skyvern-llamaindex 0.0.1__py3-none-any.whl → 0.0.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- skyvern_llamaindex/__init__.py +0 -0
- skyvern_llamaindex/agent.py +63 -49
- skyvern_llamaindex/client.py +69 -43
- {skyvern_llamaindex-0.0.1.dist-info → skyvern_llamaindex-0.0.2.dist-info}/METADATA +21 -21
- skyvern_llamaindex-0.0.2.dist-info/RECORD +8 -0
- skyvern_llamaindex-0.0.1.dist-info/RECORD +0 -7
- {skyvern_llamaindex-0.0.1.dist-info → skyvern_llamaindex-0.0.2.dist-info}/WHEEL +0 -0
File without changes
|
skyvern_llamaindex/agent.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
from typing import Any, Dict, List, Tuple
|
1
|
+
from typing import Any, Dict, List, Literal, Tuple
|
2
2
|
|
3
3
|
from llama_index.core.tools.tool_spec.base import SPEC_FUNCTION_TYPE, BaseToolSpec
|
4
4
|
from llama_index.core.tools.types import ToolMetadata
|
@@ -9,50 +9,52 @@ from skyvern.forge.sdk.schemas.observers import ObserverTask
|
|
9
9
|
from skyvern.forge.sdk.schemas.tasks import CreateTaskResponse, TaskResponse
|
10
10
|
|
11
11
|
|
12
|
-
class
|
12
|
+
class SkyvernToolSpec(BaseToolSpec):
|
13
13
|
spec_functions: List[SPEC_FUNCTION_TYPE] = [
|
14
|
-
"
|
15
|
-
"
|
16
|
-
"
|
17
|
-
"run_task_v2",
|
18
|
-
"queue_task_v2",
|
19
|
-
"get_task_v2",
|
14
|
+
"run_task",
|
15
|
+
"dispatch_task",
|
16
|
+
"get_task",
|
20
17
|
]
|
21
|
-
spec_metadata: Dict[str, ToolMetadata] = {
|
22
|
-
"
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
18
|
+
spec_metadata: Dict[str, Dict[str, ToolMetadata]] = {
|
19
|
+
"TaskV1": {
|
20
|
+
"run_task": ToolMetadata(
|
21
|
+
name="run-skyvern-agent-task",
|
22
|
+
description="Use Skyvern agent to run a task. This function won't return until the task is finished.",
|
23
|
+
fn_schema=TaskV1Request,
|
24
|
+
),
|
25
|
+
"dispatch_task": ToolMetadata(
|
26
|
+
name="dispatch-skyvern-agent-task",
|
27
|
+
description="Use Skyvern agent to dispatch a task. This function will return immediately and the task will be running in the background.",
|
28
|
+
fn_schema=TaskV1Request,
|
29
|
+
),
|
30
|
+
"get_task": ToolMetadata(
|
31
|
+
name="get-skyvern-agent-task",
|
32
|
+
description="Use Skyvern agent to get a task.",
|
33
|
+
fn_schema=GetTaskInput,
|
34
|
+
),
|
35
|
+
},
|
36
|
+
"TaskV2": {
|
37
|
+
"run_task": ToolMetadata(
|
38
|
+
name="run-skyvern-agent-task",
|
39
|
+
description="Use Skyvern agent to run a task. This function won't return until the task is finished.",
|
40
|
+
fn_schema=TaskV2Request,
|
41
|
+
),
|
42
|
+
"dispatch_task": ToolMetadata(
|
43
|
+
name="dispatch-skyvern-agent-task",
|
44
|
+
description="Use Skyvern agent to dispatch a task. This function will return immediately and the task will be running in the background.",
|
45
|
+
fn_schema=TaskV2Request,
|
46
|
+
),
|
47
|
+
"get_task": ToolMetadata(
|
48
|
+
name="get-skyvern-agent-task",
|
49
|
+
description="Use Skyvern agent to get a task.",
|
50
|
+
fn_schema=GetTaskInput,
|
51
|
+
),
|
52
|
+
},
|
52
53
|
}
|
53
54
|
|
54
|
-
def __init__(self) -> None:
|
55
|
+
def __init__(self, *, engine: Literal["TaskV1", "TaskV2"] = "TaskV2") -> None:
|
55
56
|
self.agent = Agent()
|
57
|
+
self.engine = engine
|
56
58
|
|
57
59
|
def get_metadata_from_fn_name(
