sl-shared-assets 1.0.0rc13__py3-none-any.whl → 1.0.0rc15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sl-shared-assets might be problematic. Click here for more details.

Files changed (42) hide show
  1. sl_shared_assets/__init__.py +27 -9
  2. sl_shared_assets/__init__.pyi +71 -0
  3. sl_shared_assets/cli.py +13 -14
  4. sl_shared_assets/cli.pyi +28 -0
  5. sl_shared_assets/data_classes/__init__.py +63 -0
  6. sl_shared_assets/data_classes/__init__.pyi +61 -0
  7. sl_shared_assets/data_classes/configuration_data.py +64 -0
  8. sl_shared_assets/data_classes/configuration_data.pyi +37 -0
  9. sl_shared_assets/data_classes/runtime_data.py +233 -0
  10. sl_shared_assets/data_classes/runtime_data.pyi +145 -0
  11. sl_shared_assets/data_classes/session_data.py +1275 -0
  12. sl_shared_assets/data_classes/session_data.pyi +527 -0
  13. sl_shared_assets/data_classes/surgery_data.py +152 -0
  14. sl_shared_assets/data_classes/surgery_data.pyi +89 -0
  15. sl_shared_assets/server/__init__.py +8 -0
  16. sl_shared_assets/server/__init__.pyi +8 -0
  17. sl_shared_assets/server/job.py +140 -0
  18. sl_shared_assets/server/job.pyi +94 -0
  19. sl_shared_assets/server/server.py +213 -0
  20. sl_shared_assets/server/server.pyi +95 -0
  21. sl_shared_assets/suite2p/__init__.py +8 -0
  22. sl_shared_assets/suite2p/__init__.pyi +4 -0
  23. sl_shared_assets/suite2p/multi_day.py +193 -0
  24. sl_shared_assets/suite2p/multi_day.pyi +99 -0
  25. sl_shared_assets/{suite2p.py → suite2p/single_day.py} +55 -32
  26. sl_shared_assets/suite2p/single_day.pyi +192 -0
  27. sl_shared_assets/tools/__init__.py +8 -0
  28. sl_shared_assets/tools/__init__.pyi +5 -0
  29. sl_shared_assets/{ascension_tools.py → tools/ascension_tools.py} +3 -6
  30. sl_shared_assets/tools/ascension_tools.pyi +68 -0
  31. sl_shared_assets/tools/packaging_tools.pyi +52 -0
  32. sl_shared_assets/tools/transfer_tools.pyi +53 -0
  33. {sl_shared_assets-1.0.0rc13.dist-info → sl_shared_assets-1.0.0rc15.dist-info}/METADATA +1 -1
  34. sl_shared_assets-1.0.0rc15.dist-info/RECORD +40 -0
  35. sl_shared_assets/data_classes.py +0 -1656
  36. sl_shared_assets/server.py +0 -293
  37. sl_shared_assets-1.0.0rc13.dist-info/RECORD +0 -14
  38. /sl_shared_assets/{packaging_tools.py → tools/packaging_tools.py} +0 -0
  39. /sl_shared_assets/{transfer_tools.py → tools/transfer_tools.py} +0 -0
  40. {sl_shared_assets-1.0.0rc13.dist-info → sl_shared_assets-1.0.0rc15.dist-info}/WHEEL +0 -0
  41. {sl_shared_assets-1.0.0rc13.dist-info → sl_shared_assets-1.0.0rc15.dist-info}/entry_points.txt +0 -0
  42. {sl_shared_assets-1.0.0rc13.dist-info → sl_shared_assets-1.0.0rc15.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,152 @@
1
+ """This module provides classes to store animal surgery data. This is used to store the data extracted from the Sun lab
2
+ surgery log, so that subject surgery data is always kept together with training and experiment data."""
3
+
4
+ from dataclasses import dataclass
5
+
6
+ from ataraxis_data_structures import YamlConfig
7
+
8
+
9
+ @dataclass()
10
+ class SubjectData:
11
+ """Stores the ID information of the surgical intervention's subject (animal)."""
