skyvern-llamaindex 0.0.2__py3-none-any.whl → 0.0.3__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -9,42 +9,42 @@ from skyvern.forge.sdk.schemas.observers import ObserverTask
9
9
  from skyvern.forge.sdk.schemas.tasks import CreateTaskResponse, TaskResponse
10
10
 
11
11
 
12
- class SkyvernToolSpec(BaseToolSpec):
12
+ class SkyvernTaskToolSpec(BaseToolSpec):
13
13
  spec_functions: List[SPEC_FUNCTION_TYPE] = [
14
- "run_task",
15
- "dispatch_task",
16
- "get_task",
14
+ "run",
15
+ "dispatch",
16
+ "get",
17
17
  ]
18
18
  spec_metadata: Dict[str, Dict[str, ToolMetadata]] = {
19
19
  "TaskV1": {
20
- "run_task": ToolMetadata(
20
+ "run": ToolMetadata(
21
21
  name="run-skyvern-agent-task",
22
22
  description="Use Skyvern agent to run a task. This function won't return until the task is finished.",
23
23
  fn_schema=TaskV1Request,
24
24
  ),
25
- "dispatch_task": ToolMetadata(
25
+ "dispatch": ToolMetadata(
26
26
  name="dispatch-skyvern-agent-task",
27
27
  description="Use Skyvern agent to dispatch a task. This function will return immediately and the task will be running in the background.",
28
28
  fn_schema=TaskV1Request,
29
29
  ),
30
- "get_task": ToolMetadata(
30
+ "get": ToolMetadata(
31
31
  name="get-skyvern-agent-task",
32
32
  description="Use Skyvern agent to get a task.",
33
33
  fn_schema=GetTaskInput,
34
34
  ),
35
35
  },
36
36
  "TaskV2": {
37
- "run_task": ToolMetadata(
37
+ "run": ToolMetadata(
38
38
  name="run-skyvern-agent-task",
39
39
  description="Use Skyvern agent to run a task. This function won't return until the task is finished.",
40
40
  fn_schema=TaskV2Request,
41
41
  ),
42
- "dispatch_task": ToolMetadata(
42
+ "dispatch": ToolMetadata(
43
43
  name="dispatch-skyvern-agent-task",
44
44
  description="Use Skyvern agent to dispatch a task. This function will return immediately and the task will be running in the background.",
45
45
  fn_schema=TaskV2Request,
46
46
  ),
47
- "get_task": ToolMetadata(
47
+ "get": ToolMetadata(
48
48
  name="get-skyvern-agent-task",
49
49
  description="Use Skyvern agent to get a task.",
50
50
  fn_schema=GetTaskInput,
@@ -66,19 +66,19 @@ class SkyvernToolSpec(BaseToolSpec):
66
66
 
67
67
  return self.spec_metadata.get(self.engine, {}).get(fn_name)
68
68
 
69
- async def run_task(self, **kwargs: Dict[str, Any]) -> TaskResponse | ObserverTask:
69
+ async def run(self, **kwargs: Dict[str, Any]) -> TaskResponse | ObserverTask:
70
70
  if self.engine == "TaskV1":
71
71
  return await self.run_task_v1(**kwargs)
72
72
  else:
73
73
  return await self.run_task_v2(**kwargs)
74
74
 
75
- async def dispatch_task(self, **kwargs: Dict[str, Any]) -> CreateTaskResponse | ObserverTask:
75
+ async def dispatch(self, **kwargs: Dict[str, Any]) -> CreateTaskResponse | ObserverTask:
76
76
  if self.engine == "TaskV1":
77
77
  return await self.dispatch_task_v1(**kwargs)
78
78
  else:
79
79
  return await self.dispatch_task_v2(**kwargs)
80
80
 
81
- async def get_task(self, task_id: str) -> TaskResponse | ObserverTask | None:
81
+ async def get(self, task_id: str) -> TaskResponse | ObserverTask | None:
82
82
  if self.engine == "TaskV1":
83
83
  return await self.get_task_v1(task_id)
84
84
  else:
@@ -9,43 +9,43 @@ from skyvern.client import AsyncSkyvern
9
9
  from skyvern.forge.sdk.schemas.tasks import CreateTaskResponse, TaskResponse
10
10
 
