skyvern-llamaindex 0.0.3__py3-none-any.whl → 0.0.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,109 +1,91 @@
1
- from typing import Any, Dict, List, Literal, Tuple
1
+ from typing import List, Optional
2
2
 
3
+ from llama_index.core.tools import FunctionTool
3
4
  from llama_index.core.tools.tool_spec.base import SPEC_FUNCTION_TYPE, BaseToolSpec
4
- from llama_index.core.tools.types import ToolMetadata
5
- from skyvern_llamaindex.schema import GetTaskInput, TaskV1Request, TaskV2Request
5
+ from skyvern_llamaindex.settings import settings
6
6
 
7
- from skyvern.agent import Agent
8
- from skyvern.forge.sdk.schemas.observers import ObserverTask
9
- from skyvern.forge.sdk.schemas.tasks import CreateTaskResponse, TaskResponse
7
+ from skyvern import Skyvern
8
+ from skyvern.client.agent.types.agent_get_run_response import AgentGetRunResponse
9
+ from skyvern.client.types.task_run_response import TaskRunResponse
10
+ from skyvern.schemas.runs import RunEngine
11
+
12
+
13
+ class SkyvernTool:
14
+ def __init__(self, agent: Optional[Skyvern] = None):
15
+ if agent is None:
16
+ agent = Skyvern(base_url=None, api_key=None)
17
+ self.agent = agent
18
+
19
+ def run_task(self) -> FunctionTool:
20
+ task_tool_spec = SkyvernTaskToolSpec(agent=self.agent)
21
+ return task_tool_spec.to_tool_list(["run_task"])[0]
22
+
23
+ def dispatch_task(self) -> FunctionTool:
24
+ task_tool_spec = SkyvernTaskToolSpec(agent=self.agent)
25
+ return task_tool_spec.to_tool_list(["dispatch_task"])[0]
26
+
27
+ def get_task(self) -> FunctionTool:
28
+ task_tool_spec = SkyvernTaskToolSpec(agent=self.agent)
29
+ return task_tool_spec.to_tool_list(["get_task"])[0]
10
30
 
11
31
 
12
32
  class SkyvernTaskToolSpec(BaseToolSpec):
13
33
  spec_functions: List[SPEC_FUNCTION_TYPE] = [
14
- "run",
15
- "dispatch",
16
- "get",
34
+ "run_task",
35
+ "dispatch_task",
36
+ "get_task",
17
37
  ]
18
- spec_metadata: Dict[str, Dict[str, ToolMetadata]] = {
19
- "TaskV1": {
20
- "run": ToolMetadata(
21
- name="run-skyvern-agent-task",
22
- description="Use Skyvern agent to run a task. This function won't return until the task is finished.",
23
- fn_schema=TaskV1Request,
24
- ),
25
- "dispatch": ToolMetadata(
26
- name="dispatch-skyvern-agent-task",
27
- description="Use Skyvern agent to dispatch a task. This function will return immediately and the task will be running in the background.",
28
- fn_schema=TaskV1Request,
29
- ),
30
- "get": ToolMetadata(
31
- name="get-skyvern-agent-task",
32
- description="Use Skyvern agent to get a task.",
33
- fn_schema=GetTaskInput,
34
- ),
35
- },
36
- "TaskV2": {
37
- "run": ToolMetadata(
38
- name="run-skyvern-agent-task",
39
- description="Use Skyvern agent to run a task. This function won't return until the task is finished.",
40
- fn_schema=TaskV2Request,
41
- ),
42
- "dispatch": ToolMetadata(
43
- name="dispatch-skyvern-agent-task",
44
- description="Use Skyvern agent to dispatch a task. This function will return immediately and the task will be running in the background.",
45
- fn_schema=TaskV2Request,
46
- ),
47
- "get": ToolMetadata(
48
- name="get-skyvern-agent-task",
49
- description="Use Skyvern agent to get a task.",
50
- fn_schema=GetTaskInput,
51
- ),
52
- },
53
- }
54
-
55
- def __init__(self, *, engine: Literal["TaskV1", "TaskV2"] = "TaskV2") -> None:
56
- self.agent = Agent()
38
+
39
+ def __init__(
40
+ self,
41
+ *,
42
+ agent: Skyvern | None = None,
43
+ engine: RunEngine = settings.engine,
44
+ run_task_timeout_seconds: int = settings.run_task_timeout_seconds,
45
+ ) -> None:
46
+ if agent is None:
47
+ agent = Skyvern(base_url=None, api_key=None)
48
+ self.agent = agent
57
49
  self.engine = engine
50
+ self.run_task_timeout_seconds = run_task_timeout_seconds
51
+
52
+ async def run_task(self, user_prompt: str, url: Optional[str] = None) -> TaskRunResponse:
53
+ """
54
+ Use Skyvern agent to run a task. This function won't return until the task is finished.
55
+
56
+ Args:
57
+ user_prompt[str]: The user's prompt describing the task.
58
+ url (Optional[str]): The URL of the target website for the task.
59
+ """
60
+ return await self.agent.run_task(
61
+ prompt=user_prompt,
62
+ url=url,
63
+ engine=self.engine,
64
+ timeout=self.run_task_timeout_seconds,
65
+ wait_for_completion=True,
66
+ )
58
67
 
