skinoptics 0.0.2__py3-none-any.whl → 0.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
skinoptics/__init__.py CHANGED
@@ -15,14 +15,13 @@ Copyright (C) 2024-2025 Victor Lima
15
15
  | along with this program. If not, see <https://www.gnu.org/licenses/>.
16
16
 
17
17
  | Victor Lima
18
- | victorporto\@ifsc.usp.br
19
18
  | victor.lima\@ufscar.br
20
19
  | victorportog.github.io
21
20
 
22
21
  | Release date:
23
22
  | October 2024
24
23
  | Last modification:
25
- | March 2025
24
+ | October 2025
26
25
 
27
26
  | Version History:
28
27
  | available at <https://pypi.org/project/skinoptics/#history>
@@ -35,7 +34,7 @@ __all__ = ['utils', 'dataframes',
35
34
 
36
35
  __version__major = '0'
37
36
  __version__minor = '0'
38
- __version__micro = '2'
37
+ __version__micro = '4'
39
38
  #__version__suffix = 'b1'
40
39
 
41
40
  __author__ = "Victor Lima"
@@ -43,5 +42,5 @@ __copyright__ = "Copyright (c) 2024-2025 Victor Lima"
43
42
  __license__ = "GNU General Public License v3.0"
44
43
  __maintainer__ = "Victor Lima"
45
44
  __version__ = '.'.join((__version__major, __version__minor, __version__micro)) # + __version__suffix
46
- __email__ = "victorporto@ifsc.usp.br, victor.lima@ufscar.br"
45
+ __email__ = "victor.lima@ufscar.br"
47
46
  __status__ = "Development"
skinoptics/colors.py CHANGED
@@ -84,11 +84,15 @@
84
84
  | https://doi.org/10.25039/CIE.DS.8jsxjrsn
85
85
 
86
86
  | [CIE18b] CIE 2018.
87
- | CIE standard illuminant D55.
88
- | https://doi.org/10.25039/CIE.DS.qewfb3kp
87
+ | Relative spectral power distributions of CIE illuminant C.
88
+ | https://doi.org/10.25039/CIE.DS.mjdd2enu
89
89
 
90
90
  | [CIE18c] CIE 2018.
91
- | CIE standard illuminant D75.
91
+ | Relative spectral power distributions of CIE illuminant D55.
92
+ | https://doi.org/10.25039/CIE.DS.qewfb3kp
93
+
94
+ | [CIE18d] CIE 2018.
95
+ | Relative spectral power distributions of CIE illuminant D75.
92
96
  | https://doi.org/10.25039/CIE.DS.9fvcmrk4
93
97
 
94
98
  | [CIE19a] CIE 2019.
@@ -123,23 +127,24 @@ def rspd(lambda0, illuminant):
123
127
  r'''
124
128
  | The relative spectral power distribution S(:math:`\lambda`) of a chosen standard illuminant
125
129
  | as a function of wavelength.
126
- | Linear interpolation of data from CIE datasets [CIE18a] [CIE22a] [CIE18b] [CIE22b] [CIE18c].
130
+ | Linear interpolation of data from CIE datasets [CIE18a] [CIE18b] [CIE22a] [CIE18c] [CIE22b] [CIE18d].
127
131
 
128
132
  | wavelength range:
129
133
  | [300 nm, 830 nm] (at 1 nm intervals, for illuminant = 'A', 'D50' or 'D65')
130
- | or [300 nm, 780 nm] (at 5 nm intervals, for illuminant = 'D55' or 'D75')
134
+ | or [300 nm, 780 nm] (at 5 nm intervals, for illuminant = 'C', 'D55' or 'D75')
131
135
 
132
136
  :param lambda0: wavelength [nm] (must be in range [300 nm, 830 nm] or [300 nm, 780 nm])
133
137
  :type lambda0: float or np.ndarray
134
138
 
135
- :param illuminant: the user can choose one of the following... 'A', 'D50', 'D55', 'D65' or 'D75'
139
+ :param illuminant: the user can choose one of the following... 'A', 'C', 'D50', 'D55', 'D65' or 'D75'
136
140
  :type illuminant: str
137
141
 