12
+
13
+ id: int
14
+ """Stores the unique ID (name) of the subject. Assumes all animals are given a numeric ID, rather than a string
15
+ name."""
16
+ ear_punch: str
17
+ """Stores the ear tag location of the subject."""
18
+ sex: str
19
+ """Stores the gender of the subject."""
20
+ genotype: str
21
+ """Stores the genotype of the subject."""
22
+ date_of_birth_us: int
23
+ """Stores the date of birth of the subject as the number of microseconds elapsed since UTC epoch onset."""
24
+ weight_g: float
25
+ """Stores the weight of the subject pre-surgery, in grams."""
26
+ cage: int
27
+ """Stores the number of the cage used to house the subject after surgery."""
28
+ location_housed: str
29
+ """Stores the location used to house the subject after the surgery."""
30
+ status: str
31
+ """Stores the current status of the subject (alive / deceased)."""
32
+
33
+
34
+ @dataclass()
35
+ class ProcedureData:
36
+ """Stores the general information about the surgical intervention."""
37
+
38
+ surgery_start_us: int
39
+ """Stores the date and time when the surgery has started as microseconds elapsed since UTC epoch onset."""
40
+ surgery_end_us: int
41
+ """Stores the date and time when the surgery has ended as microseconds elapsed since UTC epoch onset."""
42
+ surgeon: str
43
+ """Stores the name or ID of the surgeon. If the intervention was carried out by multiple surgeons, all participating
44
+ surgeon names and IDs are stored as part of the same string."""
45
+ protocol: str
46
+ """Stores the experiment protocol number (ID) used during the surgery."""
47
+ surgery_notes: str
48
+ """Stores surgeon's notes taken during the surgery."""
49
+ post_op_notes: str
50
+ """Stores surgeon's notes taken during the post-surgery recovery period."""
51
+ surgery_quality: int = 0
52
+ """Stores the quality of the surgical intervention as a numeric level. 0 indicates unusable (bad) result, 1
53
+ indicates usable result that is not good enough to be included in a publication, 2 indicates publication-grade
54
+ result."""
55
+
56
+
57
+ @dataclass
58
+ class ImplantData:
59
+ """Stores the information about a single implantation performed during the surgical intervention.
60
+
61
+ Multiple ImplantData instances are used at the same time if the surgery involved multiple implants.
62
+ """
63
+
64
+ implant: str
65
+ """The descriptive name of the implant."""
66
+ implant_target: str
67
+ """The name of the brain region or cranium section targeted by the implant."""
68
+ implant_code: int
69
+ """The manufacturer code or internal reference code for the implant. This code is used to identify the implant in
70
+ additional datasheets and lab ordering documents."""
71
+ implant_ap_coordinate_mm: float
72
+ """Stores implant's antero-posterior stereotactic coordinate, in millimeters, relative to bregma."""
73
+ implant_ml_coordinate_mm: float
74
+ """Stores implant's medial-lateral stereotactic coordinate, in millimeters, relative to bregma."""
75
+ implant_dv_coordinate_mm: float
76
+ """Stores implant's dorsal-ventral stereotactic coordinate, in millimeters, relative to bregma."""
77
+
78
+
79
+ @dataclass
80
+ class InjectionData:
81
+ """Stores the information about a single injection performed during surgical intervention.
82
+
83
+ Multiple InjectionData instances are used at the same time if the surgery involved multiple injections.
84
+ """
85
+
86
+ injection: str
87
+ """The descriptive name of the injection."""
88
+ injection_target: str
89
+ """The name of the brain region targeted by the injection."""
90
+ injection_volume_nl: float
91
+ """The volume of substance, in nanoliters, delivered during the injection."""
92
+ injection_code: int
93
+ """The manufacturer code or internal reference code for the injected substance. This code is used to identify the
94
+ substance in additional datasheets and lab ordering documents."""