59
- def get_metadata_from_fn_name(
60
- self, fn_name: str, spec_functions: List[str | Tuple[str, str]] | None = None
61
- ) -> ToolMetadata | None:
62
- try:
63
- getattr(self, fn_name)
64
- except AttributeError:
65
- return None
66
-
67
- return self.spec_metadata.get(self.engine, {}).get(fn_name)
68
-
69
- async def run(self, **kwargs: Dict[str, Any]) -> TaskResponse | ObserverTask:
70
- if self.engine == "TaskV1":
71
- return await self.run_task_v1(**kwargs)
72
- else:
73
- return await self.run_task_v2(**kwargs)
74
-
75
- async def dispatch(self, **kwargs: Dict[str, Any]) -> CreateTaskResponse | ObserverTask:
76
- if self.engine == "TaskV1":
77
- return await self.dispatch_task_v1(**kwargs)
78
- else:
79
- return await self.dispatch_task_v2(**kwargs)
80
-
81
- async def get(self, task_id: str) -> TaskResponse | ObserverTask | None:
82
- if self.engine == "TaskV1":
83
- return await self.get_task_v1(task_id)
84
- else:
85
- return await self.get_task_v2(task_id)
86
-
87
- async def run_task_v1(self, **kwargs: Dict[str, Any]) -> TaskResponse:
88
- task_request = TaskV1Request(**kwargs)
89
- return await self.agent.run_task(task_request=task_request, timeout_seconds=task_request.timeout_seconds)
90
-
91
- async def dispatch_task_v1(self, **kwargs: Dict[str, Any]) -> CreateTaskResponse:
92
- task_request = TaskV1Request(**kwargs)
93
- return await self.agent.create_task(task_request=task_request)
94
-
95
- async def get_task_v1(self, task_id: str) -> TaskResponse | None:
96
- return await self.agent.get_task(task_id=task_id)
97
-
98
- async def run_task_v2(self, **kwargs: Dict[str, Any]) -> ObserverTask:
99
- task_request = TaskV2Request(**kwargs)
100
- return await self.agent.run_observer_task_v_2(
101
- task_request=task_request, timeout_seconds=task_request.timeout_seconds
68
+ async def dispatch_task(self, user_prompt: str, url: Optional[str] = None) -> TaskRunResponse:
69
+ """
70
+ Use Skyvern agent to dispatch a task. This function will return immediately and the task will be running in the background.
71
+
72
+ Args:
73
+ user_prompt[str]: The user's prompt describing the task.
74
+ url (Optional[str]): The URL of the target website for the task.
75
+ """
76
+ return await self.agent.run_task(
77
+ prompt=user_prompt,
78
+ url=url,
79
+ engine=self.engine,
80
+ timeout=self.run_task_timeout_seconds,
81
+ wait_for_completion=False,
102
82
  )
103
83
 
104
- async def dispatch_task_v2(self, **kwargs: Dict[str, Any]) -> ObserverTask:
105
- task_request = TaskV2Request(**kwargs)
106
- return await self.agent.observer_task_v_2(task_request=task_request)
84
+ async def get_task(self, task_id: str) -> AgentGetRunResponse | None:
85
+ """
86
+ Use Skyvern agent to get a task.
107
87
 
108
- async def get_task_v2(self, task_id: str) -> ObserverTask | None:
109
- return await self.agent.get_observer_task_v_2(task_id=task_id)
88
+ Args:
89
+ task_id[str]: The id of the task.
90
+ """
91
+ return await self.agent.get_run(run_id=task_id)
@@ -1,172 +1,104 @@
1
- from typing import Any, Dict, List, Literal, Tuple
1
+ from typing import List, Optional
2
2
 
3
- from httpx import AsyncClient
3
+ from llama_index.core.tools import FunctionTool
4
4
  from llama_index.core.tools.tool_spec.base import SPEC_FUNCTION_TYPE, BaseToolSpec
5
- from llama_index.core.tools.types import ToolMetadata
6
- from skyvern_llamaindex.schema import GetTaskInput, TaskV1Request, TaskV2Request
5
+ from pydantic import BaseModel
6
+ from skyvern_llamaindex.settings import settings
7
7
 
8
- from skyvern.client import AsyncSkyvern
9
- from skyvern.forge.sdk.schemas.tasks import CreateTaskResponse, TaskResponse
8
+ from skyvern import Skyvern
9
+ from skyvern.client.agent.types.agent_get_run_response import AgentGetRunResponse
10
+ from skyvern.client.types.task_run_response import TaskRunResponse
11
+ from skyvern.schemas.runs import RunEngine
12
+
13
+
14
+ class SkyvernTool(BaseModel):
15
+ api_key: str = settings.api_key
16
+ base_url: str = settings.base_url
17
+
18
+ def run_task(self) -> FunctionTool:
19
+ task_tool_spec = SkyvernTaskToolSpec(
20
+ api_key=self.api_key,
21
+ base_url=self.base_url,
22
+ )
23
+
24
+ return task_tool_spec.to_tool_list(["run_task"])[0]
25
+
26
+ def dispatch_task(self) -> FunctionTool:
27
+ task_tool_spec = SkyvernTaskToolSpec(
28
+ api_key=self.api_key,
29
+ base_url=self.base_url,
30
+ )
31
+
32
+ return task_tool_spec.to_tool_list(["dispatch_task"])[0]
33
+
34
+ def get_task(self) -> FunctionTool:
35
+ task_tool_spec = SkyvernTaskToolSpec(
36
+ api_key=self.api_key,
37
+ base_url=self.base_url,
38
+ )
39
+
40
+ return task_tool_spec.to_tool_list(["get_task"])[0]
10
41
 
11
42
 
12
43
  class SkyvernTaskToolSpec(BaseToolSpec):
13
44
  spec_functions: List[SPEC_FUNCTION_TYPE] = [
14
- "run",
15
- "dispatch",
16
- "get",
45
+ "run_task",
46
+ "dispatch_task",
47
+ "get_task",
17
48
  ]
18
49
 