|
58
60
|
self, fn_name: str, spec_functions: List[str | Tuple[str, str]] | None = None
|
@@ -62,34 +64,46 @@ class SkyvernAgentToolSpec(BaseToolSpec):
|
|
62
64
|
except AttributeError:
|
63
65
|
return None
|
64
66
|
|
65
|
-
return self.spec_metadata.get(fn_name)
|
67
|
+
return self.spec_metadata.get(self.engine, {}).get(fn_name)
|
68
|
+
|
69
|
+
async def run_task(self, **kwargs: Dict[str, Any]) -> TaskResponse | ObserverTask:
|
70
|
+
if self.engine == "TaskV1":
|
71
|
+
return await self.run_task_v1(**kwargs)
|
72
|
+
else:
|
73
|
+
return await self.run_task_v2(**kwargs)
|
74
|
+
|
75
|
+
async def dispatch_task(self, **kwargs: Dict[str, Any]) -> CreateTaskResponse | ObserverTask:
|
76
|
+
if self.engine == "TaskV1":
|
77
|
+
return await self.dispatch_task_v1(**kwargs)
|
78
|
+
else:
|
79
|
+
return await self.dispatch_task_v2(**kwargs)
|
80
|
+
|
81
|
+
async def get_task(self, task_id: str) -> TaskResponse | ObserverTask | None:
|
82
|
+
if self.engine == "TaskV1":
|
83
|
+
return await self.get_task_v1(task_id)
|
84
|
+
else:
|
85
|
+
return await self.get_task_v2(task_id)
|
66
86
|
|
67
87
|
async def run_task_v1(self, **kwargs: Dict[str, Any]) -> TaskResponse:
|
68
|
-
"""Use Skyvern agent to run a v1 task. It is usually used for the simple tasks. This function won't return until the task is finished."""
|
69
88
|
task_request = TaskV1Request(**kwargs)
|
70
89
|
return await self.agent.run_task(task_request=task_request, timeout_seconds=task_request.timeout_seconds)
|
71
90
|
|
72
|
-
async def
|
73
|
-
"""Use Skyvern agent to queue a v1 task. It is usually used for the simple tasks. This function will return immediately and the task will be running in the background."""
|
91
|
+
async def dispatch_task_v1(self, **kwargs: Dict[str, Any]) -> CreateTaskResponse:
|
74
92
|
task_request = TaskV1Request(**kwargs)
|
75
93
|
return await self.agent.create_task(task_request=task_request)
|
76
94
|
|
77
95
|
async def get_task_v1(self, task_id: str) -> TaskResponse | None:
|
78
|
-
"""Use Skyvern agent to get a v1 task. v1 tasks are usually simple tasks."""
|
79
96
|
return await self.agent.get_task(task_id=task_id)
|
80
97
|
|
81
98
|
async def run_task_v2(self, **kwargs: Dict[str, Any]) -> ObserverTask:
|
82
|
-
"""Use Skyvern agent to run a v2 task. It is usually used for the complicated tasks. This function won't return until the task is finished."""
|
83
99
|
task_request = TaskV2Request(**kwargs)
|
84
100
|
return await self.agent.run_observer_task_v_2(
|
85
101
|
task_request=task_request, timeout_seconds=task_request.timeout_seconds
|
86
102
|
)
|
87
103
|
|
88
|
-
async def
|
89
|
-
"""Use Skyvern agent to queue a v2 task. It is usually used for the complicated tasks. This function will return immediately and the task will be running in the background."""
|
104
|
+
async def dispatch_task_v2(self, **kwargs: Dict[str, Any]) -> ObserverTask:
|
90
105
|
task_request = TaskV2Request(**kwargs)
|
91
106
|
return await self.agent.observer_task_v_2(task_request=task_request)
|
92
107
|
|
93
108
|
async def get_task_v2(self, task_id: str) -> ObserverTask | None:
|
94
|
-
"""Use Skyvern agent to get a v2 task. v2 tasks are usually complicated tasks."""
