skinoptics 0.0.1b9__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
skinoptics/dataframes.py CHANGED
@@ -1,98 +1,105 @@
1
- '''
2
- | SkinOptics
3
- | Copyright (C) 2024-2025 Victor Lima
4
-
5
- | This program is free software: you can redistribute it and/or modify
6
- | it under the terms of the GNU General Public License as published by
7
- | the Free Software Foundation, either version 3 of the License, or
8
- | (at your option) any later version.
9
-
10
- | This program is distributed in the hope that it will be useful,
11
- | but WITHOUT ANY WARRANTY; without even the implied warranty of
12
- | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
- | GNU General Public License for more details.
14
-
15
- | You should have received a copy of the GNU General Public License
16
- | along with this program. If not, see <https://www.gnu.org/licenses/>.
17
-
18
- | Victor Lima
19
- | victorporto\@ifsc.usp.br
20
- | victor.lima\@ufscar.br
21
- | victorportog.github.io
22
-
23
- | Release date:
24
- | October 2024
25
- | Last modification:
26
- | March 2025
27
-
28
- | Example:
29
- | Lab_Alaluf2002_dataframe (respective to datasets/colors/Lab_Alaluf2002.txt)
30
-
31
- +------------------------------------------+------------------+------------------+------------------+
32
- | group(body_location) | L*(D65,10o)[-] | a*(D65,10o)[-] | b*(D65,10o)[-] |
33
- +==========================================+==================+==================+==================+
34
- | european(photoprotected_volar_upper_arm) | 65 | 7.1 | 13.3 |
35
- +------------------------------------------+------------------+------------------+------------------+
36
- | chinese(photoprotected_volar_upper_arm) | 62.1 | 8.4 | 16.3 |
37
- +------------------------------------------+------------------+------------------+------------------+
38
- | mexican(photoprotected_volar_upper_arm) | 61.9 | 8.3 | 15.3 |
39
- +------------------------------------------+------------------+------------------+------------------+
40
- | indian(photoprotected_volar_upper_arm) | 53.7 | 10.3 | 17.9 |
41
- +------------------------------------------+------------------+------------------+------------------+
42
- | african(photoprotected_volar_upper_arm) | 49.2 | 10.2 | 18.4 |
43
- +------------------------------------------+------------------+------------------+------------------+
44
- | european(photoexposed_dorsal_forearm) | 53.94 | 12.57 | 19.23 |
45
- +------------------------------------------+------------------+------------------+------------------+
46
- | chinese(photoexposed_dorsal_forearm) | 51.38 | 12.69 | 19.18 |
47
- +------------------------------------------+------------------+------------------+------------------+
48
- | mexican(photoexposed_dorsal_forearm) | 50.42 | 12.69 | 19.58 |
49
- +------------------------------------------+------------------+------------------+------------------+
50
- | indian(photoexposed_dorsal_forearm) | 43.71 | 12.89 | 17.15 |
51
- +------------------------------------------+------------------+------------------+------------------+
52
- | african(photoexposed_dorsal_forearm) | 38.14 | 12.66 | 15.04 |
53
- +------------------------------------------+------------------+------------------+------------------+
54
- '''
55
-
56
- import os
57
- import pandas as pd
58
-
59
- folder0 = os.path.dirname(os.path.abspath(__file__))
60
- folder1 = os.path.join(folder0, 'datasets', 'optical_properties')
61
-
62
- ext_and_molarext_eum_Sarna_dataframe = pd.read_csv(os.path.join(folder1, 'ext_and_molarext_eum_Sarna.txt'), sep = ' ')
63
