skinoptics 0.0.1b9__py3-none-any.whl → 0.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- skinoptics/__init__.py +5 -6
- skinoptics/absorption_coefficient.py +0 -1
- skinoptics/anisotropy_factor.py +954 -955
- skinoptics/colors.py +1549 -1403
- skinoptics/dataframes.py +105 -98
- skinoptics/datasets/colors/Sharma2004_TableI.txt +69 -0
- skinoptics/datasets/colors/rspds_C_D55_D75.txt +98 -0
- skinoptics/datasets/optical_properties/ext_and_molarext_oxy_and_deo_Prahl.txt +376 -376
- skinoptics/datasets/optical_properties/molarext_bil_Li.txt +1842 -1842
- skinoptics/datasets/optical_properties/mua_wat_Hale.txt +231 -231
- skinoptics/datasets/spectra/Lu2025/ISSA_17_Jan_2025_Yan_Lu.xlsx +0 -0
- skinoptics/refractive_index.py +413 -414
- skinoptics/scattering_coefficient.py +0 -1
- skinoptics/utils.py +419 -420
- {skinoptics-0.0.1b9.dist-info → skinoptics-0.0.3.dist-info}/METADATA +31 -31
- {skinoptics-0.0.1b9.dist-info → skinoptics-0.0.3.dist-info}/RECORD +19 -17
- {skinoptics-0.0.1b9.dist-info → skinoptics-0.0.3.dist-info}/WHEEL +1 -1
- {skinoptics-0.0.1b9.dist-info → skinoptics-0.0.3.dist-info}/licenses/LICENSE.txt +674 -674
- {skinoptics-0.0.1b9.dist-info → skinoptics-0.0.3.dist-info}/top_level.txt +0 -0
- skinoptics/datasets/colors/rspds_D55_D75.txt +0 -98
skinoptics/dataframes.py
CHANGED
|
@@ -1,98 +1,105 @@
|
|
|
1
|
-
'''
|
|
2
|
-
| SkinOptics
|
|
3
|
-
| Copyright (C) 2024-2025 Victor Lima
|
|
4
|
-
|
|
5
|
-
| This program is free software: you can redistribute it and/or modify
|
|
6
|
-
| it under the terms of the GNU General Public License as published by
|
|
7
|
-
| the Free Software Foundation, either version 3 of the License, or
|
|
8
|
-
| (at your option) any later version.
|
|
9
|
-
|
|
10
|
-
| This program is distributed in the hope that it will be useful,
|
|
11
|
-
| but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
12
|
-
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
13
|
-
| GNU General Public License for more details.
|
|
14
|
-
|
|
15
|
-
| You should have received a copy of the GNU General Public License
|
|
16
|
-
| along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
17
|
-
|
|
18
|
-
| Victor Lima
|
|
19
|
-
|
|
|
20
|
-
|
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
|
24
|
-
|
|
|
25
|
-
|
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
import
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
1
|
+
'''
|
|
2
|
+
| SkinOptics
|
|
3
|
+
| Copyright (C) 2024-2025 Victor Lima
|
|
4
|
+
|
|
5
|
+
| This program is free software: you can redistribute it and/or modify
|
|
6
|
+
| it under the terms of the GNU General Public License as published by
|
|
7
|
+
| the Free Software Foundation, either version 3 of the License, or
|
|
8
|
+
| (at your option) any later version.
|
|
9
|
+
|
|
10
|
+
| This program is distributed in the hope that it will be useful,
|
|
11
|
+
| but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
12
|
+
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
13
|
+
| GNU General Public License for more details.