|
95
109
|
return await self.agent.get_observer_task_v_2(task_id=task_id)
|
skyvern_llamaindex/client.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
from typing import Any, Dict, List, Tuple
|
1
|
+
from typing import Any, Dict, List, Literal, Tuple
|
2
2
|
|
3
3
|
from httpx import AsyncClient
|
4
4
|
from llama_index.core.tools.tool_spec.base import SPEC_FUNCTION_TYPE, BaseToolSpec
|
@@ -9,56 +9,64 @@ from skyvern.client import AsyncSkyvern
|
|
9
9
|
from skyvern.forge.sdk.schemas.tasks import CreateTaskResponse, TaskResponse
|
10
10
|
|
11
11
|
|
12
|
-
class
|
12
|
+
class SkyvernToolSpec(BaseToolSpec):
|
13
13
|
spec_functions: List[SPEC_FUNCTION_TYPE] = [
|
14
|
-
"
|
15
|
-
"
|
16
|
-
"
|
17
|
-
"run_task_v2",
|
18
|
-
"queue_task_v2",
|
19
|
-
"get_task_v2",
|
14
|
+
"run_task",
|
15
|
+
"dispatch_task",
|
16
|
+
"get_task",
|
20
17
|
]
|
21
18
|
|
22
|
-
spec_metadata: Dict[str, ToolMetadata] = {
|
23
|
-
"
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
19
|
+
spec_metadata: Dict[str, Dict[str, ToolMetadata]] = {
|
20
|
+
"TaskV1": {
|
21
|
+
"run_task": ToolMetadata(
|
22
|
+
name="run-skyvern-client-task",
|
23
|
+
description="Use Skyvern client to run a task. This function won't return until the task is finished.",
|
24
|
+
fn_schema=TaskV1Request,
|
25
|
+
),
|
26
|
+
"dispatch_task": ToolMetadata(
|
27
|
+
name="dispatch-skyvern-client-task",
|
28
|
+
description="Use Skyvern client to dispatch a task. This function will return immediately and the task will be running in the background.",
|
29
|
+
fn_schema=TaskV1Request,
|
30
|
+
),
|
31
|
+
"get_task": ToolMetadata(
|
32
|
+
name="get-skyvern-client-task",
|
33
|
+
description="Use Skyvern client to get a task.",
|
34
|
+
fn_schema=GetTaskInput,
|
35
|
+
),
|
36
|
+
},
|
37
|
+
"TaskV2": {
|
38
|
+
"run_task": ToolMetadata(
|
39
|
+
name="run-skyvern-client-task",
|
40
|
+
description="Use Skyvern client to run a task. This function won't return until the task is finished.",
|
41
|
+
fn_schema=TaskV2Request,
|
42
|
+
),
|
43
|
+
"dispatch_task": ToolMetadata(
|
44
|
+
name="dispatch-skyvern-client-task",
|
45
|
+
description="Use Skyvern client to dispatch a task. This function will return immediately and the task will be running in the background.",
|
46
|
+
fn_schema=TaskV2Request,
|
47
|
+
),
|
48
|
+
"get_task": ToolMetadata(
|
49
|
+
name="get-skyvern-client-task",
|
50
|
+
description="Use Skyvern client to get a task.",
|
51
|
+
fn_schema=GetTaskInput,
|
52
|
+
),
|
53
|
+
},
|
53
54
|
}
|
54
55
|
|
55
|
-
def __init__(
|
56
|
+
def __init__(
|
57
|
+
self,
|
58
|
+
credential: str,
|
59
|
+
*,
|
60
|
+
base_url: str = "https://api.skyvern.com",
|
61
|
+
engine: Literal["TaskV1", "TaskV2"] = "TaskV2",
|
62
|
+
):
|
56
63
|
httpx_client = AsyncClient(
|
57
64
|
headers={
|
58
65
|
"Content-Type": "application/json",
|
59
66
|
"x-api-key": credential,
|
60
67
|
},
|
61
68
|
)
|
69
|
+
self.engine = engine
|
62
70
|
self.client = AsyncSkyvern(base_url=base_url, httpx_client=httpx_client)
|
63
71
|
|
64
72
|
def get_metadata_from_fn_name(
|
@@ -69,7 +77,25 @@ class SkyvernClientToolSpec(BaseToolSpec):
|
|
69
77
|
except AttributeError:
|
70
78
|
return None
|
71
79
|
|
72
|
-
return self.spec_metadata.get(fn_name)
|
80
|
+
return self.spec_metadata.get(self.engine, {}).get(fn_name)
|
81
|
+
|
82
|
+
async def run_task(self, **kwargs: Dict[str, Any]) -> TaskResponse | Dict[str, Any | None]:
|
83
|
+
if self.engine == "TaskV1":
|
84
|
+
return await self.run_task_v1(**kwargs)
|
85
|
+
else:
|
86
|
+
return await self.run_task_v2(**kwargs)
|
87
|
+
|
88
|
+
async def dispatch_task(self, **kwargs: Dict[str, Any]) -> CreateTaskResponse | Dict[str, Any | None]:
|
89
|
+
if self.engine == "TaskV1":