- ext_and_molarext_phe_Sarna_dataframe = pd.read_csv(os.path.join(folder1, 'ext_and_molarext_phe_Sarna.txt'), sep = ' ')
64
- ext_and_molarext_oxy_and_deo_Prahl_dataframe = pd.read_csv(os.path.join(folder1, 'ext_and_molarext_oxy_and_deo_Prahl.txt'), sep = ' ')
65
- molarext_bil_Li_dataframe = pd.read_csv(os.path.join(folder1, 'molarext_bil_Li.txt'), sep = ' ')
66
-
67
- mua_wat_Hale_dataframe = pd.read_csv(os.path.join(folder1, 'mua_wat_Hale.txt'), sep = ' ')
68
- mua_wat_Segelstein_dataframe = pd.read_csv(os.path.join(folder1, 'mua_wat_Segelstein.txt'), sep = ' ')
69
- mua_fat_vanVeen_dataframe = pd.read_csv(os.path.join(folder1, 'mua_fat_vanVeen.txt'), sep = ' ')
70
-
71
- EP_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'EP_Salomatina.txt'), sep = ' ')
72
- DE_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'DE_Salomatina.txt'), sep = ' ')
73
- HY_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'HY_Salomatina.txt'), sep = ' ')
74
- iBCC_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'iBCC_Salomatina.txt'), sep = ' ')
75
- nBCC_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'nBCC_Salomatina.txt'), sep = ' ')
76
- SCC_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'SCC_Salomatina.txt'), sep = ' ')
77
- EP_Shimojo_dataframe = pd.read_csv(os.path.join(folder1, 'EP_Shimojo.txt'), sep = ' ')
78
- DE_Shimojo_dataframe = pd.read_csv(os.path.join(folder1, 'DE_Shimojo.txt'), sep = ' ')
79
- HY_Shimojo_dataframe = pd.read_csv(os.path.join(folder1, 'HY_Shimojo.txt'), sep = ' ')
80
-
81
- n_and_k_EP_Ding_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_EP_Ding.txt'), sep = ' ')
82
- n_and_k_DE_Ding_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_DE_Ding.txt'), sep = ' ')
83
- n_HY_Matiatou_dataframe = pd.read_csv(os.path.join(folder1, 'n_HY_Matiatou.txt'), sep = ' ')
84
- n_AT_Matiatou_dataframe = pd.read_csv(os.path.join(folder1, 'n_AT_Matiatou.txt'), sep = ' ')
85
- beta_oxy_Friebel_dataframe = pd.read_csv(os.path.join(folder1, 'beta_oxy_Friebel.txt'), sep = ' ')
86
-
87
- n_and_k_wat_Hale_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_wat_Hale.txt'), sep = ' ')
88
- n_and_k_wat_Segelstein_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_wat_Segelstein.txt'), sep = ' ')
89
- oxy_and_deo_Bosschaart_dataframe = pd.read_csv(os.path.join(folder1, 'oxy_and_deo_Bosschaart.txt'), sep = ' ')
90
-
91
- folder2 = os.path.join(folder0, 'datasets', 'colors')
92
-
93
- rspds_A_D50_D65_dataframe = pd.read_csv(os.path.join(folder2, 'rspds_A_D50_D65.txt'), sep = ' ')
94
- rspds_D55_D75_dataframe = pd.read_csv(os.path.join(folder2, 'rspds_D55_D75.txt'), sep = ' ')
95
- cmfs_dataframe = pd.read_csv(os.path.join(folder2, 'cmfs.txt'), sep = ' ')
96
-
97
- Lab_Alaluf2002_dataframe = pd.read_csv(os.path.join(folder2, 'Lab_Alaluf2002.txt'), sep = ' ')
98
- Lab_Xiao2017_dataframe = pd.read_csv(os.path.join(folder2, 'Lab_Xiao2017.txt'), sep = ' ')
1
+ '''
2
+ | SkinOptics
3
+ | Copyright (C) 2024-2025 Victor Lima
4
+
5
+ | This program is free software: you can redistribute it and/or modify
6
+ | it under the terms of the GNU General Public License as published by
7
+ | the Free Software Foundation, either version 3 of the License, or
8
+ | (at your option) any later version.
9
+
10
+ | This program is distributed in the hope that it will be useful,
11
+ | but WITHOUT ANY WARRANTY; without even the implied warranty of
12
+ | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13
+ | GNU General Public License for more details.
14
+
15
+ | You should have received a copy of the GNU General Public License
16
+ | along with this program. If not, see <https://www.gnu.org/licenses/>.