|
|
14
|
+
|
|
15
|
+
| You should have received a copy of the GNU General Public License
|
|
16
|
+
| along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
17
|
+
|
|
18
|
+
| Victor Lima
|
|
19
|
+
| victor.lima\@ufscar.br
|
|
20
|
+
| victorportog.github.io
|
|
21
|
+
|
|
22
|
+
| Release date:
|
|
23
|
+
| October 2024
|
|
24
|
+
| Last modification:
|
|
25
|
+
| March 2025
|
|
26
|
+
|
|
27
|
+
| Example:
|
|
28
|
+
| Lab_Alaluf2002_dataframe (respective to datasets/colors/Lab_Alaluf2002.txt)
|
|
29
|
+
|
|
30
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
31
|
+
| group(body_location) | L*(D65,10o)[-] | a*(D65,10o)[-] | b*(D65,10o)[-] |
|
|
32
|
+
+==========================================+==================+==================+==================+
|
|
33
|
+
| european(photoprotected_volar_upper_arm) | 65 | 7.1 | 13.3 |
|
|
34
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
35
|
+
| chinese(photoprotected_volar_upper_arm) | 62.1 | 8.4 | 16.3 |
|
|
36
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
37
|
+
| mexican(photoprotected_volar_upper_arm) | 61.9 | 8.3 | 15.3 |
|
|
38
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
39
|
+
| indian(photoprotected_volar_upper_arm) | 53.7 | 10.3 | 17.9 |
|
|
40
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
41
|
+
| african(photoprotected_volar_upper_arm) | 49.2 | 10.2 | 18.4 |
|
|
42
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
43
|
+
| european(photoexposed_dorsal_forearm) | 53.94 | 12.57 | 19.23 |
|
|
44
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
45
|
+
| chinese(photoexposed_dorsal_forearm) | 51.38 | 12.69 | 19.18 |
|
|
46
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
47
|
+
| mexican(photoexposed_dorsal_forearm) | 50.42 | 12.69 | 19.58 |
|
|
48
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
49
|
+
| indian(photoexposed_dorsal_forearm) | 43.71 | 12.89 | 17.15 |
|
|
50
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
51
|
+
| african(photoexposed_dorsal_forearm) | 38.14 | 12.66 | 15.04 |
|
|
52
|
+
+------------------------------------------+------------------+------------------+------------------+
|
|
53
|
+
'''
|
|
54
|
+
|
|
55
|
+
import os
|
|
56
|
+
import pandas as pd
|
|
57
|
+
|
|
58
|
+
folder0 = os.path.dirname(os.path.abspath(__file__))
|
|
59
|
+
folder1 = os.path.join(folder0, 'datasets', 'optical_properties')
|
|
60
|
+
|
|
61
|
+
ext_and_molarext_eum_Sarna_dataframe = pd.read_csv(os.path.join(folder1, 'ext_and_molarext_eum_Sarna.txt'), sep = ' ')
|
|
62
|
+