19
- spec_metadata: Dict[str, Dict[str, ToolMetadata]] = {
20
- "TaskV1": {
21
- "run": ToolMetadata(
22
- name="run-skyvern-client-task",
23
- description="Use Skyvern client to run a task. This function won't return until the task is finished.",
24
- fn_schema=TaskV1Request,
25
- ),
26
- "dispatch": ToolMetadata(
27
- name="dispatch-skyvern-client-task",
28
- description="Use Skyvern client to dispatch a task. This function will return immediately and the task will be running in the background.",
29
- fn_schema=TaskV1Request,
30
- ),
31
- "get": ToolMetadata(
32
- name="get-skyvern-client-task",
33
- description="Use Skyvern client to get a task.",
34
- fn_schema=GetTaskInput,
35
- ),
36
- },
37
- "TaskV2": {
38
- "run": ToolMetadata(
39
- name="run-skyvern-client-task",
40
- description="Use Skyvern client to run a task. This function won't return until the task is finished.",
41
- fn_schema=TaskV2Request,
42
- ),
43
- "dispatch": ToolMetadata(
44
- name="dispatch-skyvern-client-task",
45
- description="Use Skyvern client to dispatch a task. This function will return immediately and the task will be running in the background.",
46
- fn_schema=TaskV2Request,
47
- ),
48
- "get": ToolMetadata(
49
- name="get-skyvern-client-task",
50
- description="Use Skyvern client to get a task.",
51
- fn_schema=GetTaskInput,
52
- ),
53
- },
54
- }
55
-
56
50
  def __init__(
57
51
  self,
58
- credential: str,
59
52
  *,
60
- base_url: str = "https://api.skyvern.com",
61
- engine: Literal["TaskV1", "TaskV2"] = "TaskV2",
53
+ api_key: str = settings.api_key,
54
+ base_url: str = settings.base_url,
55
+ engine: RunEngine = settings.engine,
56
+ run_task_timeout_seconds: int = settings.run_task_timeout_seconds,
62
57
  ):
63
- httpx_client = AsyncClient(
64
- headers={
65
- "Content-Type": "application/json",
66
- "x-api-key": credential,
67
- },
68
- )
69
58
  self.engine = engine
70
- self.client = AsyncSkyvern(base_url=base_url, httpx_client=httpx_client)
71
-
72
- def get_metadata_from_fn_name(
73
- self, fn_name: str, spec_functions: List[str | Tuple[str, str]] | None = None
74
- ) -> ToolMetadata | None:
75
- try:
76
- getattr(self, fn_name)
77
- except AttributeError:
78
- return None
79
-
80
- return self.spec_metadata.get(self.engine, {}).get(fn_name)
81
-
82
- async def run(self, **kwargs: Dict[str, Any]) -> TaskResponse | Dict[str, Any | None]:
83
- if self.engine == "TaskV1":
84
- return await self.run_task_v1(**kwargs)
85
- else:
86
- return await self.run_task_v2(**kwargs)
87
-
88
- async def dispatch(self, **kwargs: Dict[str, Any]) -> CreateTaskResponse | Dict[str, Any | None]:
89
- if self.engine == "TaskV1":
90
- return await self.dispatch_task_v1(**kwargs)
91
- else:
92
- return await self.dispatch_task_v2(**kwargs)
93
-
94
- async def get(self, task_id: str) -> TaskResponse | Dict[str, Any | None]:
95
- if self.engine == "TaskV1":
96
- return await self.get_task_v1(task_id)
97
- else:
98
- return await self.get_task_v2(task_id)
99
-
100
- async def run_task_v1(self, **kwargs: Dict[str, Any]) -> TaskResponse:
101
- task_request = TaskV1Request(**kwargs)
102
- return await self.client.agent.run_task(
103
- max_steps_override=task_request.max_steps,
104
- timeout_seconds=task_request.timeout_seconds,
105
- url=task_request.url,
106
- title=task_request.title,
107
- webhook_callback_url=task_request.webhook_callback_url,
108
- totp_verification_url=task_request.totp_verification_url,
109
- totp_identifier=task_request.totp_identifier,
110
- navigation_goal=task_request.navigation_goal,
111
- data_extraction_goal=task_request.data_extraction_goal,
112
- navigation_payload=task_request.navigation_goal,
113
- error_code_mapping=task_request.error_code_mapping,
114
- proxy_location=task_request.proxy_location,
115
- extracted_information_schema=task_request.extracted_information_schema,
116
- complete_criterion=task_request.complete_criterion,
117
- terminate_criterion=task_request.terminate_criterion,
118
- browser_session_id=task_request.browser_session_id,
59
+ self.run_task_timeout_seconds = run_task_timeout_seconds
60
+ self.client = Skyvern(base_url=base_url, api_key=api_key)
61
+
62
+ async def run_task(self, user_prompt: str, url: Optional[str] = None) -> TaskRunResponse:
63
+ """
64
+ Use Skyvern client to run a task. This function won't return until the task is finished.
65
+
66
+ Args:
67
+ user_prompt[str]: The user's prompt describing the task.
68
+ url (Optional[str]): The URL of the target website for the task.
69
+ """
70
+
71
+ return await self.client.run_task(
72
+ prompt=user_prompt,
73
+ url=url,
74
+ engine=self.engine,
75
+ timeout=self.run_task_timeout_seconds,
76
+ wait_for_completion=True,
119
77
  )
120
78
 