17
+
18
+ | Victor Lima
19
+ | victor.lima\@ufscar.br
20
+ | victorportog.github.io
21
+
22
+ | Release date:
23
+ | October 2024
24
+ | Last modification:
25
+ | March 2025
26
+
27
+ | Example:
28
+ | Lab_Alaluf2002_dataframe (respective to datasets/colors/Lab_Alaluf2002.txt)
29
+
30
+ +------------------------------------------+------------------+------------------+------------------+
31
+ | group(body_location) | L*(D65,10o)[-] | a*(D65,10o)[-] | b*(D65,10o)[-] |
32
+ +==========================================+==================+==================+==================+
33
+ | european(photoprotected_volar_upper_arm) | 65 | 7.1 | 13.3 |
34
+ +------------------------------------------+------------------+------------------+------------------+
35
+ | chinese(photoprotected_volar_upper_arm) | 62.1 | 8.4 | 16.3 |
36
+ +------------------------------------------+------------------+------------------+------------------+
37
+ | mexican(photoprotected_volar_upper_arm) | 61.9 | 8.3 | 15.3 |
38
+ +------------------------------------------+------------------+------------------+------------------+
39
+ | indian(photoprotected_volar_upper_arm) | 53.7 | 10.3 | 17.9 |
40
+ +------------------------------------------+------------------+------------------+------------------+
41
+ | african(photoprotected_volar_upper_arm) | 49.2 | 10.2 | 18.4 |
42
+ +------------------------------------------+------------------+------------------+------------------+
43
+ | european(photoexposed_dorsal_forearm) | 53.94 | 12.57 | 19.23 |
44
+ +------------------------------------------+------------------+------------------+------------------+
45
+ | chinese(photoexposed_dorsal_forearm) | 51.38 | 12.69 | 19.18 |
46
+ +------------------------------------------+------------------+------------------+------------------+
47
+ | mexican(photoexposed_dorsal_forearm) | 50.42 | 12.69 | 19.58 |
48
+ +------------------------------------------+------------------+------------------+------------------+
49
+ | indian(photoexposed_dorsal_forearm) | 43.71 | 12.89 | 17.15 |
50
+ +------------------------------------------+------------------+------------------+------------------+
51
+ | african(photoexposed_dorsal_forearm) | 38.14 | 12.66 | 15.04 |
52
+ +------------------------------------------+------------------+------------------+------------------+
53
+ '''
54
+
55
+ import os
56
+ import pandas as pd
57
+
58
+ folder0 = os.path.dirname(os.path.abspath(__file__))
59
+ folder1 = os.path.join(folder0, 'datasets', 'optical_properties')
60
+
61
+ ext_and_molarext_eum_Sarna_dataframe = pd.read_csv(os.path.join(folder1, 'ext_and_molarext_eum_Sarna.txt'), sep = ' ')
62
+ ext_and_molarext_phe_Sarna_dataframe = pd.read_csv(os.path.join(folder1, 'ext_and_molarext_phe_Sarna.txt'), sep = ' ')
63