138
142
  | 'A' refers to the CIE standard illuminant A
143
+ | 'C' refers to the CIE illuminant C
139
144
  | 'D50' refers to the CIE standard illuminant D50
140
- | 'D55' refers to the CIE standard illuminant D55
145
+ | 'D55' refers to the CIE illuminant D55
141
146
  | 'D65' refers to the CIE standard illuminant D65
142
- | 'D75' refers to the CIE standard illuminant D75
147
+ | 'D75' refers to the CIE illuminant D75
143
148
 
144
149
  :return: - **rspd** (*float or np.ndarray*) – relative spectral power distribution [-]
145
150
  '''
@@ -153,7 +158,7 @@ def rspd(lambda0, illuminant):
153
158
  if lambda0 < 300 or lambda0 > 830:
154
159
  msg = 'The input lambda0 = {} nm is out of the range [300 nm, 830 nm].'.format(lambda0)
155
160
  raise Exception(msg)
156
- elif illuminant == 'D55' or 'D75':
161
+ elif illuminant == 'C' or 'D55' or 'D75':
157
162
  if isinstance(lambda0, np.ndarray) == True:
158
163
  if np.any(lambda0 < 300) or np.any(lambda0 > 780):
159
164
  msg = 'At least one element in the input lambda0 is out of the range [300 nm, 780 nm].'
@@ -166,18 +171,21 @@ def rspd(lambda0, illuminant):
166
171
  if illuminant == 'A':
167
172
  rspd = interp1d(np.array(rspds_A_D50_D65_dataframe)[:,0],
168
173
  np.array(rspds_A_D50_D65_dataframe)[:,1])(lambda0)
174
+ elif illuminant == 'C':
175
+ rspd = interp1d(np.array(rspds_C_D55_D75_dataframe)[:,0],
176
+ np.array(rspds_C_D55_D75_dataframe)[:,1])(lambda0)
169
177
  elif illuminant == 'D50':
170
178
  rspd = interp1d(np.array(rspds_A_D50_D65_dataframe)[:,0],
171
179
  np.array(rspds_A_D50_D65_dataframe)[:,2])(lambda0)
172
180
  elif illuminant == 'D55':
173
- rspd = interp1d(np.array(rspds_D55_D75_dataframe)[:,0],
174
- np.array(rspds_D55_D75_dataframe)[:,1])(lambda0)
181
+ rspd = interp1d(np.array(rspds_C_D55_D75_dataframe)[:,0],
182
+ np.array(rspds_C_D55_D75_dataframe)[:,2])(lambda0)
175
183
  elif illuminant == 'D65':
176
184
  rspd = interp1d(np.array(rspds_A_D50_D65_dataframe)[:,0],
177
185
  np.array(rspds_A_D50_D65_dataframe)[:,3])(lambda0)
178
186
  elif illuminant == 'D75':
179
- rspd = interp1d(np.array(rspds_D55_D75_dataframe)[:,0],
180
- np.array(rspds_D55_D75_dataframe)[:,2])(lambda0)
187
+ rspd = interp1d(np.array(rspds_C_D55_D75_dataframe)[:,0],
188
+ np.array(rspds_C_D55_D75_dataframe)[:,3])(lambda0)
181
189
  else:
182
190
  msg = 'The input illuminant = {} is not valid.'.format(illuminant)
183
191
  raise Exception(msg)
@@ -1140,14 +1148,12 @@ def Delta_E(L0, a0, b0, L1, a1, b1):
1140
1148
 
1141
1149
  def Delta_E_00(L0, a0, b0, L1, a1, b1, kL = 1., kC = 1., kH = 1.):
1142
1150
  r'''
1143
- Calculate the CIEDE2000 color difference :math:`\Delta E^*_{00}` between
1144
- a reference color (:math:`L^*_0`, :math:`a^*_0`, :math:`b^*_0`) and
1145
- a test color (:math:`L^*_1`, :math:`a^*_1`, :math:`b^*_1`).
1151
+ | Calculate the CIEDE2000 color difference :math:`\Delta E^*_{00}` between
1152
+ | a reference color (:math:`L^*_0`, :math:`a^*_0`, :math:`b^*_0`) and a test color (:math:`L^*_1`, :math:`a^*_1`, :math:`b^*_1`).
1153
+ | For details please check Sharma, Wu & Dalal 2004 [SWD04] and ISO/CIE 2014 [IC14].
1146
1154
 