121
- async def dispatch_task_v1(self, **kwargs: Dict[str, Any]) -> CreateTaskResponse:
122
- task_request = TaskV1Request(**kwargs)
123
- return await self.client.agent.create_task(
124
- max_steps_override=task_request.max_steps,
125
- url=task_request.url,
126
- title=task_request.title,
127
- webhook_callback_url=task_request.webhook_callback_url,
128
- totp_verification_url=task_request.totp_verification_url,
129
- totp_identifier=task_request.totp_identifier,
130
- navigation_goal=task_request.navigation_goal,
131
- data_extraction_goal=task_request.data_extraction_goal,
132
- navigation_payload=task_request.navigation_goal,
133
- error_code_mapping=task_request.error_code_mapping,
134
- proxy_location=task_request.proxy_location,
135
- extracted_information_schema=task_request.extracted_information_schema,
136
- complete_criterion=task_request.complete_criterion,
137
- terminate_criterion=task_request.terminate_criterion,
138
- browser_session_id=task_request.browser_session_id,
79
+ async def dispatch_task(self, user_prompt: str, url: Optional[str] = None) -> TaskRunResponse:
80
+ """
81
+ Use Skyvern client to dispatch a task. This function will return immediately and the task will be running in the background.
82
+
83
+ Args:
84
+ user_prompt[str]: The user's prompt describing the task.
85
+ url (Optional[str]): The URL of the target website for the task.
86
+ """
87
+
88
+ return await self.client.run_task(
89
+ prompt=user_prompt,
90
+ url=url,
91
+ engine=self.engine,
92
+ timeout=self.run_task_timeout_seconds,
93
+ wait_for_completion=False,
139
94
  )
140
95
 
141
- async def get_task_v1(self, task_id: str) -> TaskResponse:
142
- return await self.client.agent.get_task(task_id=task_id)
143
-
144
- async def run_task_v2(self, **kwargs: Dict[str, Any]) -> Dict[str, Any | None]:
145
- task_request = TaskV2Request(**kwargs)
146
- return await self.client.agent.run_observer_task_v_2(
147
- max_iterations_override=task_request.max_iterations,
148
- timeout_seconds=task_request.timeout_seconds,
149
- user_prompt=task_request.user_prompt,
150
- url=task_request.url,
151
- browser_session_id=task_request.browser_session_id,
152
- webhook_callback_url=task_request.webhook_callback_url,
153
- totp_verification_url=task_request.totp_verification_url,
154
- totp_identifier=task_request.totp_identifier,
155
- proxy_location=task_request.proxy_location,
156
- )
96
+ async def get_task(self, task_id: str) -> AgentGetRunResponse | None:
97
+ """
98
+ Use Skyvern client to get a task.
157
99
 
158
- async def dispatch_task_v2(self, **kwargs: Dict[str, Any]) -> Dict[str, Any | None]:
159
- task_request = TaskV2Request(**kwargs)
160
- return await self.client.agent.observer_task_v_2(
161
- max_iterations_override=task_request.max_iterations,
162
- user_prompt=task_request.user_prompt,
163
- url=task_request.url,
164
- browser_session_id=task_request.browser_session_id,
165
- webhook_callback_url=task_request.webhook_callback_url,
166
- totp_verification_url=task_request.totp_verification_url,
167
- totp_identifier=task_request.totp_identifier,
168
- proxy_location=task_request.proxy_location,
169
- )
100
+ Args:
101
+ task_id[str]: The id of the task.
102
+ """
170
103
 