ext_and_molarext_phe_Sarna_dataframe = pd.read_csv(os.path.join(folder1, 'ext_and_molarext_phe_Sarna.txt'), sep = ' ')
|
|
63
|
+
ext_and_molarext_oxy_and_deo_Prahl_dataframe = pd.read_csv(os.path.join(folder1, 'ext_and_molarext_oxy_and_deo_Prahl.txt'), sep = ' ')
|
|
64
|
+
molarext_bil_Li_dataframe = pd.read_csv(os.path.join(folder1, 'molarext_bil_Li.txt'), sep = ' ')
|
|
65
|
+
|
|
66
|
+
mua_wat_Hale_dataframe = pd.read_csv(os.path.join(folder1, 'mua_wat_Hale.txt'), sep = ' ')
|
|
67
|
+
mua_wat_Segelstein_dataframe = pd.read_csv(os.path.join(folder1, 'mua_wat_Segelstein.txt'), sep = ' ')
|
|
68
|
+
mua_fat_vanVeen_dataframe = pd.read_csv(os.path.join(folder1, 'mua_fat_vanVeen.txt'), sep = ' ')
|
|
69
|
+
|
|
70
|
+
EP_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'EP_Salomatina.txt'), sep = ' ')
|
|
71
|
+
DE_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'DE_Salomatina.txt'), sep = ' ')
|
|
72
|
+
HY_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'HY_Salomatina.txt'), sep = ' ')
|
|
73
|
+
iBCC_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'iBCC_Salomatina.txt'), sep = ' ')
|
|
74
|
+
nBCC_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'nBCC_Salomatina.txt'), sep = ' ')
|
|
75
|
+
SCC_Salomatina_dataframe = pd.read_csv(os.path.join(folder1, 'SCC_Salomatina.txt'), sep = ' ')
|
|
76
|
+
EP_Shimojo_dataframe = pd.read_csv(os.path.join(folder1, 'EP_Shimojo.txt'), sep = ' ')
|
|
77
|
+
DE_Shimojo_dataframe = pd.read_csv(os.path.join(folder1, 'DE_Shimojo.txt'), sep = ' ')
|
|
78
|
+
HY_Shimojo_dataframe = pd.read_csv(os.path.join(folder1, 'HY_Shimojo.txt'), sep = ' ')
|
|
79
|
+
|
|
80
|
+
n_and_k_EP_Ding_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_EP_Ding.txt'), sep = ' ')
|
|
81
|
+
n_and_k_DE_Ding_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_DE_Ding.txt'), sep = ' ')
|
|
82
|
+
n_HY_Matiatou_dataframe = pd.read_csv(os.path.join(folder1, 'n_HY_Matiatou.txt'), sep = ' ')
|
|
83
|
+
n_AT_Matiatou_dataframe = pd.read_csv(os.path.join(folder1, 'n_AT_Matiatou.txt'), sep = ' ')
|
|
84
|
+
beta_oxy_Friebel_dataframe = pd.read_csv(os.path.join(folder1, 'beta_oxy_Friebel.txt'), sep = ' ')
|
|
85
|
+
|
|
86
|
+
n_and_k_wat_Hale_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_wat_Hale.txt'), sep = ' ')
|
|
87
|
+
n_and_k_wat_Segelstein_dataframe = pd.read_csv(os.path.join(folder1, 'n_and_k_wat_Segelstein.txt'), sep = ' ')
|
|
88
|
+
oxy_and_deo_Bosschaart_dataframe = pd.read_csv(os.path.join(folder1, 'oxy_and_deo_Bosschaart.txt'), sep = ' ')
|
|
89
|
+
|
|
90
|
+
folder2 = os.path.join(folder0, 'datasets', 'colors')
|
|
91
|
+
|
|
92
|
+
