skypilot-nightly 1.0.0.dev20241018__py3-none-any.whl → 1.0.0.dev20241019__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
sky/__init__.py CHANGED
@@ -5,7 +5,7 @@ from typing import Optional
5
5
  import urllib.request
6
6
 
7
7
  # Replaced with the current commit when building the wheels.
8
- _SKYPILOT_COMMIT_SHA = '71a95f4bf7f1446e80bb5c24d23c1695bc4fc031'
8
+ _SKYPILOT_COMMIT_SHA = '9201def0ff1ac73681a82a26d46f56d0b027b03b'
9
9
 
10
10
 
11
11
  def _get_git_commit():
@@ -35,7 +35,7 @@ def _get_git_commit():
35
35
 
36
36
 
37
37
  __commit__ = _get_git_commit()
38
- __version__ = '1.0.0.dev20241018'
38
+ __version__ = '1.0.0.dev20241019'
39
39
  __root_dir__ = os.path.dirname(os.path.abspath(__file__))
40
40
 
41
41
 
@@ -308,7 +308,17 @@ def list_accelerators(
308
308
 
309
309
  def get_image_id_from_tag(tag: str, region: Optional[str]) -> Optional[str]:
310
310
  """Returns the image id from the tag."""
311
- return common.get_image_id_from_tag_impl(_image_df, tag, region)
311
+ global _image_df
312
+
313
+ image_id = common.get_image_id_from_tag_impl(_image_df, tag, region)
314
+ if image_id is None:
315
+ # Refresh the image catalog and try again, if the image tag is not
316
+ # found.
317
+ logger.debug('Refreshing the image catalog and trying again.')
318
+ _image_df = common.read_catalog('aws/images.csv',
319
+ pull_frequency_hours=0)
320
+ image_id = common.get_image_id_from_tag_impl(_image_df, tag, region)
321
+ return image_id
312
322
 
313
323
 
314
324
  def is_image_tag_valid(tag: str, region: Optional[str]) -> bool:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: skypilot-nightly
3
- Version: 1.0.0.dev20241018
3
+ Version: 1.0.0.dev20241019
4
4
  Summary: SkyPilot: An intercloud broker for the clouds
5
5
  Author: SkyPilot Team
6
6
  License: Apache 2.0
@@ -153,30 +153,32 @@ Requires-Dist: pyvmomi==8.0.1.0.2; extra == "vsphere"
153
153
 