171
- async def get_task_v2(self, task_id: str) -> Dict[str, Any | None]:
172
- return await self.client.agent.get_observer_task_v_2(task_id=task_id)
104
+ return await self.client.get_run(run_id=task_id)
@@ -0,0 +1,18 @@
1
+ from dotenv import load_dotenv
2
+ from pydantic_settings import BaseSettings
3
+
4
+ from skyvern.schemas.runs import RunEngine
5
+
6
+
7
+ class Settings(BaseSettings):
8
+ api_key: str = ""
9
+ base_url: str = "https://api.skyvern.com"
10
+ engine: RunEngine = RunEngine.skyvern_v2
11
+ run_task_timeout_seconds: int = 60 * 60
12
+
13
+ class Config:
14
+ env_prefix = "SKYVERN_"
15
+
16
+
17
+ load_dotenv()
18
+ settings = Settings()
@@ -0,0 +1,307 @@
1
+ Metadata-Version: 2.3
2
+ Name: skyvern-llamaindex
3
+ Version: 0.0.5
4
+ Summary: Skyvern integration for LlamaIndex
5
+ Author: lawyzheng
6
+ Author-email: lawy@skyvern.com
7
+ Requires-Python: >=3.11,<3.12
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: Programming Language :: Python :: 3.11
10
+ Requires-Dist: llama-index (>=0.12.19,<0.13.0)
11
+ Requires-Dist: skyvern (>=0.1.84)
12
+ Description-Content-Type: text/markdown
13
+
14
+ <!-- START doctoc generated TOC please keep comment here to allow auto update -->
15
+ <!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->
16
+
17
+ - [Skyvern LlamaIndex](#skyvern-llamaindex)
18
+ - [Installation](#installation)
19
+ - [Basic Usage](#basic-usage)
20
+ - [Run a task(sync) locally in your local environment](#run-a-tasksync-locally-in-your-local-environment)
21
+ - [Run a task(async) locally in your local environment](#run-a-taskasync-locally-in-your-local-environment)
22
+ - [Get a task locally in your local environment](#get-a-task-locally-in-your-local-environment)
23
+ - [Run a task(sync) by calling skyvern APIs](#run-a-tasksync-by-calling-skyvern-apis)
24
+ - [Run a task(async) by calling skyvern APIs](#run-a-taskasync-by-calling-skyvern-apis)
25
+ - [Get a task by calling skyvern APIs](#get-a-task-by-calling-skyvern-apis)
26
+ - [Advanced Usage](#advanced-usage)
27
+ - [Dispatch a task(async) locally in your local environment and wait until the task is finished](#dispatch-a-taskasync-locally-in-your-local-environment-and-wait-until-the-task-is-finished)
28
+ - [Dispatch a task(async) by calling skyvern APIs and wait until the task is finished](#dispatch-a-taskasync-by-calling-skyvern-apis-and-wait-until-the-task-is-finished)
29
+
30
+ <!-- END doctoc generated TOC please keep comment here to allow auto update -->
31
+
32
+ # Skyvern LlamaIndex
33
+
34
+ This is a LlamaIndex integration for Skyvern.
35
+
36
+ ## Installation
37
+
38
+ ```bash
39
+ pip install skyvern-llamaindex
40
+ ```
41
+
42
+ ## Basic Usage
43
+
44
+ ### Run a task(sync) locally in your local environment
45
+ > sync task won't return until the task is finished.
46
+
47
+ :warning: :warning: if you want to run this code block, you need to run `skyvern init` command in your terminal to set up skyvern first.
48
+
49
+
50
+ ```python
51
+ from dotenv import load_dotenv
52
+ from llama_index.agent.openai import OpenAIAgent
53
+ from llama_index.llms.openai import OpenAI
54
+ from skyvern_llamaindex.agent import SkyvernTool
55
+
56
+ # load OpenAI API key from .env
57
+ load_dotenv()
58
+
59
+ skyvern_tool = SkyvernTool()
60
+
61
+ agent = OpenAIAgent.from_tools(
62
+ tools=[skyvern_tool.run_task()],
63
+ llm=OpenAI(model="gpt-4o"),
64
+ verbose=True,
65
+ )
66
+
67
+ response = agent.chat("Run a task with Skyvern. The task is about 'Navigate to the Hacker News homepage and get the top 3 posts.'")
68
+ print(response)
69
+ ```
70
+
71
+ ### Run a task(async) locally in your local environment
72
+ > async task will return immediately and the task will be running in the background.
73
+
74
+ :warning: :warning: if you want to run the task in the background, you need to keep the agent running until the task is finished, otherwise the task will be killed when the agent finished the chat.
75
+
76
+ :warning: :warning: if you want to run this code block, you need to run `skyvern init` command in your terminal to set up skyvern first.
77
+
78
+ ```python
79
+ import asyncio
80
+ from dotenv import load_dotenv
81
+ from llama_index.agent.openai import OpenAIAgent
82
+ from llama_index.llms.openai import OpenAI
83
+ from skyvern_llamaindex.agent import SkyvernTool
84
+ from llama_index.core.tools import FunctionTool
85
+
86
+ # load OpenAI API key from .env
87
+ load_dotenv()
88
+
89
+ async def sleep(seconds: int) -> str:
90
+ await asyncio.sleep(seconds)
91
+ return f"Slept for {seconds} seconds"
92
+
93
+ # define a sleep tool to keep the agent running until the task is finished
94
+ sleep_tool = FunctionTool.from_defaults(
95
+ async_fn=sleep,
96
+ description="Sleep for a given number of seconds",
97
+ name="sleep",
98
+ )
99
+
100
+ skyvern_tool = SkyvernTool()
101
+
102
+ agent = OpenAIAgent.from_tools(
103
+ tools=[skyvern_tool.dispatch_task(), sleep_tool],
104
+ llm=OpenAI(model="gpt-4o"),
105
+ verbose=True,
106
+ )
107
+
108
+ response = agent.chat("Run a task with Skyvern. The task is about 'Navigate to the Hacker News homepage and get the top 3 posts.' Then, sleep for 10 minutes.")
109
+ print(response)
110
+ ```
111
+
112
+ ### Get a task locally in your local environment
113
+
114
+ :warning: :warning: if you want to run this code block, you need to run `skyvern init` command in your terminal to set up skyvern first.
115
+
116
+ ```python
117
+ from dotenv import load_dotenv
118
+ from llama_index.agent.openai import OpenAIAgent
119
