the server for a long period of time.
141
+ """
142
+
143
+ # Builds the slurm command object filled with configuration information
144
+ slurm_command = Slurm(
145
+ cpus_per_task=cpus_to_use,
146
+ job_name=job_name,
147
+ output=str(output_log),
148
+ error=str(error_log),
149
+ mem=f"{ram_gb}G",
150
+ time=datetime.timedelta(minutes=time_limit),
151
+ )
152
+
153
+ # Adds commands to initialize conda as part of the job runtime
154
+ slurm_command.add_cmd("eval $(conda shell.bash hook)")
155
+ slurm_command.add_cmd("conda init bash")
156
+
157
+ return slurm_command
158
+
159
+ def submit_job(self, slurm_command: Slurm, working_directory: Path) -> str:
160
+ """Submits the input SLURM command to the managed BioHPC server via the shell script.
161
+
162
+ This method submits various commands for execution via SLURM-managed BioHPC cluster. As part of its runtime, the
163
+ method translates the Slurm object into the shell script, moves the script to the target working directory on
164
+ the server, and instructs the server to execute the shell script (via SLURM).
165
+
166
+ Args:
167
+ slurm_command: The Slurm (command) object containing the job configuration and individual commands to run
168
+ as part of the processing pipeline.
169
+ working_directory: The path to the working directory on the server where the shell script is moved
170
+ and executed.
171
+
172
+ Returns:
173
+ The job ID assigned to the job by SLURM manager if the command submission is successful.
174
+
175
+ Raises:
176
+ RuntimeError: If the command submission to the server fails.
177
+ """
178
+
179
+ # Extracts the job name from the slurm command text and uses it to generate the name for the remote script
180
+ job_name_pattern = r"#SBATCH\s+--job-name\s+(\S+)"
181
+ match = re.search(job_name_pattern, str(slurm_command))
182
+ if match is None:
183
+ message = (
184
+ f"Failed to submit the job to the BioHPC cluster. It appears that the job does not contain the "
185
+ f"expected SLURM job header. All jobs submitted via this method have to be initialized using the "
186
+ f"generate_slurm_header() Server class method."
187
+ )
188
+ console.error(message, RuntimeError)
189
+ raise RuntimeError(message) # This is a fallback to appease mypy, it should not be reachable.
190
+ job_name = match.group(1)
191
+
192
+ # Resolves the paths to the local and remote (server-side) .sh script files.
193
+ local_script_path = Path("temp_script.sh")
194
+ remote_script_path = str(working_directory.joinpath(f"{job_name}.sh"))
195
+
196
+ # Appends the command to clean up (remove) the temporary script file after processing runtime is over
197
+ slurm_command.add_cmd(f"rm -f {remote_script_path}")
198
+
199
+ # Translates the command to string format
200
+ script_content = str(slurm_command)
201
+
202
+ # Replaces escaped $ (/$) with $. This is essential, as without this correction things like conda
203
+ # initialization would not work as expected.
204
+ fixed_script_content = script_content.replace("\\$", "$")
205
+
206
+ # Creates a temporary script file locally and dumps translated command data into the file
207
+ with open(local_script_path, "w") as f:
208
+ f.write(fixed_script_content)
209
+
210
+ # Uploads the command script to the server
211
+ sftp = self._client.open_sftp()
212
+ sftp.put(localpath=local_script_path, remotepath=remote_script_path)
213
+ sftp.close()
214
+
215
+ # Removes the temporary local .sh file
216
+ local_script_path.unlink()
217
+
218
+ # Makes the server-side script executable
219
+ self._client.exec_command(f"chmod +x {remote_script_path}")
220
+
221
+ # Submits the job to SLURM with sbatch and verifies submission state by returning either the ID of the job or
222
+ # None to indicate no job has been submitted.
223
+ job_output = self._client.exec_command(f"sbatch {remote_script_path}")[1].read().strip().decode()
224
+ if "Submitted batch job" in job_output:
225
+ return job_output.split()[-1]
226
+ else:
227
+ message = f"Failed to submit the {job_name} job to the BioHPC cluster."
