skx 0.0.3__cp313-cp313-macosx_11_0_arm64.whl → 0.0.5__cp313-cp313-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of skx might be problematic. Click here for more details.

@@ -0,0 +1,93 @@
1
+ Metadata-Version: 2.4
2
+ Name: skx
3
+ Version: 0.0.5
4
+ Summary: scikit-learn compatible extensions.
5
+ Author-email: skx <hi@sk-x.org>
6
+ License-Expression: GPL-3.0-or-later
7
+ Project-URL: homepage, https://pypi.org/project/skx
8
+ Project-URL: documentation, https://docs.sk-x.org
9
+ Keywords: scikit-learn,augmentation,resampling,smote,ensemble,voting,mixture-of-experts,mlp,neural-network,multi-output
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Programming Language :: Python :: 3.12
12
+ Classifier: Programming Language :: Python :: 3.13
13
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
14
+ Classifier: Operating System :: MacOS
15
+ Classifier: Operating System :: MacOS :: MacOS X
16
+ Classifier: Operating System :: POSIX :: Linux
17
+ Requires-Python: >=3.12
18
+ Description-Content-Type: text/markdown
19
+ Requires-Dist: pandas<3.0,>=2.0
20
+ Requires-Dist: numpy<3.0,>=2.0
21
+ Requires-Dist: scikit-learn~=1.7.0
22
+ Requires-Dist: scipy<2.0,>=1.13
23
+
24
+ ## skx
25
+
26
+ scikit-learn compatible extensions for supervised learning on tabular data.
27
+
28
+ ## Documentation
29
+
30
+ See [docs.sk-x.org](https://docs.sk-x.org).
31
+
32
+ ## Requirements
33
+
34
+ - Python >= 3.12
35
+ - scikit-learn ~= 1.7.0
36
+ - numpy >= 2.0, scipy >= 1.13, pandas >= 2.0
37
+
38
+ ## Install
39
+
40
+ ```bash
41
+ pip install skx
42
+ ```
43
+
44
+ ## Usage
45
+
46
+ ### Augmentation functions
47
+
48
+ ```python
49
+ import numpy as np
50
+ from skx.augmentation import gaussian_augment
51
+
52
+ X = np.array([[1, 2], [3, 4], [5, 6]])
53
+ y = np.array([1, 2, 3])
54
+ X_aug, y_aug, sample_weight = gaussian_augment(X, y, factor=2.0, y_std=0.1)
55
+ ```
56
+
57
+ ### Augmentation meta-estimators
58
+
59
+ ```python
60
+ from sklearn.linear_model import LinearRegression
61
+ from skx.augmentation import GaussianAugmentedRegressor
62
+
63
+ reg = GaussianAugmentedRegressor(LinearRegression(), factor=10.0, y_std=0.1)
64
+ reg.fit(X, y)
65
+ pred = reg.predict([[2, 3]])
66
+ ```
67
+
68
+ ### Ensembles
69
+
70
+ ```python
71
+ from sklearn.linear_model import LinearRegression
72
+ from skx.ensemble import MixtureOfExpertsRegressor
73
+
74
+ moe = MixtureOfExpertsRegressor(
75
+ estimator=LinearRegression(), n_estimators=5, split="kmeans", n_clusters=3
76
+ )
77
+ moe.fit(X, y)
78
+ pred = moe.predict(X)
79
+ ```
80
+
81
+ ### Neural network
82
+
83
+ ```python
84
+ from skx.neural_network import LinearScalingMLPRegressor
85
+
86
+ mlp = LinearScalingMLPRegressor(
87
+ n_hidden_layers=2,
88
+ hidden_layer_width=50,
89
+ shrink_factor=0.5,
90
+ max_iter=100,
91
+ )
92
+ mlp.fit(X, np.column_stack([y, y])) # multi-output example
93
+ ```
@@ -0,0 +1,5 @@
1
+ skx.cpython-313-darwin.so,sha256=SetlbiAeFumwpEdeQ_7VbZu45PrFoAtfWu6YyTdEtWQ,1066728
2
+ skx-0.0.5.dist-info/RECORD,,
3
+ skx-0.0.5.dist-info/WHEEL,sha256=OQj3ZBOQehKWNxU4SX1c6Ypl6m9xmYzR6c-_Y3mI2Rk,131
4
+ skx-0.0.5.dist-info/top_level.txt,sha256=f0xDpANH5I9r_LrM8ouk7sYwuzRopiGbw3FrfSmy0-s,4
5
+ skx-0.0.5.dist-info/METADATA,sha256=B_cnR6wa10u50LhC0-nIKMdkaT0tgnBwpGmuYh7mLHk,2320
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: Nuitka (2.8.1)
2
+ Generator: Nuitka (2.8.4)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp313-cp313-macosx_11_0_arm64
5
5
  Generator: delocate 0.13.0
skx.cpython-313-darwin.so CHANGED
Binary file
@@ -1,14 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: skx
3
- Version: 0.0.3
4
- Summary: Scikit-learn extensions.
5
- Author-email: skx <skx@connt.io>
6
- License-Expression: GPL-3.0-or-later
7
- Classifier: Programming Language :: Python :: 3
8
- Classifier: Operating System :: MacOS
9
- Classifier: Operating System :: POSIX :: Linux
10
- Requires-Python: >=3.12
11
- Requires-Dist: pandas<3.0,>=2.0
12
- Requires-Dist: numpy<3.0,>=2.0
13
- Requires-Dist: scikit-learn~=1.7.0
14
- Requires-Dist: scipy<2.0,>=1.13
@@ -1,6 +0,0 @@
1
- skx.pyi,sha256=1TuLPn_VmvpHq0K9y674YhrcDGuniY0t5T8uuU-Ps_I,768
2
- skx.cpython-313-darwin.so,sha256=aOxF3ZxuLXn5eo_1RmVvlnkpP0sNAS2S5d6BE_PEN0M,874392
3
- skx-0.0.3.dist-info/RECORD,,
4
- skx-0.0.3.dist-info/WHEEL,sha256=WrSygn3kEbZsmYwBXctgE84C7YjjHUopjRfQBtxNGM0,131
5
- skx-0.0.3.dist-info/top_level.txt,sha256=f0xDpANH5I9r_LrM8ouk7sYwuzRopiGbw3FrfSmy0-s,4
6
- skx-0.0.3.dist-info/METADATA,sha256=VUbvKG6btoBG2IZYvuXp5G9RUgJtXKCreeOMejsFvAs,438
skx.pyi DELETED
@@ -1,36 +0,0 @@
1
- # This file was generated by Nuitka
2
-
3
- # Stubs included by default
4
- from __future__ import annotations
5
- from _version import __version__
6
-
7
-
8
- __name__ = ...
9
-
10
-
11
-
12
- # Modules used internally, to allow implicit dependencies to be seen:
13
- import os
14
- import numpy
15
- import sklearn
16
- import sklearn.base
17
- import sklearn.utils
18
- import sklearn.utils._param_validation
19
- import sklearn.utils.validation
20
- import warnings
21
- import pandas
22
- import sklearn.neighbors
23
- import joblib
24
- import scipy
25
- import scipy.spatial
26
- import scipy.spatial.distance
27
- import sklearn.cluster
28
- import numbers
29
- import typing
30
- import sklearn.ensemble
31
- import sklearn.gaussian_process
32
- import sklearn.gaussian_process.kernels
33
- import sklearn.utils._testing
34
- import sklearn.utils.testing
35
- import sklearn.exceptions
36
- import sklearn.neural_network