|
90
|
+
return await self.dispatch_task_v1(**kwargs)
|
91
|
+
else:
|
92
|
+
return await self.dispatch_task_v2(**kwargs)
|
93
|
+
|
94
|
+
async def get_task(self, task_id: str) -> TaskResponse | Dict[str, Any | None]:
|
95
|
+
if self.engine == "TaskV1":
|
96
|
+
return await self.get_task_v1(task_id)
|
97
|
+
else:
|
98
|
+
return await self.get_task_v2(task_id)
|
73
99
|
|
74
100
|
async def run_task_v1(self, **kwargs: Dict[str, Any]) -> TaskResponse:
|
75
101
|
task_request = TaskV1Request(**kwargs)
|
@@ -92,7 +118,7 @@ class SkyvernClientToolSpec(BaseToolSpec):
|
|
92
118
|
browser_session_id=task_request.browser_session_id,
|
93
119
|
)
|
94
120
|
|
95
|
-
async def
|
121
|
+
async def dispatch_task_v1(self, **kwargs: Dict[str, Any]) -> CreateTaskResponse:
|
96
122
|
task_request = TaskV1Request(**kwargs)
|
97
123
|
return await self.client.agent.create_task(
|
98
124
|
max_steps_override=task_request.max_steps,
|
@@ -129,7 +155,7 @@ class SkyvernClientToolSpec(BaseToolSpec):
|
|
129
155
|
proxy_location=task_request.proxy_location,
|
130
156
|
)
|
131
157
|
|
132
|
-
async def
|
158
|
+
async def dispatch_task_v2(self, **kwargs: Dict[str, Any]) -> Dict[str, Any | None]:
|
133
159
|
task_request = TaskV2Request(**kwargs)
|
134
160
|
return await self.client.agent.observer_task_v_2(
|
135
161
|
max_iterations_override=task_request.max_iterations,
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: skyvern-llamaindex
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.2
|
4
4
|
Summary: Skyvern integration for LlamaIndex
|
5
5
|
Author: lawyzheng
|
6
6
|
Author-email: lawy@skyvern.com
|
@@ -19,9 +19,9 @@ Description-Content-Type: text/markdown
|
|
19
19
|
- [Installation](#installation)
|
20
20
|
- [Usage](#usage)
|
21
21
|
- [Run a task(sync) with skyvern agent (calling skyvern agent function directly in the tool)](#run-a-tasksync-with-skyvern-agent-calling-skyvern-agent-function-directly-in-the-tool)
|
22
|
-
- [
|
22
|
+
- [Dispatch a task(async) with skyvern agent (calling skyvern agent function directly in the tool)](#dispatch-a-taskasync-with-skyvern-agent-calling-skyvern-agent-function-directly-in-the-tool)
|
23
23
|
- [Run a task(sync) with skyvern client (calling skyvern OpenAPI in the tool)](#run-a-tasksync-with-skyvern-client-calling-skyvern-openapi-in-the-tool)
|
24
|
-
- [
|
24
|
+
- [Dispatch a task(async) with skyvern client (calling skyvern OpenAPI in the tool)](#dispatch-a-taskasync-with-skyvern-client-calling-skyvern-openapi-in-the-tool)
|
25
25
|
|
26
26
|
<!-- END doctoc generated TOC please keep comment here to allow auto update -->
|
27
27
|
|
@@ -48,14 +48,14 @@ import asyncio
|
|
48
48
|
from dotenv import load_dotenv
|
49
49
|
from llama_index.agent.openai import OpenAIAgent
|
50
50
|
from llama_index.llms.openai import OpenAI
|
51
|
-
from skyvern_llamaindex.agent import
|
51
|
+
from skyvern_llamaindex.agent import SkyvernToolSpec
|
52
52
|
|
53
53
|
# load OpenAI API key from .env
|
54
54
|
load_dotenv()
|
55
55
|
|
56
|
-
skyvern_tool =
|
56
|
+
skyvern_tool = SkyvernToolSpec()
|
57
57
|
|
58
|
-
tools = skyvern_tool.to_tool_list(["
|
58
|
+
tools = skyvern_tool.to_tool_list(["run_task"])
|
59
59
|
|
60
60
|
agent = OpenAIAgent.from_tools(
|
61
61
|
tools=tools,
|
@@ -69,8 +69,8 @@ response = agent.chat("Run the task with skyvern. The task is about 'Navigate to
|
|
69
69
|
print(response)
|
70
70
|
```
|
71
71
|
|
72
|
-
###
|
73
|
-
>
|
72
|
+
### Dispatch a task(async) with skyvern agent (calling skyvern agent function directly in the tool)
|
73
|
+
> dispatch task will return immediately and the task will be running in the background. You can use `get_task` tool to poll the task information until the task is finished.