228
+ console.error(message, RuntimeError)
229
+
230
+ # Fallback to appease mypy, should not be reachable
231
+ raise RuntimeError(message)
232
+
233
+ def job_complete(self, job_id: str) -> bool:
234
+ """Returns True if the job with the given ID has been completed or terminated its runtime due to an error.
235
+
236
+ If the job is still running or is waiting inside the execution queue, returns False.
237
+
238
+ Args:
239
+ job_id: The numeric ID of the job to check, assigned by SLURM.
240
+ """
241
+ if j_id not in self._client.exec_command(f"squeue -j {job_id}")[1].read().decode().strip():
242
+ return True
243
+ else:
244
+ return False
245
+
246
+ def close(self) -> None:
247
+ """Closes the SSH connection to the server.
248
+
249
+ This method has to be called before destroying the class instance to ensure proper resource cleanup.
250
+ """
251
+ # Prevents closing already closed connections
252
+ if self._open:
253
+ self._client.close()
254
+
255
+
256
+ if __name__ == "__main__":
257
+ # Creates SSHClient for server access
258
+ console.enable()
259
+ cred_path = Path("/home/cyberaxolotl/Desktop/test/server_credentials.yaml")
260
+ server = Server(credentials_path=cred_path)
261
+
262
+ # Generates SLURM job header
263
+ slurm = server.generate_slurm_header(
264
+ job_name="test_job",
265
+ output_log=Path("/workdir/cbsuwsun/test_job_stdout.txt"),
266
+ error_log=Path("/workdir/cbsuwsun/test_job_stderr.txt"),
267
+ cpus_to_use=1,
268
+ )
269
+
270
+ # Adds test runtime command
271
+ slurm.add_cmd("python --version > /workdir/cbsuwsun/mamba_version.txt")
272
+
273
+ # Submits the job to the server
274
+ j_id = server.submit_job(slurm_command=slurm, working_directory=Path("/workdir/cbsuwsun/"))
275
+
276
+ if j_id:
277
+ console.echo(f"Successfully submitted job with ID {j_id} to the server.", level=LogLevel.SUCCESS)
278
+
279
+ max_wait_time = 60 # Maximum wait time in seconds
280
+ wait_interval = 1 # Check every 1 second
281
+ elapsed_time = 0
282
+
283
+ while elapsed_time < max_wait_time:
284
+ if server.job_complete(job_id=j_id):
285
+ console.echo("Job completed", level=LogLevel.SUCCESS)
286
+ break
287
+
288
+ console.echo(f"Job still running. Waiting {wait_interval} seconds...", level=LogLevel.INFO)
289
+ time.sleep(wait_interval)
290
+ elapsed_time += wait_interval
291
+
292
+ # Close the connection
293
+ server.close()
@@ -0,0 +1,112 @@
1
+ from pathlib import Path
2
+ from dataclasses import dataclass
3
+
4
+ from simple_slurm import Slurm
5
+ from paramiko.client import SSHClient as SSHClient
6
+ from ataraxis_data_structures import YamlConfig
7
+
8
+ def generate_server_credentials(
9
+ output_directory: Path, username: str, password: str, host: str = "cbsuwsun.biohpc.cornell.edu"
10
+ ) -> None:
11
+ """Generates a new server_credentials.yaml file under the specified directory, using input information.
12
+
13
+ This function provides a convenience interface for generating new BioHPC server credential files. Generally, this is
14
+ only used when setting up new host-computers in the lab.
15
+ """
16
+ @dataclass()
17
+ class ServerCredentials(YamlConfig):
18
+ """This class stores the hostname and credentials used to log into the BioHPC cluster to run Sun lab processing
19
+ pipelines.
20
+
21
+ Primarily, this is used as part of the sl-experiment library runtime to start data processing once it is
22
+ transferred to the BioHPC server during preprocessing.
23
+ """
24
+
25
+ username: str = ...
26
+ password: str = ...
27
+ host: str = ...