+ ext_and_molarext_oxy_and_deo_Prahl_dataframe = pd.read_csv(os.path.join(folder1, 'ext_and_molarext_oxy_and_deo_Prahl.txt'), sep = ' ')
64
+ molarext_bil_Li_dataframe = pd.read_csv(os.path.join(folder1, 'molarext_bil_Li.txt'), sep = ' ')
65
+
66
+ mua_wat_Hale_dataframe = pd.read_csv(os.path.join(folder1, 'mua_wat_Hale.txt'), sep = ' ')
67
+ mua_wat_Segelstein_dataframe = pd.read_csv(os.path.join(folder1, 'mua_wat_Segelstein.txt'), sep = ' ')
68
+ mua_fat_vanVeen_dataframe = pd.read_csv(os.path.join(folder1, 'mua_fat_vanVeen.txt'), sep = ' ')
69
+
70
+ EP_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'EP_Salomatina.txt'), sep = ' ')
71
+ DE_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'DE_Salomatina.txt'), sep = ' ')
72
+ HY_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'HY_Salomatina.txt'), sep = ' ')
73
+ iBCC_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'iBCC_Salomatina.txt'), sep = ' ')
74
+ nBCC_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'nBCC_Salomatina.txt'), sep = ' ')
75
+ SCC_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'SCC_Salomatina.txt'), sep = ' ')
76
+ EP_Shimojo_dataframe = pd.read_csv(os.path.join(folder1, 'EP_Shimojo.txt'), sep = ' ')
77
+ DE_Shimojo_dataframe = pd.read_csv(os.path.join(folder1, 'DE_Shimojo.txt'), sep = ' ')
78
+ HY_Shimojo_dataframe = pd.read_csv(os.path.join(folder1, 'HY_Shimojo.txt'), sep = ' ')
79
+
80
+ n_and_k_EP_Ding_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_EP_Ding.txt'), sep = ' ')
81
+ n_and_k_DE_Ding_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_DE_Ding.txt'), sep = ' ')
82
+ n_HY_Matiatou_dataframe = pd.read_csv(os.path.join(folder1, 'n_HY_Matiatou.txt'), sep = ' ')
83
+ n_AT_Matiatou_dataframe = pd.read_csv(os.path.join(folder1, 'n_AT_Matiatou.txt'), sep = ' ')
84
+ beta_oxy_Friebel_dataframe = pd.read_csv(os.path.join(folder1, 'beta_oxy_Friebel.txt'), sep = ' ')
85
+
86
+ n_and_k_wat_Hale_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_wat_Hale.txt'), sep = ' ')
87
+ n_and_k_wat_Segelstein_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_wat_Segelstein.txt'), sep = ' ')
88
+ oxy_and_deo_Bosschaart_dataframe = pd.read_csv(os.path.join(folder1, 'oxy_and_deo_Bosschaart.txt'), sep = ' ')
89
+
90
+ folder2 = os.path.join(folder0, 'datasets', 'colors')
91
+
92
+ rspds_A_D50_D65_dataframe = pd.read_csv(os.path.join(folder2, 'rspds_A_D50_D65.txt'), sep = ' ')
93
+ rspds_C_D55_D75_dataframe = pd.read_csv(os.path.join(folder2, 'rspds_C_D55_D75.txt'), sep = ' ')
94
+ cmfs_dataframe = pd.read_csv(os.path.join(folder2, 'cmfs.txt'), sep = ' ')
95
+
96
+ Lab_Alaluf2002_dataframe = pd.read_csv(os.path.join(folder2, 'Lab_Alaluf2002.txt'), sep = ' ')
97
+ Lab_Xiao2017_dataframe = pd.read_csv(os.path.join(folder2, 'Lab_Xiao2017.txt'), sep = ' ')
98
+ Sharma2004_TableI_dataframe = pd.read_csv(os.path.join(folder2, 'Sharma2004_TableI.txt'), sep = ' ')