1147
1155
  :math:`\Delta E^*_{00} = \sqrt{\left(\frac{\Delta L'}{k_L S_L}\right)^2 + \left(\frac{\Delta C'}{k_C S_C}\right)^2 + \left(\frac{\Delta H'}{k_H S_H}\right)^2 + R_T \left(\frac{\Delta C'}{k_C S_C}\right) \left(\frac{\Delta H'}{k_H S_H}\right)}`
1148
1156
 
1149
- | For details please check Sharma, Wu & Dalal 2004 [SWD04] and ISO/CIE 2014 [IC14].
1150
-
1151
1157
  :param L0: reference color L* coordinate [-]
1152
1158
  :type L0: float or np.ndarray
1153
1159
 
@@ -1311,7 +1317,7 @@ def XYZ_from_spectrum(all_lambda, spectrum, lambda_min = 360., lambda_max = 830.
1311
1317
  | Calculate the CIE XYZ coordinates from the reflectance spectrum :math:`R(\lambda)` or the
1312
1318
  | transmittance spectrum :math:`T(\lambda)` for a chosen standard illuminant and standard observer.
1313
1319
  | Integration using the composite trapezoid rule from 360 nm to 830 nm (as default).
1314
- | If the wavelength array does not cover the whole region, a constant extrapolation is perfomed.
1320
+ | If the wavelength array does not cover the entire region, a constant extrapolation is perfomed.
1315
1321
  | For details please check CIE [CIE04] (see their section 7).
1316
1322
 
1317
1323
  | :math:`X = \frac{K}{N} \int_\lambda \mbox{ } R(\lambda) \mbox{ } S(\lambda) \mbox{ } \bar{x}(\lambda) \mbox{ } d\lambda`
skinoptics/dataframes.py CHANGED
@@ -90,9 +90,16 @@ oxy_and_deo_Bosschaart_dataframe = pd.read_csv(os.path.join(folder1, 'oxy_and_de
90
90
  folder2 = os.path.join(folder0, 'datasets', 'colors')
91
91
 
92
92
  rspds_A_D50_D65_dataframe = pd.read_csv(os.path.join(folder2, 'rspds_A_D50_D65.txt'), sep = ' ')
93
- rspds_D55_D75_dataframe = pd.read_csv(os.path.join(folder2, 'rspds_D55_D75.txt'), sep = ' ')
93
+ rspds_C_D55_D75_dataframe = pd.read_csv(os.path.join(folder2, 'rspds_C_D55_D75.txt'), sep = ' ')
94
94
  cmfs_dataframe = pd.read_csv(os.path.join(folder2, 'cmfs.txt'), sep = ' ')
95
95
 