11
11
 
12
- class SkyvernToolSpec(BaseToolSpec):
12
+ class SkyvernTaskToolSpec(BaseToolSpec):
13
13
  spec_functions: List[SPEC_FUNCTION_TYPE] = [
14
- "run_task",
15
- "dispatch_task",
16
- "get_task",
14
+ "run",
15
+ "dispatch",
16
+ "get",
17
17
  ]
18
18
 
19
19
  spec_metadata: Dict[str, Dict[str, ToolMetadata]] = {
20
20
  "TaskV1": {
21
- "run_task": ToolMetadata(
21
+ "run": ToolMetadata(
22
22
  name="run-skyvern-client-task",
23
23
  description="Use Skyvern client to run a task. This function won't return until the task is finished.",
24
24
  fn_schema=TaskV1Request,
25
25
  ),
26
- "dispatch_task": ToolMetadata(
26
+ "dispatch": ToolMetadata(
27
27
  name="dispatch-skyvern-client-task",
28
28
  description="Use Skyvern client to dispatch a task. This function will return immediately and the task will be running in the background.",
29
29
  fn_schema=TaskV1Request,
30
30
  ),
31
- "get_task": ToolMetadata(
31
+ "get": ToolMetadata(
32
32
  name="get-skyvern-client-task",
33
33
  description="Use Skyvern client to get a task.",
34
34
  fn_schema=GetTaskInput,
35
35
  ),
36
36
  },
37
37
  "TaskV2": {
38
- "run_task": ToolMetadata(
38
+ "run": ToolMetadata(
39
39
  name="run-skyvern-client-task",
40
40
  description="Use Skyvern client to run a task. This function won't return until the task is finished.",
41
41
  fn_schema=TaskV2Request,
42
42
  ),
43
- "dispatch_task": ToolMetadata(
43
+ "dispatch": ToolMetadata(
44
44
  name="dispatch-skyvern-client-task",
45
45
  description="Use Skyvern client to dispatch a task. This function will return immediately and the task will be running in the background.",
46
46
  fn_schema=TaskV2Request,
47
47
  ),
48
- "get_task": ToolMetadata(
48
+ "get": ToolMetadata(
49
49
  name="get-skyvern-client-task",
50
50
  description="Use Skyvern client to get a task.",
51
51
  fn_schema=GetTaskInput,
@@ -79,19 +79,19 @@ class SkyvernToolSpec(BaseToolSpec):
79
79
 
80
80
  return self.spec_metadata.get(self.engine, {}).get(fn_name)
81
81
 
82
- async def run_task(self, **kwargs: Dict[str, Any]) -> TaskResponse | Dict[str, Any | None]:
82
+ async def run(self, **kwargs: Dict[str, Any]) -> TaskResponse | Dict[str, Any | None]:
83
83
  if self.engine == "TaskV1":
84
84
  return await self.run_task_v1(**kwargs)
85
85
  else:
86
86
  return await self.run_task_v2(**kwargs)
87
87
 
88
- async def dispatch_task(self, **kwargs: Dict[str, Any]) -> CreateTaskResponse | Dict[str, Any | None]:
88
+ async def dispatch(self, **kwargs: Dict[str, Any]) -> CreateTaskResponse | Dict[str, Any | None]:
89
89
  if self.engine == "TaskV1":
90
90
  return await self.dispatch_task_v1(**kwargs)
91
91
  else:
92
92
  return await self.dispatch_task_v2(**kwargs)
93
93
 