28
+
29
+ class Server:
30
+ """Encapsulates access to the Sun lab BioHPC processing server.
31
+
32
+ This class provides the API that allows accessing the BioHPC server and creating and submitting various
33
+ SLURM-managed jobs to the server. It functions as the central interface used by all processing pipelines in the
34
+ lab to execute costly data processing on the server.
35
+
36
+ Notes:
37
+ All lab processing pipelines expect the data to be stored on the server and all processing logic to be packaged
38
+ and installed into dedicated conda environments on the server.
39
+
40
+ Args:
41
+ credentials_path: The path to the.yaml file containing the server hostname and access credentials.
42
+
43
+ Attributes:
44
+ _open: Tracks whether the connection to the server is open or not.
45
+ _client: Stores the initialized SSHClient instance used to interface with the server.
46
+ """
47
+
48
+ _open: bool
49
+ _credentials: ServerCredentials
50
+ _client: SSHClient
51
+ def __init__(self, credentials_path: Path) -> None: ...
52
+ def __del__(self) -> None:
53
+ """If the instance is connected to the server, terminates the connection before the instance is destroyed."""
54
+ @staticmethod
55
+ def generate_slurm_header(
56
+ job_name: str, output_log: Path, error_log: Path, cpus_to_use: int = 20, ram_gb: int = 4, time_limit: int = 60
57
+ ) -> Slurm:
58
+ """Creates a SLURM command object and fills it with initial job configuration data.
59
+
60
+ This method is used to generate the initial SLURM command object and fill it with job (SLURM) configuration and
61
+ (general!) conda initialization data. It is used by all processing pipelines in the lab as the initial
62
+ configuration point when writing job shell scripts.
63
+
64
+ Notes:
65
+ The command header generated by this method does not contain the command to initialize the specific conda
66
+ environment to be used during processing. This has to be provided as part of the additional command
67
+ configuration, typically by adding the "source activate {ENV_NAME}" subcommand to the end of the header
68
+ returned by this method.
69
+
70
+ Args:
71
+ job_name: The descriptive name of the SLURM job to be created.
72
+ output_log: The path to the .txt file on the processing server, where to store the standard output of the
73
+ job.
74
+ error_log: The path to the .txt file on the processing server, where to store the standard error of the
75
+ job.
76
+ cpus_to_use: The number of CPUs to use for the job.
77
+ ram_gb: The amount of RAM to allocate for the job in Gigabytes.
78
+ time_limit: The maximum time limit for the job, in minutes. It is highly advised to set an adequate maximum
79
+ runtime limit to prevent jobs from hogging the server for a long period of time.
80
+ """
81
+ def submit_job(self, slurm_command: Slurm, working_directory: Path) -> str:
82
+ """Submits the input SLURM command to the managed BioHPC server via the shell script.
83
+
84
+ This method submits various commands for execution via SLURM-managed BioHPC cluster. As part of its runtime, the
85
+ method translates the Slurm object into the shell script, moves the script to the target working directory on
86
+ the server, and instructs the server to execute the shell script (via SLURM).
87
+
88
+ Args:
89
+ slurm_command: The Slurm (command) object containing the job configuration and individual commands to run
90
+ as part of the processing pipeline.
91
+ working_directory: The path to the working directory on the server where the shell script is moved
92
+ and executed.
93
+
94
+ Returns:
95
+ The job ID assigned to the job by SLURM manager if the command submission is successful.
96
+
97
+ Raises:
98
+ RuntimeError: If the command submission to the server fails.
99
+ """
100
+ def job_complete(self, job_id: str) -> bool:
101
+ """Returns True if the job with the given ID has been completed or terminated its runtime due to an error.
102
+
103
+ If the job is still running or is waiting inside the execution queue, returns False.
104
+
105
+ Args:
106
+ job_id: The numeric ID of the job to check, assigned by SLURM.
107
+ """
108
+ def close(self) -> None:
109
+ """Closes the SSH connection to the server.
110
+
111
+ This method has to be called before destroying the class instance to ensure proper resource cleanup.
112
+ """