96
96
  Lab_Alaluf2002_dataframe = pd.read_csv(os.path.join(folder2, 'Lab_Alaluf2002.txt'), sep = ' ')
97
97
  Lab_Xiao2017_dataframe = pd.read_csv(os.path.join(folder2, 'Lab_Xiao2017.txt'), sep = ' ')
98
98
  Sharma2004_TableI_dataframe = pd.read_csv(os.path.join(folder2, 'Sharma2004_TableI.txt'), sep = ' ')
99
+
100
+ folder3 = os.path.join(folder0, 'datasets', 'spectra')
101
+
102
+ Xiao2016_dataframe = pd.read_excel(os.path.join(folder2, 'Xiao2016', 'skindatabaseSpectra',
103
+ 'skin_spectra_data.xlsx'))
104
+ Lu2025_dataframe = pd.read_excel(os.path.join(folder2, 'Lu2025', 'ISSA_17_Jan_2025_Yan_Lu.xlsx'),
105
+ sheet_name = 'ISSA', header = 0, skiprows = 11).replace('nan', np.nan)
@@ -0,0 +1,98 @@
1
+ wavelength rspd_C[-] rspd_D55[-] rspd_D75[-]
2
+ 300 0.00 0.02400 0.04300
3
+ 305 0.00 1.04800 2.58800
4
+ 310 0.00 2.07200 5.13300
5
+ 315 0.00 6.64800 17.4700
6
+ 320 0.01 11.2240 29.8080
7
+ 325 0.20 15.9360 42.3690
8
+ 330 0.40 20.6470 54.9300
9
+ 335 1.55 22.2660 56.0950
10
+ 340 2.70 23.8850 57.2590
11
+ 345 4.85 25.8510 60.0000
12
+ 350 7.00 27.8170 62.7400
13
+ 355 9.95 29.2190 62.8610
14
+ 360 12.90 30.6210 62.9820
15
+ 365 17.20 32.4640 66.6470
16
+ 370 21.40 34.3080 70.3120
17
+ 375 27.50 33.4460 68.5070
18
+ 380 33.00 32.5840 66.7030
19
+ 385 39.92 35.3350 68.3330
20
+ 390 47.40 38.0870 69.9630
21
+ 395 55.17 49.5180 85.9460
22
+ 400 63.30 60.9490 101.929
23
+ 405 71.81 64.7510 106.911
24
+ 410 80.60 68.5540 111.894
25
+ 415 89.53 70.0650 112.346
26
+ 420 98.10 71.5770 112.798
27
+ 425 105.80 69.7460 107.945
28
+ 430 112.40 67.9140 103.092
29
+ 435 117.75 76.7600 112.145
30
+ 440 121.50 85.6050 121.198
31
+ 445 123.45 91.7990 127.104
32
+ 450 124.00 97.9930 133.010
33
+ 455 123.60 99.2280 132.682
34
+ 460 123.10 100.463 132.355
35
+ 465 123.30 100.188 129.838
36
+ 470 123.80 99.9130 127.322
37
+ 475 124.09 101.326 127.061
38
+ 480 123.90 102.739 126.800
39
+ 485 122.92 100.409 122.291
40
+ 490 120.70 98.0780 117.783
41
+ 495 116.90 99.3790 117.186
42
+ 500 112.10 100.680 116.589
43
+ 505 106.98 100.688 115.146
44
+ 510 102.30 100.695 113.702
45
+ 515 98.81 100.341 111.181
46
+ 520 96.90 99.9870 108.659
47
+ 525 96.78 102.098 109.552
48
+ 530 98.00 104.210 110.445
49
+ 535 99.94 103.156 108.367
50
+ 540 102.10 102.102 106.289
51
+ 545 103.95 102.535 105.596
52
+ 550 105.20 102.968 104.904
53
+ 555 105.67 101.484 102.452
54
+ 560 105.30 100.000 100.000
55
+ 565 104.11 98.6080 97.8080
56
+ 570 102.30 97.2160 95.6160
57
+ 575 100.15 97.4820 94.9140
58
+ 580 97.80 97.7490 94.2130
59
+ 585 95.43 94.5900 90.6050
60
+ 590 93.20 91.4320 86.9970
61
+ 595 91.22 92.9260 87.1120
62
+ 600 89.70 94.4190 87.2270
63
+ 605 88.83 94.7800 86.6840
64
+ 610 88.40 95.1400 86.1400
65
+ 615 88.19 94.6800 84.8610
66
