sklearn-fluent 0.1__py3-none-any.whl → 0.1.1__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- sklearn_fluent/__init__.py +1 -1
- sklearn_fluent/main.py +17 -21
- {sklearn_fluent-0.1.dist-info → sklearn_fluent-0.1.1.dist-info}/METADATA +25 -21
- sklearn_fluent-0.1.1.dist-info/RECORD +6 -0
- {sklearn_fluent-0.1.dist-info → sklearn_fluent-0.1.1.dist-info}/WHEEL +1 -1
- sklearn_fluent-0.1.dist-info/RECORD +0 -6
- {sklearn_fluent-0.1.dist-info → sklearn_fluent-0.1.1.dist-info}/top_level.txt +0 -0
sklearn_fluent/__init__.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
from
|
1
|
+
from .main import req
|
sklearn_fluent/main.py
CHANGED
@@ -1,50 +1,46 @@
|
|
1
|
-
def req(xlist, ylist,linearreg):
|
2
|
-
|
1
|
+
def req(xlist, ylist, linearreg):
|
3
2
|
from sklearn.linear_model import LinearRegression
|
4
3
|
import numpy as np
|
5
4
|
|
6
|
-
if linearreg==True:
|
7
|
-
if len(ylist) >50:
|
5
|
+
if linearreg == True:
|
6
|
+
if len(ylist) > 50:
|
8
7
|
from sklearn.model_selection import train_test_split
|
9
|
-
x_train,x_test,y_train,y_test = train_test_split(np.array(xlist).reshape(-1,1),np.array(ylist).reshape(-1,1),test_size=0.2)
|
8
|
+
x_train, x_test, y_train, y_test = train_test_split(np.array(xlist).reshape(-1, 1), np.array(ylist).reshape(-1, 1), test_size=0.2)
|
10
9
|
model = LinearRegression()
|
11
|
-
model.fit(x_train,y_train)
|
12
|
-
accuracy = round(model.score(x_test,y_test))
|
10
|
+
model.fit(x_train, y_train)
|
11
|
+
accuracy = round(model.score(x_test, y_test))
|
13
12
|
|
14
|
-
x_train = np.array(xlist).reshape(-1,1)
|
15
|
-
y_train = np.array(ylist).reshape(-1,1)
|
13
|
+
x_train = np.array(xlist).reshape(-1, 1)
|
14
|
+
y_train = np.array(ylist).reshape(-1, 1)
|
16
15
|
model = LinearRegression()
|
17
|
-
model.fit(x_train,y_train)
|
16
|
+
model.fit(x_train, y_train)
|
18
17
|
elif linearreg == False:
|
19
18
|
x_train = np.array(xlist)
|
20
19
|
y_train = np.array(ylist)
|
21
|
-
# print(x_train, y_train)
|
22
20
|
model = LinearRegression()
|
23
|
-
model.fit(x_train,y_train)
|
21
|
+
model.fit(x_train, y_train)
|
24
22
|
|
25
23
|
a = model.intercept_
|
26
24
|
b = model.coef_
|
27
25
|
letters = list('abcdefghijklmnopqrstuvwxyz')
|
28
26
|
reqletters = []
|
29
|
-
for i in range(0,len(b)):
|
27
|
+
for i in range(0, len(b)):
|
30
28
|
reqletters.append(letters[i])
|
31
29
|
newvars = []
|
32
30
|
for i in range(len(reqletters)):
|
33
31
|
try:
|
34
|
-
new = str(round(b[i],4))+reqletters[i]
|
32
|
+
new = str(round(b[0][i], 4)) + reqletters[i] # Extract single element
|
35
33
|
except:
|
36
|
-
new = str(round(float(b[0]),4))+reqletters[i]
|
34
|
+
new = str(round(float(b[0][0]), 4)) + reqletters[i] # Extract single element
|
37
35
|
newvars.append(new)
|
38
36
|
try:
|
39
|
-
mainvar = round(a,4)
|
37
|
+
mainvar = round(a[0], 4) # Extract single element
|
40
38
|
except:
|
41
|
-
mainvar = round(float(a[0]),4)
|
39
|
+
mainvar = round(float(a[0]), 4)
|
42
40
|
newvars.append(mainvar)
|
43
|
-
last = " + ".join(list(map(str,newvars)))
|
41
|
+
last = " + ".join(list(map(str, newvars)))
|
44
42
|
|
45
43
|
try:
|
46
|
-
return f"function: {last}\naccuracy: {accuracy*100}%"
|
44
|
+
return f"function: {last}\naccuracy: {accuracy * 100}%"
|
47
45
|
except:
|
48
46
|
return f"function: {last}"
|
49
|
-
# return last
|
50
|
-
|
@@ -1,21 +1,25 @@
|
|
1
|
-
Metadata-Version: 2.