rspds_A_D50_D65_dataframe = pd.read_csv(os.path.join(folder2, 'rspds_A_D50_D65.txt'), sep = ' ')
|
|
93
|
+
rspds_C_D55_D75_dataframe = pd.read_csv(os.path.join(folder2, 'rspds_C_D55_D75.txt'), sep = ' ')
|
|
94
|
+
cmfs_dataframe = pd.read_csv(os.path.join(folder2, 'cmfs.txt'), sep = ' ')
|
|
95
|
+
|
|
96
|
+
Lab_Alaluf2002_dataframe = pd.read_csv(os.path.join(folder2, 'Lab_Alaluf2002.txt'), sep = ' ')
|
|
97
|
+
Lab_Xiao2017_dataframe = pd.read_csv(os.path.join(folder2, 'Lab_Xiao2017.txt'), sep = ' ')
|
|
98
|
+
Sharma2004_TableI_dataframe = pd.read_csv(os.path.join(folder2, 'Sharma2004_TableI.txt'), sep = ' ')
|
|
99
|
+
|
|
100
|
+
folder3 = os.path.join(folder0, 'datasets', 'spectra')
|
|
101
|
+
|
|
102
|
+
Xiao2016_dataframe = pd.read_excel(os.path.join(folder2, 'Xiao2016', 'skindatabaseSpectra',
|
|
103
|
+
'ISSA_17_Jan_2025_Yan_Lu.xlsx'))
|
|
104
|
+
Lu2025_dataframe = pd.read_excel(os.path.join(folder2, 'Lu2025', 'ISSA_17_Jan_2025_Yan_Lu.xlsx'),
|
|
105
|
+
sheet_name = 'ISSA', header = 0, skiprows = 11).replace('nan', np.nan)
|
|
@@ -0,0 +1,69 @@
|
|
|
1
|
+
pair i L a b al Cl hl hl_bar G T SL SC SH RT Delta_E_00
|
|
2
|
+
1 1 50.0000 2.6772 -79.7751 2.6774 79.8200 271.9222 270.9611 0.0001 0.6907 1.0000 4.6578 1.8421 1.7042 2.0425
|
|
3
|
+
1 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 270.9611 0.0001 0.6907 1.0000 4.6578 1.8421 1.7042 2.0425
|
|
4
|
+
2 1 50.0000 3.1571 -77.2803 3.1573 77.3448 272.3395 271.1698 0.0001 0.6843 1.0000 4.6021 1.8216 1.7070 2.8615
|
|
5
|
+
2 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 271.1698 0.0001 0.6843 1.0000 4.6021 1.8216 1.7070 2.8615
|
|
6
|
+
3 1 50.0000 2.8361 -74.0200 2.8363 74.0743 272.1944 271.0972 0.0001 0.6865 1.0000 4.5285 1.8074 1.7060 3.4412
|
|
7
|
+
3 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 271.0972 0.0001 0.6865 1.0000 4.5285 1.8074 1.7060 3.4412
|
|
8
|
+
4 1 50.0000 -1.3802 -84.2814 1.3803 84.2927 269.0618 269.5309 0.0001 0.7357 1.0000 4.7584 1.9217 1.6809 1.0000
|
|
9
|
+
4 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 269.5309 0.0001 0.7357 1.0000 4.7584 1.9217 1.6809 1.0000
|
|
10
|
+
5 1 50.0000 -1.1848 -84.8006 1.1849 84.8089 269.1995 269.5997 0.0001 0.7335 1.0000 4.7700 1.9218 1.6822 1.0000
|
|
11
|
+
5 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 269.5997 0.0001 0.7335 1.0000 4.7700 1.9218 1.6822 1.0000
|
|
12
|
+
6 1 50.0000 -0.9009 -85.5211 0.9009 85.5258 269.3964 269.6982 0.0001 0.7303 1.0000 4.7862 1.9217 1.6840 1.0000
|
|
13
|
+
6 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 269.6982 0.0001 0.7303 1.0000 4.7862 1.9217 1.6840 1.0000
|
|