+ 620 88.10 94.2200 83.5810
67
+ 625 88.06 92.3340 81.1640
68
+ 630 88.00 90.4480 78.7470
69
+ 635 87.86 91.3890 78.5870
70
+ 640 87.80 92.3300 78.4280
71
+ 645 87.99 90.5920 76.6140
72
+ 650 88.20 88.8540 74.8010
73
+ 655 88.20 89.5860 74.5620
74
+ 660 87.90 90.3170 74.3240
75
+ 665 87.22 92.1330 74.8730
76
+ 670 86.30 93.9500 75.4220
77
+ 675 85.30 91.9530 73.4990
78
+ 680 84.00 89.9560 71.5760
79
+ 685 82.21 84.8170 67.7140
80
+ 690 80.20 79.6770 63.8520
81
+ 695 78.24 81.2580 64.4640
82
+ 700 76.30 82.8400 65.0760
83
+ 705 74.36 83.8420 66.5730
84
+ 710 72.40 84.8440 68.0700
85
+ 715 70.40 77.5390 62.2560
86
+ 720 68.30 70.2350 56.4430
87
+ 725 66.30 74.7680 60.3430
88
+ 730 64.40 79.3010 64.2420
89
+ 735 62.80 82.1470 66.6970
90
+ 740 61.50 84.9930 69.1510
91
+ 745 60.20 78.4370 63.8900
92
+ 750 59.20 71.8800 58.6290
93
+ 755 58.50 62.3370 50.6230
94
+ 760 58.10 52.7930 42.6170
95
+ 765 58.00 64.3600 51.9850
96
+ 770 58.20 75.9270 61.3520
97
+ 775 58.50 73.8720 59.8380
98
+ 780 59.10 71.8180 58.324
@@ -1,8 +1,8 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: skinoptics
3
- Version: 0.0.2
3
+ Version: 0.0.4
4
4
  Summary: SkinOptics: a python package with tools for building human skin computational models for Monte Carlo simulations of light transport
5
- Author-email: Victor Lima <victorporto@ifsc.usp.br>
5
+ Author-email: Victor Lima <victor.lima@ufscar.br>
6
6
  Project-URL: Homepage, https://github.com/victorportog/skinoptics
7
7
  Classifier: Programming Language :: Python :: 3
8
8
  Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
@@ -10,7 +10,7 @@ Classifier: Operating System :: Microsoft :: Windows :: Windows 10
10
10
  Requires-Python: >=3.8
11
11
  Description-Content-Type: text/markdown
12
12
  License-File: LICENSE.txt
13
- Requires-Dist: numpy<3.0.0,>=1.26.4
13
+ Requires-Dist: numpy<3.0.0,>=2.3.4
14
14
  Requires-Dist: scipy<2.0.0,>=1.13.0
15
15
  Requires-Dist: pandas<3.0.0,>=2.2.2
16
16
  Dynamic: license-file
@@ -1,8 +1,8 @@
1
- skinoptics/__init__.py,sha256=GXx08uOCJc0vPjnDTWJKjcYDHFkAlu3MofZ-K2tFmMg,1575
1
+ skinoptics/__init__.py,sha256=P0xQ29e4BbD6YQBJdgC1KPsD--oB3MWpUqDjfpiTm9Y,1525
2
2
  skinoptics/absorption_coefficient.py,sha256=lg4B1j_QNwnuATomFyBOCEe5hfM6AIl5ROsDpaGpIzs,36264
3
3
  skinoptics/anisotropy_factor.py,sha256=s-moy9nWkD87NEJMjrVXuIItqj0xIdbTykZoVQtQaRw,37612
4
- skinoptics/colors.py,sha256=0RORMjmBtDEUsV3S4uv3zwA9sFU_HkzypstTTCl7RUI,60914
5
- skinoptics/dataframes.py,sha256=vZ_YrAc1aEORErxFNmw_3cLasYTbF2YIF1WYccYoiWg,6461
4
+ skinoptics/colors.py,sha256=R1HbJBv4Lw8Vq7Bmwa8ccjqqfAsictcjycwg4HT1rAk,61331
5
+ skinoptics/dataframes.py,sha256=VOAzaLcRALAjlAKfSeNTeQf6BcrJVCFby92DlTJ_L4c,6891
6
6
  skinoptics/refractive_index.py,sha256=H6CTjbGfdUEOyGPQSwQiH018exvdpq8-XuKJmpufUfU,14553