154
154
  ----
155
155
  :fire: *News* :fire:
156
- - [Sep, 2024] Point, Launch and Serve **Llama 3.2** on Kubernetes or Any Cloud: [**example**](./llm/llama-3_2/)
157
- - [Sep, 2024] Run and deploy [**Pixtral**](./llm/pixtral), the first open-source multimodal model from Mistral AI.
158
- - [Jul, 2024] [**Finetune**](./llm/llama-3_1-finetuning/) and [**serve**](./llm/llama-3_1/) **Llama 3.1** on your infra
159
- - [Jun, 2024] Reproduce **GPT** with [llm.c](https://github.com/karpathy/llm.c/discussions/481) on any cloud: [**guide**](./llm/gpt-2/)
160
- - [Apr, 2024] Serve **Qwen-110B** on your infra: [**example**](./llm/qwen/)
161
- - [Apr, 2024] Using **Ollama** to deploy quantized LLMs on CPUs and GPUs: [**example**](./llm/ollama/)
162
- - [Feb, 2024] Deploying and scaling **Gemma** with SkyServe: [**example**](./llm/gemma/)
163
- - [Feb, 2024] Serving **Code Llama 70B** with vLLM and SkyServe: [**example**](./llm/codellama/)
164
- - [Dec, 2023] **Mixtral 8x7B**, a high quality sparse mixture-of-experts model, was released by Mistral AI! Deploy via SkyPilot on any cloud: [**example**](./llm/mixtral/)
165
- - [Nov, 2023] Using **Axolotl** to finetune Mistral 7B on the cloud (on-demand and spot): [**example**](./llm/axolotl/)
156
+ - [Oct 2024] :tada: **SkyPilot crossed 1M+ downloads** :tada:: Thank you to our community! [**Twitter/X**](https://x.com/skypilot_org/status/1844770841718067638)
157
+ - [Sep 2024] Point, Launch and Serve **Llama 3.2** on Kubernetes or Any Cloud: [**example**](./llm/llama-3_2/)
158
+ - [Sep 2024] Run and deploy [**Pixtral**](./llm/pixtral), the first open-source multimodal model from Mistral AI.
159
+ - [Jun 2024] Reproduce **GPT** with [llm.c](https://github.com/karpathy/llm.c/discussions/481) on any cloud: [**guide**](./llm/gpt-2/)
160
+ - [Apr 2024] Serve [**Qwen-110B**](https://qwenlm.github.io/blog/qwen1.5-110b/) on your infra: [**example**](./llm/qwen/)
161
+ - [Apr 2024] Using [**Ollama**](https://github.com/ollama/ollama) to deploy quantized LLMs on CPUs and GPUs: [**example**](./llm/ollama/)
162
+ - [Feb 2024] Deploying and scaling [**Gemma**](https://blog.google/technology/developers/gemma-open-models/) with SkyServe: [**example**](./llm/gemma/)
163
+ - [Feb 2024] Serving [**Code Llama 70B**](https://ai.meta.com/blog/code-llama-large-language-model-coding/) with vLLM and SkyServe: [**example**](./llm/codellama/)
164
+ - [Dec 2023] [**Mixtral 8x7B**](https://mistral.ai/news/mixtral-of-experts/), a high quality sparse mixture-of-experts model, was released by Mistral AI! Deploy via SkyPilot on any cloud: [**example**](./llm/mixtral/)
165
+ - [Nov 2023] Using [**Axolotl**](https://github.com/OpenAccess-AI-Collective/axolotl) to finetune Mistral 7B on the cloud (on-demand and spot): [**example**](./llm/axolotl/)
166
+
167
+ **LLM Finetuning Cookbooks**: Finetuning Llama 2 / Llama 3.1 in your own cloud environment, privately: Llama 2 [**example**](./llm/vicuna-llama-2/) and [**blog**](https://blog.skypilot.co/finetuning-llama2-operational-guide/); Llama 3.1 [**example**](./llm/llama-3_1-finetuning/) and [**blog**](https://blog.skypilot.co/finetune-llama-3_1-on-your-infra/)
166
168
 