99
+
100
+ folder3 = os.path.join(folder0, 'datasets', 'spectra')
101
+
102
+ Xiao2016_dataframe = pd.read_excel(os.path.join(folder2, 'Xiao2016', 'skindatabaseSpectra',
103
+ 'ISSA_17_Jan_2025_Yan_Lu.xlsx'))
104
+ Lu2025_dataframe = pd.read_excel(os.path.join(folder2, 'Lu2025', 'ISSA_17_Jan_2025_Yan_Lu.xlsx'),
105
+ sheet_name = 'ISSA', header = 0, skiprows = 11).replace('nan', np.nan)
@@ -0,0 +1,69 @@
1
+ pair i L a b al Cl hl hl_bar G T SL SC SH RT Delta_E_00
2
+ 1 1 50.0000 2.6772 -79.7751 2.6774 79.8200 271.9222 270.9611 0.0001 0.6907 1.0000 4.6578 1.8421 1.7042 2.0425
3
+ 1 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 270.9611 0.0001 0.6907 1.0000 4.6578 1.8421 1.7042 2.0425
4
+ 2 1 50.0000 3.1571 -77.2803 3.1573 77.3448 272.3395 271.1698 0.0001 0.6843 1.0000 4.6021 1.8216 1.7070 2.8615
5
+ 2 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 271.1698 0.0001 0.6843 1.0000 4.6021 1.8216 1.7070 2.8615
6
+ 3 1 50.0000 2.8361 -74.0200 2.8363 74.0743 272.1944 271.0972 0.0001 0.6865 1.0000 4.5285 1.8074 1.7060 3.4412
7
+ 3 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 271.0972 0.0001 0.6865 1.0000 4.5285 1.8074 1.7060 3.4412
8
+ 4 1 50.0000 -1.3802 -84.2814 1.3803 84.2927 269.0618 269.5309 0.0001 0.7357 1.0000 4.7584 1.9217 1.6809 1.0000
9
+ 4 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 269.5309 0.0001 0.7357 1.0000 4.7584 1.9217 1.6809 1.0000
10
+ 5 1 50.0000 -1.1848 -84.8006 1.1849 84.8089 269.1995 269.5997 0.0001 0.7335 1.0000 4.7700 1.9218 1.6822 1.0000
11
+ 5 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 269.5997 0.0001 0.7335 1.0000 4.7700 1.9218 1.6822 1.0000
12
+ 6 1 50.0000 -0.9009 -85.5211 0.9009 85.5258 269.3964 269.6982 0.0001 0.7303 1.0000 4.7862 1.9217 1.6840 1.0000
13
+ 6 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 269.6982 0.0001 0.7303 1.0000 4.7862 1.9217 1.6840 1.0000
14
+ 7 1 50.0000 0.0000 0.0000 0.0000 0.0000 0.0000 126.8697 0.5000 1.2200 1.0000 1.0562 1.0229 0.0000 2.3669
15
+ 7 2 50.0000 -1.0000 2.0000 1.5000 2.5000 126.8697 126.8697 0.5000 1.2200 1.0000 1.0562 1.0229 0.0000 2.3669
16
+ 8 1 50.0000 -1.0000 2.0000 1.5000 2.5000 126.8697 126.8697 0.5000 1.2200 1.0000 1.0562 1.0229 0.0000 2.3669
17
+ 8 2 50.0000 0.0000 0.0000 0.0000 0.0000 0.0000 126.8697 0.5000 1.2200 1.0000 1.0562 1.0229 0.0000 2.3669
18
+ 9 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 269.9854 0.4998 0.7212 1.0000 1.1681 1.0404 0.0022 7.1792
19
+ 9 2 50.0000 -2.4900 0.0009 3.7346 3.7346 179.9862 269.9854 0.4998 0.7212 1.0000 1.1681 1.0404 0.0022 7.1792
20
+ 10 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 269.9847 0.4998 0.7212 1.0000 1.1681 1.0404 0.0022 7.1792
21
+ 10 2 50.0000 -2.4900 0.0010 3.7346 3.7346 179.9847 269.9847 0.4998 0.7212 1.0000 1.1681 1.0404 0.0022 7.1792
22