7
7
  skinoptics/scattering_coefficient.py,sha256=WNwJOWgBkihIEcREvSVVZK-AiDhqw5_amhxjrMJcOb0,15217
8
8
  skinoptics/utils.py,sha256=p1nnHICf_hrmZc45nYSlJPhqfQIoE-qN1MYq6ciE0R0,10452
@@ -11,7 +11,7 @@ skinoptics/datasets/colors/Lab_Xiao2017.txt,sha256=fx7y84PN5OFSDH6Z4rUNML6U8QOnH
11
11
  skinoptics/datasets/colors/Sharma2004_TableI.txt,sha256=uSSZClAYkR0WbGjZHLZ7jZD6EAy136U6150ggKruk6k,7454
12
12
  skinoptics/datasets/colors/cmfs.txt,sha256=q4Veg2SoCipCBRj2DL5pSzEH5RW4YORUmXxyVytB7KE,44381
13
13
  skinoptics/datasets/colors/rspds_A_D50_D65.txt,sha256=eV5hU07TI1wJZpLy0F54VYd--_Bh-WJ7XCWhca27YyA,15978
14
- skinoptics/datasets/colors/rspds_D55_D75.txt,sha256=UGljPp6-OiJewAEuSRptJ6Iof1IkioFndfBe6g_l8Xw,1974
14
+ skinoptics/datasets/colors/rspds_C_D55_D75.txt,sha256=4WLGQyNUd87uZwMfmLHbk2xKhiM3Yg0s-lVV1oYLzoE,2579
15
15
  skinoptics/datasets/optical_properties/DE_Salomatina.txt,sha256=pNGNevgAaj_h8PaWP1zqOEO0WEQG-a4k1rbDt5AdmXU,24624
16
16
  skinoptics/datasets/optical_properties/DE_Shimojo.txt,sha256=g847CsdYbbOqqnoyPJs1XYVaiyEnPZWZHnEK-zzRfPo,281
17
17
  skinoptics/datasets/optical_properties/EP_Salomatina.txt,sha256=87UjyYbKBP0k__g_N1j3NuBvZybnEJZ7bKDYSsfxJkM,22791
@@ -36,10 +36,11 @@ skinoptics/datasets/optical_properties/n_and_k_EP_Ding.txt,sha256=fNJRTLxfGn0Pwu
36
36
  skinoptics/datasets/optical_properties/n_and_k_wat_Hale.txt,sha256=9Npq4eb94K5Nan7QnJazUnCl-6SBE33cTxddfjtWwb4,3045
37
37
  skinoptics/datasets/optical_properties/n_and_k_wat_Segelstein.txt,sha256=EZIS5158tj2MIAdDQLZH6L3BqopaMO0i2erJTdCywXs,36593
38
38
  skinoptics/datasets/optical_properties/oxy_and_deo_Bosschaart.txt,sha256=eF96Ao44TDUYRo6-8p0L7I9Q8h6wLNpEUyrcbo7FySA,24972
39
+ skinoptics/datasets/spectra/Lu2025/ISSA_17_Jan_2025_Yan_Lu.xlsx,sha256=c5aqdgjxpvkexwv4-EISUqnYH3GivKBm636YFVudEWE,9320520
39
40
  skinoptics/datasets/spectra/Xiao2016/skindatabaseSpectra/readmeSpectra.docx,sha256=ren4htGe154BIlBridkvBvbc8AYY1RRmp4CVICYwDvc,15147
40
- skinoptics/datasets/spectra/Xiao2016/skindatabaseSpectra/skin spectra data.xlsx,sha256=z7shS1rZzqpaRGi_Ji0nYcSzIxEmADQOtaJ_Uwcotcc,1434709
41
- skinoptics-0.0.2.dist-info/licenses/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
42
- skinoptics-0.0.2.dist-info/METADATA,sha256=JMZNOb1Gd1NuJ_bIqsYZNfV6DMkS-F2cOeBX7phJrvs,1291
43
- skinoptics-0.0.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
44
- skinoptics-0.0.2.dist-info/top_level.txt,sha256=4NYJW3uliYlvbd-Zywg2MxJOGe4wYA7Oz_I5EZF4YEQ,11
45
- skinoptics-0.0.2.dist-info/RECORD,,
41
+ skinoptics/datasets/spectra/Xiao2016/skindatabaseSpectra/skin_spectra_data.xlsx,sha256=z7shS1rZzqpaRGi_Ji0nYcSzIxEmADQOtaJ_Uwcotcc,1434709
42
+ skinoptics-0.0.4.dist-info/licenses/LICENSE.txt,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
43