+ from llama_index.llms.openai import OpenAI
120
+ from skyvern_llamaindex.agent import SkyvernTool
121
+
122
+ # load OpenAI API key from .env
123
+ load_dotenv()
124
+
125
+ skyvern_tool = SkyvernTool()
126
+
127
+ agent = OpenAIAgent.from_tools(
128
+ tools=[skyvern_tool.get_task()],
129
+ llm=OpenAI(model="gpt-4o"),
130
+ verbose=True,
131
+ )
132
+
133
+ response = agent.chat("Get the task information with Skyvern. The task id is '<task_id>'.")
134
+ print(response)
135
+ ```
136
+
137
+ ### Run a task(sync) by calling skyvern APIs
138
+ > sync task won't return until the task is finished.
139
+
140
+ no need to run `skyvern init` command in your terminal to set up skyvern before using this integration.
141
+
142
+ ```python
143
+ from dotenv import load_dotenv
144
+ from llama_index.agent.openai import OpenAIAgent
145
+ from llama_index.llms.openai import OpenAI
146
+ from skyvern_llamaindex.client import SkyvernTool
147
+
148
+ # load OpenAI API key from .env
149
+ load_dotenv()
150
+
151
+ skyvern_tool = SkyvernTool(api_key="<your_organization_api_key>")
152
+ # or you can load the api_key from SKYVERN_API_KEY in .env
153
+ # skyvern_tool = SkyvernTool()
154
+
155
+ agent = OpenAIAgent.from_tools(
156
+ tools=[skyvern_tool.run_task()],
157
+ llm=OpenAI(model="gpt-4o"),
158
+ verbose=True,
159
+ )
160
+
161
+ response = agent.chat("Run a task with Skyvern. The task is about 'Navigate to the Hacker News homepage and get the top 3 posts.'")
162
+ print(response)
163
+ ```
164
+
165
+ ### Run a task(async) by calling skyvern APIs
166
+ > async task will return immediately and the task will be running in the background.
167
+
168
+ no need to run `skyvern init` command in your terminal to set up skyvern before using this integration.
169
+
170
+ the task is actually running in the skyvern cloud service, so you don't need to keep your agent running until the task is finished.
171
+
172
+ ```python
173
+ from dotenv import load_dotenv
174
+ from llama_index.agent.openai import OpenAIAgent
175
+ from llama_index.llms.openai import OpenAI
176
+ from skyvern_llamaindex.client import SkyvernTool
177
+
178
+ # load OpenAI API key from .env
179
+ load_dotenv()
180
+
181
+ skyvern_tool = SkyvernTool(api_key="<your_organization_api_key>")
182
+ # or you can load the api_key from SKYVERN_API_KEY in .env
183
+ # skyvern_tool = SkyvernTool()
184
+
185
+ agent = OpenAIAgent.from_tools(
186
+ tools=[skyvern_tool.dispatch_task()],
187
+ llm=OpenAI(model="gpt-4o"),
188
+ verbose=True,
189
+ )
190
+
191
+ response = agent.chat("Run a task with Skyvern. The task is about 'Navigate to the Hacker News homepage and get the top 3 posts.'")
192
+ print(response)
193
+ ```
194
+
195
+
196
+ ### Get a task by calling skyvern APIs
197
+
198
+ no need to run `skyvern init` command in your terminal to set up skyvern before using this integration.
199
+
200
+ ```python
201
+ from dotenv import load_dotenv
202
+ from llama_index.agent.openai import OpenAIAgent
203
+ from llama_index.llms.openai import OpenAI
204
+ from skyvern_llamaindex.client import SkyvernTool
205
+
206
+ # load OpenAI API key from .env
207
+ load_dotenv()
208
+
209
+ skyvern_tool = SkyvernTool(api_key="<your_organization_api_key>")
210
+ # or you can load the api_key from SKYVERN_API_KEY in .env
211
+ # skyvern_tool = SkyvernTool()
212
+
213
+ agent = OpenAIAgent.from_tools(
214
+ tools=[skyvern_tool.get_task()],
215
+ llm=OpenAI(model="gpt-4o"),
216
+ verbose=True,
217
+ )
218
+
219
+ response = agent.chat("Get the task information with Skyvern. The task id is '<task_id>'.")
220
+ print(response)
221
+ ```
222
+
223
+ ## Advanced Usage
224
+
225
+ To provide some examples of how to integrate Skyvern with other llama-index tools in the agent.
226
+
227
+ ### Dispatch a task(async) locally in your local environment and wait until the task is finished
228
+ > dispatch task will return immediately and the task will be running in the background. You can use `get_task` tool to poll the task information until the task is finished.
229
+
230
+ :warning: :warning: if you want to run this code block, you need to run `skyvern init` command in your terminal to set up skyvern first.
231
+
232
+ ```python
233
+ import asyncio
234
+ from dotenv import load_dotenv
235
+ from llama_index.agent.openai import OpenAIAgent
236
+ from llama_index.llms.openai import OpenAI
237
+ from llama_index.core.tools import FunctionTool
238
+ from skyvern_llamaindex.agent import SkyvernTool
239
+
240
+ # load OpenAI API key from .env
241
+ load_dotenv()
242
+
243
+ async def sleep(seconds: int) -> str:
244
+ await asyncio.sleep(seconds)
245
+ return f"Slept for {seconds} seconds"
246
+
247
+ sleep_tool = FunctionTool.from_defaults(
248
+ async_fn=sleep,
249
+ description="Sleep for a given number of seconds",
250
+ name="sleep",
251
+ )
252
+
253
+ skyvern_tool = SkyvernTool()
254
+
255
+ agent = OpenAIAgent.from_tools(
256
+ tools=[skyvern_tool.dispatch_task(), skyvern_tool.get_task(), sleep_tool],
257
+ llm=OpenAI(model="gpt-4o"),
258
+ verbose=True,
259
+ max_function_calls=10,
260
+ )
261
+
262
+ response = agent.chat("Run a task with Skyvern. The task is about 'Navigate to the Hacker News homepage and get the top 3 posts.' Then, get this task information until it's completed. The task information re-get interval should be 60s.")
263
+ print(response)
264
+
265
+ ```
266
+
267
+ ### Dispatch a task(async) by calling skyvern APIs and wait until the task is finished
268