+ 11 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 89.9839 0.4998 0.6175 1.0000 1.1681 1.0346 0.0000 7.2195
23
+ 11 2 50.0000 -2.4900 0.0011 3.7346 3.7346 179.9831 89.9839 0.4998 0.6175 1.0000 1.1681 1.0346 0.0000 7.2195
24
+ 12 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 89.9831 0.4998 0.6175 1.0000 1.1681 1.0346 0.0000 7.2195
25
+ 12 2 50.0000 -2.4900 0.0012 3.7346 3.7346 179.9816 89.9831 0.4998 0.6175 1.0000 1.1681 1.0346 0.0000 7.2195
26
+ 13 1 50.0000 -0.0010 2.4900 0.0015 2.4900 90.0345 180.0328 0.4998 0.9779 1.0000 1.1121 1.0365 0.0000 4.8045
27
+ 13 2 50.0000 0.0009 -2.4900 0.0013 2.4900 270.0311 180.0328 0.4998 0.9779 1.0000 1.1121 1.0365 0.0000 4.8045
28
+ 14 1 50.0000 -0.0010 2.4900 0.0015 2.4900 90.0345 180.0345 0.4998 0.9779 1.0000 1.1121 1.0365 0.0000 4.8045
29
+ 14 2 50.0000 0.0010 -2.4900 0.0015 2.4900 270.0345 180.0345 0.4998 0.9779 1.0000 1.1121 1.0365 0.0000 4.8045
30
+ 15 1 50.0000 -0.0010 2.4900 0.0015 2.4900 90.0345 0.0362 0.4998 1.3197 1.0000 1.1121 1.0493 0.0000 4.7461
31
+ 15 2 50.0000 0.0011 -2.4900 0.0016 2.4900 270.0380 0.0362 0.4998 1.3197 1.0000 1.1121 1.0493 0.0000 4.7461
32
+ 16 1 50.0000 2.5000 0.0000 3.7496 3.7496 0.0000 315.0000 0.4998 0.8454 1.0000 1.1406 1.0396 0.0001 4.3065
33
+ 16 2 50.0000 0.0000 -2.5000 0.0000 2.5000 270.0000 315.0000 0.4998 0.8454 1.0000 1.1406 1.0396 0.0001 4.3065
34
+ 17 1 50.0000 2.5000 0.0000 3.4569 3.4569 0.0000 346.2470 0.3827 1.4453 1.1608 1.9547 1.4599 0.0003 27.1492
35
+ 17 2 73.0000 25.0000 -18.0000 34.5687 38.9743 332.4939 346.2470 0.3827 1.4453 1.1608 1.9547 1.4599 0.0003 27.1492
36
+ 18 1 50.0000 2.5000 0.0000 3.4954 3.4954 0.0000 51.7766 0.3981 0.6447 1.0640 1.7498 1.1612 0.0000 22.8977
37
+ 18 2 61.0000 -5.0000 29.0000 6.9907 29.8307 103.5532 51.7766 0.3981 0.6447 1.0640 1.7498 1.1612 0.0000 22.8977
38
+ 19 1 50.0000 2.5000 0.0000 3.5514 3.5514 0.0000 272.2362 0.4206 0.6521 1.0251 1.9455 1.2055 0.8219 31.9030
39
+ 19 2 56.0000 -27.0000 -3.0000 38.3556 38.4728 184.4723 272.2362 0.4206 0.6521 1.0251 1.9455 1.2055 0.8219 31.9030
40
+ 20 1 50.0000 2.5000 0.0000 3.5244 3.5244 0.0000 11.9548 0.4098 1.1031 1.0400 1.9120 1.3353 0.0000 19.4535
41
+ 20 2 58.0000 24.0000 15.0000 33.8342 37.0102 23.9095 11.9548 0.4098 1.1031 1.0400 1.9120 1.3353 0.0000 19.4535
42
+ 21 1 50.0000 2.5000 0.0000 3.7494 3.7494 0.0000 3.5056 0.4997 1.2616 1.0000 1.1923 1.0808 0.0000 1.0000
43
+ 21 2 50.0000 3.1736 0.5854 4.7596 4.7954 7.0113 3.5056 0.4997 1.2616 1.0000 1.1923 1.0808 0.0000 1.0000
44
+ 22 1 50.0000 2.5000 0.0000 3.7493 3.7493 0.0000 0.0000 0.4997 1.3202 1.0000 1.1956 1.0861 0.0000 1.0000
45
+ 22 2 50.0000 3.2972 0.0000 4.9450 4.9450 0.0000 0.0000 0.4997 1.3202 1.0000 1.1956 1.0861 0.0000 1.0000
46
+ 23 1 50.0000 2.5000 0.0000 3.7497 3.7497 0.0000 5.8190 0.4999 1.2197 1.0000 1.1486 1.0604 0.0000 1.0000
47