95
+ injection_ap_coordinate_mm: float
96
+ """Stores injection's antero-posterior stereotactic coordinate, in millimeters, relative to bregma."""
97
+ injection_ml_coordinate_mm: float
98
+ """Stores injection's medial-lateral stereotactic coordinate, in millimeters, relative to bregma."""
99
+ injection_dv_coordinate_mm: float
100
+ """Stores injection's dorsal-ventral stereotactic coordinate, in millimeters, relative to bregma."""
101
+
102
+
103
+ @dataclass
104
+ class DrugData:
105
+ """Stores the information about all drugs administered to the subject before, during, and immediately after the
106
+ surgical intervention.
107
+ """
108
+
109
+ lactated_ringers_solution_volume_ml: float
110
+ """Stores the volume of Lactated Ringer's Solution (LRS) administered during surgery, in ml."""
111
+ lactated_ringers_solution_code: int
112
+ """Stores the manufacturer code or internal reference code for Lactated Ringer's Solution (LRS). This code is used
113
+ to identify the LRS batch in additional datasheets and lab ordering documents."""
114
+ ketoprofen_volume_ml: float
115
+ """Stores the volume of ketoprofen diluted with saline administered during surgery, in ml."""
116
+ ketoprofen_code: int
117
+ """Stores the manufacturer code or internal reference code for ketoprofen. This code is used to identify the
118
+ ketoprofen batch in additional datasheets and lab ordering documents."""
119
+ buprenorphine_volume_ml: float
120
+ """Stores the volume of buprenorphine diluted with saline administered during surgery, in ml."""
121
+ buprenorphine_code: int
122
+ """Stores the manufacturer code or internal reference code for buprenorphine. This code is used to identify the
123
+ buprenorphine batch in additional datasheets and lab ordering documents."""
124
+ dexamethasone_volume_ml: float
125
+ """Stores the volume of dexamethasone diluted with saline administered during surgery, in ml."""
126
+ dexamethasone_code: int
127
+ """Stores the manufacturer code or internal reference code for dexamethasone. This code is used to identify the
128
+ dexamethasone batch in additional datasheets and lab ordering documents."""
129
+
130
+
131
+ @dataclass
132
+ class SurgeryData(YamlConfig):
133
+ """Stores the data about a single mouse surgical intervention.
134
+
135
+ This class aggregates other dataclass instances that store specific data about the surgical procedure. Primarily, it
136
+ is used to save the data as a .yaml file to every session's raw_data directory of each animal used in every lab
137
+ project. This way, the surgery data is always stored alongside the behavior and brain activity data collected
138
+ during the session.
139
+ """
140
+
141
+ subject: SubjectData
142
+ """Stores the ID information about the subject (mouse)."""
143
+ procedure: ProcedureData
144
+ """Stores general data about the surgical intervention."""
145
+ drugs: DrugData
146
+ """Stores the data about the substances subcutaneously injected into the subject before, during and immediately
147
+ after the surgical intervention."""
148
+ implants: list[ImplantData]
149
+ """Stores the data for all cranial and transcranial implants introduced to the subject during the surgical
150
+ intervention."""
151
+ injections: list[InjectionData]
152
+ """Stores the data about all substances infused into the brain of the subject during the surgical intervention."""
@@ -0,0 +1,89 @@
1
+ from dataclasses import dataclass
2
+
3
+ from ataraxis_data_structures import YamlConfig
4
+
5
+ @dataclass()
6
+ class SubjectData:
7
+ """Stores the ID information of the surgical intervention's subject (animal)."""
8
+
9
+ id: int
10
+ ear_punch: str
11
+ sex: str
12
+ genotype: str
13
+ date_of_birth_us: int
14
+ weight_g: float
15
+ cage: int
16
+ location_housed: str
17
+ status: str
18
+
19
+ @dataclass()
20
+ class ProcedureData:
21
+ """Stores the general information about the surgical intervention."""