+ > dispatch task will return immediately and the task will be running in the background. You can use `get_task` tool to poll the task information until the task is finished.
269
+
270
+ no need to run `skyvern init` command in your terminal to set up skyvern before using this integration.
271
+
272
+ ```python
273
+ import asyncio
274
+ from dotenv import load_dotenv
275
+ from llama_index.agent.openai import OpenAIAgent
276
+ from llama_index.llms.openai import OpenAI
277
+ from llama_index.core.tools import FunctionTool
278
+ from skyvern_llamaindex.client import SkyvernTool
279
+
280
+ # load OpenAI API key from .env
281
+ load_dotenv()
282
+
283
+ async def sleep(seconds: int) -> str:
284
+ await asyncio.sleep(seconds)
285
+ return f"Slept for {seconds} seconds"
286
+
287
+ sleep_tool = FunctionTool.from_defaults(
288
+ async_fn=sleep,
289
+ description="Sleep for a given number of seconds",
290
+ name="sleep",
291
+ )
292
+
293
+ skyvern_tool = SkyvernTool(api_key="<your_organization_api_key>")
294
+ # or you can load the api_key from SKYVERN_API_KEY in .env
295
+ # skyvern_tool = SkyvernTool()
296
+
297
+ agent = OpenAIAgent.from_tools(
298
+ tools=[skyvern_tool.dispatch_task(), skyvern_tool.get_task(), sleep_tool],
299
+ llm=OpenAI(model="gpt-4o"),
300
+ verbose=True,
301
+ max_function_calls=10,
302
+ )
303
+
304
+ response = agent.chat("Run a task with Skyvern. The task is about 'Navigate to the Hacker News homepage and get the top 3 posts.' Then, get this task information until it's completed. The task information re-get interval should be 60s.")
305
+ print(response)
306
+
307
+ ```
@@ -0,0 +1,8 @@
1
+ skyvern_llamaindex/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ skyvern_llamaindex/agent.py,sha256=0Qz1HOCcajL-uAzh6TT5pwS2AI8_IldBhzEIz3lm7SE,3213
3
+ skyvern_llamaindex/client.py,sha256=0OCEUEmOP4UD6pR7Vt34lICFjU2NAS5ZI7ce0oIT4cA,3357
4
+ skyvern_llamaindex/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
+ skyvern_llamaindex/settings.py,sha256=PG8SyXuwXvRmgWLEkF8i7bgn8pcvznin7opzTMFKEkM,396
6
+ skyvern_llamaindex-0.0.5.dist-info/METADATA,sha256=qhOISJr-RsdWZMQRP2mKDIcJN3EoR9GbrLxhVmHj6Ak,10539
7
+ skyvern_llamaindex-0.0.5.dist-info/WHEEL,sha256=XbeZDeTWKc1w7CSIyre5aMDU_-PohRwTQceYnisIYYY,88
8
+ skyvern_llamaindex-0.0.5.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 1.9.1
2
+ Generator: poetry-core 2.1.1
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -1,18 +0,0 @@
1
- from pydantic import BaseModel
2
-
3
- from skyvern.forge.sdk.schemas.observers import ObserverTaskRequest
4
- from skyvern.forge.sdk.schemas.tasks import TaskRequest
5
-
6
-
7
- class TaskV1Request(TaskRequest):
8
- max_steps: int = 10
9
- timeout_seconds: int = 60 * 60
10
-
11
-
12
- class TaskV2Request(ObserverTaskRequest):
13
- max_iterations: int = 10
14
- timeout_seconds: int = 60 * 60
15
-
16
-
17
- class GetTaskInput(BaseModel):
18
- task_id: str
@@ -1,197 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: skyvern-llamaindex
3
- Version: 0.0.3
4
- Summary: Skyvern integration for LlamaIndex
5
- Author: lawyzheng
6
- Author-email: lawy@skyvern.com
7
- Requires-Python: >=3.11,<3.12
8
- Classifier: Programming Language :: Python :: 3
9
- Classifier: Programming Language :: Python :: 3.11
10
- Requires-Dist: llama-index (>=0.12.19,<0.13.0)
11
- Requires-Dist: skyvern (>=0.1.56,<0.2.0)
12
- Description-Content-Type: text/markdown
13
-
14
- <!-- START doctoc generated TOC please keep comment here to allow auto update -->
15
- <!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->
16
- **Table of Contents** *generated with [DocToc](https://github.com/thlorenz/doctoc)*
17
-
18
- - [Skyvern LlamaIndex](#skyvern-llamaindex)
19
- - [Installation](#installation)
20
- - [Usage](#usage)
21
- - [Run a task(sync) with skyvern agent (calling skyvern agent function directly in the tool)](#run-a-tasksync-with-skyvern-agent-calling-skyvern-agent-function-directly-in-the-tool)
22
- - [Dispatch a task(async) with skyvern agent (calling skyvern agent function directly in the tool)](#dispatch-a-taskasync-with-skyvern-agent-calling-skyvern-agent-function-directly-in-the-tool)
23
- - [Run a task(sync) with skyvern client (calling skyvern OpenAPI in the tool)](#run-a-tasksync-with-skyvern-client-calling-skyvern-openapi-in-the-tool)
24
- - [Dispatch a task(async) with skyvern client (calling skyvern OpenAPI in the tool)](#dispatch-a-taskasync-with-skyvern-client-calling-skyvern-openapi-in-the-tool)
25
-
26
- <!-- END doctoc generated TOC please keep comment here to allow auto update -->
27
-
28
- # Skyvern LlamaIndex
29
-
30
- This is a LlamaIndex integration for Skyvern.
31
-
32
- ## Installation
33
-
34
- ```bash
35
- pip install skyvern-llamaindex
36
- ```
37
-
38
- ## Usage
39
-
40
- ### Run a task(sync) with skyvern agent (calling skyvern agent function directly in the tool)
41
- > sync task won't return until the task is finished.
42
-
43
- :warning: :warning: if you want to run this code block, you need to run `skyvern init --openai-api-key <your_openai_api_key>` command in your terminal to set up skyvern first.
44
-
45
-
46
- ```python
47
- import asyncio
48
- from dotenv import load_dotenv
49
- from llama_index.agent.openai import OpenAIAgent
50
- from llama_index.llms.openai import OpenAI
51
- from skyvern_llamaindex.agent import SkyvernTaskToolSpec
52
-
53
- # load OpenAI API key from .env
54
- load_dotenv()
55
-
56
- skyvern_tool = SkyvernTaskToolSpec()
57
-
58
- tools = skyvern_tool.to_tool_list(["run"])
59
-
60
- agent = OpenAIAgent.from_tools(
61
- tools=tools,
62
- llm=OpenAI(model="gpt-4o"),
63
- verbose=True,
64