|
2
|
-
Name:
|
3
|
-
Version: 0.1
|
4
|
-
Summary: Linear/Multli Regression Mathematical Function in one line of code
|
5
|
-
|
6
|
-
Author:
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
Classifier:
|
12
|
-
Classifier:
|
13
|
-
Classifier:
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
1
|
+
Metadata-Version: 2.2
|
2
|
+
Name: sklearn_fluent
|
3
|
+
Version: 0.1.1
|
4
|
+
Summary: Linear/Multli Regression Mathematical Function in one line of code
|
5
|
+
Author: YusiferZendric (Aditya Singh)
|
6
|
+
Author-email: <yzendric@gmail.com>
|
7
|
+
Keywords: python,sklearn,mathematical functions,functions,linear regressions
|
8
|
+
Classifier: Development Status :: 1 - Planning
|
9
|
+
Classifier: Intended Audience :: Developers
|
10
|
+
Classifier: Programming Language :: Python :: 3
|
11
|
+
Classifier: Operating System :: Unix
|
12
|
+
Classifier: Operating System :: MacOS :: MacOS X
|
13
|
+
Classifier: Operating System :: Microsoft :: Windows
|
14
|
+
Description-Content-Type: text/markdown
|
15
|
+
Requires-Dist: scikit-learn
|
16
|
+
Dynamic: author
|
17
|
+
Dynamic: author-email
|
18
|
+
Dynamic: classifier
|
19
|
+
Dynamic: description
|
20
|
+
Dynamic: description-content-type
|
21
|
+
Dynamic: keywords
|
22
|
+
Dynamic: requires-dist
|
23
|
+
Dynamic: summary
|
24
|
+
|
25
|
+
Just provide x and y list and there you have it the Mathemtical function + accuracy based on the x and y list.
|
@@ -0,0 +1,6 @@
|
|
1
|
+
sklearn_fluent/__init__.py,sha256=HDn_n8x7LuLLsze1ZAklx4fJ7jvl2iydho9lEdfEAwM,23
|
2
|
+
sklearn_fluent/main.py,sha256=SmTcBV6vG-noI0Hxc3pCtJGWj3eGTUXRSx86Rls9YzY,1633
|
3
|
+
sklearn_fluent-0.1.1.dist-info/METADATA,sha256=V6zpZiAALr0aWPj-YtKVbahLm4ssNJK94K3pTUbI2Po,938
|
4
|
+
sklearn_fluent-0.1.1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
5
|
+
sklearn_fluent-0.1.1.dist-info/top_level.txt,sha256=YEMvxTSoqj_0VwfTl7iVj75ickR3Va1qvZJ6ePOmwWE,15
|
6
|
+
sklearn_fluent-0.1.1.dist-info/RECORD,,
|
@@ -1,6 +0,0 @@
|
|
1
|
-
sklearn_fluent/__init__.py,sha256=Q0VYai5A55xPkKbe2QEpDSupj1nqKqAMNrWcPkui05M,37
|
2
|
-
sklearn_fluent/main.py,sha256=6ZImqH8ozDce1UsdzhWXJQHODzGuuPEQTFEESSnWpjQ,1571
|
3
|
-
sklearn_fluent-0.1.dist-info/METADATA,sha256=oggnwiuBTGyCkrqnd8L-xz7FLhjVafJsuqUo93p9JgQ,790
|
4
|
-
sklearn_fluent-0.1.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
|
5
|
-
sklearn_fluent-0.1.dist-info/top_level.txt,sha256=YEMvxTSoqj_0VwfTl7iVj75ickR3Va1qvZJ6ePOmwWE,15
|
6
|
-
sklearn_fluent-0.1.dist-info/RECORD,,
|
File without changes
|