22
+
23
+ surgery_start_us: int
24
+ surgery_end_us: int
25
+ surgeon: str
26
+ protocol: str
27
+ surgery_notes: str
28
+ post_op_notes: str
29
+ surgery_quality: int = ...
30
+
31
+ @dataclass
32
+ class ImplantData:
33
+ """Stores the information about a single implantation performed during the surgical intervention.
34
+
35
+ Multiple ImplantData instances are used at the same time if the surgery involved multiple implants.
36
+ """
37
+
38
+ implant: str
39
+ implant_target: str
40
+ implant_code: int
41
+ implant_ap_coordinate_mm: float
42
+ implant_ml_coordinate_mm: float
43
+ implant_dv_coordinate_mm: float
44
+
45
+ @dataclass
46
+ class InjectionData:
47
+ """Stores the information about a single injection performed during surgical intervention.
48
+
49
+ Multiple InjectionData instances are used at the same time if the surgery involved multiple injections.
50
+ """
51
+
52
+ injection: str
53
+ injection_target: str
54
+ injection_volume_nl: float
55
+ injection_code: int
56
+ injection_ap_coordinate_mm: float
57
+ injection_ml_coordinate_mm: float
58
+ injection_dv_coordinate_mm: float
59
+
60
+ @dataclass
61
+ class DrugData:
62
+ """Stores the information about all drugs administered to the subject before, during, and immediately after the
63
+ surgical intervention.
64
+ """
65
+
66
+ lactated_ringers_solution_volume_ml: float
67
+ lactated_ringers_solution_code: int
68
+ ketoprofen_volume_ml: float
69
+ ketoprofen_code: int
70
+ buprenorphine_volume_ml: float
71
+ buprenorphine_code: int
72
+ dexamethasone_volume_ml: float
73
+ dexamethasone_code: int
74
+
75
+ @dataclass
76
+ class SurgeryData(YamlConfig):
77
+ """Stores the data about a single mouse surgical intervention.
78
+
79
+ This class aggregates other dataclass instances that store specific data about the surgical procedure. Primarily, it
80
+ is used to save the data as a .yaml file to every session's raw_data directory of each animal used in every lab
81
+ project. This way, the surgery data is always stored alongside the behavior and brain activity data collected
82
+ during the session.
83
+ """
84
+
85
+ subject: SubjectData
86
+ procedure: ProcedureData
87
+ drugs: DrugData
88
+ implants: list[ImplantData]
89
+ injections: list[InjectionData]
@@ -0,0 +1,8 @@
1
+ """This package provides the classes and methods used by all Sun lab libraries to submit remote jobs to the BioHPC
2
+ and other compute servers. This package is also used across all Sun lab members private code to interface with the
3
+ shared server."""
4
+
5
+ from .job import Job
6
+ from .server import Server, ServerCredentials, generate_server_credentials
7
+
8
+ __all__ = ["Server", "ServerCredentials", "generate_server_credentials", "Job"]
@@ -0,0 +1,8 @@
1
+ from .job import Job as Job
2
+ from .server import (
3
+ Server as Server,
4
+ ServerCredentials as ServerCredentials,
5
+ generate_server_credentials as generate_server_credentials,
6
+ )
7
+
8
+ __all__ = ["Server", "ServerCredentials", "generate_server_credentials", "Job"]
@@ -0,0 +1,140 @@
1
+ """This module provides the core Job class, used as the starting point for all SLURM-managed job executed on lab compute
2
+ server(s). Specifically, the Job class acts as a wrapper around the SLURM configuration and specific logic of each
3
+ job. During runtime, Server class interacts with input job objects to manage their transfer and execution on the
4
+ remote servers."""
5
+
6
+ # noinspection PyProtectedMember
7
+ from pathlib import Path
8
+ import datetime
9
+
10
+ from simple_slurm import Slurm # type: ignore
11
+
12
+
13
+ class Job:
14
+ """Aggregates the data of a single SLURM-managed job to be executed on the Sun lab BioHPC cluster.
