skx 0.0.18__cp313-cp313-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,93 @@
1
+ Metadata-Version: 2.4
2
+ Name: skx
3
+ Version: 0.0.18
4
+ Summary: scikit-learn compatible extensions.
5
+ Author-email: skx <hi@sk-x.org>
6
+ License-Expression: GPL-3.0-or-later
7
+ Project-URL: homepage, https://pypi.org/project/skx
8
+ Project-URL: documentation, https://docs.sk-x.org
9
+ Keywords: scikit-learn,augmentation,resampling,smote,ensemble,voting,mixture-of-experts,mlp,neural-network,multi-output
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Programming Language :: Python :: 3.12
12
+ Classifier: Programming Language :: Python :: 3.13
13
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
14
+ Classifier: Operating System :: MacOS
15
+ Classifier: Operating System :: MacOS :: MacOS X
16
+ Classifier: Operating System :: POSIX :: Linux
17
+ Requires-Python: >=3.12
18
+ Description-Content-Type: text/markdown
19
+ Requires-Dist: pandas<3.0,>=2.0
20
+ Requires-Dist: numpy<3.0,>=2.0
21
+ Requires-Dist: scikit-learn~=1.7.0
22
+ Requires-Dist: scipy<2.0,>=1.13
23
+
24
+ ## skx
25
+
26
+ scikit-learn compatible extensions for supervised learning on tabular data.
27
+
28
+ ## Documentation
29
+
30
+ See [docs.sk-x.org](https://docs.sk-x.org).
31
+
32
+ ## Requirements
33
+
34
+ - Python >= 3.12
35
+ - scikit-learn ~= 1.7.0
36
+ - numpy >= 2.0, scipy >= 1.13, pandas >= 2.0
37
+
38
+ ## Install
39
+
40
+ ```bash
41
+ pip install skx
42
+ ```
43
+
44
+ ## Usage
45
+
46
+ ### Augmentation functions
47
+
48
+ ```python
49
+ import numpy as np
50
+ from skx.augmentation import gaussian_augment
51
+
52
+ X = np.array([[1, 2], [3, 4], [5, 6]])
53
+ y = np.array([1, 2, 3])
54
+ X_aug, y_aug, sample_weight = gaussian_augment(X, y, factor=2.0, y_std=0.1)
55
+ ```
56
+
57
+ ### Augmentation meta-estimators
58
+
59
+ ```python
60
+ from sklearn.linear_model import LinearRegression
61
+ from skx.augmentation import GaussianAugmentedRegressor
62
+
63
+ reg = GaussianAugmentedRegressor(LinearRegression(), factor=10.0, y_std=0.1)
64
+ reg.fit(X, y)
65
+ pred = reg.predict([[2, 3]])
66
+ ```
67
+
68
+ ### Ensembles
69
+
70
+ ```python
71
+ from sklearn.linear_model import LinearRegression
72
+ from skx.ensemble import MixtureOfExpertsRegressor
73
+
74
+ moe = MixtureOfExpertsRegressor(
75
+ estimator=LinearRegression(), n_estimators=5, split="kmeans", n_clusters=3
76
+ )
77
+ moe.fit(X, y)
78
+ pred = moe.predict(X)
79
+ ```
80
+
81
+ ### Neural network
82
+
83
+ ```python
84
+ from skx.neural_network import LinearScalingMLPRegressor
85
+
86
+ mlp = LinearScalingMLPRegressor(
87
+ n_hidden_layers=2,
88
+ hidden_layer_width=50,
89
+ shrink_factor=0.5,
90
+ max_iter=100,
91
+ )
92
+ mlp.fit(X, np.column_stack([y, y])) # multi-output example
93
+ ```
@@ -0,0 +1,5 @@
1
+ skx.cpython-313-darwin.so,sha256=8DKCvUnUFD1C3gs9pyh97MffWof1EMrddqKLYr2-GAc,1620568
2
+ skx-0.0.18.dist-info/RECORD,,
3
+ skx-0.0.18.dist-info/WHEEL,sha256=U8Ger8ge6EsdSKmlkUsHAJEgnzdyqg-nQSIwbD1E_-k,131
4
+ skx-0.0.18.dist-info/top_level.txt,sha256=f0xDpANH5I9r_LrM8ouk7sYwuzRopiGbw3FrfSmy0-s,4
5
+ skx-0.0.18.dist-info/METADATA,sha256=zVzwkyeXjPzEPzFtJaMCQvANgzSpPQXf9DEFHo2ZYCo,2321
@@ -0,0 +1,6 @@
1
+ Wheel-Version: 1.0
2
+ Generator: Nuitka (2.8.6)
3
+ Root-Is-Purelib: false
4
+ Tag: cp313-cp313-macosx_11_0_arm64
5
+ Generator: delocate 0.13.0
6
+
@@ -0,0 +1 @@
1
+ skx
Binary file