167
169
  <details>
168
170
  <summary>Archived</summary>
169
171
 
170
- - [Apr, 2024] Serve and finetune [**Llama 3**](https://skypilot.readthedocs.io/en/latest/gallery/llms/llama-3.html) on any cloud or Kubernetes: [**example**](./llm/llama-3/)
171
- - [Mar, 2024] Serve and deploy [**Databricks DBRX**](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm) on your infra: [**example**](./llm/dbrx/)
172
- - [Feb, 2024] Speed up your LLM deployments with [**SGLang**](https://github.com/sgl-project/sglang) for 5x throughput on SkyServe: [**example**](./llm/sglang/)
173
- - [Dec, 2023] Using [**LoRAX**](https://github.com/predibase/lorax) to serve 1000s of finetuned LLMs on a single instance in the cloud: [**example**](./llm/lorax/)
174
- - [Sep, 2023] [**Mistral 7B**](https://mistral.ai/news/announcing-mistral-7b/), a high-quality open LLM, was released! Deploy via SkyPilot on any cloud: [**Mistral docs**](https://docs.mistral.ai/self-deployment/skypilot)
175
- - [Sep, 2023] Case study: [**Covariant**](https://covariant.ai/) transformed AI development on the cloud using SkyPilot, delivering models 4x faster cost-effectively: [**read the case study**](https://blog.skypilot.co/covariant/)
176
- - [Aug, 2023] **Finetuning Cookbook**: Finetuning Llama 2 in your own cloud environment, privately: [**example**](./llm/vicuna-llama-2/), [**blog post**](https://blog.skypilot.co/finetuning-llama2-operational-guide/)
177
- - [July, 2023] Self-Hosted **Llama-2 Chatbot** on Any Cloud: [**example**](./llm/llama-2/)
178
- - [June, 2023] Serving LLM 24x Faster On the Cloud [**with vLLM**](https://vllm.ai/) and SkyPilot: [**example**](./llm/vllm/), [**blog post**](https://blog.skypilot.co/serving-llm-24x-faster-on-the-cloud-with-vllm-and-skypilot/)
179
- - [April, 2023] [SkyPilot YAMLs](./llm/vicuna/) for finetuning & serving the [Vicuna LLM](https://lmsys.org/blog/2023-03-30-vicuna/) with a single command!
172
+ - [Jul 2024] [**Finetune**](./llm/llama-3_1-finetuning/) and [**serve**](./llm/llama-3_1/) **Llama 3.1** on your infra
173
+ - [Apr 2024] Serve and finetune [**Llama 3**](https://skypilot.readthedocs.io/en/latest/gallery/llms/llama-3.html) on any cloud or Kubernetes: [**example**](./llm/llama-3/)
174
+ - [Mar 2024] Serve and deploy [**Databricks DBRX**](https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm) on your infra: [**example**](./llm/dbrx/)
175
+ - [Feb 2024] Speed up your LLM deployments with [**SGLang**](https://github.com/sgl-project/sglang) for 5x throughput on SkyServe: [**example**](./llm/sglang/)
176
+ - [Dec 2023] Using [**LoRAX**](https://github.com/predibase/lorax) to serve 1000s of finetuned LLMs on a single instance in the cloud: [**example**](./llm/lorax/)
177
+ - [Sep 2023] [**Mistral 7B**](https://mistral.ai/news/announcing-mistral-7b/), a high-quality open LLM, was released! Deploy via SkyPilot on any cloud: [**Mistral docs**](https://docs.mistral.ai/self-deployment/skypilot)
178
+ - [Sep 2023] Case study: [**Covariant**](https://covariant.ai/) transformed AI development on the cloud using SkyPilot, delivering models 4x faster cost-effectively: [**read the case study**](https://blog.skypilot.co/covariant/)
179
+ - [Jul 2023] Self-Hosted **Llama-2 Chatbot** on Any Cloud: [**example**](./llm/llama-2/)
180
+ - [Jun 2023] Serving LLM 24x Faster On the Cloud [**with vLLM**](https://vllm.ai/) and SkyPilot: [**example**](./llm/vllm/), [**blog post**](https://blog.skypilot.co/serving-llm-24x-faster-on-the-cloud-with-vllm-and-skypilot/)
181
+ - [Apr 2023] [SkyPilot YAMLs](./llm/vicuna/) for finetuning & serving the [Vicuna LLM](https://lmsys.org/blog/2023-03-30-vicuna/) with a single command!
180
182
 