15
+
16
+ This class provides the API for constructing any server-side job in the Sun lab. Internally, it wraps an instance
17
+ of a Slurm class to package the job data into the format expected by the SLURM job manager. All jobs managed by this
18
+ class instance should be submitted to an initialized Server class 'submit_job' method to be executed on the server.
19
+
20
+ Notes:
21
+ The initialization method of the class contains the arguments for configuring the SLURM and Conda environments
22
+ used by the job. Do not submit additional SLURM or Conda commands via the 'add_command' method, as this may
23
+ produce unexpected behavior.
24
+
25
+ Each job can be conceptualized as a sequence of shell instructions to execute on the remote compute server. For
26
+ the lab, that means that the bulk of the command consists of calling various CLIs exposed by data processing or
27
+ analysis pipelines, installed in the Conda environment on the server. Other than that, the job contains commands
28
+ for activating the target conda environment and, in some cases, doing other preparatory or cleanup work. The
29
+ source code of a 'remote' job is typically identical to what a human operator would type in a 'local' terminal
30
+ to run the same job on their PC.
31
+
32
+ A key feature of server-side jobs is that they are executed on virtual machines managed by SLURM. Since the
33
+ server has a lot more compute and memory resources than likely needed by individual jobs, each job typically
34
+ requests a subset of these resources. Upon being executed, SLURM creates an isolated environment with the
35
+ requested resources and runs the job in that environment.
36
+
37
+ Since all jobs are expected to use the CLIs from python packages (pre)installed on the BioHPC server, make sure
38
+ that the target environment is installed and configured before submitting jobs to the server. See notes in
39
+ ReadMe to learn more about configuring server-side conda environments.
40
+
41
+ Args:
42
+ job_name: The descriptive name of the SLURM job to be created. Primarily, this name is used in terminal
43
+ printouts to identify the job to human operators.
44
+ output_log: The absolute path to the .txt file on the processing server, where to store the standard output
45
+ data of the job.
46
+ error_log: The absolute path to the .txt file on the processing server, where to store the standard error
47
+ data of the job.
48
+ working_directory: The absolute path to the directory where temporary job files will be stored. During runtime,
49
+ classes from this library use that directory to store files such as the job's shell script. All such files
50
+ are automatically removed from the directory at the end of a non-errors runtime.
51
+ conda_environment: The name of the conda environment to activate on the server before running the job logic. The
52
+ environment should contain the necessary Python packages and CLIs to support running the job's logic.
53
+ cpus_to_use: The number of CPUs to use for the job.
54
+ ram_gb: The amount of RAM to allocate for the job, in Gigabytes.
55
+ time_limit: The maximum time limit for the job, in minutes. If the job is still running at the end of this time
56
+ period, it will be forcibly terminated. It is highly advised to always set adequate maximum runtime limits
57
+ to prevent jobs from hogging the server in case of runtime or algorithm errors.
58
+
59
+ Attributes:
60
+ remote_script_path: Stores the path to the script file relative to the root of the remote server that runs the
61
+ command.
62
+ job_id: Stores the unique job identifier assigned by the SLURM manager to this job, when it is accepted for
63
+ execution. This field initialized to None and is overwritten by the Server class that submits the job.
64
+ job_name: Stores the descriptive name of the SLURM job.
65
+ _command: Stores the managed SLURM command object.
66
+ """
67
+
68
+ def __init__(
69
+ self,
70
+ job_name: str,
71
+ output_log: Path,
72
+ error_log: Path,
73
+ working_directory: Path,
74
+ conda_environment: str,
75
+ cpus_to_use: int = 10,
76
+ ram_gb: int = 10,
77
+ time_limit: int = 60,
78
+ ) -> None:
79
+ # Resolves the paths to the remote (server-side) .sh script file. This is the path where the job script
80
+ # will be stored on the server, once it is transferred by the Server class instance.