- max_function_calls=10,
65
- )
66
-
67
- # to run skyvern agent locally, must run `skyvern init` first
68
- response = agent.chat("Run the task with skyvern. The task is about 'Navigate to the Hacker News homepage and get the top 3 posts.'")
69
- print(response)
70
- ```
71
-
72
- ### Dispatch a task(async) with skyvern agent (calling skyvern agent function directly in the tool)
73
- > dispatch task will return immediately and the task will be running in the background. You can use `get` tool to poll the task information until the task is finished.
74
-
75
- :warning: :warning: if you want to run this code block, you need to run `skyvern init --openai-api-key <your_openai_api_key>` command in your terminal to set up skyvern first.
76
-
77
- ```python
78
- import asyncio
79
- from dotenv import load_dotenv
80
- from llama_index.agent.openai import OpenAIAgent
81
- from llama_index.llms.openai import OpenAI
82
- from llama_index.core.tools import FunctionTool
83
- from skyvern_llamaindex.agent import SkyvernTaskToolSpec
84
-
85
- async def sleep(seconds: int) -> str:
86
- await asyncio.sleep(seconds)
87
- return f"Slept for {seconds} seconds"
88
-
89
- # load OpenAI API key from .env
90
- load_dotenv()
91
-
92
- skyvern_tool = SkyvernTaskToolSpec()
93
-
94
- sleep_tool = FunctionTool.from_defaults(
95
- async_fn=sleep,
96
- description="Sleep for a given number of seconds",
97
- name="sleep",
98
- )
99
-
100
- tools = skyvern_tool.to_tool_list(["dispatch", "get"])
101
- tools.append(sleep_tool)
102
-
103
- agent = OpenAIAgent.from_tools(
104
- tools=tools,
105
- llm=OpenAI(model="gpt-4o"),
106
- verbose=True,
107
- max_function_calls=10,
108
- )
109
-
110
- response = agent.chat("Run a task with Skyvern. The task is about 'Navigate to the Hacker News homepage and get the top 3 posts.' Then, get this task information until it's completed. The task information re-get interval should be 60s.")
111
- print(response)
112
-
113
- ```
114
-
115
- ### Run a task(sync) with skyvern client (calling skyvern OpenAPI in the tool)
116
- > sync task won't return until the task is finished.
117
-
118
- no need to run `skyvern init` command in your terminal to set up skyvern before using this integration.
119
-
120
- ```python
121
- import asyncio
122
- from dotenv import load_dotenv
123
- from llama_index.agent.openai import OpenAIAgent
124
- from llama_index.llms.openai import OpenAI
125
- from skyvern_llamaindex.client import SkyvernTaskToolSpec
126
-
127
-
128
- async def sleep(seconds: int) -> str:
129
- await asyncio.sleep(seconds)
130
- return f"Slept for {seconds} seconds"
131
-
132
- # load OpenAI API key from .env
133
- load_dotenv()
134
-
135
- skyvern_client_tool = SkyvernTaskToolSpec(
136
- credential="<your_organization_api_key>",
137
- )
138
-
139
- tools = skyvern_client_tool.to_tool_list(["run"])
140
-
141
- agent = OpenAIAgent.from_tools(
142
- tools=tools,
143
- llm=OpenAI(model="gpt-4o"),
144
- verbose=True,
145
- max_function_calls=10,
146
- )
147
-
148
- response = agent.chat("Run the task with skyvern. The task is about 'Navigate to the Hacker News homepage and get the top 3 posts.'")
149
- print(response)
150
-
151
- ```
152
-
153
- ### Dispatch a task(async) with skyvern client (calling skyvern OpenAPI in the tool)
154
- > dispatch task will return immediately and the task will be running in the background. You can use `get` tool to poll the task information until the task is finished.
155
-
156
- no need to run `skyvern init` command in your terminal to set up skyvern before using this integration.
157
-
158
- ```python
159
- import asyncio
160
- from dotenv import load_dotenv
161
- from llama_index.agent.openai import OpenAIAgent
162
- from llama_index.llms.openai import OpenAI
163
- from llama_index.core.tools import FunctionTool
164
- from skyvern_llamaindex.client import SkyvernTaskToolSpec
165
-
166
-
167
- async def sleep(seconds: int) -> str:
168
- await asyncio.sleep(seconds)
169
- return f"Slept for {seconds} seconds"
170
-
171
- # load OpenAI API key from .env
172
- load_dotenv()
173
-
174
- skyvern_client_tool = SkyvernTaskToolSpec(
175
- credential="<your_organization_api_key>",
176
- )
177
-
178
- sleep_tool = FunctionTool.from_defaults(
179
- async_fn=sleep,
180
- description="Sleep for a given number of seconds",
181
- name="sleep",
182
- )
183
-
184
- tools = skyvern_client_tool.to_tool_list(["dispatch", "get"])
185
- tools.append(sleep_tool)
186
-
187
- agent = OpenAIAgent.from_tools(
188
- tools=tools,
189
- llm=OpenAI(model="gpt-4o"),
190
- verbose=True,
191
- max_function_calls=10,
192
- )
193
-
194
- response = agent.chat("Run a task with Skyvern. The task is about 'Navigate to the Hacker News homepage and get the top 3 posts.' Then, get this task information until it's completed. The task information re-get interval should be 60s.")
195
- print(response)
196
-
197
- ```
@@ -1,8 +0,0 @@
1
- skyvern_llamaindex/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- skyvern_llamaindex/agent.py,sha256=LAW5IAXkMZL0PR8E2A0bl8KvdGIEnkZCyT3lWZoWVGY,4606
3
- skyvern_llamaindex/client.py,sha256=o_5fmTFGHpLx-viTegJGiYdDIf11NOP5uXYlc9XXd-w,7682
4
- skyvern_llamaindex/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
- skyvern_llamaindex/schema.py,sha256=tTvnSC-ms_tW8bnzIn6FXPOCngom7l62B-IyhIwvRxQ,409
6
- skyvern_llamaindex-0.0.3.dist-info/METADATA,sha256=mewOXnIZlYnvG9c1q-ETn5h5Oqi9gQixeWlHvkdWihc,6704
7
- skyvern_llamaindex-0.0.3.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
8
- skyvern_llamaindex-0.0.3.dist-info/RECORD,,