94
- async def get_task(self, task_id: str) -> TaskResponse | Dict[str, Any | None]:
94
+ async def get(self, task_id: str) -> TaskResponse | Dict[str, Any | None]:
95
95
  if self.engine == "TaskV1":
96
96
  return await self.get_task_v1(task_id)
97
97
  else:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: skyvern-llamaindex
3
- Version: 0.0.2
3
+ Version: 0.0.3
4
4
  Summary: Skyvern integration for LlamaIndex
5
5
  Author: lawyzheng
6
6
  Author-email: lawy@skyvern.com
@@ -48,14 +48,14 @@ import asyncio
48
48
  from dotenv import load_dotenv
49
49
  from llama_index.agent.openai import OpenAIAgent
50
50
  from llama_index.llms.openai import OpenAI
51
- from skyvern_llamaindex.agent import SkyvernToolSpec
51
+ from skyvern_llamaindex.agent import SkyvernTaskToolSpec
52
52
 
53
53
  # load OpenAI API key from .env
54
54
  load_dotenv()
55
55
 
56
- skyvern_tool = SkyvernToolSpec()
56
+ skyvern_tool = SkyvernTaskToolSpec()
57
57
 
58
- tools = skyvern_tool.to_tool_list(["run_task"])
58
+ tools = skyvern_tool.to_tool_list(["run"])
59
59
 
60
60
  agent = OpenAIAgent.from_tools(
61
61
  tools=tools,
@@ -70,7 +70,7 @@ print(response)
70
70
  ```
71
71
 
72
72
  ### Dispatch a task(async) with skyvern agent (calling skyvern agent function directly in the tool)
73
- > dispatch task will return immediately and the task will be running in the background. You can use `get_task` tool to poll the task information until the task is finished.
73
+ > dispatch task will return immediately and the task will be running in the background. You can use `get` tool to poll the task information until the task is finished.
74
74
 
75
75
  :warning: :warning: if you want to run this code block, you need to run `skyvern init --openai-api-key <your_openai_api_key>` command in your terminal to set up skyvern first.
76
76
 
@@ -80,7 +80,7 @@ from dotenv import load_dotenv
80
80
  from llama_index.agent.openai import OpenAIAgent
81
81
  from llama_index.llms.openai import OpenAI
82
82
  from llama_index.core.tools import FunctionTool
83
- from skyvern_llamaindex.agent import SkyvernToolSpec
83
+ from skyvern_llamaindex.agent import SkyvernTaskToolSpec
84
84
 
85
85
  async def sleep(seconds: int) -> str:
86
86
  await asyncio.sleep(seconds)
@@ -89,7 +89,7 @@ async def sleep(seconds: int) -> str:
89
89
  # load OpenAI API key from .env
90
90
  load_dotenv()
91
91
 
92
- skyvern_tool = SkyvernToolSpec()
92
+ skyvern_tool = SkyvernTaskToolSpec()
93
93
 
94
94
  sleep_tool = FunctionTool.from_defaults(
95
95
  async_fn=sleep,
@@ -97,7 +97,7 @@ sleep_tool = FunctionTool.from_defaults(
97
97
  name="sleep",
98
98
  )
99
99
 
100
- tools = skyvern_tool.to_tool_list(["dispatch_task", "get_task"])
100
+ tools = skyvern_tool.to_tool_list(["dispatch", "get"])
101
101
  tools.append(sleep_tool)
102
102
 
103
103
  agent = OpenAIAgent.from_tools(
@@ -122,7 +122,7 @@ import asyncio
122
122
  from dotenv import load_dotenv
123
123
  from llama_index.agent.openai import OpenAIAgent
124
124
  from llama_index.llms.openai import OpenAI
125
- from skyvern_llamaindex.client import SkyvernToolSpec
125
+ from skyvern_llamaindex.client import SkyvernTaskToolSpec
126
126
 
127
127
 
128
128
  async def sleep(seconds: int) -> str:
@@ -132,11 +132,11 @@ async def sleep(seconds: int) -> str:
132
132
  # load OpenAI API key from .env
133
133
  load_dotenv()
134
134
 
135
- skyvern_client_tool = SkyvernToolSpec(
135
+ skyvern_client_tool = SkyvernTaskToolSpec(
136
136
  credential="<your_organization_api_key>",
137
137
  )
138
138
 
139
- tools = skyvern_client_tool.to_tool_list(["run_task"])
139
+ tools = skyvern_client_tool.to_tool_list(["run"])
140
140
 
141
141
  agent = OpenAIAgent.from_tools(
142
142
  tools=tools,
@@ -151,7 +151,7 @@ print(response)
151
151
  ```
152
152
 