81
+ self.remote_script_path = str(working_directory.joinpath(f"{job_name}.sh"))
82
+
83
+ # Defines additional arguments used by the Server class that executed the job.
84
+ self.job_id: str | None = None # This is set by the Server that submits the job.
85
+ self.job_name: str = job_name # Also stores the job name to support more informative terminal prints
86
+
87
+ # Builds the slurm command object filled with configuration information
88
+ self._command: Slurm = Slurm(
89
+ cpus_per_task=cpus_to_use,
90
+ job_name=job_name,
91
+ output=str(output_log),
92
+ error=str(error_log),
93
+ mem=f"{ram_gb}G",
94
+ time=datetime.timedelta(minutes=time_limit),
95
+ )
96
+
97
+ # Conda shell initialization commands
98
+ self._command.add_cmd("eval $(conda shell.bash hook)")
99
+ self._command.add_cmd("conda init bash")
100
+
101
+ # Activates the target conda environment for the command.
102
+ self._command.add_cmd(f"conda activate {conda_environment}")
103
+
104
+ def __repr__(self) -> str:
105
+ """Returns the string representation of the Job instance."""
106
+ return f"Job(name={self.job_name}, id={self.job_id})"
107
+
108
+ def add_command(self, command: str) -> None:
109
+ """Adds the input command string to the end of the managed SLURM job command list.
110
+
111
+ This method is a wrapper around simple_slurm's 'add_cmd' method. It is used to iteratively build the shell
112
+ command sequence of the job.
113
+
114
+ Args:
115
+ command: The command string to add to the command list, e.g.: 'python main.py --input 1'.
116
+ """
117
+
118
+ self._command.add_cmd(command)
119
+
120
+ @property
121
+ def command_script(self) -> str:
122
+ """Translates the managed job data into a shell-script-writable string and returns it to caller.
123
+
124
+ This method is used by the Server class to translate the job into the format that can be submitted to and
125
+ executed on the remote compute server. Do not call this method manually unless you know what you are doing.
126
+ The returned string is safe to dump into a .sh (shell script) file and move to the BioHPC server for execution.
127
+ """
128
+
129
+ # Appends the command to clean up (remove) the temporary script file after processing runtime is over
130
+ self._command.add_cmd(f"rm -f {self.remote_script_path}")
131
+
132
+ # Translates the command to string format
133
+ script_content = str(self._command)
134
+
135
+ # Replaces escaped $ (/$) with $. This is essential, as without this correction, things like conda
136
+ # initialization would not work as expected.
137
+ fixed_script_content = script_content.replace("\\$", "$")
138
+
139
+ # Returns the script content to caller as a string
140
+ return fixed_script_content
@@ -0,0 +1,94 @@
1
+ from pathlib import Path
2
+
3
+ from _typeshed import Incomplete
4
+ from simple_slurm import Slurm
5
+
6
+ class Job:
7
+ """Aggregates the data of a single SLURM-managed job to be executed on the Sun lab BioHPC cluster.
8
+
9
+ This class provides the API for constructing any server-side job in the Sun lab. Internally, it wraps an instance
10
+ of a Slurm class to package the job data into the format expected by the SLURM job manager. All jobs managed by this
11
+ class instance should be submitted to an initialized Server class 'submit_job' method to be executed on the server.
12
+
13
+ Notes:
14
+ The initialization method of the class contains the arguments for configuring the SLURM and Conda environments
15
+ used by the job. Do not submit additional SLURM or Conda commands via the 'add_command' method, as this may
16
+ produce unexpected behavior.
17
+
18
+ Each job can be conceptualized as a sequence of shell instructions to execute on the remote compute server. For
19
+ the lab, that means that the bulk of the command consists of calling various CLIs exposed by data processing or
20
+ analysis pipelines, installed in the Conda environment on the server. Other than that, the job contains commands
21
+ for activating the target conda environment and, in some cases, doing other preparatory or cleanup work. The
22
+ source code of a 'remote' job is typically identical to what a human operator would type in a 'local' terminal
23
+ to run the same job on their PC.
