skx 0.0.3__cp313-cp313-macosx_11_0_arm64.whl → 0.0.5__cp313-cp313-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of skx might be problematic. Click here for more details.
- skx-0.0.5.dist-info/METADATA +93 -0
- skx-0.0.5.dist-info/RECORD +5 -0
- {skx-0.0.3.dist-info → skx-0.0.5.dist-info}/WHEEL +1 -1
- skx.cpython-313-darwin.so +0 -0
- skx-0.0.3.dist-info/METADATA +0 -14
- skx-0.0.3.dist-info/RECORD +0 -6
- skx.pyi +0 -36
- {skx-0.0.3.dist-info → skx-0.0.5.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,93 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: skx
|
|
3
|
+
Version: 0.0.5
|
|
4
|
+
Summary: scikit-learn compatible extensions.
|
|
5
|
+
Author-email: skx <hi@sk-x.org>
|
|
6
|
+
License-Expression: GPL-3.0-or-later
|
|
7
|
+
Project-URL: homepage, https://pypi.org/project/skx
|
|
8
|
+
Project-URL: documentation, https://docs.sk-x.org
|
|
9
|
+
Keywords: scikit-learn,augmentation,resampling,smote,ensemble,voting,mixture-of-experts,mlp,neural-network,multi-output
|
|
10
|
+
Classifier: Programming Language :: Python :: 3
|
|
11
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
12
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
13
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
14
|
+
Classifier: Operating System :: MacOS
|
|
15
|
+
Classifier: Operating System :: MacOS :: MacOS X
|
|
16
|
+
Classifier: Operating System :: POSIX :: Linux
|
|
17
|
+
Requires-Python: >=3.12
|
|
18
|
+
Description-Content-Type: text/markdown
|
|
19
|
+
Requires-Dist: pandas<3.0,>=2.0
|
|
20
|
+
Requires-Dist: numpy<3.0,>=2.0
|
|
21
|
+
Requires-Dist: scikit-learn~=1.7.0
|
|
22
|
+
Requires-Dist: scipy<2.0,>=1.13
|
|
23
|
+
|
|
24
|
+
## skx
|
|
25
|
+
|
|
26
|
+
scikit-learn compatible extensions for supervised learning on tabular data.
|
|
27
|
+
|
|
28
|
+
## Documentation
|
|
29
|
+
|
|
30
|
+
See [docs.sk-x.org](https://docs.sk-x.org).
|
|
31
|
+
|
|
32
|
+
## Requirements
|
|
33
|
+
|
|
34
|
+
- Python >= 3.12
|
|
35
|
+
- scikit-learn ~= 1.7.0
|
|
36
|
+
- numpy >= 2.0, scipy >= 1.13, pandas >= 2.0
|
|
37
|
+
|
|
38
|
+
## Install
|
|
39
|
+
|
|
40
|
+
```bash
|
|
41
|
+
pip install skx
|
|
42
|
+
```
|
|
43
|
+
|
|
44
|
+
## Usage
|
|
45
|
+
|
|
46
|
+
### Augmentation functions
|
|
47
|
+
|
|
48
|
+
```python
|
|
49
|
+
import numpy as np
|
|
50
|
+
from skx.augmentation import gaussian_augment
|
|
51
|
+
|
|
52
|
+
X = np.array([[1, 2], [3, 4], [5, 6]])
|
|
53
|
+
y = np.array([1, 2, 3])
|
|
54
|
+
X_aug, y_aug, sample_weight = gaussian_augment(X, y, factor=2.0, y_std=0.1)
|
|
55
|
+
```
|
|
56
|
+
|
|
57
|
+
### Augmentation meta-estimators
|
|
58
|
+
|
|
59
|
+
```python
|
|
60
|
+
from sklearn.linear_model import LinearRegression
|
|
61
|
+
from skx.augmentation import GaussianAugmentedRegressor
|
|
62
|
+
|
|
63
|
+
reg = GaussianAugmentedRegressor(LinearRegression(), factor=10.0, y_std=0.1)
|
|
64
|
+
reg.fit(X, y)
|
|
65
|
+
pred = reg.predict([[2, 3]])
|
|
66
|
+
```
|
|
67
|
+
|
|
68
|
+
### Ensembles
|
|
69
|
+
|
|
70
|
+
```python
|
|
71
|
+
from sklearn.linear_model import LinearRegression
|
|
72
|
+
from skx.ensemble import MixtureOfExpertsRegressor
|
|
73
|
+
|
|
74
|
+
moe = MixtureOfExpertsRegressor(
|
|
75
|
+
estimator=LinearRegression(), n_estimators=5, split="kmeans", n_clusters=3
|
|
76
|
+
)
|
|
77
|
+
moe.fit(X, y)
|
|
78
|
+
pred = moe.predict(X)