153
153
  ### Dispatch a task(async) with skyvern client (calling skyvern OpenAPI in the tool)
154
- > dispatch task will return immediately and the task will be running in the background. You can use `get_task` tool to poll the task information until the task is finished.
154
+ > dispatch task will return immediately and the task will be running in the background. You can use `get` tool to poll the task information until the task is finished.
155
155
 
156
156
  no need to run `skyvern init` command in your terminal to set up skyvern before using this integration.
157
157
 
@@ -161,7 +161,7 @@ from dotenv import load_dotenv
161
161
  from llama_index.agent.openai import OpenAIAgent
162
162
  from llama_index.llms.openai import OpenAI
163
163
  from llama_index.core.tools import FunctionTool
164
- from skyvern_llamaindex.client import SkyvernToolSpec
164
+ from skyvern_llamaindex.client import SkyvernTaskToolSpec
165
165
 
166
166
 
167
167
  async def sleep(seconds: int) -> str:
@@ -171,7 +171,7 @@ async def sleep(seconds: int) -> str:
171
171
  # load OpenAI API key from .env
172
172
  load_dotenv()
173
173
 
174
- skyvern_client_tool = SkyvernToolSpec(
174
+ skyvern_client_tool = SkyvernTaskToolSpec(
175
175
  credential="<your_organization_api_key>",
176
176
  )
177
177
 
@@ -181,7 +181,7 @@ sleep_tool = FunctionTool.from_defaults(
181
181
  name="sleep",
182
182
  )
183
183
 
184
- tools = skyvern_client_tool.to_tool_list(["dispatch_task", "get_task"])
184
+ tools = skyvern_client_tool.to_tool_list(["dispatch", "get"])
185
185
  tools.append(sleep_tool)
186
186
 
187
187
  agent = OpenAIAgent.from_tools(
@@ -0,0 +1,8 @@
1
+ skyvern_llamaindex/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ skyvern_llamaindex/agent.py,sha256=LAW5IAXkMZL0PR8E2A0bl8KvdGIEnkZCyT3lWZoWVGY,4606
3
+ skyvern_llamaindex/client.py,sha256=o_5fmTFGHpLx-viTegJGiYdDIf11NOP5uXYlc9XXd-w,7682
4
+ skyvern_llamaindex/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
+ skyvern_llamaindex/schema.py,sha256=tTvnSC-ms_tW8bnzIn6FXPOCngom7l62B-IyhIwvRxQ,409
6
+ skyvern_llamaindex-0.0.3.dist-info/METADATA,sha256=mewOXnIZlYnvG9c1q-ETn5h5Oqi9gQixeWlHvkdWihc,6704
7
+ skyvern_llamaindex-0.0.3.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
8
+ skyvern_llamaindex-0.0.3.dist-info/RECORD,,
@@ -1,8 +0,0 @@
1
- skyvern_llamaindex/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- skyvern_llamaindex/agent.py,sha256=3WhEXwh8le4tmhTWEb16NcWa8Fq5ymGfJWb1Klowmvc,4662
3
- skyvern_llamaindex/client.py,sha256=Ma1ePNBaRTJM60u9XRJbDBgrILrZNONpGyeD7_QxejE,7738
4
- skyvern_llamaindex/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
- skyvern_llamaindex/schema.py,sha256=tTvnSC-ms_tW8bnzIn6FXPOCngom7l62B-IyhIwvRxQ,409
6
- skyvern_llamaindex-0.0.2.dist-info/METADATA,sha256=hLdi-UMl7xr1zrf6hTH8BrxDK_wSCp9yR6cnXdZP708,6712
7
- skyvern_llamaindex-0.0.2.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
8
- skyvern_llamaindex-0.0.2.dist-info/RECORD,,