+ 23 2 50.0000 1.8634 0.5757 2.7949 2.8536 11.6380 5.8190 0.4999 1.2197 1.0000 1.1486 1.0604 0.0000 1.0000
48
+ 24 1 50.0000 2.5000 0.0000 3.7493 3.7493 0.0000 1.9603 0.4997 1.2883 1.0000 1.1946 1.0836 0.0000 1.0000
49
+ 24 2 50.0000 3.2592 0.3350 4.8879 4.8994 3.9206 1.9603 0.4997 1.2883 1.0000 1.1946 1.0836 0.0000 1.0000
50
+ 25 1 60.2574 -34.0099 36.2677 34.0678 49.7590 133.2085 132.0835 0.0017 1.3010 1.1427 3.2946 1.9951 0.0000 1.2644
51
+ 25 2 60.4626 -34.1751 39.4387 34.2333 52.2238 130.9584 132.0835 0.0017 1.3010 1.1427 3.2946 1.9951 0.0000 1.2644
52
+ 26 1 63.0109 -31.0961 -5.8663 32.6194 33.1427 190.1951 188.8221 0.0490 0.9402 1.1831 2.4549 1.4560 0.0000 1.2630
53
+ 26 2 62.8187 -29.7946 -4.0864 31.2542 31.5202 187.4490 188.8221 0.0490 0.9402 1.1831 2.4549 1.4560 0.0000 1.2630
54
+ 27 1 61.2901 3.7196 -5.3901 5.5668 7.7487 315.9240 310.0313 0.4966 0.6952 1.1586 1.3092 1.0717 0.0032 1.8731
55
+ 27 2 61.4292 2.2480 -4.9620 3.3644 5.9950 304.1385 310.0313 0.4966 0.6952 1.1586 1.3092 1.0717 0.0032 1.8731
56
+ 28 1 35.0831 -44.1164 3.7933 44.3939 44.5557 175.1161 176.4290 0.0063 1.0168 1.2148 2.9105 1.6476 0.0000 1.8645
57
+ 28 2 35.0232 -40.0716 1.5901 40.3237 40.3550 177.7418 176.4290 0.0063 1.0168 1.2148 2.9105 1.6476 0.0000 1.8645
58
+ 29 1 22.7233 20.0904 -46.6940 20.1424 50.8532 293.3339 291.3809 0.0026 0.3636 1.4014 3.1597 1.2617 1.2537 2.0373
59
+ 29 2 23.0331 14.9730 -42.5619 15.0118 45.1317 289.4279 291.3809 0.0026 0.3636 1.4014 3.1597 1.2617 1.2537 2.0373
60
+ 30 1 36.4612 47.8580 18.3852 47.9197 51.3256 20.9901 21.8781 0.0013 0.9239 1.1943 3.3888 1.7357 0.0000 1.4146
61
+ 30 2 36.2715 50.5065 21.2231 50.5716 54.8444 22.7660 21.8781 0.0013 0.9239 1.1943 3.3888 1.7357 0.0000 1.4146
62
+ 31 1 90.8027 -2.0831 1.4410 3.1245 3.4408 155.2410 167.1011 0.4999 1.1546 1.6110 1.1329 1.0511 0.0000 1.4441
63
+ 31 2 91.1528 -1.6435 0.0447 2.4651 2.4655 178.9612 167.1011 0.4999 1.1546 1.6110 1.1329 1.0511 0.0000 1.4441
64
+ 32 1 90.9257 -0.5406 -0.9208 0.8109 1.2270 228.6315 218.4363 0.5000 1.3916 1.5930 1.0620 1.0288 0.0000 1.5381
65
+ 32 2 88.6381 -0.8985 -0.7239 1.3477 1.5298 208.2412 218.4363 0.5000 1.3916 1.5930 1.0620 1.0288 0.0000 1.5381
66
+ 33 1 6.7747 -0.2908 -2.4247 0.4362 2.4636 259.8025 263.0049 0.4999 0.9556 1.6517 1.1057 1.0337 0.0004 0.6377
67
+ 33 2 5.8714 -0.0985 -2.2286 0.1477 2.2335 266.2073 263.0049 0.4999 0.9556 1.6517 1.1057 1.0337 0.0004 0.6377
68
+ 34 1 2.0776 0.0795 -1.1350 0.1192 1.1412 275.9978 268.0910 0.5000 0.7826 1.7246 1.0383 1.0100 0.0000 0.9082
69
+ 34 2 0.9033 -0.0636 -0.5514 0.0954 0.5596 260.1842 268.0910 0.5000 0.7826 1.7246 1.0383 1.0100 0.0000 0.9082
@@ -0,0 +1,98 @@
1
+ wavelength rspd_C[-] rspd_D55[-] rspd_D75[-]
2
+ 300 0.00 0.02400 0.04300
3
+ 305 0.00 1.04800 2.58800
4
+ 310 0.00 2.07200 5.13300
5
+ 315 0.00 6.64800 17.4700
6
+ 320 0.01 11.2240 29.8080
7
+ 325 0.20 15.9360 42.3690