|
74
74
|
|
75
75
|
:warning: :warning: if you want to run this code block, you need to run `skyvern init --openai-api-key <your_openai_api_key>` command in your terminal to set up skyvern first.
|
76
76
|
|
@@ -80,7 +80,7 @@ from dotenv import load_dotenv
|
|
80
80
|
from llama_index.agent.openai import OpenAIAgent
|
81
81
|
from llama_index.llms.openai import OpenAI
|
82
82
|
from llama_index.core.tools import FunctionTool
|
83
|
-
from skyvern_llamaindex.agent import
|
83
|
+
from skyvern_llamaindex.agent import SkyvernToolSpec
|
84
84
|
|
85
85
|
async def sleep(seconds: int) -> str:
|
86
86
|
await asyncio.sleep(seconds)
|
@@ -89,7 +89,7 @@ async def sleep(seconds: int) -> str:
|
|
89
89
|
# load OpenAI API key from .env
|
90
90
|
load_dotenv()
|
91
91
|
|
92
|
-
skyvern_tool =
|
92
|
+
skyvern_tool = SkyvernToolSpec()
|
93
93
|
|
94
94
|
sleep_tool = FunctionTool.from_defaults(
|
95
95
|
async_fn=sleep,
|
@@ -97,7 +97,7 @@ sleep_tool = FunctionTool.from_defaults(
|
|
97
97
|
name="sleep",
|
98
98
|
)
|
99
99
|
|
100
|
-
tools = skyvern_tool.to_tool_list(["
|
100
|
+
tools = skyvern_tool.to_tool_list(["dispatch_task", "get_task"])
|
101
101
|
tools.append(sleep_tool)
|
102
102
|
|
103
103
|
agent = OpenAIAgent.from_tools(
|
@@ -107,7 +107,7 @@ agent = OpenAIAgent.from_tools(
|
|
107
107
|
max_function_calls=10,
|
108
108
|
)
|
109
109
|
|
110
|
-
response = agent.chat("
|
110
|
+
response = agent.chat("Run a task with Skyvern. The task is about 'Navigate to the Hacker News homepage and get the top 3 posts.' Then, get this task information until it's completed. The task information re-get interval should be 60s.")
|
111
111
|
print(response)
|
112
112
|
|
113
113
|
```
|
@@ -122,7 +122,7 @@ import asyncio
|
|
122
122
|
from dotenv import load_dotenv
|
123
123
|
from llama_index.agent.openai import OpenAIAgent
|
124
124
|
from llama_index.llms.openai import OpenAI
|
125
|
-
from skyvern_llamaindex.client import
|
125
|
+
from skyvern_llamaindex.client import SkyvernToolSpec
|
126
126
|
|
127
127
|
|
128
128
|
async def sleep(seconds: int) -> str:
|
@@ -132,11 +132,11 @@ async def sleep(seconds: int) -> str:
|
|
132
132
|
# load OpenAI API key from .env
|
133
133
|
load_dotenv()
|
134
134
|
|
135
|
-
skyvern_client_tool =
|
135
|
+
skyvern_client_tool = SkyvernToolSpec(
|
136
136
|
credential="<your_organization_api_key>",
|
137
137
|
)
|
138
138
|
|
139
|
-
tools = skyvern_client_tool.to_tool_list(["
|
139
|
+
tools = skyvern_client_tool.to_tool_list(["run_task"])
|
140
140
|
|
141
141
|
agent = OpenAIAgent.from_tools(
|
142
142
|
tools=tools,
|
@@ -150,8 +150,8 @@ print(response)
|
|
150
150
|
|
151
151
|
```
|
152
152
|
|
153
|
-
###
|
154
|
-
>
|
153
|
+
### Dispatch a task(async) with skyvern client (calling skyvern OpenAPI in the tool)
|
154
|
+
> dispatch task will return immediately and the task will be running in the background. You can use `get_task` tool to poll the task information until the task is finished.