14
|
+
7 1 50.0000 0.0000 0.0000 0.0000 0.0000 0.0000 126.8697 0.5000 1.2200 1.0000 1.0562 1.0229 0.0000 2.3669
|
|
15
|
+
7 2 50.0000 -1.0000 2.0000 1.5000 2.5000 126.8697 126.8697 0.5000 1.2200 1.0000 1.0562 1.0229 0.0000 2.3669
|
|
16
|
+
8 1 50.0000 -1.0000 2.0000 1.5000 2.5000 126.8697 126.8697 0.5000 1.2200 1.0000 1.0562 1.0229 0.0000 2.3669
|
|
17
|
+
8 2 50.0000 0.0000 0.0000 0.0000 0.0000 0.0000 126.8697 0.5000 1.2200 1.0000 1.0562 1.0229 0.0000 2.3669
|
|
18
|
+
9 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 269.9854 0.4998 0.7212 1.0000 1.1681 1.0404 0.0022 7.1792
|
|
19
|
+
9 2 50.0000 -2.4900 0.0009 3.7346 3.7346 179.9862 269.9854 0.4998 0.7212 1.0000 1.1681 1.0404 0.0022 7.1792
|
|
20
|
+
10 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 269.9847 0.4998 0.7212 1.0000 1.1681 1.0404 0.0022 7.1792
|
|
21
|
+
10 2 50.0000 -2.4900 0.0010 3.7346 3.7346 179.9847 269.9847 0.4998 0.7212 1.0000 1.1681 1.0404 0.0022 7.1792
|
|
22
|
+
11 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 89.9839 0.4998 0.6175 1.0000 1.1681 1.0346 0.0000 7.2195
|
|
23
|
+
11 2 50.0000 -2.4900 0.0011 3.7346 3.7346 179.9831 89.9839 0.4998 0.6175 1.0000 1.1681 1.0346 0.0000 7.2195
|
|
24
|
+
12 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 89.9831 0.4998 0.6175 1.0000 1.1681 1.0346 0.0000 7.2195
|
|
25
|
+
12 2 50.0000 -2.4900 0.0012 3.7346 3.7346 179.9816 89.9831 0.4998 0.6175 1.0000 1.1681 1.0346 0.0000 7.2195
|
|
26
|
+
13 1 50.0000 -0.0010 2.4900 0.0015 2.4900 90.0345 180.0328 0.4998 0.9779 1.0000 1.1121 1.0365 0.0000 4.8045
|
|
27
|
+
13 2 50.0000 0.0009 -2.4900 0.0013 2.4900 270.0311 180.0328 0.4998 0.9779 1.0000 1.1121 1.0365 0.0000 4.8045
|
|
28
|
+
14 1 50.0000 -0.0010 2.4900 0.0015 2.4900 90.0345 180.0345 0.4998 0.9779 1.0000 1.1121 1.0365 0.0000 4.8045
|
|
29
|
+
14 2 50.0000 0.0010 -2.4900 0.0015 2.4900 270.0345 180.0345 0.4998 0.9779 1.0000 1.1121 1.0365 0.0000 4.8045
|
|
30
|
+
15 1 50.0000 -0.0010 2.4900 0.0015 2.4900 90.0345 0.0362 0.4998 1.3197 1.0000 1.1121 1.0493 0.0000 4.7461
|
|
31
|
+
15 2 50.0000 0.0011 -2.4900 0.0016 2.4900 270.0380 0.0362 0.4998 1.3197 1.0000 1.1121 1.0493 0.0000 4.7461
|
|
32
|
+
16 1 50.0000 2.5000 0.0000 3.7496 3.7496 0.0000 315.0000 0.4998 0.8454 1.0000 1.1406 1.0396 0.0001 4.3065
|
|
33
|
+
16 2 50.0000 0.0000 -2.5000 0.0000 2.5000 270.0000 315.0000 0.4998 0.8454 1.0000 1.1406 1.0396 0.0001 4.3065
|
|
34
|
+
17 1 50.0000 2.5000 0.0000 3.4569 3.4569 0.0000 346.2470 0.3827 1.4453 1.1608 1.9547 1.4599 0.0003 27.1492
|
|
35
|
+
17 2 73.0000 25.0000 -18.0000 34.5687 38.9743 332.4939 346.2470 0.3827 1.4453 1.1608 1.9547 1.4599 0.0003 27.1492