8
+ 330 0.40 20.6470 54.9300
9
+ 335 1.55 22.2660 56.0950
10
+ 340 2.70 23.8850 57.2590
11
+ 345 4.85 25.8510 60.0000
12
+ 350 7.00 27.8170 62.7400
13
+ 355 9.95 29.2190 62.8610
14
+ 360 12.90 30.6210 62.9820
15
+ 365 17.20 32.4640 66.6470
16
+ 370 21.40 34.3080 70.3120
17
+ 375 27.50 33.4460 68.5070
18
+ 380 33.00 32.5840 66.7030
19
+ 385 39.92 35.3350 68.3330
20
+ 390 47.40 38.0870 69.9630
21
+ 395 55.17 49.5180 85.9460
22
+ 400 63.30 60.9490 101.929
23
+ 405 71.81 64.7510 106.911
24
+ 410 80.60 68.5540 111.894
25
+ 415 89.53 70.0650 112.346
26
+ 420 98.10 71.5770 112.798
27
+ 425 105.80 69.7460 107.945
28
+ 430 112.40 67.9140 103.092
29
+ 435 117.75 76.7600 112.145
30
+ 440 121.50 85.6050 121.198
31
+ 445 123.45 91.7990 127.104
32
+ 450 124.00 97.9930 133.010
33
+ 455 123.60 99.2280 132.682
34
+ 460 123.10 100.463 132.355
35
+ 465 123.30 100.188 129.838
36
+ 470 123.80 99.9130 127.322
37
+ 475 124.09 101.326 127.061
38
+ 480 123.90 102.739 126.800
39
+ 485 122.92 100.409 122.291
40
+ 490 120.70 98.0780 117.783
41
+ 495 116.90 99.3790 117.186
42
+ 500 112.10 100.680 116.589
43
+ 505 106.98 100.688 115.146
44
+ 510 102.30 100.695 113.702
45
+ 515 98.81 100.341 111.181
46
+ 520 96.90 99.9870 108.659
47
+ 525 96.78 102.098 109.552
48
+ 530 98.00 104.210 110.445
49
+ 535 99.94 103.156 108.367
50
+ 540 102.10 102.102 106.289
51
+ 545 103.95 102.535 105.596
52
+ 550 105.20 102.968 104.904
53
+ 555 105.67 101.484 102.452
54
+ 560 105.30 100.000 100.000
55
+ 565 104.11 98.6080 97.8080
56
+ 570 102.30 97.2160 95.6160
57
+ 575 100.15 97.4820 94.9140
58
+ 580 97.80 97.7490 94.2130
59
+ 585 95.43 94.5900 90.6050
60
+ 590 93.20 91.4320 86.9970
61
+ 595 91.22 92.9260 87.1120
62
+ 600 89.70 94.4190 87.2270
63
+ 605 88.83 94.7800 86.6840
64
+ 610 88.40 95.1400 86.1400
65
+ 615 88.19 94.6800 84.8610
66
+ 620 88.10 94.2200 83.5810
67
+ 625 88.06 92.3340 81.1640
68
+ 630 88.00 90.4480 78.7470
69
+ 635 87.86 91.3890 78.5870
70
+ 640 87.80 92.3300 78.4280
71
+ 645 87.99 90.5920 76.6140
72
+ 650 88.20 88.8540 74.8010
73
+ 655 88.20 89.5860 74.5620
74
+ 660 87.90 90.3170 74.3240
75
+ 665 87.22 92.1330 74.8730
76
+ 670 86.30 93.9500 75.4220
77
+ 675 85.30 91.9530 73.4990
78
+ 680 84.00 89.9560 71.5760
79
+ 685 82.21 84.8170 67.7140
80
+ 690 80.20 79.6770 63.8520
81
+ 695 78.24 81.2580 64.4640
82
+ 700 76.30 82.8400 65.0760
83
+ 705 74.36 83.8420 66.5730
84
+ 710 72.40 84.8440 68.0700
85
+ 715 70.40 77.5390 62.2560
86
+ 720 68.30 70.2350 56.4430
87
+ 725 66.30 74.7680 60.3430
88
+ 730 64.40 79.3010 64.2420
89
+ 735 62.80 82.1470 66.6970
90
+ 740 61.50 84.9930 69.1510
91
+ 745 60.20 78.4370 63.8900
92
+ 750 59.20 71.8800 58.6290
93
+ 755 58.50 62.3370 50.6230
94
+ 760 58.10 52.7930 42.6170
95
+ 765 58.00 64.3600 51.9850
96
+ 770 58.20 75.9270 61.3520
97
+ 775 58.50 73.8720 59.8380
98
+ 780 59.10 71.8180 58.324