|
155
155
|
|
156
156
|
no need to run `skyvern init` command in your terminal to set up skyvern before using this integration.
|
157
157
|
|
@@ -161,7 +161,7 @@ from dotenv import load_dotenv
|
|
161
161
|
from llama_index.agent.openai import OpenAIAgent
|
162
162
|
from llama_index.llms.openai import OpenAI
|
163
163
|
from llama_index.core.tools import FunctionTool
|
164
|
-
from skyvern_llamaindex.client import
|
164
|
+
from skyvern_llamaindex.client import SkyvernToolSpec
|
165
165
|
|
166
166
|
|
167
167
|
async def sleep(seconds: int) -> str:
|
@@ -171,7 +171,7 @@ async def sleep(seconds: int) -> str:
|
|
171
171
|
# load OpenAI API key from .env
|
172
172
|
load_dotenv()
|
173
173
|
|
174
|
-
skyvern_client_tool =
|
174
|
+
skyvern_client_tool = SkyvernToolSpec(
|
175
175
|
credential="<your_organization_api_key>",
|
176
176
|
)
|
177
177
|
|
@@ -181,7 +181,7 @@ sleep_tool = FunctionTool.from_defaults(
|
|
181
181
|
name="sleep",
|
182
182
|
)
|
183
183
|
|
184
|
-
tools = skyvern_client_tool.to_tool_list(["
|
184
|
+
tools = skyvern_client_tool.to_tool_list(["dispatch_task", "get_task"])
|
185
185
|
tools.append(sleep_tool)
|
186
186
|
|
187
187
|
agent = OpenAIAgent.from_tools(
|
@@ -191,7 +191,7 @@ agent = OpenAIAgent.from_tools(
|
|
191
191
|
max_function_calls=10,
|
192
192
|
)
|
193
193
|
|
194
|
-
response = agent.chat("
|
194
|
+
response = agent.chat("Run a task with Skyvern. The task is about 'Navigate to the Hacker News homepage and get the top 3 posts.' Then, get this task information until it's completed. The task information re-get interval should be 60s.")
|
195
195
|
print(response)
|
196
196
|
|
197
197
|
```
|
@@ -0,0 +1,8 @@
|
|
1
|
+
skyvern_llamaindex/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
|
+
skyvern_llamaindex/agent.py,sha256=3WhEXwh8le4tmhTWEb16NcWa8Fq5ymGfJWb1Klowmvc,4662
|
3
|
+
skyvern_llamaindex/client.py,sha256=Ma1ePNBaRTJM60u9XRJbDBgrILrZNONpGyeD7_QxejE,7738
|
4
|
+
skyvern_llamaindex/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
5
|
+
skyvern_llamaindex/schema.py,sha256=tTvnSC-ms_tW8bnzIn6FXPOCngom7l62B-IyhIwvRxQ,409
|
6
|
+
skyvern_llamaindex-0.0.2.dist-info/METADATA,sha256=hLdi-UMl7xr1zrf6hTH8BrxDK_wSCp9yR6cnXdZP708,6712
|
7
|
+
skyvern_llamaindex-0.0.2.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
|
8
|
+
skyvern_llamaindex-0.0.2.dist-info/RECORD,,
|
@@ -1,7 +0,0 @@
|
|
1
|
-
skyvern_llamaindex/agent.py,sha256=x1Hg19Pw3Y6NuOWR8FcylJClzcqL-cyysx9Mon2R-a0,4815
|
2
|
-
skyvern_llamaindex/client.py,sha256=ZVKQR7trdrutRZlSDkouWIkW-FUaObAE3ewMUdKFt3g,6996
|
3
|
-
skyvern_llamaindex/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
4
|
-
skyvern_llamaindex/schema.py,sha256=tTvnSC-ms_tW8bnzIn6FXPOCngom7l62B-IyhIwvRxQ,409
|
5
|
-
skyvern_llamaindex-0.0.1.dist-info/METADATA,sha256=yblp6nsXM5AR8C1NxjicYXCXrL8FHYgSRIvPWYGgIo0,6757
|
6
|
-
skyvern_llamaindex-0.0.1.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
|
7
|
-
skyvern_llamaindex-0.0.1.dist-info/RECORD,,
|
File without changes
|