|
|
36
|
+
18 1 50.0000 2.5000 0.0000 3.4954 3.4954 0.0000 51.7766 0.3981 0.6447 1.0640 1.7498 1.1612 0.0000 22.8977
|
|
37
|
+
18 2 61.0000 -5.0000 29.0000 6.9907 29.8307 103.5532 51.7766 0.3981 0.6447 1.0640 1.7498 1.1612 0.0000 22.8977
|
|
38
|
+
19 1 50.0000 2.5000 0.0000 3.5514 3.5514 0.0000 272.2362 0.4206 0.6521 1.0251 1.9455 1.2055 0.8219 31.9030
|
|
39
|
+
19 2 56.0000 -27.0000 -3.0000 38.3556 38.4728 184.4723 272.2362 0.4206 0.6521 1.0251 1.9455 1.2055 0.8219 31.9030
|
|
40
|
+
20 1 50.0000 2.5000 0.0000 3.5244 3.5244 0.0000 11.9548 0.4098 1.1031 1.0400 1.9120 1.3353 0.0000 19.4535
|
|
41
|
+
20 2 58.0000 24.0000 15.0000 33.8342 37.0102 23.9095 11.9548 0.4098 1.1031 1.0400 1.9120 1.3353 0.0000 19.4535
|
|
42
|
+
21 1 50.0000 2.5000 0.0000 3.7494 3.7494 0.0000 3.5056 0.4997 1.2616 1.0000 1.1923 1.0808 0.0000 1.0000
|
|
43
|
+
21 2 50.0000 3.1736 0.5854 4.7596 4.7954 7.0113 3.5056 0.4997 1.2616 1.0000 1.1923 1.0808 0.0000 1.0000
|
|
44
|
+
22 1 50.0000 2.5000 0.0000 3.7493 3.7493 0.0000 0.0000 0.4997 1.3202 1.0000 1.1956 1.0861 0.0000 1.0000
|
|
45
|
+
22 2 50.0000 3.2972 0.0000 4.9450 4.9450 0.0000 0.0000 0.4997 1.3202 1.0000 1.1956 1.0861 0.0000 1.0000
|
|
46
|
+
23 1 50.0000 2.5000 0.0000 3.7497 3.7497 0.0000 5.8190 0.4999 1.2197 1.0000 1.1486 1.0604 0.0000 1.0000
|
|
47
|
+
23 2 50.0000 1.8634 0.5757 2.7949 2.8536 11.6380 5.8190 0.4999 1.2197 1.0000 1.1486 1.0604 0.0000 1.0000
|
|
48
|
+
24 1 50.0000 2.5000 0.0000 3.7493 3.7493 0.0000 1.9603 0.4997 1.2883 1.0000 1.1946 1.0836 0.0000 1.0000
|
|
49
|
+
24 2 50.0000 3.2592 0.3350 4.8879 4.8994 3.9206 1.9603 0.4997 1.2883 1.0000 1.1946 1.0836 0.0000 1.0000
|
|
50
|
+
25 1 60.2574 -34.0099 36.2677 34.0678 49.7590 133.2085 132.0835 0.0017 1.3010 1.1427 3.2946 1.9951 0.0000 1.2644
|
|
51
|
+
25 2 60.4626 -34.1751 39.4387 34.2333 52.2238 130.9584 132.0835 0.0017 1.3010 1.1427 3.2946 1.9951 0.0000 1.2644
|
|
52
|
+
26 1 63.0109 -31.0961 -5.8663 32.6194 33.1427 190.1951 188.8221 0.0490 0.9402 1.1831 2.4549 1.4560 0.0000 1.2630
|
|
53
|
+
26 2 62.8187 -29.7946 -4.0864 31.2542 31.5202 187.4490 188.8221 0.0490 0.9402 1.1831 2.4549 1.4560 0.0000 1.2630
|
|
54
|
+
27 1 61.2901 3.7196 -5.3901 5.5668 7.7487 315.9240 310.0313 0.4966 0.6952 1.1586 1.3092 1.0717 0.0032 1.8731
|
|
55
|
+
27 2 61.4292 2.2480 -4.9620 3.3644 5.9950 304.1385 310.0313 0.4966 0.6952 1.1586 1.3092 1.0717 0.0032 1.8731
|
|
56
|
+
28 1 35.0831 -44.1164 3.7933 44.3939 44.5557 175.1161 176.4290 0.0063 1.0168 1.2148 2.9105 1.6476 0.0000 1.8645
|
|
57
|
+