24
+
25
+ A key feature of server-side jobs is that they are executed on virtual machines managed by SLURM. Since the
26
+ server has a lot more compute and memory resources than likely needed by individual jobs, each job typically
27
+ requests a subset of these resources. Upon being executed, SLURM creates an isolated environment with the
28
+ requested resources and runs the job in that environment.
29
+
30
+ Since all jobs are expected to use the CLIs from python packages (pre)installed on the BioHPC server, make sure
31
+ that the target environment is installed and configured before submitting jobs to the server. See notes in
32
+ ReadMe to learn more about configuring server-side conda environments.
33
+
34
+ Args:
35
+ job_name: The descriptive name of the SLURM job to be created. Primarily, this name is used in terminal
36
+ printouts to identify the job to human operators.
37
+ output_log: The absolute path to the .txt file on the processing server, where to store the standard output
38
+ data of the job.
39
+ error_log: The absolute path to the .txt file on the processing server, where to store the standard error
40
+ data of the job.
41
+ working_directory: The absolute path to the directory where temporary job files will be stored. During runtime,
42
+ classes from this library use that directory to store files such as the job's shell script. All such files
43
+ are automatically removed from the directory at the end of a non-errors runtime.
44
+ conda_environment: The name of the conda environment to activate on the server before running the job logic. The
45
+ environment should contain the necessary Python packages and CLIs to support running the job's logic.
46
+ cpus_to_use: The number of CPUs to use for the job.
47
+ ram_gb: The amount of RAM to allocate for the job, in Gigabytes.
48
+ time_limit: The maximum time limit for the job, in minutes. If the job is still running at the end of this time
49
+ period, it will be forcibly terminated. It is highly advised to always set adequate maximum runtime limits
50
+ to prevent jobs from hogging the server in case of runtime or algorithm errors.
51
+
52
+ Attributes:
53
+ remote_script_path: Stores the path to the script file relative to the root of the remote server that runs the
54
+ command.
55
+ job_id: Stores the unique job identifier assigned by the SLURM manager to this job, when it is accepted for
56
+ execution. This field initialized to None and is overwritten by the Server class that submits the job.
57
+ job_name: Stores the descriptive name of the SLURM job.
58
+ _command: Stores the managed SLURM command object.
59
+ """
60
+
61
+ remote_script_path: Incomplete
62
+ job_id: str | None
63
+ job_name: str
64
+ _command: Slurm
65
+ def __init__(
66
+ self,
67
+ job_name: str,
68
+ output_log: Path,
69
+ error_log: Path,
70
+ working_directory: Path,
71
+ conda_environment: str,
72
+ cpus_to_use: int = 10,
73
+ ram_gb: int = 10,
74
+ time_limit: int = 60,
75
+ ) -> None: ...
76
+ def __repr__(self) -> str:
77
+ """Returns the string representation of the Job instance."""
78
+ def add_command(self, command: str) -> None:
79
+ """Adds the input command string to the end of the managed SLURM job command list.
80
+
81
+ This method is a wrapper around simple_slurm's 'add_cmd' method. It is used to iteratively build the shell
82
+ command sequence of the job.
83
+
84
+ Args:
85
+ command: The command string to add to the command list, e.g.: 'python main.py --input 1'.
86
+ """
87
+ @property
88
+ def command_script(self) -> str:
89
+ """Translates the managed job data into a shell-script-writable string and returns it to caller.
90
+
91
+ This method is used by the Server class to translate the job into the format that can be submitted to and
92
+ executed on the remote compute server. Do not call this method manually unless you know what you are doing.
93
+ The returned string is safe to dump into a .sh (shell script) file and move to the BioHPC server for execution.
94
+ """