|
|
79
|
+
```
|
|
80
|
+
|
|
81
|
+
### Neural network
|
|
82
|
+
|
|
83
|
+
```python
|
|
84
|
+
from skx.neural_network import LinearScalingMLPRegressor
|
|
85
|
+
|
|
86
|
+
mlp = LinearScalingMLPRegressor(
|
|
87
|
+
n_hidden_layers=2,
|
|
88
|
+
hidden_layer_width=50,
|
|
89
|
+
shrink_factor=0.5,
|
|
90
|
+
max_iter=100,
|
|
91
|
+
)
|
|
92
|
+
mlp.fit(X, np.column_stack([y, y])) # multi-output example
|
|
93
|
+
```
|
|
@@ -0,0 +1,5 @@
|
|
|
1
|
+
skx.cpython-313-darwin.so,sha256=SetlbiAeFumwpEdeQ_7VbZu45PrFoAtfWu6YyTdEtWQ,1066728
|
|
2
|
+
skx-0.0.5.dist-info/RECORD,,
|
|
3
|
+
skx-0.0.5.dist-info/WHEEL,sha256=OQj3ZBOQehKWNxU4SX1c6Ypl6m9xmYzR6c-_Y3mI2Rk,131
|
|
4
|
+
skx-0.0.5.dist-info/top_level.txt,sha256=f0xDpANH5I9r_LrM8ouk7sYwuzRopiGbw3FrfSmy0-s,4
|
|
5
|
+
skx-0.0.5.dist-info/METADATA,sha256=B_cnR6wa10u50LhC0-nIKMdkaT0tgnBwpGmuYh7mLHk,2320
|
skx.cpython-313-darwin.so
CHANGED
|
Binary file
|
skx-0.0.3.dist-info/METADATA
DELETED
|
@@ -1,14 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: skx
|
|
3
|
-
Version: 0.0.3
|
|
4
|
-
Summary: Scikit-learn extensions.
|
|
5
|
-
Author-email: skx <skx@connt.io>
|
|
6
|
-
License-Expression: GPL-3.0-or-later
|
|
7
|
-
Classifier: Programming Language :: Python :: 3
|
|
8
|
-
Classifier: Operating System :: MacOS
|
|
9
|
-
Classifier: Operating System :: POSIX :: Linux
|
|
10
|
-
Requires-Python: >=3.12
|
|
11
|
-
Requires-Dist: pandas<3.0,>=2.0
|
|
12
|
-
Requires-Dist: numpy<3.0,>=2.0
|
|
13
|
-
Requires-Dist: scikit-learn~=1.7.0
|
|
14
|
-
Requires-Dist: scipy<2.0,>=1.13
|
skx-0.0.3.dist-info/RECORD
DELETED
|
@@ -1,6 +0,0 @@
|
|
|
1
|
-
skx.pyi,sha256=1TuLPn_VmvpHq0K9y674YhrcDGuniY0t5T8uuU-Ps_I,768
|
|
2
|
-
skx.cpython-313-darwin.so,sha256=aOxF3ZxuLXn5eo_1RmVvlnkpP0sNAS2S5d6BE_PEN0M,874392
|
|
3
|
-
skx-0.0.3.dist-info/RECORD,,
|
|
4
|
-
skx-0.0.3.dist-info/WHEEL,sha256=WrSygn3kEbZsmYwBXctgE84C7YjjHUopjRfQBtxNGM0,131
|
|
5
|
-
skx-0.0.3.dist-info/top_level.txt,sha256=f0xDpANH5I9r_LrM8ouk7sYwuzRopiGbw3FrfSmy0-s,4
|
|
6
|
-
skx-0.0.3.dist-info/METADATA,sha256=VUbvKG6btoBG2IZYvuXp5G9RUgJtXKCreeOMejsFvAs,438
|
skx.pyi
DELETED
|
@@ -1,36 +0,0 @@
|
|
|
1
|
-
# This file was generated by Nuitka
|
|
2
|
-
|
|
3
|
-
# Stubs included by default
|
|
4
|
-
from __future__ import annotations
|
|
5
|
-
from _version import __version__
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
__name__ = ...
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
# Modules used internally, to allow implicit dependencies to be seen:
|
|
13
|
-
import os
|
|
14
|
-
import numpy
|
|
15
|
-
import sklearn
|
|
16
|
-
import sklearn.base
|
|
17
|
-
import sklearn.utils
|
|
18
|
-
import sklearn.utils._param_validation
|
|
19
|
-
import sklearn.utils.validation
|
|
20
|
-
import warnings
|
|
21
|
-
import pandas
|
|
22
|
-
import sklearn.neighbors
|
|
23
|
-
import joblib
|
|
24
|
-
import scipy
|
|
25
|
-
import scipy.spatial
|
|
26
|
-
import scipy.spatial.distance
|
|
27
|
-
import sklearn.cluster
|
|
28
|
-
import numbers
|
|
29
|
-
import typing
|
|
30
|
-
import sklearn.ensemble
|
|
31
|
-
import sklearn.gaussian_process
|
|
32
|
-
import sklearn.gaussian_process.kernels
|
|
33
|
-
import sklearn.utils._testing
|
|
34
|
-
import sklearn.utils.testing
|
|
35
|
-
import sklearn.exceptions
|
|
36
|
-
import sklearn.neural_network
|
|
File without changes
|