28 2 35.0232 -40.0716 1.5901 40.3237 40.3550 177.7418 176.4290 0.0063 1.0168 1.2148 2.9105 1.6476 0.0000 1.8645
|
|
58
|
+
29 1 22.7233 20.0904 -46.6940 20.1424 50.8532 293.3339 291.3809 0.0026 0.3636 1.4014 3.1597 1.2617 1.2537 2.0373
|
|
59
|
+
29 2 23.0331 14.9730 -42.5619 15.0118 45.1317 289.4279 291.3809 0.0026 0.3636 1.4014 3.1597 1.2617 1.2537 2.0373
|
|
60
|
+
30 1 36.4612 47.8580 18.3852 47.9197 51.3256 20.9901 21.8781 0.0013 0.9239 1.1943 3.3888 1.7357 0.0000 1.4146
|
|
61
|
+
30 2 36.2715 50.5065 21.2231 50.5716 54.8444 22.7660 21.8781 0.0013 0.9239 1.1943 3.3888 1.7357 0.0000 1.4146
|
|
62
|
+
31 1 90.8027 -2.0831 1.4410 3.1245 3.4408 155.2410 167.1011 0.4999 1.1546 1.6110 1.1329 1.0511 0.0000 1.4441
|
|
63
|
+
31 2 91.1528 -1.6435 0.0447 2.4651 2.4655 178.9612 167.1011 0.4999 1.1546 1.6110 1.1329 1.0511 0.0000 1.4441
|
|
64
|
+
32 1 90.9257 -0.5406 -0.9208 0.8109 1.2270 228.6315 218.4363 0.5000 1.3916 1.5930 1.0620 1.0288 0.0000 1.5381
|
|
65
|
+
32 2 88.6381 -0.8985 -0.7239 1.3477 1.5298 208.2412 218.4363 0.5000 1.3916 1.5930 1.0620 1.0288 0.0000 1.5381
|
|
66
|
+
33 1 6.7747 -0.2908 -2.4247 0.4362 2.4636 259.8025 263.0049 0.4999 0.9556 1.6517 1.1057 1.0337 0.0004 0.6377
|
|
67
|
+
33 2 5.8714 -0.0985 -2.2286 0.1477 2.2335 266.2073 263.0049 0.4999 0.9556 1.6517 1.1057 1.0337 0.0004 0.6377
|
|
68
|
+
34 1 2.0776 0.0795 -1.1350 0.1192 1.1412 275.9978 268.0910 0.5000 0.7826 1.7246 1.0383 1.0100 0.0000 0.9082
|
|
69
|
+
34 2 0.9033 -0.0636 -0.5514 0.0954 0.5596 260.1842 268.0910 0.5000 0.7826 1.7246 1.0383 1.0100 0.0000 0.9082
|
|
@@ -0,0 +1,98 @@
|
|
|
1
|
+
wavelength rspd_C[-] rspd_D55[-] rspd_D75[-]
|
|
2
|
+
300 0.00 0.02400 0.04300
|
|
3
|
+
305 0.00 1.04800 2.58800
|
|
4
|
+
310 0.00 2.07200 5.13300
|
|
5
|
+
315 0.00 6.64800 17.4700
|
|
6
|
+
320 0.01 11.2240 29.8080
|
|
7
|
+
325 0.20 15.9360 42.3690
|
|
8
|
+
330 0.40 20.6470 54.9300
|
|
9
|
+
335 1.55 22.2660 56.0950
|
|
10
|
+
340 2.70 23.8850 57.2590
|
|
11
|
+
345 4.85 25.8510 60.0000
|
|
12
|
+
350 7.00 27.8170 62.7400
|
|
13
|
+
355 9.95 29.2190 62.8610
|
|
14
|
+
360 12.90 30.6210 62.9820
|
|
15
|
+
365 17.20 32.4640 66.6470
|
|
16
|
+
370 21.40 34.3080 70.3120
|
|
17
|
+
375 27.50 33.4460 68.5070
|
|
18
|
+
380 33.00 32.5840 66.7030
|
|
19
|
+
385 39.92 35.3350 68.3330
|
|
20
|
+
390 47.40 38.0870 69.9630
|
|
21
|
+
395 55.17 49.5180 85.9460
|
|
22
|
+
400 63.30 60.9490 101.929
|
|
23
|
+
405 71.81 64.7510 106.911
|
|
24
|
+
410 80.60 68.5540 111.894
|
|
25
|
+
415 89.53 70.0650 112.346
|
|
26
|
+
420 98.10 71.5770 112.798
|
|
27
|
+
425 105.80 69.7460 107.945
|
|
28
|
+
430 112.40 67.9140 103.092
|
|
29
|
+