181
183
  </details>
182
184
 
@@ -1,4 +1,4 @@
1
- sky/__init__.py,sha256=ooJaoPt0Vq10nF2ftXGThCKQFJ2HbgQNKQ7Dp6Qg6s4,5854
1
+ sky/__init__.py,sha256=LKUWX7CbWSSP_7RKe0BbpUtwfW9AyCM0C6t-6csG3dI,5854
2
2
  sky/admin_policy.py,sha256=hPo02f_A32gCqhUueF0QYy1fMSSKqRwYEg_9FxScN_s,3248
3
3
  sky/authentication.py,sha256=pAdCT60OxxiXI9KXDyP2lQ9u9vMc6aMtq5Xi2h_hbdw,20984
4
4
  sky/check.py,sha256=jLMIIJrseaZj1_o5WkbaD9XdyXIlCaT6pyAaIFdhdmA,9079
@@ -56,7 +56,7 @@ sky/clouds/runpod.py,sha256=lstUC6f4JDhtcH9NfwkbpCJMmfmvMigoanhPXPbTYds,11540
56
56
  sky/clouds/scp.py,sha256=2KLTuNSMdBzK8CLwSesv7efOuiLidIMoyNG4AOt5Sqw,15870
57
57
  sky/clouds/vsphere.py,sha256=7eZFYIDtY5sX_ATr8h7kwwkY9t8Z-EYMJ9HCjoRBoxI,12309
58
58
  sky/clouds/service_catalog/__init__.py,sha256=e0K-c64jQV9d6zly5OnIXMsYaZXs_Ko9osAbDaRlOOw,14743
59
- sky/clouds/service_catalog/aws_catalog.py,sha256=Ab8VAmSiuV37k6LLNBtjTYoe_UDMJRgXe1Vk3wiUO_U,12605
59
+ sky/clouds/service_catalog/aws_catalog.py,sha256=1wX1-wOMw2LZ7RkV_Ah7c42RLRYm-m5_GAXzn32M5a8,13038
60
60
  sky/clouds/service_catalog/azure_catalog.py,sha256=VJi3yfhZy9Sc6UfcLAc8xIoTlUlUr090TODkCZyyHFw,7311
61
61
  sky/clouds/service_catalog/common.py,sha256=PA3llB0zZh4v0DO_gDDCKGhRIBx16CAp2WJZNxhjNOA,27266
62
62
  sky/clouds/service_catalog/config.py,sha256=ylzqewdEBjDg4awvFek6ldYmFrnvD2bVGLZuLPvEVYA,1793
@@ -274,9 +274,9 @@ sky/utils/kubernetes/k8s_gpu_labeler_job.yaml,sha256=KPqp23B-zQ2SZK03jdHeF9fLTog
274
274
  sky/utils/kubernetes/k8s_gpu_labeler_setup.yaml,sha256=VLKT2KKimZu1GDg_4AIlIt488oMQvhRZWwsj9vBbPUg,3812
275
275
  sky/utils/kubernetes/rsync_helper.sh,sha256=aRMa_0JRHtXFOPtEg4rFAwR1t57wvvAoGZhn3H3BtGk,1059
276
276
  sky/utils/kubernetes/ssh_jump_lifecycle_manager.py,sha256=RFLJ3k7MR5UN4SKHykQ0lV9SgXumoULpKYIAt1vh-HU,6560
277
- skypilot_nightly-1.0.0.dev20241018.dist-info/LICENSE,sha256=emRJAvE7ngL6x0RhQvlns5wJzGI3NEQ_WMjNmd9TZc4,12170
278
- skypilot_nightly-1.0.0.dev20241018.dist-info/METADATA,sha256=hKti-qYovHe9BXjvZnYoV-88kOo2Qz0-xTDwY08RzrM,18945
279
- skypilot_nightly-1.0.0.dev20241018.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
280
- skypilot_nightly-1.0.0.dev20241018.dist-info/entry_points.txt,sha256=StA6HYpuHj-Y61L2Ze-hK2IcLWgLZcML5gJu8cs6nU4,36
281
- skypilot_nightly-1.0.0.dev20241018.dist-info/top_level.txt,sha256=qA8QuiNNb6Y1OF-pCUtPEr6sLEwy2xJX06Bd_CrtrHY,4
282
- skypilot_nightly-1.0.0.dev20241018.dist-info/RECORD,,
277
+ skypilot_nightly-1.0.0.dev20241019.dist-info/LICENSE,sha256=emRJAvE7ngL6x0RhQvlns5wJzGI3NEQ_WMjNmd9TZc4,12170
278
+ skypilot_nightly-1.0.0.dev20241019.dist-info/METADATA,sha256=AE2fCPLtATmQ_7yujx2cd9zAwVowsMapi0bTc7-Gk6A,19540
279
+ skypilot_nightly-1.0.0.dev20241019.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
280
+ skypilot_nightly-1.0.0.dev20241019.dist-info/entry_points.txt,sha256=StA6HYpuHj-Y61L2Ze-hK2IcLWgLZcML5gJu8cs6nU4,36
281
+ skypilot_nightly-1.0.0.dev20241019.dist-info/top_level.txt,sha256=qA8QuiNNb6Y1OF-pCUtPEr6sLEwy2xJX06Bd_CrtrHY,4
282
+ skypilot_nightly-1.0.0.dev20241019.dist-info/RECORD,,