+ skinoptics-0.0.4.dist-info/METADATA,sha256=Unh8hJJaC0fD4SaJbfyIyPSWgbvkf5kiCFMMtkfCYYQ,1288
44
+ skinoptics-0.0.4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
45
+ skinoptics-0.0.4.dist-info/top_level.txt,sha256=4NYJW3uliYlvbd-Zywg2MxJOGe4wYA7Oz_I5EZF4YEQ,11
46
+ skinoptics-0.0.4.dist-info/RECORD,,
@@ -1,98 +0,0 @@
1
- wavelength rspd_D55[-] rspd_D75[-]
2
- 300 0.02400 0.04300
3
- 305 1.04800 2.58800
4
- 310 2.07200 5.13300
5
- 315 6.64800 17.4700
6
- 320 11.2240 29.8080
7
- 325 15.9360 42.3690
8
- 330 20.6470 54.9300
9
- 335 22.2660 56.0950
10
- 340 23.8850 57.2590
11
- 345 25.8510 60.0000
12
- 350 27.8170 62.7400
13
- 355 29.2190 62.8610
14
- 360 30.6210 62.9820
15
- 365 32.4640 66.6470
16
- 370 34.3080 70.3120
17
- 375 33.4460 68.5070
18
- 380 32.5840 66.7030
19
- 385 35.3350 68.3330
20
- 390 38.0870 69.9630
21
- 395 49.5180 85.9460
22
- 400 60.9490 101.929
23
- 405 64.7510 106.911
24
- 410 68.5540 111.894
25
- 415 70.0650 112.346
26
- 420 71.5770 112.798
27
- 425 69.7460 107.945
28
- 430 67.9140 103.092
29
- 435 76.7600 112.145
30
- 440 85.6050 121.198
31
- 445 91.7990 127.104
32
- 450 97.9930 133.010
33
- 455 99.2280 132.682
34
- 460 100.463 132.355
35
- 465 100.188 129.838
36
- 470 99.9130 127.322
37
- 475 101.326 127.061
38
- 480 102.739 126.800
39
- 485 100.409 122.291
40
- 490 98.0780 117.783
41
- 495 99.3790 117.186
42
- 500 100.680 116.589
43
- 505 100.688 115.146
44
- 510 100.695 113.702
45
- 515 100.341 111.181
46
- 520 99.9870 108.659
47
- 525 102.098 109.552
48
- 530 104.210 110.445
49
- 535 103.156 108.367
50
- 540 102.102 106.289
51
- 545 102.535 105.596
52
- 550 102.968 104.904
53
- 555 101.484 102.452
54
- 560 100.000 100.000
55
- 565 98.6080 97.8080
56
- 570 97.2160 95.6160
57
- 575 97.4820 94.9140
58
- 580 97.7490 94.2130
59
- 585 94.5900 90.6050
60
- 590 91.4320 86.9970
61
- 595 92.9260 87.1120
62
- 600 94.4190 87.2270
63
- 605 94.7800 86.6840
64
- 610 95.1400 86.1400
65
- 615 94.6800 84.8610
66
- 620 94.2200 83.5810
67
- 625 92.3340 81.1640
68
- 630 90.4480 78.7470
69
- 635 91.3890 78.5870
70
- 640 92.3300 78.4280
71
- 645 90.5920 76.6140
72
- 650 88.8540 74.8010
73
- 655 89.5860 74.5620
74
- 660 90.3170 74.3240
75
- 665 92.1330 74.8730
76
- 670 93.9500 75.4220
77
- 675 91.9530 73.4990
78
- 680 89.9560 71.5760
79
- 685 84.8170 67.7140
80
- 690 79.6770 63.8520
81
- 695 81.2580 64.4640
82
- 700 82.8400 65.0760
83
- 705 83.8420 66.5730
84
- 710 84.8440 68.0700
85
- 715 77.5390 62.2560
86
- 720 70.2350 56.4430
87
- 725 74.7680 60.3430
88
- 730 79.3010 64.2420
89
- 735 82.1470 66.6970
90
- 740 84.9930 69.1510
91
- 745 78.4370 63.8900
92
- 750 71.8800 58.6290
93
- 755 62.3370 50.6230
94
- 760 52.7930 42.6170
95
- 765 64.3600 51.9850
96
- 770 75.9270 61.3520
97
- 775 73.8720 59.8380
98
- 780 71.8180 58.3240