435 117.75 76.7600 112.145
|
|
30
|
+
440 121.50 85.6050 121.198
|
|
31
|
+
445 123.45 91.7990 127.104
|
|
32
|
+
450 124.00 97.9930 133.010
|
|
33
|
+
455 123.60 99.2280 132.682
|
|
34
|
+
460 123.10 100.463 132.355
|
|
35
|
+
465 123.30 100.188 129.838
|
|
36
|
+
470 123.80 99.9130 127.322
|
|
37
|
+
475 124.09 101.326 127.061
|
|
38
|
+
480 123.90 102.739 126.800
|
|
39
|
+
485 122.92 100.409 122.291
|
|
40
|
+
490 120.70 98.0780 117.783
|
|
41
|
+
495 116.90 99.3790 117.186
|
|
42
|
+
500 112.10 100.680 116.589
|
|
43
|
+
505 106.98 100.688 115.146
|
|
44
|
+
510 102.30 100.695 113.702
|
|
45
|
+
515 98.81 100.341 111.181
|
|
46
|
+
520 96.90 99.9870 108.659
|
|
47
|
+
525 96.78 102.098 109.552
|
|
48
|
+
530 98.00 104.210 110.445
|
|
49
|
+
535 99.94 103.156 108.367
|
|
50
|
+
540 102.10 102.102 106.289
|
|
51
|
+
545 103.95 102.535 105.596
|
|
52
|
+
550 105.20 102.968 104.904
|
|
53
|
+
555 105.67 101.484 102.452
|
|
54
|
+
560 105.30 100.000 100.000
|
|
55
|
+
565 104.11 98.6080 97.8080
|
|
56
|
+
570 102.30 97.2160 95.6160
|
|
57
|
+
575 100.15 97.4820 94.9140
|
|
58
|
+
580 97.80 97.7490 94.2130
|
|
59
|
+
585 95.43 94.5900 90.6050
|
|
60
|
+
590 93.20 91.4320 86.9970
|
|
61
|
+
595 91.22 92.9260 87.1120
|
|
62
|
+
600 89.70 94.4190 87.2270
|
|
63
|
+
605 88.83 94.7800 86.6840
|
|
64
|
+
610 88.40 95.1400 86.1400
|
|
65
|
+
615 88.19 94.6800 84.8610
|
|
66
|
+
620 88.10 94.2200 83.5810
|
|
67
|
+
625 88.06 92.3340 81.1640
|
|
68
|
+
630 88.00 90.4480 78.7470
|
|
69
|
+
635 87.86 91.3890 78.5870
|
|
70
|
+
640 87.80 92.3300 78.4280
|
|
71
|
+
645 87.99 90.5920 76.6140
|
|
72
|
+
650 88.20 88.8540 74.8010
|
|
73
|
+
655 88.20 89.5860 74.5620
|
|
74
|
+
660 87.90 90.3170 74.3240
|
|
75
|
+
665 87.22 92.1330 74.8730
|
|
76
|
+
670 86.30 93.9500 75.4220
|
|
77
|
+
675 85.30 91.9530 73.4990
|
|
78
|
+
680 84.00 89.9560 71.5760
|
|
79
|
+
685 82.21 84.8170 67.7140
|
|
80
|
+
690 80.20 79.6770 63.8520
|
|
81
|
+
695 78.24 81.2580 64.4640
|
|
82
|
+
700 76.30 82.8400 65.0760
|
|
83
|
+
705 74.36 83.8420 66.5730
|
|
84
|
+
710 72.40 84.8440 68.0700
|
|
85
|
+
715 70.40 77.5390 62.2560
|
|
86
|
+
720 68.30 70.2350 56.4430
|
|
87
|
+
725 66.30 74.7680 60.3430
|
|
88
|
+
730 64.40 79.3010 64.2420
|
|
89
|
+
735 62.80 82.1470 66.6970
|
|
90
|
+
740 61.50 84.9930 69.1510
|
|
91
|
+
745 60.20 78.4370 63.8900
|
|
92
|
+
750 59.20 71.8800 58.6290
|
|
93
|
+
755 58.50 62.3370 50.6230
|
|
94
|
+
760 58.10 52.7930 42.6170
|
|
95
|
+
765 58.00 64.3600 51.9850
|
|
96
|
+
770 58.20 75.9270 61.3520
|
|
97
|
+
775 58.50 73.8720 59.8380
|
|
98
|
+
780 59.10 71.8180 58.324
|